1
|
Flam E, Haas JT, Staels B. Liver metabolism in human MASLD: A review of recent advancements using human tissue metabolomics. Atherosclerosis 2025; 400:119054. [PMID: 39586140 DOI: 10.1016/j.atherosclerosis.2024.119054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024]
Abstract
Global incidence of Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD) is on the rise while treatments remain elusive. MASLD is a disease of dysregulated systemic and hepatic metabolism. Current understanding of disease pathophysiology as it relates to metabolome changes largely comes from studies on animal models and human plasma. However, human tissue data are crucial for transitioning from mechanisms to clinical therapies. The close relationship between MASLD and comorbidities like obesity, type 2 diabetes and dyslipidemia make it difficult to determine the contribution from liver disease itself. Here, we review recent metabolomics studies in liver tissue from human MASLD patients, which have predominately focused on lipid metabolism, but also include bile acid, tricarboxylic acid (TCA) cycle, and branched chain amino acid (BCAA) metabolism. Several clinical trials are underway to target various of these lipid-related pathways in MASLD. Although only the β-selective thyroid hormone receptor agonist resmetirom has so far been approved for use, many metabolism-targeting pharmaceuticals show promising results for halting disease progression, if not promoting outright reversal. Ultimately, the scarcity of human tissue data and the variability of confounding factors, like obesity, within and between cohorts are impediments to the pathophysiological understanding required for efficient development of metabolic treatments.
Collapse
Affiliation(s)
- Emily Flam
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
2
|
Liu D, Yin M, Chen J, Fu C, Schneider M, Nickel D, Yao X. Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes. NMR IN BIOMEDICINE 2025; 38:e5290. [PMID: 39511916 DOI: 10.1002/nbm.5290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.
Collapse
Affiliation(s)
- Dingxia Liu
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Minyan Yin
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Caixia Fu
- Application Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Manuel Schneider
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Xiuzhong Yao
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Khan TJ, Semenkovich CF, Zayed MA. De novo lipid synthesis in cardiovascular tissue and disease. Atherosclerosis 2025; 400:119066. [PMID: 39616863 DOI: 10.1016/j.atherosclerosis.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Most tissues have the capacity for endogenous lipid synthesis. A crucial foundational pathway for lipid synthesis is de novo lipid synthesis (DNL), a ubiquitous and complex metabolic process that occurs at high levels in the liver, adipose and brain tissue. Under normal physiological conditions, DNL is vital in converting excess carbohydrates into fatty acids. DNL is linked to other pathways, including the endogenous synthesis of phospholipids and sphingolipids. However, abnormal lipid synthesis can contribute to various pathologies and clinical conditions. Experimental studies involving dietary restriction and in vivo genetic modifications provide compelling evidence demonstrating the significance of lipid synthesis in maintaining normal cardiovascular tissue function. Similarly, clinical investigations suggest altered lipid synthesis can harm cardiac and arterial tissues, thereby influencing cardiovascular disease (CVD) development and progression. Consequently, there is increased interest in exploring pharmacological interventions that target lipid synthesis metabolic pathways as potential strategies to alleviate CVD. Here we review the physiological and pathological impact of endogenous lipid synthesis and its implications for CVD. Since lipid synthesis can be targeted pharmacologically, enhancing our understanding of the molecular and biochemical mechanisms underlying lipid generation and cardiovascular function may prompt new insights into CVD and its treatment.
Collapse
Affiliation(s)
- Tariq J Khan
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA
| | - Clay F Semenkovich
- Washington University School of Medicine, Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research, St. Louis, MO, USA; Washington University School of Medicine, Department of Cell Biology and Physiology, St. Louis, MO, USA
| | - Mohamed A Zayed
- Washington University School of Medicine, Department of Surgery, Section of Vascular Surgery, St. Louis, MO, USA; Washington University School of Medicine, Department of Surgery, Division of Surgical Sciences, St. Louis, MO, USA; Washington University School of Medicine, Department of Radiology, St. Louis, MO, USA; Washington University School of Medicine, Division of Molecular Cell Biology, St. Louis, MO, USA; Washington University, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, MO, USA; Veterans Affairs St. Louis Health Care System, St. Louis, MO, USA.
| |
Collapse
|
4
|
Ke C, Xiao C, Li J, Wu X, Zhang Y, Chen Y, Sheng S, Fu Z, Wang L, Ni C, Zhao J, Shi Y, Wu Y, Zhong Z, Nan J, Zhu W, Chen J, Wu R, Hu X. FMO2 ameliorates nonalcoholic fatty liver disease by suppressing ER-to-Golgi transport of SREBP1. Hepatology 2025; 81:181-197. [PMID: 37874228 DOI: 10.1097/hep.0000000000000643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND AND AIMS NAFLD comprises a spectrum of liver disorders with the initial abnormal accumulation of lipids in hepatocytes called NAFL, progressing to the more serious NASH in a subset of individuals. Our previous study revealed that global flavin-containing monooxygenase 2 (FMO2) knockout causes higher liver weight in rats. However, the role of FMO2 in NAFLD remains unclear. Herein, we aimed to determine the function and mechanism of FMO2 in liver steatosis and steatohepatitis. APPROACH AND RESULTS The expression of FMO2 was significantly downregulated in patients with NAFL/NASH and mouse models. Both global and hepatocyte-specific knockout of FMO2 resulted in increased lipogenesis and severe hepatic steatosis, inflammation, and fibrosis, whereas FMO2 overexpression in mice improved NAFL/NASH. RNA sequencing showed that hepatic FMO2 deficiency is associated with impaired lipogenesis in response to metabolic challenges. Mechanistically, FMO2 directly interacts with SREBP1 at amino acids 217-296 competitively with SREBP cleavage-activating protein (SCAP) and inhibits SREBP1 translocation from the endoplasmic reticulum (ER) to the Golgi apparatus and its subsequent activation, thus suppressing de novo lipogenesis (DNL) and improving NAFL/NASH. CONCLUSIONS In hepatocytes, FMO2 is a novel molecule that protects against the progression of NAFL/NASH independent of enzyme activity. FMO2 impairs lipogenesis in high-fat diet-induced or choline-deficient, methionine-deficient, amino acid-defined high-fat diet-induced steatosis, inflammation, and fibrosis by directly binding to SREBP1 and preventing its organelle translocation and subsequent activation. FMO2 thus is a promising molecule for targeting the activation of SREBP1 and for the treatment of NAFL/NASH.
Collapse
Affiliation(s)
- Changle Ke
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Changchen Xiao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jiamin Li
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Xianpeng Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yu Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yongjian Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Shuyuan Sheng
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Zaiyang Fu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Lingjun Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Cheng Ni
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jing Zhao
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yanna Shi
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Yan Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Zhiwei Zhong
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jinliang Nan
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, P.R.China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, P.R.China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, P.R.China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, P.R.China
| |
Collapse
|
5
|
Zeng G, Liu X, Zheng Z, Zhao J, Zhuo W, Bai Z, Lin E, Cai S, Cai C, Li P, Zou B, Li J. Knockdown of RASD1 improves MASLD progression by inhibiting the PI3K/AKT/mTOR pathway. Lipids Health Dis 2024; 23:424. [PMID: 39731125 DOI: 10.1186/s12944-024-02419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD. Therefore, we designed a study to elucidate how RASD1 could impact on MASLD as well as the mechanisms involved. METHODS The expression level of RASD1 was validated in MASLD. Lipid metabolism and its underlying mechanism were investigated in hepatocytes and mice with either overexpression or knockdown of RASD1. RESULTS Hepatic RASD1 expression was upregulated in MASLD. Lipid deposition was significantly reduced in RASD1-knockdown hepatocytes and mice, accompanied by a marked downregulation of key genes in the signaling pathway of de novo lipogenesis. Conversely, RASD1 overexpression in hepatocytes had the opposite effect. Mechanistically, RASD1 regulated lipid metabolism in MASLD through the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS We discovered a novel role of RASD1 in MASLD by regulating lipogenesis via the PI3K/AKT/mTOR pathway, thereby identifying a potential treatment target for MASLD.
Collapse
Affiliation(s)
- Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zhouying Zheng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Jiali Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
6
|
Luukkonen PK. Hidden metabolic effects of acetyl-CoA carboxylase inhibition. J Hepatol 2024:S0168-8278(24)02745-4. [PMID: 39681499 DOI: 10.1016/j.jhep.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Affiliation(s)
- Panu K Luukkonen
- Department of Internal Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
7
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
8
|
Stefan N, Yki-Järvinen H, Neuschwander-Tetri BA. Metabolic dysfunction-associated steatotic liver disease: heterogeneous pathomechanisms and effectiveness of metabolism-based treatment. Lancet Diabetes Endocrinol 2024:S2213-8587(24)00318-8. [PMID: 39681121 DOI: 10.1016/s2213-8587(24)00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024]
Abstract
The global epidemic of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing worldwide. People with MASLD can progress to cirrhosis and hepatocellular carcinoma and are at increased risk of developing type 2 diabetes, cardiovascular disease, chronic kidney disease, and extrahepatic cancers. Most people with MASLD die from cardiac-related causes. This outcome is attributed to the shared pathogenesis of MASLD and cardiometabolic diseases, involving unhealthy dietary habits, dysfunctional adipose tissue, insulin resistance, and subclinical inflammation. In addition, the steatotic and inflamed liver affects the vasculature and heart via increased glucose production and release of procoagulant factors, dyslipidaemia, and dysregulated release of hepatokines and microRNAs. However, there is substantial heterogeneity in the contributors to the pathophysiology of MASLD, which might influence its rate of progression, its relationship with cardiometabolic diseases, and the response to therapy. The most effective non-pharmacological treatment approaches for people with MASLD include weight loss. Paradoxically, some effective pharmacological approaches to improve liver health in people with MASLD are associated with no change in bodyweight or even with weight gain, and similar response heterogeneity has been observed for changes in cardiometabolic risk factors. In this Review, we address the heterogeneity of MASLD with respect to its pathogenesis, outcomes, and metabolism-based treatment responses. Although there is currently insufficient evidence for the implementation of precision medicine for risk prediction, prevention, and treatment of MASLD, we discuss whether knowledge about this heterogeneity might help achieving this goal in the future.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | |
Collapse
|
9
|
Nandhakumar P, Sun L, Li Z, Cheung C, Nguyen L, Ding S, Gao W, Zhang L, Wang J. Biomimetic Cell Membrane Layers for the Detection of Insulin and Glucagon. Anal Chem 2024; 96:19812-19821. [PMID: 39620950 DOI: 10.1021/acs.analchem.4c05347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The growing need for reliable and rapid insulin testing to enhance glycemic management has spurred intensive exploration of new insulin-binding bioreceptors and innovative biosensing platforms for detecting this hormone, along with glucagon, in biological samples. Here, by leveraging the native protein receptors on the HepG2 cell membrane, we construct a simple and chemical-free biomimetic molecular recognition layer for the detection of insulin and glucagon. Unlike traditional affinity sensors, which require lengthy surface modifications on the electrochemical transducers and use of two different capture antibodies to recognize each analyte, this new biomimetic sensing strategy employs a simple drop-casting of a natural cell membrane recognition layer onto the electrochemical transducer. This approach allows for the concurrent capture and detection of both insulin and glucagon. We investigate the presence of insulin and glucagon receptors on the HepG2 cell membrane and demonstrate its multiplexing bioelectronic sensing capabilities through the binding of the captured insulin and glucagon to enzyme-tagged signaling antibodies. This new molecular recognition layer offers highly sensitive simultaneous detection of insulin and glucagon under decentralized conditions, holding considerable promise for the management of diabetes and the development of diverse biomimetic diagnostic platforms.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhengxing Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Cheung
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ly Nguyen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Shichao Ding
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Wang H, Shan C, Guo G, Ning D, Miao F. Therapeutic potential of palmitoleic acid in non-alcoholic fatty liver disease: Targeting ferroptosis and lipid metabolism disorders. Int Immunopharmacol 2024; 142:113025. [PMID: 39243559 DOI: 10.1016/j.intimp.2024.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a metabolic syndrome associated with obesity and type 2 diabetes mellitus. Currently, there are no effective drugs to treat NAFLD. Palmitoleic acid (PA) has demonstrated therapeutic potential in managing various metabolic diseases and inflammation. Although ferroptosis is known to play a critical role in the NAFLD development, it remains unclear whether PA can alleviate NAFLD by inhibiting ferroptosis. METHODS Thirty C57BL/6 mice were divided into three groups: standard diet, high-fat diet (HFD), and HFD with PA. The experiment lasted 16 weeks. RESULTS PA alleviated liver injury, hepatitis, and dyslipidemia in HFD-induced NAFLD mice. It improved insulin resistance, downregulated genes and proteins related to fat synthesis, and upregulated genes and proteins linked to lipolysis and fat oxidation. Mechanistically, bioinformatics enrichment revealed the involvement of ferroptosis in NAFLD. PA mitigated oxidative stress and reduced liver iron content in NAFLD. It downregulated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression while upregulating glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) expression, thereby inhibiting ferroptosis. CONCLUSION PA exerts a protective effect against liver lipotoxicity by inhibiting lipid metabolism-mediated ferroptosis. These findings provide new insights into preventive and therapeutic strategies for the pathological processes of NAFLD.
Collapse
Affiliation(s)
- Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, PR China
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Gangjun Guo
- Yunnan Institute of Tropical Crops, Jinghong 666100, PR China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Yunnan Woody Oilseed Technology Innovation Center, Kunming 650204, PR China
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Yunnan Woody Oilseed Technology Innovation Center, Kunming 650204, PR China.
| |
Collapse
|
11
|
Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Theocharidou E, Germanidis G, Gika H. A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis-A Pilot Study. Int J Mol Sci 2024; 25:13067. [PMID: 39684777 DOI: 10.3390/ijms252313067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disorder in Western countries, encompassing a range of conditions from steatosis to Metabolic Dysfunction-Associated Steatohepatitis (MASH), which can potentially progress to cirrhosis. Lipidomics approaches have revealed significant alterations in the hepatic lipidome associated with both steatosis and steatohepatitis, with these changes correlating with disease manifestation. While the transition from steatosis to MASH remains poorly understood, recent research indicates that both the quantity and quality of deposited lipids play a pivotal role in MASLD progression. In our study, we utilized untargeted and targeted analyses to identify intact lipids and fatty acids in liver biopsies from healthy controls and MASLD patients, categorized based on their histological findings. In total, 447 lipid species were identified, with 215 subjected to further statistical analysis. Univariate and multivariate analyses revealed alterations in triglyceride species and fatty acids, including FA 16:0, FA 16:1, FA 18:3 n6, the sum of MUFA, and the Δ9-desaturase activity ratio. This research provides insights into the connection between dysregulated lipid metabolism in the progression of MASLD, supporting previous findings. Further studies on lipid metabolism could improve risk assessment methods, particularly given the current limited understanding of the transition from steatosis to MASH.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodoros Liapikos
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Theocharidou
- 2nd Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, 1st Department of Internal Medicine, AHEPA University Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Laboratory of Hygiene, Social and Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Laboratory of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th km Thessaloniki-Thermi Rd., 57001 Thessaloniki, Greece
| |
Collapse
|
12
|
Ouyang S, Zhuo S, Yang M, Zhu T, Yu S, Li Y, Ying H, Le Y. Glycerol Kinase Drives Hepatic de novo Lipogenesis and Triglyceride Synthesis in Nonalcoholic Fatty Liver by Activating SREBP-1c Transcription, Upregulating DGAT1/2 Expression, and Promoting Glycerol Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401311. [PMID: 39418169 PMCID: PMC11633478 DOI: 10.1002/advs.202401311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/07/2024] [Indexed: 10/19/2024]
Abstract
Glycerol kinase (GK) participates in triglyceride (TG) synthesis by catalyzing glycerol metabolism. Whether GK contributes to nonalcoholic fatty liver (NAFL) is unclear. The expression of hepatic Gk is found to be increased in diet-induced and genetic mouse models of NAFL and is positively associated with hepatic SREBP-1c expression and TG levels. Cholesterol and fatty acids stimulate GK expression in hepatocytes. In HFD-induced NAFL mice, knockdown of hepatic Gk decreases expression of SREBP-1c and its target lipogenic genes as well as DGAT1/2, increases serum glycerol levels, decreases serum TG levels, and attenuates hepatic TG accumulation. Overexpression of GK in hepatocytes in mice or in culture produces opposite results. Mechanistic studies reveal that GK stimulates SREBP-1c transcription directly by binding to its gene promoter and indirectly by binding to SREBP-1c protein, thereby increasing lipogenic gene expression and de novo lipogenesis. Studies with truncated GK and mutant GKs indicate that GK induces SREBP-1c transcription independently of its enzyme activity. GK contributes to lipid homeostasis under physiological conditions by catalyzing glycerol metabolism rather than by regulating SREBP-1c transcription. Collectively, these results demonstrate that increased hepatic GK promotes de novo lipogenesis and TG synthesis in NAFL by stimulating SREBP-1c transcription and DGAT1/2 expression and catalyzing glycerol metabolism.
Collapse
Affiliation(s)
- Shuyu Ouyang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shu Zhuo
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Mengmei Yang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Tengfei Zhu
- School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Shuting Yu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yu Li
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Hao Ying
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Yingying Le
- CAS Key Laboratory of NutritionMetabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| |
Collapse
|
13
|
Maffeis C, Piona C, Morandi A, Marigliano M, Morotti E, Mancioppi V, Caiazza E, Zusi C, Emiliani F, Mantovani A, Colecchia A, Targher G. Glycaemic control metrics and metabolic dysfunction-associated steatotic liver disease in children and adolescents with type 1 diabetes. Diabetes Obes Metab 2024; 26:5896-5905. [PMID: 39344839 DOI: 10.1111/dom.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
AIM The aim was to examine the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), a risk factor for atherosclerotic cardiovascular disease, and its association with glycaemic control metrics in children and adolescents with type 1 diabetes (T1D). MATERIALS AND METHODS We enrolled 244 children and adolescents with T1D (115 girls, mean age: 16.2 ± 3.2 years). The diagnosis of MASLD was defined by the presence of hepatic steatosis on ultrasonography in combination with at least one of five common cardiometabolic risk factors. Metrics of short-term and long-term glycaemic control, blood pressure, lipids, anthropometric characteristics and three genetic variants strongly related to MASLD susceptibility (rs738409 [patatin-like phospholipase domain-containing 3], rs58542926 [transmembrane 6 superfamily member 2] and rs1260326 [glucokinase regulator]) were assessed. Characteristics of these subjects with and without MASLD were compared using the unpaired Student t test, Mann-Whitney test or χ2 test as appropriate. Logistic regression analyses were performed to determine the main independent predictors of MASLD. RESULTS The prevalence of MASLD was 27.5% in children and adolescents with T1D. Blood pressure, total cholesterol, low-density lipoprotein (LDL) cholesterol, non-high-density lipoprotein cholesterol, HbA1c and time above range (TAR) were significantly higher in subjects with MASLD than in those without MASLD. Mean HbA1c values from diabetes onset (adjusted odds ratio [OR]: 1.703, 95% confidence interval [CI]: 1.040-2.787, p = 0.034), TAR (adjusted OR: 1.028, 95% CI: 1.009-1.047, p = 0.006) and plasma LDL cholesterol (adjusted OR: 1.045, 95% CI: 1.013-1.078, p = 0.004) were independently associated with the presence of MASLD. CONCLUSIONS MASLD is a common condition in children and adolescents with T1D. The mean HbA1c values from diabetes onset, TAR and LDL cholesterol levels were the independent predictors of MASLD.
Collapse
Affiliation(s)
- Claudio Maffeis
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Claudia Piona
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Anita Morandi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Marco Marigliano
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Elisa Morotti
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Valentina Mancioppi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Erika Caiazza
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Chiara Zusi
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Federica Emiliani
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics and Gynecology, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Department of Specialistic Medicines, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| |
Collapse
|
14
|
Carli F, Della Pepa G, Sabatini S, Vidal Puig A, Gastaldelli A. Lipid metabolism in MASLD and MASH: From mechanism to the clinic. JHEP Rep 2024; 6:101185. [PMID: 39583092 PMCID: PMC11582433 DOI: 10.1016/j.jhepr.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 11/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is recognised as a metabolic disease characterised by excess intrahepatic lipid accumulation due to lipid overflow and synthesis, alongside impaired oxidation and/or export of these lipids. But where do these lipids come from? The main pathways related to hepatic lipid accumulation are de novo lipogenesis and excess fatty acid transport to the liver (due to increased lipolysis, adipose tissue insulin resistance, as well as excess dietary fatty acid intake, in particular of saturated fatty acids). Not only triglycerides but also other lipids are secreted by the liver and are associated with a worse histological profile in MASH, as shown by lipidomics. Herein, we review the role of lipid metabolism in MASLD/MASH and discuss the impact of weight loss (diet, bariatric surgery, GLP-1RAs) or other pharmacological treatments (PPAR or THRβ agonists) on hepatic lipid metabolism, lipidomics, and the resolution of MASH.
Collapse
Affiliation(s)
- Fabrizia Carli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Giuseppe Della Pepa
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Silvia Sabatini
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Antonio Vidal Puig
- Metabolic Research Laboratories, Medical Research Council Institute of Metabolic Science University of Cambridge, Cambridge CB2 0QQ UK
- Centro de Investigacion Principe Felipe Valencia 46012 Spain
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
15
|
Bacha F, Hannon TS, Tosur M, Pike JM, Butler A, Tommerdahl KL, Zeitler PS. Pathophysiology and Treatment of Prediabetes and Type 2 Diabetes in Youth. Diabetes Care 2024; 47:2038-2049. [PMID: 39250166 DOI: 10.2337/dci24-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024]
Abstract
Youth-onset type 2 diabetes is a heterogeneous disease with increasing prevalence in relation to increased rates of obesity in children. It has genetic, epigenetic, social, and environmental determinants. Youth-onset type 2 diabetes is alarming given a rapidly progressive course compared with the course of adult-onset disease, early-onset vascular complications, and long-term exposure to hyperglycemia and associated complications. It is often preceded by prediabetes, a disease phase where defects in β-cell function relative to insulin sensitivity emerge. Herein, we review the current understanding of the pathophysiology of prediabetes and type 2 diabetes in youth. We describe the mechanisms underlying insulin resistance, the precipitous decline of β-cell function, and the role of other hormonal abnormalities in the pathogenesis of the disease. We discuss the critical importance of social determinants of health in the predisposition and progression of these conditions and present current management strategies and the advances in therapeutic approaches. These must adapt to meet the unique needs of the individual patient and family. Significant knowledge gaps remain that need to be addressed in future research.
Collapse
Affiliation(s)
- Fida Bacha
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Tamara S Hannon
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Pediatric Accelerator for Careers Engaged in Research, Children's Health Services Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mustafa Tosur
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Julie M Pike
- Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Pediatric Accelerator for Careers Engaged in Research, Children's Health Services Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Ashley Butler
- Division of Psychology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Kalie L Tommerdahl
- Section of Endocrinology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Ludeman Family Center for Women's Health Research, Division of General Internal Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Philip S Zeitler
- Section of Endocrinology, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
16
|
Suryaningtyas IT, Je JY. Therapeutic effects of blue mussel-derived peptides (PIISVYWK and FSVVPSPK) on non-alcoholic fatty liver disease by modulating lipid metabolism and inflammation in high-fat diet-induced mice. Tissue Cell 2024; 91:102630. [PMID: 39579737 DOI: 10.1016/j.tice.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition, advancing from simple hepatic lipid accumulation to inflammation, fibrosis, and increased risk of mortality. This study explores the therapeutic efficacy of bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2) in ameliorating NAFLD in both oleic acid-treated HepG2 cells and high-fat diet (HFD)-induced mice. Our findings demonstrated that P1 and P2 significantly reduced hepatic fat deposition, enhanced lipolysis by promoting the release of free glycerol and free fatty acids, and suppressed key de novo lipogenesis-related proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1), and fatty acid synthase (FAS). Furthermore, both peptides stimulated fatty acid oxidation via phosphorylation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). Notably, reductions in body and liver weight, along with improved cholesterol profiles and liver function markers (alanine transaminase and aspartate aminotransferase), were observed in HFD mice. Additionally, P1 and P2 significantly attenuated the production of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in both in vitro and in vivo models. Collectively, these results highlight the potent therapeutic potential of P1 and P2 in mitigating NAFLD progression, offering a promising intervention for this increasingly prevalent metabolic disorder.
Collapse
Affiliation(s)
- Indyaswan Tegar Suryaningtyas
- Department of Nutrition, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
17
|
Li X, Zhou L, Zheng Y, He T, Guo H, Li J, Zhang J. Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish. Animal Model Exp Med 2024; 7:904-913. [PMID: 36942644 DOI: 10.1002/ame2.12309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in recent years, but the pathogenesis is not fully understood. Therefore, it is important to establish an effective animal model for studying NAFLD. METHODS Adult zebrafish were fed a normal diet or a high-fat diet combined with egg yolk powder for 30 days. Body mass index (BMI) was measured to determine overall obesity. Serum lipids were measured using triglyceride (TG) and total cholesterol (TC) kits. Liver lipid deposition was detected by Oil Red O staining. Liver injury was assessed by measuring glutathione aminotransferase (AST) and glutamic acid aminotransferase (ALT) levels. Reactive oxygen species (ROS) and malondialdehyde (MDA) were used to evaluate oxidative damage. The level of inflammation was assessed by qRT-PCR for pro-inflammatory factors. H&E staining was used for pathological histology. Caspase-3 immunofluorescence measured apoptosis. Physiological disruption was assessed via RNA-seq analysis of genes at the transcriptional level and validated by qRT-PCR. RESULTS The high-fat diet led to significant obesity in zebrafish, with elevated BMI, hepatic TC, and TG. Severe lipid deposition in the liver was observed by ORO and H&E staining, accompanied by massive steatosis and ballooning. Serum AST and ALT levels were elevated, and significant liver damage was observed. The antioxidant system in the body was severely imbalanced. Hepatocytes showed massive apoptosis. RNA-seq results indicated that several physiological processes, including endoplasmic reticulum stress, and glucolipid metabolism, were disrupted. CONCLUSION Additional feeding of egg yolk powder to adult zebrafish for 30 consecutive days can mimic the pathology of human nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiang Li
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lei Zhou
- Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuying Zheng
- Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Taiping He
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Zhanjiang, China
| | - Jiangbin Li
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
18
|
Mateo-Marín MA, Alves-Bezerra M. Targeting acetyl-CoA carboxylases for the treatment of MASLD. J Lipid Res 2024; 65:100676. [PMID: 39461620 PMCID: PMC11621487 DOI: 10.1016/j.jlr.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatic accumulation of triglycerides is a hallmark feature of metabolic dysfunction-associated steatotic liver disease (MASLD). Growing evidence indicates that increased rates of de novo lipogenesis (DNL) are one of the earliest metabolic changes promoting hepatic steatosis in the onset of MASLD. The first step in DNL is catalyzed by acetyl-CoA carboxylases (ACC), which mediate the conversion of acetyl-CoA into malonyl-CoA. Given the critical role of ACC enzymes on DNL, ACC-based therapies have emerged as an attractive approach to address MASLD, leading to the development of pharmacologic inhibitors of ACC. In clinical trials, several of those compounds led to decreased DNL rates and improved hepatic steatosis in patients with MASLD. In this review, we describe the development of ACC dual inhibitors and isoform-specific inhibitors along with their clinical testing using monotherapy and combination therapy approaches. We also discuss their efficacy and safety profiles, identifying potential directions for future research. It is anticipated that advances in ACC-based therapies will be critical to the management of MASLD.
Collapse
Affiliation(s)
- María Antonia Mateo-Marín
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain
| | - Michele Alves-Bezerra
- Department of Biomedicine, Biotechnology and Public Health, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Faculty of Medicine, University of Cadiz, Cadiz, Spain.
| |
Collapse
|
19
|
Elías-López D, Wadström BN, Vedel-Krogh S, Kobylecki CJ, Nordestgaard BG. Impact of Remnant Cholesterol on Cardiovascular Risk in Diabetes. Curr Diab Rep 2024; 24:290-300. [PMID: 39356419 DOI: 10.1007/s11892-024-01555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE OF REVIEW Individuals with diabetes face increased risk of atherosclerotic cardiovascular disease (ASCVD), in part due to hyperlipidemia. Even after LDL cholesterol-lowering, residual ASCVD risk persists, part of which may be attributed to elevated remnant cholesterol. We describe the impact of elevated remnant cholesterol on ASCVD risk in diabetes. RECENT FINDINGS Preclinical, observational, and Mendelian randomization studies robustly suggest that elevated remnant cholesterol causally increases risk of ASCVD, suggesting remnant cholesterol could be a treatment target. However, the results of recent clinical trials of omega-3 fatty acids and fibrates, which lower levels of remnant cholesterol in individuals with diabetes, are conflicting in terms of ASCVD prevention. This is likely partly due to neutral effects of these drugs on the total level of apolipoprotein B(apoB)-containing lipoproteins. Elevated remnant cholesterol remains a likely cause of ASCVD in diabetes. Remnant cholesterol-lowering therapies should also lower apoB levels to reduce risk of ASCVD.
Collapse
Affiliation(s)
- Daniel Elías-López
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Endocrinology and Metabolism and Research Center of Metabolic Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, México City, México
| | - Benjamin Nilsson Wadström
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Camilla Jannie Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
20
|
Cook JR, Bedeir N, Sone ZD, Wattacheril J, Ginsberg HN, Laferrère B. Single Dose of Phosphatidylinositol 3-Kinase Inhibitor Alpelisib Induces Insulin Resistance in Healthy Adults: A Randomized Feasibility Study. Diabetes 2024; 73:2003-2008. [PMID: 39264822 PMCID: PMC11579404 DOI: 10.2337/db24-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Our objective was to test a single dose of the phosphatidylinositol 3-kinase (PI3K) inhibitor alpelisib as a tool for acute modeling of insulin resistance in healthy volunteers. This single-center double-blind phase 1 clinical trial randomly assigned healthy adults to a single oral dose of 300 mg alpelisib (n = 5) or placebo (n = 6) at bedtime, followed by measurement of glucose, insulin, and C-peptide levels after an overnight fast and during a 3-h 75-g oral glucose tolerance test (OGTT). Fasting plasma glucose trended higher with alpelisib (mean ± SD 93 ± 11 mg/dL) versus placebo (84 ± 5 mg/dL); mean fasting serum insulin increased nearly fivefold (23 ± 12 vs. 5 ± 3 μU/mL, respectively), and HOMA of insulin resistance (IR) scores were 5.4 ± 3.1 for alpelisib and 1.1 ± 0.6 for placebo. During OGTT, incremental area under the curve (AUC) for insulin was more than fourfold greater with alpelisib (22 ± 15 mU/mL × min) than with placebo (5 ± 2 mU/mL × min); glucose AUC trended higher with alpelisib. Single-dose alpelisib was well tolerated and produced metabolic alterations consistent with acute induction of IR, validating its use for mechanistic study of insulin action in humans. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Joshua R. Cook
- Diabetes and Endocrinology Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Nur Bedeir
- Diabetes and Endocrinology Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Zachary D. Sone
- Diabetes and Endocrinology Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Julia Wattacheril
- Center for Liver Disease and Transplantation, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Henry N. Ginsberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Blandine Laferrère
- Diabetes and Endocrinology Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
21
|
Angelini G, Russo S, Carli F, Infelise P, Panunzi S, Bertuzzi A, Caristo ME, Lembo E, Calce R, Bornstein SR, Gastaldelli A, Mingrone G. Dodecanedioic acid prevents and reverses metabolic-associated liver disease and obesity and ameliorates liver fibrosis in a rodent model of diet-induced obesity. FASEB J 2024; 38:e70202. [PMID: 39600104 PMCID: PMC11599784 DOI: 10.1096/fj.202402108r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention. Rats given DC12 experienced significant reductions of weight gain, liver and visceral fat weight, and improved glucose tolerance and insulin sensitivity. Liver histology showed protection against diet-induced MASH, with reduced steatosis, hepatocyte ballooning, and fibrosis. For weight-loss and MASH reversion, rats were fed HFD for 14 weeks, followed by 6 weeks with or without DC12. DC12 supplementation (100 mg/kg/day) led to a significant reduction of weight gain and liver weight. DC12 induced white adipose tissue beiging and reduced adiposity with a decrease of visceral fat. It also improved glucose tolerance, insulin sensitivity, and reduced hepatic gluconeogenic gene expression. Liver histology revealed a significant reduction in steatosis, hepatocyte ballooning, and inflammation as well as fibrosis, indicating MASH reversal. DC12 reduced hepatic lipogenesis enzymes as well as de novo lipogenesis measured by deuterated water and increased fatty acid β-oxidation. Plasma lipid profile showed lower triglycerides and phosphatidylcholines in the DC12 group. Notably, DC12 decreased mINDY expression, the cell membrane Na+-coupled citrate transporter, reducing citrate uptake and de-novo lipogenesis, linking its effects to improved lipid metabolism and reduced steatosis. We found that during the hepatic first pass, half of the DC12 ingested with water was taken up by the liver. The concentration of DC12 in the portal vein falls within the range identified in vitro as sufficient to inhibit citrate transport in hepatocytes.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Sara Russo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Fabrizia Carli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Patrizia Infelise
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Simona Panunzi
- CNR‐IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed InformaticaRomeItaly
| | - Alessandro Bertuzzi
- CNR‐IASI, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed Informatica, Laboratorio di BiomatematicaRomeItaly
| | - Maria Emiliana Caristo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Erminia Lembo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Roberta Calce
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stefan R. Bornstein
- Department of Medicine IIIUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenGermany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Amalia Gastaldelli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Geltrude Mingrone
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| |
Collapse
|
22
|
Do A, Zahrawi F, Mehal WZ. Therapeutic landscape of metabolic dysfunction-associated steatohepatitis (MASH). Nat Rev Drug Discov 2024:10.1038/s41573-024-01084-2. [PMID: 39609545 DOI: 10.1038/s41573-024-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe subgroup metabolic dysfunction-associated steatohepatitis (MASH) have become a global epidemic and are driven by chronic overnutrition and multiple genetic susceptibility factors. The physiological outcomes include hepatocyte death, liver inflammation and cirrhosis. The first therapeutic for MASLD and MASH, resmetirom, has recently been approved for clinical use and has energized this therapeutic space. However, there is still much to learn in clinical studies of MASH, such as the scale of placebo responses, optimal trial end points, the time required for fibrosis reversal and side effect profiles. This Review introduces aspects of disease pathogenesis related to drug development and discusses two main therapeutic approaches. Thyroid hormone receptor-β agonists, such as resmetirom, as well as fatty acid synthase inhibitors, target the liver and enable it to function within a toxic metabolic environment. In parallel, incretin analogues such as semaglutide improve metabolism, allowing the liver to self-regulate and reversing many aspects of MASH. We also discuss how combinations of therapeutics could potentially be used to treat patients.
Collapse
Affiliation(s)
- Albert Do
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Gastroenterology, University of California, Davis, Davis, USA
| | - Frhaan Zahrawi
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wajahat Z Mehal
- Section of Digestive Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
- West Haven Veterans Hospital, West Haven, CT, USA.
| |
Collapse
|
23
|
Nandhakumar P, Djassemi O, Raucci A, Chang AY, Cheung C, Dugas Y, Silberman J, Morales-Fermin S, S Sandhu S, Reynoso M, Saha T, Cinti S, Wang J. Simultaneous and Rapid Detection of Glucose and Insulin: Coupling Enzymatic and Aptamer-Based Assays. Anal Chem 2024; 96:18806-18814. [PMID: 39546403 DOI: 10.1021/acs.analchem.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Diabetes management demands precise monitoring of key biomarkers, particularly insulin (I) and glucose (G). Herein, we present a bioelectronic chip device that enables the simultaneous detection of I and G in biofluids within 2 min. This dual biosensor chip integrates aptamer-based insulin sensing with enzymatic glucose detection on a single platform, employing a four-electrode sensor chip. The insulin voltammetric sensor employs a G-quadraplex methylene-blue-modified aptamer, while the amperometric biocatalytic glucose sensor utilizes a second-generation mediator-based approach. Simultaneous reagent-less sensing of I and G has been achieved by addressing key challenges. These include combining different surface chemistries, assay formats, and detection principles at closely spaced working electrodes and the substantially different concentration levels of the I and G targets. An attractive analytical performance, with no apparent crosstalk, is demonstrated for the simultaneous detection of millimolar G concentrations and picomolar I concentrations in single microliter serum or saliva sample droplets. This dual biosensor offers rapid, cost-effective, and reliable monitoring, addressing the unmet need for integrated multiplexed diabetes biomarker detection in decentralized settings. Such integration of enzymatic and aptamer-based bioassays could greatly expand the scope of decentralized testing in healthcare beyond diabetes care.
Collapse
Affiliation(s)
- Ponnusamy Nandhakumar
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Omeed Djassemi
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ada Raucci
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - An-Yi Chang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christopher Cheung
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yuma Dugas
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Julia Silberman
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sofia Morales-Fermin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Samar S Sandhu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Maria Reynoso
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tamoghna Saha
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Joseph Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Goedeke L, Strober JW, Suh R, Paolella LM, Li X, Rogers JC, Petersen MC, Nasiri AR, Casals G, Kahn M, Cline GW, Samuel VT, Shulman GI, Vatner DF. High-fat-diet-induced hepatic insulin resistance per se attenuates murine de novo lipogenesis. iScience 2024; 27:111175. [PMID: 39524330 PMCID: PMC11550620 DOI: 10.1016/j.isci.2024.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatic insulin resistance (IR) is often said to be "pathway-selective" with preserved insulin stimulation of de novo lipogenesis (DNL) despite attenuated insulin signaling toward glucose metabolism. However, DNL has not been assessed in models of liver-specific IR. We studied mice with differential tissue-specific lipid-induced IR achieved by different durations of high-fat diet (HFD) feeding. Mice with isolated hepatic IR demonstrated markedly reduced DNL, with a rebound seen in mice with whole-body IR. Insr T1150A mice (protected against diacylglycerol-PKCε-induced hepatic IR) maintained normal DNL with HFD feeding. During hyperinsulinemic clamps, hepatic IR reduced DNL, but hyperglycemia augmented DNL in both resistant and sensitive animals. Regulation through SREBP1c did not consistently correlate with changes in DNL. These results demonstrate that hepatic IR is not pathway-selective, highlighting the primacy of lipogenic substrate in stimulation of DNL. Future therapeutics to reduce lipogenesis should target substrate drivers of DNL rather than targeting plasma insulin levels.
Collapse
Affiliation(s)
- Leigh Goedeke
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
- Diabetes Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Jordan W. Strober
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Rebecca Suh
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Lauren M. Paolella
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Xiruo Li
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
| | - Jillian C. Rogers
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Max C. Petersen
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis MO 63110, USA
| | - Ali R. Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Gregori Casals
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Gary W. Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Medicine, Veterans Affairs Medical Center, West Haven CT 06516, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven CT 06520, USA
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven CT 06520, USA
- Department of Medicine, Veterans Affairs Medical Center, West Haven CT 06516, USA
- Program in Translational Biomedicine, Yale School of Medicine, New Haven CT 06520, USA
| |
Collapse
|
25
|
Kim Y, Kim J, Seo EJ, Kim KT, Lee JW, Kim J, Kang HT. Association Between Fatty Liver Index and Incidence of Cataract Surgery in Individuals Aged 50 Years and Older Based on the Korean National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) Data: Longitudinal Retrospective Cohort Study. JMIR Public Health Surveill 2024; 10:e57168. [PMID: 39541585 PMCID: PMC11581417 DOI: 10.2196/57168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Cataract is a leading cause of vision impairment. Obesity-related risk factors, including insulin resistance, increase the risk of cataract. The fatty liver index (FLI) is a biomarker for noninvasive fat layer prediction of nonalcoholic fatty liver disease. The FLI has been used to evaluate the metabolic contribution in other organs besides the eye. However, no study exists on the FLI and eye disease. Objective This retrospective cohort study for the association between the FLI and incidence of cataract surgery in individuals older than 50 years was designed to show that a higher FLI is associated with an increased incidence of cataract surgery in individuals aged 50 years and older. Methods This study was retrospectively designed based on the Korean National Health Insurance Service-Health Screening Cohort (NHIS-HEALS) cohort (median follow-up of 9.8 years). Participants were assigned to 1 of 3 groups based on the FLI: low (FLI<30), intermediate (FLI 30-59), or high (FLI≥60). Kaplan-Meier survival analysis was performed on the cumulative incidence of all-cataract and senile-cataract surgery. Multivariable Cox proportional hazards regression models were used to study the association between the FLI group and cataract surgery after adjusting for potential confounders. Results Of the 138,347 included participants, the incidence of cataract surgery was 12.49% (4779/38,274), 13.95% (6680/47,875), and 14.16% (7496/52,930) in the low, intermediate, and high FLI groups, respectively. After adjusting for all confounding factors, hazard ratios (HRs; 95% CIs) in the high FLI group for all-cataract surgery were 1.111 (1.028-1.199) and 1.184 (1.101-1.274) in men and women, respectively, when compared with the low FLI group. HRs (95% CIs) in the high FLI group for senile-cataract surgery were 1.106 (1.022-1.197) and 1.147 (1.065-1.237) in men and women, respectively, when compared with the low FLI group. The project was conducted between August 2023 and February 2024 without donations from external bodies. Conclusions Individuals with a higher FLI had a higher risk of all-cataract surgery. This association was maintained even after limiting the analyses to senile-cataract surgery.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Jeongsook Kim
- Clinical Research Team Hyundai Pharm Co., Seoul, Republic of Korea
| | - Eoi Jong Seo
- Department of Ophthalmology, College of Medicine, Chungbuk National University Hospital, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Kyung Tae Kim
- Department of Ophthalmology, College of Medicine, Chungbuk National University Hospital, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jae-woo Lee
- Department of Family Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Family Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Joungyoun Kim
- Department of Artificial Intelligence, University of Seoul, Seoul, Republic of Korea
| | - Hee-Taik Kang
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea, 82 2-2228-2330, 82 2-362-2330
| |
Collapse
|
26
|
Zhang Z, He Y, Zhao M, He X, Zhou Z, Yue Y, Shen T, Liu J, Zhang G, Zhang Y. Qinlian Hongqu Decoction Modulates FXR/TGR5/GLP-1 Pathway to Improve Insulin Resistance in NAFLD Mice: Bioinformatics and Experimental Study. ACS OMEGA 2024; 9:45447-45466. [PMID: 39554433 PMCID: PMC11561767 DOI: 10.1021/acsomega.4c07463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
Background: Qinglian Hongqu decoction (QLHQD), a traditional Chinese herbal remedy, shows potential in alleviating metabolic issues related to nonalcoholic fatty liver disease (NAFLD). However, its precise mode of action remains uncertain. Objective: This study aims to evaluate the efficacy and mechanisms of QLHQD in treating NAFLD. Methods: This study utilized a NAFLD mouse model to assess the effects of QLHQD on lipid metabolism, including blood lipids and hepatic steatosis, as well as glucose metabolism, including blood glucose levels, OGTT results, and serum insulin. Network pharmacology, bioinformatics, and molecular docking were used to explore how QLHQD may improve NAFLD treatment. Key proteins involved in these mechanisms were validated via WB and immunohistochemistry. Additionally, the expression of downstream pathway targets was examined to further validate the insulin resistance mechanism by which QLHQD improves NAFLD. Results: Animal studies demonstrated that QLHQD alleviated lipid abnormalities, hepatic steatosis, blood glucose levels, the insulin resistance index, and the OGTT results in NAFLD mice (P < 0.05 or 0.01). Network pharmacology and bioinformatics analyses indicated that the effects of QLHQD on NAFLD might involve bile acid secretion pathways. Subsequent validation through Western blotting, immunohistochemistry, and qPCR demonstrated that QLHQD may influence fat metabolism and insulin sensitivity in NAFLD mice via the FXR/TGR5/GLP-1 signaling pathway. Conclusion: QLHQD significantly alleviates glucose and lipid metabolism disorders in a high-fat diet-induced NAFLD mouse model. Its mechanism of action may involve the activation of the FXR/TGR5/GLP-1 signaling pathway in the gut, which reduces lipid accumulation and insulin resistance.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunliang He
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Mei Zhao
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin He
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Zubing Zhou
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanyuan Yue
- Department
of Traditional Chinese Medicine, Chengdu
Integrated TCM&Western Medicine Hospital, Chengdu 610041, China
| | - Tao Shen
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| | - Juncheng Liu
- Department
of Traditional Chinese Medicine, Pengzhou
Hospital of Traditional Chinese Medicine, Pengzhou 611900, China
| | - Gan Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
| | - Yong Zhang
- Institute
of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine
Sciences, Chengdu 610041, China
- School
of Basic Medicine, Chengdu University of
Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
27
|
Bucarey JL, Trujillo-González I, Paules EM, Espinosa A. Myokines and Their Potential Protective Role Against Oxidative Stress in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Antioxidants (Basel) 2024; 13:1363. [PMID: 39594505 PMCID: PMC11591161 DOI: 10.3390/antiox13111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Myokines, bioactive peptides released by skeletal muscle, have emerged as crucial regulators of metabolic and protective pathways in peripheral tissues, particularly in combating oxidative stress and inflammation. Their plasma concentration significantly increases following exercise, offering valuable insights into the role of physical activity in preventing sarcopenia and mitigating metabolic diseases, including obesity, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). This review focuses on discussing the roles of specific myokines in activating intracellular signaling pathways within the liver, which confer protection against steatosis and lipid peroxidation. We detail the mechanism underlying lipid peroxidation and highlight the liver's antioxidant defenses, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4), which are pivotal in reducing ferroptosis. Furthermore, we provide an in-depth analysis of key myokines, including myostatin, brain-derived neurotrophic factor (BDNF), and irisin, among others, and their potential impact on liver function. Finally, we discuss the molecular mechanisms through which these myokines influence oxidate stress and lipid metabolism, emphasizing their capacity to modulate antioxidant responses in the liver. Finally, we underscore the therapeutic potential of exercise as a non-pharmacological intervention to enhance myokine release, thereby preventing the progression of MASD through improved hepatic antioxidant defenses. This review represents a comprehensive perspective on the intersection of exercise, myokine biology, and liver health.
Collapse
Affiliation(s)
- José Luis Bucarey
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
| | - Isis Trujillo-González
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Evan M. Paules
- Nutrition Research Institute, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.T.-G.); (E.M.P.)
| | - Alejandra Espinosa
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile;
- Center of Interdisciplinary Biomedical and Engineering Research for Health, Universidad de Valparaíso, San Felipe 2172972, Chile
| |
Collapse
|
28
|
Cai X, Li W, Wang L, Shi Y, Gao J, Wang H, Lei T, Lu J. BCAA was more closely associated with visceral fat area than subcutaneous fat area in patients of type 2 diabetes mellitus: a cross-sectional study. BMC Endocr Disord 2024; 24:236. [PMID: 39501211 PMCID: PMC11539729 DOI: 10.1186/s12902-024-01768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) has been reported to be associated with obesity, the association of BCAA with visceral fat area (VFA) and subcutaneous fat area (SFA) remained unclear in patients with type 2 diabetes. METHODS This cross-sectional study was conducted in 284 patients with type 2 diabetes mellitus. Enzyme-linked immunospecific assay was used to measure levels of serum BCAA and branched-chain keto acid (BCKA). VFA and SFA were measured with bio-impedance analysis method. The association between BCAA and VFA was calculated using Pearson correlation and multivariable linear regression analysis. RESULTS There were significant differences in the means of body mass index, waist circumstance, SFA and VFA among the three groups divided by total BCAA tertiles (all p < 0.05). Compared to patients with lower levels of serum BCAA (the lower tertile group), the means of VFA and SFA were significantly larger in the middle and upper tertile groups (all p < 0.05). However, the differences in above obesity parameters were nonsignificant according to various BCKA tertiles. Pearson correlation analysis also demonstrated that BCAA levels were positive associated with each obesity parameter (p < 0.05). Nevertheless, multivariable linear regression analysis showed that levels of serum BCAA were correlated with VFA, BMI and WC (all p < 0.05) rather than SFA after adjusted for other confounders. CONCLUSIONS levels of serum BCAA were more closely correlated with VFA than SFA, prospective studies should be warranted to further explore the mechanism mediating BCAA and visceral fat accumulation in Human beings. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinghua Cai
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Wenmin Li
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Liang Wang
- Department of Public Health, College of Health Professions, Marshall University, West Virginia, USA
| | - Yingying Shi
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Jie Gao
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 LanXi Road, Shanghai, 200062, China.
| |
Collapse
|
29
|
Shokri B, Mohebbi H, Mehrabani J. Amelioration of fructose-induced hepatic lipid accumulation by vitamin D 3 supplementation and high-intensity interval training in male Sprague‒Dawley rats. Lipids Health Dis 2024; 23:362. [PMID: 39501326 PMCID: PMC11536532 DOI: 10.1186/s12944-024-02347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/24/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Intrahepatic lipid accumulation (IHL), a hallmark of metabolic disorders, is closely associated with de novo lipogenesis (DNL). Notably, fructose feeding increased the DNL. Lifestyle modifications resulting from dietary changes and increased physical activity/exercise can decrease the IHL content. We examined the effects of vitamin D3 supplementation (VDS), high-intensity interval training (HIIT), and their combination on the transcription factors and enzymes of the DNL pathway in male Sprague‒Dawley rats fed a high-fructose diet (HFrD). METHODS Forty male rats were assigned to 5 groups (n = 8): CS (the control group had a standard diet); CF (the control group had HFrD (10% (w/v) fructose solution in tap water)); and FT (HFrD + HIIT: 10 bouts of 4 min of high-intensity running, corresponding to 85-90% of the maximal speed with 2 min active rest periods of 50% maximal speed, 5 days per week); FD (HFrD + intervention of intraperitoneal injection of 10000 IU/kg/week VDS); FTD (HFrD + HIIT + VDS) that were maintained for 12 weeks. ELISA, the GOD-POD assay, folch, western blotting, and oil red O staining were used to determine insulin, fasting blood glucose (FBG), hepatic triglyceride (TG) and cholesterol levels; SREBP1c, ChREBP-β, ACC1, FASN, p-ACC1, AMPK, p-AMPK, and PKA protein expression; and IHL content, respectively. RESULTS Both HIIT and VDS led to significant increases in the levels of PKA, AMPK, p-AMPK, and p-ACC1, as well as significant decreases in the levels of SREBP1c, ChREBP-β, ACC1, FASN, insulin, FBG, liver TG, liver cholesterol, and IHL. HIIT exhibited superior efficacy over VDS in reducing ChREBP-β, ACC1, insulin, FBG, liver TG and cholesterol, as well as increasing p-ACC1 and PKA. Notably, the combined intervention of HIIT and VDS yielded the most substantial improvements across all the parameters. CONCLUSIONS HFrD causes IHL accumulation and the onset of diabetes, whereas VDS and HIIT, along with their combined effects, prevent the consequences of HFrD.
Collapse
Affiliation(s)
- Behnaz Shokri
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| | - Hamid Mohebbi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran.
| | - Javad Mehrabani
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
30
|
Smith K, Taylor GS, Peeters W, Walker M, Perazzolo S, Atabaki-Pasdar N, Bowden Davies KA, Karpe F, Hodson L, Stevenson EJ, West DJ. Elevations in plasma glucagon are associated with reduced insulin clearance after ingestion of a mixed-macronutrient meal in people with and without type 2 diabetes. Diabetologia 2024; 67:2555-2567. [PMID: 39138690 PMCID: PMC11519192 DOI: 10.1007/s00125-024-06249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
AIMS/HYPOTHESIS The temporal suppression of insulin clearance after glucose ingestion is a key determinant of glucose tolerance for people without type 2 diabetes. Whether similar adaptations are observed after the ingestion of a mixed-macronutrient meal is unclear. METHODS In a secondary analysis of data derived from two randomised, controlled trials, we studied the temporal responses of insulin clearance after the ingestion of a standardised breakfast meal consisting of cereal and milk in lean normoglycaemic individuals (n=12; Lean-NGT), normoglycaemic individuals with central obesity (n=11; Obese-NGT) and in people with type 2 diabetes (n=19). Pre-hepatic insulin secretion rates were determined by the deconvolution of C-peptide, and insulin clearance was calculated using a single-pool model. Insulin sensitivity was measured by an oral minimal model. RESULTS There were divergent time course changes in insulin clearance between groups. In the Lean-NGT group, there was an immediate post-meal increase in insulin clearance compared with pre-meal values (p<0.05), whereas insulin clearance remained stable at baseline values in Obese-NGT or declined slightly in the type 2 diabetes group (p<0.05). The mean AUC for insulin clearance during the test was ~40% lower in the Obese-NGT (1.3 ± 0.4 l min-1 m-2) and type 2 diabetes (1.4 ± 0.7 l min-1 m-2) groups compared with Lean-NGT (1.9 ± 0.5 l min-1 m-2; p<0.01), with no difference between the Obese-NGT and type 2 diabetes groups. HOMA-IR and glucagon AUC emerged as predictors of insulin clearance AUC, independent of BMI, age or insulin sensitivity (adjusted R2=0.670). Individuals with increased glucagon AUC had a 40% reduction in insulin clearance AUC (~ -0.75 l min-1 m-2; p<0.001). CONCLUSIONS/INTERPRETATION The ingestion of a mixed-macronutrient meal augments differing temporal profiles in insulin clearance among individuals without type 2 diabetes, which is associated with HOMA-IR and the secretion of glucagon. Further research investigating the role of hepatic glucagon signalling in postprandial insulin kinetics is warranted. TRIAL REGISTRATION ISRCTN17563146 and ISRCTN95281775.
Collapse
Affiliation(s)
- Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK.
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Guy S Taylor
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Wouter Peeters
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Walker
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simone Perazzolo
- Nanomath LLC, Spokane, WA, USA
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Naeimeh Atabaki-Pasdar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Malmö, Sweden
| | - Kelly A Bowden Davies
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospital Trust, Oxford, UK
| | - Emma J Stevenson
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel J West
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- School of Biomedical, Nutritional, and Sport Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
31
|
Mucinski JM, Salvador AF, Moore MP, Fordham TM, Anderson JM, Shryack G, Cunningham RP, Lastra G, Gaballah AH, Diaz-Arias A, Ibdah JA, Rector RS, Parks EJ. Histological improvements following energy restriction and exercise: The role of insulin resistance in resolution of MASH. J Hepatol 2024; 81:781-793. [PMID: 38914313 DOI: 10.1016/j.jhep.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS Following medical diagnosis of MASH, individuals were randomized to treatment (n = 16) or control (n = 8). Liver fat (magnetic resonance spectroscopy), 18-hour plasma biochemical measurements, and isotopically labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Those in the treatment group were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Controls continued physician-directed care. RESULTS Treatment induced significant (p <0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (p <0.05) and non-esterified fatty acid suppression (p = 0.06) were improved. Both groups exhibited reductions in total energy intake, hemoglobin A1c, hepatic insulin resistance, and liver fat (p <0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease. CONCLUSIONS Exercise and energy restriction elicited significant and clinically meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. IMPACT AND IMPLICATIONS The mechanisms that underpin histologic improvement in individuals with metabolic dysfunction-associated steatohepatitis (MASH) are not well understood. This study evaluated the relationship between liver and metabolic health, testing how changes in one may affect the other. We investigated the effects of energy restriction and exercise on the association between multi-tissue insulin sensitivity and histologic improvements in participants with biopsy-proven MASH. For the first time, these results show that an improvement in peripheral (but not hepatic) insulin sensitivity and systemic markers of muscle function (i.e. cardiorespiratory fitness) were strongly related to resolution of liver disease. Extrahepatic disposal of substrates and improved fitness levels supported histologic improvement, confirming the addition of exercise as crucial to lifestyle interventions in MASH. CLINICAL TRIAL NUMBER NCT03151798.
Collapse
Affiliation(s)
- Justine M Mucinski
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Mary P Moore
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Talyia M Fordham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Jennifer M Anderson
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States
| | - Grace Shryack
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States
| | - Rory P Cunningham
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States
| | - Guido Lastra
- Endocrinology and Metabolism, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Ayman H Gaballah
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, 65212, United States
| | - Alberto Diaz-Arias
- Boyce & Bynum Pathology Laboratories, Columbia, MO, 65201, United States
| | - Jamal A Ibdah
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, United States
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO 65201, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65212, United States; NextGen Precision Health, Columbia, MO 65201, United States; Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO 65212, United States.
| |
Collapse
|
32
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
33
|
Li L, Zhang X, Xu G, Xue R, Li S, Wu S, Yang Y, Lin Y, Lin J, Liu G, Gao S, Zhang Y, Ye Q. Transcriptional Regulation of De Novo Lipogenesis by SIX1 in Liver Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404229. [PMID: 39258807 PMCID: PMC11538671 DOI: 10.1002/advs.202404229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Indexed: 09/12/2024]
Abstract
De novo lipogenesis (DNL), a hallmark of cancer, facilitates tumor growth and metastasis. Therapeutic drugs targeting DNL are being developed. However, how DNL is directly regulated in cancer remains largely unknown. Here, transcription factor sine oculis homeobox 1 (SIX1) is shown to directly increase the expression of DNL-related genes, including ATP citrate lyase (ACLY), fatty acid synthase (FASN), and stearoyl-CoA desaturase 1 (SCD1), via histone acetyltransferases amplified in breast cancer 1 (AIB1) and lysine acetyltransferase 7 (HBO1/KAT7), thus promoting lipogenesis. SIX1 expression is regulated by insulin/lncRNA DGUOK-AS1/microRNA-145-5p axis, which also modulates DNL-related gene expression as well as DNL. The DGUOK-AS1/microRNA-145-5p/SIX1 axis regulates liver cancer cell proliferation, invasion, and metastasis in vitro and in vivo. In patients with liver cancer, SIX1 expression is positively correlated with DGUOK-AS1 and SCD1 expression and is negatively correlated with microRNA-145-5p expression. DGUOK-AS1 is a good predictor of prognosis. Thus, the DGUOK-AS1/microRNA-145-5p/SIX1 axis strongly links DNL to tumor growth and metastasis and may become an avenue for liver cancer therapeutic intervention.
Collapse
Affiliation(s)
- Ling Li
- Beijing Institute of BiotechnologyBeijing100071China
| | - Xiujuan Zhang
- Beijing Institute of BiotechnologyBeijing100071China
| | - Guang Xu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijing100069China
| | - Rui Xue
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shuo Li
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Shumeng Wu
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yuanjun Yang
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Yanni Lin
- Beijing Institute of BiotechnologyBeijing100071China
- School of Basic Medical SciencesShanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Beijing Institute of BiotechnologyBeijing100071China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Guoxiao Liu
- Department of General SurgeryThe First Medical Center of PLA General HospitalBeijing100853China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijing100071China
| |
Collapse
|
34
|
Giannotti L, Stanca E, Di Chiara Stanca B, Spedicato F, Massaro M, Quarta S, Del Rio D, Mena P, Siculella L, Damiano F. Coffee Bioactive N-Methylpyridinium: Unveiling Its Antilipogenic Effects by Targeting De Novo Lipogenesis in Human Hepatocytes. Mol Nutr Food Res 2024; 68:e2400338. [PMID: 39370560 DOI: 10.1002/mnfr.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Indexed: 10/08/2024]
Abstract
SCOPE Type 2 diabetes and nonalcoholic fatty liver diseases (NAFLDs) are promoted by insulin resistance (IR), which alters lipid homeostasis in the liver. This study aims to investigate the effect of N-methylpyridinium (NMP), a bioactive alkaloid of coffee brew, on lipid metabolism in hepatocytes. METHODS AND RESULTS The effect of NMP in modulating lipid metabolism is evaluated at physiological concentrations in a diabetes cell model represented by HepG2 cells cultured in a high-glucose medium. Hyperglycemia triggers lipid droplet accumulation in cells and enhances the lipogenic gene expression, which is transactivated by sterol regulatory element binding protein-1 (SREBP-1). Lipid droplet accumulation alters the redox status and endoplasmic reticulum (ER) stress, leading to the activation of the unfolded protein response and antioxidative pathways by X-Box Binding Protein 1(XBP-1)/eukaryotic Initiation Factor 2 alpha (eIF2α) Protein Kinase RNA-Like ER Kinase and nuclear factor erythroid 2-related factor 2 (NRF2), respectively. NMP induces the phosphorylation of AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase α (ACACA), and improves the redox status and ER homeostasis, essential steps to reduce lipogenesis and lipid droplet accumulation. CONCLUSION These results suggest that NMP may be beneficial for the management of T2D and NAFLD by ameliorating the cell oxidative and ER homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Laura Giannotti
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Eleonora Stanca
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | | | - Francesco Spedicato
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, 73100, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, 43125, Italy
| | - Luisa Siculella
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| | - Fabrizio Damiano
- Department of Experimental Medicine (DiMeS), University of Salento, Lecce, 73100, Italy
| |
Collapse
|
35
|
Camacho-Morales A, Noriega LG, Sánchez-García A, Torre-Villalvazo I, Vázquez-Manjarrez N, Maldonado-Ruiz R, Cárdenas-Tueme M, Villegas-Romero M, Alamilla-Martínez I, Rodriguez-Rocha H, Garcia-Garcia A, Corona JC, Tovar AR, Saville J, Fuller M, Gonzalez-Gonzalez JG, Rivas-Estilla AM. Plasma C24:0 ceramide impairs adipose tissue remodeling and promotes liver steatosis and glucose imbalance in offspring of rats. Heliyon 2024; 10:e39206. [PMID: 39640709 PMCID: PMC11620212 DOI: 10.1016/j.heliyon.2024.e39206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Fetal programming by exposure to high-energy diets increases the susceptibility to type 2 diabetes mellitus (T2DM2) in the offspring. Glucose imbalance during fetal programming might be associated to still unknown selective lipid species and their characterization might be beneficial for T2DM diagnosis and treatment. We aim to characterize the effect of the lipid specie, C24:0 ceramide, on glucose imbalance and metabolic impairment in cellular and murine models. A lipidomic analysis identified accumulation of C24:0 ceramide in plasma of offspring rats exposed to high-energy diets during fetal programing, as well as in obese-T2DM subjects. In vitro experiments in 3T3L-1, hMSC and HUH7 cells and in in vivo models of Wistar rats and C57BL/6 mice demonstrated that C24:0 ceramide disrupted glucose balance, and differentiation and lipid accumulation in adipocytes, whereas promoted liver steatosis. Mechanistically, C24:0 ceramide impaired mitochondrial fatty acid oxidation in adipocytes and hepatic cells, tentatively by favoring reactive oxygen species accumulation and calcium overload in the mitochondria; and also, activates endoplasmic reticulum (ER) stress in hepatocytes. We propose that C24:0 ceramide accumulation in the offspring followed a prenatal diet exposure, impair lipid allocation into adipocytes and enhances liver steatosis associated to mitochondrial dysfunction and ER stress, leading to glucose imbalance.
Collapse
Affiliation(s)
- Alberto Camacho-Morales
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Lilia G. Noriega
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Adriana Sánchez-García
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ivan Torre-Villalvazo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Natalia Vázquez-Manjarrez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Roger Maldonado-Ruiz
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Marcela Cárdenas-Tueme
- Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Mariana Villegas-Romero
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Itzayana Alamilla-Martínez
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Humberto Rodriguez-Rocha
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Juan Carlos Corona
- Neuroscience Laboratory, Hospital Infantil de México, Federico Gómez, México City, Mexico
| | - Armando R. Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition. México City, Mexico
| | - Jennifer Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital, University of Adelaide, Australia
| | - José Gerardo Gonzalez-Gonzalez
- University Hospital "Dr. Jose E. Gonzalez, Endocrinology Division. Department of Internal Medicine. Autonomous University of Nuevo Leon Monterrey, Mexico
| | - Ana María Rivas-Estilla
- Biochemistry and Molecular Medicine Department, College of Medicine, Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
36
|
Rauckhorst AJ, Sheldon RD, Pape DJ, Ahmed A, Falls-Hubert KC, Merrill RA, Brown RF, Deshmukh K, Vallim TA, Deja S, Burgess SC, Taylor EB. A hierarchical hepatic de novo lipogenesis substrate supply network utilizing pyruvate, acetate, and ketones. Cell Metab 2024:S1550-4131(24)00409-1. [PMID: 39471817 DOI: 10.1016/j.cmet.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 08/07/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
Hepatic de novo lipogenesis (DNL) is a fundamental physiologic process that is often pathogenically elevated in metabolic disease. Treatment is limited by incomplete understanding of the metabolic pathways supplying cytosolic acetyl-CoA, the obligate precursor to DNL, including their interactions and proportional contributions. Here, we combined extensive 13C tracing with liver-specific knockout of key mitochondrial and cytosolic proteins mediating cytosolic acetyl-CoA production. We show that the mitochondrial pyruvate carrier (MPC) and ATP-citrate lyase (ACLY) gate the major hepatic lipogenic acetyl-CoA production pathway, operating in parallel with acetyl-CoA synthetase 2 (ACSS2). Given persistent DNL after mitochondrial citrate carrier (CiC) and ACSS2 double knockout, we tested the contribution of exogenous and leucine-derived acetoacetate to acetoacetyl-CoA synthetase (AACS)-dependent DNL. CiC knockout increased acetoacetate-supplied hepatic acetyl-CoA production and DNL, indicating that ketones function as mitochondrial-citrate reciprocal DNL precursors. By delineating a mitochondrial-cytosolic DNL substrate supply network, these findings may inform strategies to therapeutically modulate DNL.
Collapse
Affiliation(s)
- Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Reid F Brown
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kshitij Deshmukh
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Thomas A Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
37
|
LaPoint A, Singer JM, Ferguson D, Shew TM, Renkemeyer MK, Palacios HH, Field RL, Yerrathota S, Kumari R, Shankaran M, Smith GI, Yoshino J, He M, Patti GJ, Hellerstein MK, Klein S, Brestoff JR, Morris EM, Finck BN, Lutkewitte AJ. Adipocyte lipin 1 expression associates with human metabolic health and regulates systemic metabolism in mice. J Clin Invest 2024; 134:e169722. [PMID: 39405118 PMCID: PMC11601902 DOI: 10.1172/jci169722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Dysfunctional adipose tissue is believed to promote the development of hepatic steatosis and systemic insulin resistance, but many of the mechanisms involved are still unclear. Lipin 1 catalyzes the conversion of phosphatidic acid to diacylglycerol (DAG), the penultimate step of triglyceride synthesis, which is essential for lipid storage. Herein we found that adipose tissue LPIN1 expression is decreased in people with obesity compared to lean subjects, and low LPIN1 expression correlated with multi-tissue insulin resistance and increased rates of hepatic de novo lipogenesis. Comprehensive metabolic and multi-omic phenotyping demonstrated that adipocyte-specific Lpin1-/- mice had a metabolically-unhealthy phenotype, including liver and skeletal muscle insulin resistance, hepatic steatosis, increased hepatic de novo lipogenesis, and transcriptomic signatures of metabolically associated steatohepatitis that was exacerbated by high-fat diets. We conclude that adipocyte lipin 1-mediated lipid storage is vital for preserving adipose tissue and systemic metabolic health, and its loss predisposes mice to metabolically associated steatohepatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rachael L. Field
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sireesha Yerrathota
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Roshan Kumari
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | | | - Jun Yoshino
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
- Center for Integrated Kidney Research and Advance (IKRA), Shimane University, Izumo, Shimane, Japan
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gary J. Patti
- Department of Medicine and
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marc K. Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | | | - Jonathan R. Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E. Matthew Morris
- Department of Cell Biology and Physiology and
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Children’s Healthy Lifestyles and Nutrition, Kansas City, Missouri, USA
| | | | - Andrew J. Lutkewitte
- Department of Medicine, Division of Endocrinology, Diabetes, and Clinical Pharmacology, University of Kansas Medical Center, Kansas City, Kansas, USA
- KU Diabetes Institute and Kansas Center for Metabolism and Obesity, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
38
|
Ho HT, Shih YL, Huang TY, Fang WH, Liu CH, Lin JC, Hsiang CW, Chu KM, Hsiong CH, Chen GJ, Wu YE, Hao JY, Liang CW, Hu OYP. Mixed active metabolites of the SNP-6 series of novel compounds mitigate metabolic dysfunction-associated steatohepatitis and fibrosis: promising results from pre-clinical and clinical trials. J Transl Med 2024; 22:936. [PMID: 39402603 PMCID: PMC11476197 DOI: 10.1186/s12967-024-05686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) is a growing global health concern with no effective pharmacological treatments. SNP-630, a newly developed synthetic molecule with multiple mechanisms of action, and a mixture of two of its active metabolites (SNP-630-MS) inhibit CYP2E1 expression to prevent reactive oxygen species generation, thereby reducing the accumulation of hepatic triglycerides and lowering chemokine levels. This study investigated the SNP-630's potential to alleviate the liver injury in MASH and its efficacy in both a mouse model and patients with MASH to identify a drug candidate that targets multiple pathways implicated in MASH. METHODS SNP-630 and SNP-630-MS were separately administered to the MASH mouse model. The tolerability, safety, and efficacy of SNP-630-MS were also evaluated in 35 patients with MASH. The primary endpoint of the study was assessment of the changes in serum alanine aminotransferase (ALT) levels from baseline to week 12, while the secondary endpoints included the evaluation of liver inflammation, steatosis, and fibrosis parameters and markers. RESULTS SNP-630 treatment in mice improved inflammation, liver steatosis, and fibrosis compared with that in the MASH control group. Both SNP-630 and SNP-630-MS treatments markedly reduced ALT levels, hepatic triglyceride content, and the expression of inflammatory cytokines monocyte chemoattractant protein 1 and fibrotic collagen (i.e., Col1a1, Col3a1, and Timp1) in mice. In the clinical trial, patients treated with SNP-630-MS exhibited significant improvement in ALT levels at week 12 compared with baseline levels, with no reports of severe adverse events. This improvement in ALT levels surpassed that achieved with most other MASH candidates. SNP-630-MS demonstrated potential antifibrotic effects, as evidenced by a significant decrease in the levels of fibrogenesis-related biomarkers such as CCL4, CCL5, and caspase 3. Subgroup analysis using FibroScan measurements further indicated the efficacy of SNP-630-MS in ameliorating liver fibrosis. CONCLUSIONS SNP-630 and SNP-630-MS demonstrated favorable results in mice. SNP-630-MS showed excellent tolerability in mice and patients with MASH. Efficacy analyses indicated that SNP-630-MS improved liver steatosis and injury in patients with MASH, suggesting that SNP-630 and 630-MS are promising therapeutic options for MASH. Larger scale clinical trials remain warranted to assess the efficacy and safety of SNP-630 in MASH. TRIAL REGISTRATION ClinicalTrials.gov NCT03868566. Registered 06 March 2019-Retrospectively registered, https://clinicaltrials.gov/study/NCT03868566.
Collapse
Affiliation(s)
- Hsin-Tien Ho
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yu-Lueng Shih
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Tien-Yu Huang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Wen-Hui Fang
- Division of Family and Community Health, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Chang-Hsien Liu
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
- Department of Medical Imaging, China Medical University Hsinchu Hospital and China Medical University, Hsinchu, 302, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Jung-Chun Lin
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11420, Taiwan
| | - Chih-Weim Hsiang
- Division of Radiological Diagnosis, Tri-Service General Hospital, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan
| | - Kai-Min Chu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Cheng-Huei Hsiong
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Guan-Ju Chen
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Yung-En Wu
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Jia-Yu Hao
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Chih-Wen Liang
- Sinew Pharma Inc. Rm C516, Building C, No.99, Lane 130, Sec. 1, Academia Rd., Nangang Dist, Taipei City, 11571, Taiwan
| | - Oliver Yoa-Pu Hu
- School of Pharmacy, National Defense Medical Center, Neihu Dist, Taipei, 11420, Taiwan.
- Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
39
|
Hanchang W, Dissook S, Wongmanee N, Rojanaverawong W, Charoenphon N, Pakaew K, Sitdhipol J, Thanagornyothin T, Phapugrangkul P, Ayudthaya SPN, Chonpathompikunlert P. Antidiabetic Effect of Bifidobacterium animalis TISTR 2591 in a Rat Model of Type 2 Diabetes. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10377-2. [PMID: 39384734 DOI: 10.1007/s12602-024-10377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
This study investigated the beneficial effects of probiotic Bifidobacterium animalis TISTR 2591 on the regulation of blood glucose and its possible mechanisms in a rat model of type 2 diabetes. The type 2 diabetic-Sprague Dawley rats were established by the combination of a high-fat diet and a low dose of streptozotocin. After 4 weeks of treatment with 2 × 108 CFU/ml of B. animalis TISTR 2591, fasting blood glucose (FBG), oral glucose tolerance, serum insulin, and pancreatic and hepatic histopathology were determined. Liver lipid accumulation, glycogen content, and gluconeogenic protein expression were evaluated. Oxidative stress and inflammatory status were determined. B. animalis TISTR 2591 significantly reduced FBG levels and improved glucose tolerance and serum insulin in the diabetic rats. Structural damage of the pancreas and liver was ameliorated in the B. animalis TISTR 2591-treated diabetic rats. In addition, significant decreases in hepatic fat accumulation, glycogen content, and phosphoenolpyruvate carboxykinase-1 protein expression were found in the diabetic rats treated with B. animalis TISTR 2591. The diabetic rats showed a significant reduction of inflammation following B. animalis TISTR 2591 supplementation, as demonstrated by decreasing hepatic NF-κB protein expression and serum and liver TNF-α levels. The B. animalis TISTR 2591 significantly decreased MDA levels and increased antioxidant SOD and GPx activities in the diabetic rats. In conclusion, B. animalis TISTR 2591 was shown to be effective in controlling glucose homeostasis and improving glucose tolerance in the diabetic rats. These beneficial activities were attributed to reducing oxidative and inflammatory status and modulating hepatic glucose metabolism.
Collapse
Affiliation(s)
- Wanthanee Hanchang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sivamoke Dissook
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Navinee Wongmanee
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worarat Rojanaverawong
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Natthawut Charoenphon
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kamonthip Pakaew
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Jaruwan Sitdhipol
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Thanaphol Thanagornyothin
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Pongsathon Phapugrangkul
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Susakul Palakawong Na Ayudthaya
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand
| | - Pennapa Chonpathompikunlert
- Biodiversity Research Centre (BRC), Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand.
| |
Collapse
|
40
|
Tao SH, Lei YQ, Tan YM, Yang YB, Xie WN. Chinese herbal formula in the treatment of metabolic dysfunction-associated steatotic liver disease: current evidence and practice. Front Med (Lausanne) 2024; 11:1476419. [PMID: 39440040 PMCID: PMC11493624 DOI: 10.3389/fmed.2024.1476419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, continues to rise with rapid economic development and poses significant challenges to human health. No effective drugs are clinically approved. MASLD is regarded as a multifaceted pathological process encompassing aberrant lipid metabolism, insulin resistance, inflammation, gut microbiota imbalance, apoptosis, fibrosis, and cirrhosis. In recent decades, herbal medicines have gained increasing attention as potential therapeutic agents for the prevention and treatment of MASLD, due to their good tolerance, high efficacy, and low toxicity. In this review, we summarize the pathological mechanisms of MASLD; emphasis is placed on the anti-MASLD mechanisms of Chinese herbal formula (CHF), especially their effects on improving lipid metabolism, inflammation, intestinal flora, and fibrosis. Our goal is to better understand the pharmacological mechanisms of CHF to inform research on the development of new drugs for the treatment of MASLD.
Collapse
Affiliation(s)
- Shao-Hong Tao
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Qing Lei
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yi-Mei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yu-Bo Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Wei-Ning Xie
- Department of Scientific Research, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Foshan, Guangdong, China
| |
Collapse
|
41
|
Allen AM, Younossi ZM, Diehl AM, Charlton MR, Lazarus JV. Envisioning how to advance the MASH field. Nat Rev Gastroenterol Hepatol 2024; 21:726-738. [PMID: 38834817 DOI: 10.1038/s41575-024-00938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Since 1980, the cumulative effort of scientists and health-care stakeholders has advanced the prerequisites to address metabolic dysfunction-associated steatotic liver disease (MASLD), a prevalent chronic non-communicable liver disease. This effort has led to, among others, the approval of the first drug specific for metabolic dysfunction-associated steatohepatitis (MASH; formerly known as nonalcoholic steatohepatitis). Despite substantial progress, MASLD is still a leading cause of advanced chronic liver disease, including primary liver cancer. This Perspective contextualizes the nomenclature change from nonalcoholic fatty liver disease to MASLD and proposes important considerations to accelerate further progress in the field, optimize patient-centric multidisciplinary care pathways, advance pharmacological, behavioural and diagnostic research, and address health disparities. Key regulatory and other steps necessary to optimize the approval and access to upcoming additional pharmacological therapeutic agents for MASH are also outlined. We conclude by calling for increased education and awareness, enhanced health system preparedness, and concerted action by policy-makers to further the public health and policy agenda to achieve at least parity with other non-communicable diseases and to aid in growing the community of practice to reduce the human and economic burden and end the public health threat of MASLD and MASH by 2030.
Collapse
Affiliation(s)
- Alina M Allen
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zobair M Younossi
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
- The Global NASH Council, Washington DC, USA
| | | | - Michael R Charlton
- Center for Liver Diseases, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey V Lazarus
- The Global NASH Council, Washington DC, USA.
- CUNY Graduate School of Public Health and Health Policy (CUNY SPH), New York, NY, USA.
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
42
|
El-Ashmawy NE, Khedr EG, Al-Ashmawy GM, Kamel AA. Emerging role of natural lipophagy modulators in metabolic dysfunction-associated steatotic liver disease. Nutrition 2024; 126:112517. [PMID: 39146583 DOI: 10.1016/j.nut.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 08/17/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a seriously increasing liver disorder affecting nearly 32% of adults globally. Hepatic triglycerides (TG) accumulation is the hallmark of MASLD, which results from dysregulated lipid and fatty acid uptake, increased de novo lipogenesis (DNL), and decreased lipid removal. More recently, selective autophagy of lipid droplets (LDs), termed lipophagy, has emerged to be closely associated with disrupted hepatic lipid homeostasis. Recent studies have indicated that a series of natural products have shown promise as an alternative approach in attenuating MASLD via regulating lipophagy in vivo and in vitro. Therefore, lipophagy could be a new approach for natural products to be used to improve MASLD. This article aims to provide a comprehensive overview on the interrelationship between dysregulated lipid metabolism, lipophagy, and MASLD pathogenesis. In addition, the role of some natural products as lipophagy modulators and their impact on MASLD will be discussed.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Pharmacology & Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk, Cairo, Egypt
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt; Department of Biochemistry, Faculty of Pharmacy, Al Salam University in Egypt, Kafr Az Zayat, Egypt
| | - Asmaa A Kamel
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| |
Collapse
|
43
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
44
|
Grankvist N, Jönsson C, Hedin K, Sundqvist N, Sandström P, Björnsson B, Begzati A, Mickols E, Artursson P, Jain M, Cedersund G, Nilsson R. Global 13C tracing and metabolic flux analysis of intact human liver tissue ex vivo. Nat Metab 2024; 6:1963-1975. [PMID: 39210089 PMCID: PMC11496108 DOI: 10.1038/s42255-024-01119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Liver metabolism is central to human physiology and influences the pathogenesis of common metabolic diseases. Yet, our understanding of human liver metabolism remains incomplete, with much of current knowledge based on animal or cell culture models that do not fully recapitulate human physiology. Here, we perform in-depth measurement of metabolism in intact human liver tissue ex vivo using global 13C tracing, non-targeted mass spectrometry and model-based metabolic flux analysis. Isotope tracing allowed qualitative assessment of a wide range of metabolic pathways within a single experiment, confirming well-known features of liver metabolism but also revealing unexpected metabolic activities such as de novo creatine synthesis and branched-chain amino acid transamination, where human liver appears to differ from rodent models. Glucose production ex vivo correlated with donor plasma glucose, suggesting that cultured liver tissue retains individual metabolic phenotypes, and could be suppressed by postprandial levels of nutrients and insulin, and also by pharmacological inhibition of glycogen utilization. Isotope tracing ex vivo allows measuring human liver metabolism with great depth and resolution in an experimentally tractable system.
Collapse
Affiliation(s)
- Nina Grankvist
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jönsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Karin Hedin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Nicolas Sundqvist
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Per Sandström
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bergthor Björnsson
- Department of Surgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Arjana Begzati
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | | | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Mohit Jain
- Department of Medicine & Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, San Diego, CA, USA
| | - Gunnar Cedersund
- Department of Biomedical engineering, Linköping University, Linköping, Sweden
| | - Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
- Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
45
|
Wu Y, Yang M, Wu SB, Luo PQ, Zhang C, Ruan CS, Cui W, Zhao QR, Chen LX, Meng JJ, Song Q, Zhang WJ, Pei QQ, Li F, Zeng T, Du HX, Xu LX, Zhang W, Zhang XX, Luo XH. Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1. Diabetologia 2024; 67:2346-2366. [PMID: 39037604 DOI: 10.1007/s00125-024-06224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Min Yang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shao-Bo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Pei-Qi Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Cheng Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Chang-Shun Ruan
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wei Cui
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiu-Rong Zhao
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Lin-Xin Chen
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Juan-Juan Meng
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qiang Song
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Wen-Jin Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qin-Qin Pei
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Fang Li
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Ting Zeng
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Hong-Xin Du
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Li-Xin Xu
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Xian-Xiang Zhang
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Xiao-He Luo
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, China.
- Central Laboratory Department, Chongqing University Three Gorges Hospital, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing University Three Gorges Hospital, Chongqing, China.
| |
Collapse
|
46
|
Li M, Cui M, Li G, Liu Y, Xu Y, Eftekhar SP, Ala M. The Pathophysiological Associations Between Obesity, NAFLD, and Atherosclerotic Cardiovascular Diseases. Horm Metab Res 2024; 56:683-696. [PMID: 38471571 DOI: 10.1055/a-2266-1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Obesity, non-alcoholic fatty liver disease (NAFLD), and atherosclerotic cardiovascular diseases are common and growing public health concerns. Previous epidemiological studies unfolded the robust correlation between obesity, NAFLD, and atherosclerotic cardiovascular diseases. Obesity is a well-known risk factor for NAFLD, and both of them can markedly increase the odds of atherosclerotic cardiovascular diseases. On the other hand, significant weight loss achieved by lifestyle modification, bariatric surgery, or medications, such as semaglutide, can concomitantly improve NAFLD and atherosclerotic cardiovascular diseases. Therefore, certain pathophysiological links are involved in the development of NAFLD in obesity, and atherosclerotic cardiovascular diseases in obesity and NAFLD. Moreover, recent studies indicated that simultaneously targeting several mechanisms by tirzepatide and retatrutide leads to greater weight loss and markedly improves the complications of metabolic syndrome. These findings remind the importance of a mechanistic viewpoint for breaking the association between obesity, NAFLD, and atherosclerotic cardiovascular diseases. In this review article, we mainly focus on shared pathophysiological mechanisms, including insulin resistance, dyslipidemia, GLP1 signaling, inflammation, oxidative stress, mitochondrial dysfunction, gut dysbiosis, renin-angiotensin-aldosterone system (RAAS) overactivity, and endothelial dysfunction. Most of these pathophysiological alterations are primarily initiated by obesity. The development of NAFLD further exacerbates these molecular and cellular alterations, leading to atherosclerotic cardiovascular disease development or progression as the final manifestation of molecular perturbation. A better insight into these mechanisms makes it feasible to develop new multi-target approaches to simultaneously unhinge the deleterious chain of events linking obesity and NAFLD to atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Man Cui
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoxia Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueqiu Liu
- Clinical Specialty of Integrated Chinese and Western Medicine, The First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Moein Ala
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Westcott FA, Nagarajan SR, Parry SA, Savic D, Green CJ, Marjot T, Johnson E, Cornfield T, Mózes FE, O’Rourke P, Mendall J, Dearlove D, Fielding B, Smith K, Tomlinson JW, Hodson L. Dissociation between liver fat content and fasting metabolic markers of selective hepatic insulin resistance in humans. Eur J Endocrinol 2024; 191:463-472. [PMID: 39353069 PMCID: PMC11497584 DOI: 10.1093/ejendo/lvae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE Fasting hyperglycemia and hypertriglyceridemia are characteristic of insulin resistance (IR) and rodent work has suggested this may be due to selective hepatic IR, defined by increased hepatic gluconeogenesis and de novo lipogenesis (DNL), but this has not been shown in humans. DESIGN Cross-sectional study in men and women across a range of adiposity. METHODS Medication-free participants (n = 177) were classified as normoinsulinemic (NI) or hyperinsulinemic (HI) and as having low (LF) or high (HF) liver fat content measured by magnetic resonance spectroscopy. Fractional gluconeogenesis (frGNG) and hepatic DNL were measured using stable isotope tracer methodology following an overnight fast. RESULTS Although HI and HF groups had higher fasting plasma glucose and triglyceride concentrations when compared to NI and LF groups respectively, there was no difference in frGNG. However, HF participants tended to have lower frGNG than LF participants. HI participants had higher DNL compared to NI participants but there was no difference observed between liver fat groups. CONCLUSIONS Taken together, we found no metabolic signature of selective hepatic IR in fasting humans. DNL may contribute to hypertriglyceridemia in individuals with HI but not those with HF. Glycogenolysis and systemic glucose clearance may have a larger contribution to fasting hyperglycemia than gluconeogenesis, especially in those with HF, and these pathways should be considered for therapeutic targeting.
Collapse
Affiliation(s)
- Felix A Westcott
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Shilpa R Nagarajan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Sion A Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Aston Medical School, Aston University, Birmingham, B4 7ET, United Kingdom
| | - Dragana Savic
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Elspeth Johnson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Thomas Cornfield
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Ferenc E Mózes
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Paige O’Rourke
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Jessica Mendall
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - David Dearlove
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Barbara Fielding
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Kieran Smith
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- OCDEM, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, OX3 7LE, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, United Kingdom
- OCDEM, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, OX3 7LE, United Kingdom
| |
Collapse
|
48
|
Cao C, Huang M, Han Y, Zhang X, Hu H, Wang Y. The nonlinear connection between relative fat mass and non-alcoholic fatty liver disease in the Japanese population: an analysis based on data from a cross-sectional study. Diabetol Metab Syndr 2024; 16:236. [PMID: 39342395 PMCID: PMC11438214 DOI: 10.1186/s13098-024-01472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Relative fat mass (RFM) is a newly developed, sex-specific anthropometric formula designed to estimate total body fat percentage. However, research investigating the correlation between RFM and the risk of non-alcoholic fatty liver disease (NAFLD) remains limited. This study evaluates the association between RFM and the risk of NAFLD within the Japanese population. METHODS This study including 14,250 Japanese adults who underwent physical examinations at Murakami Memorial Hospital between 2004 and 2015. We employed binary logistic regression to elucidate the direct relationship between RFM levels and the incidence of NAFLD. Additionally, a generalized additive model (GAM) coupled with smooth curve fitting techniques was utilized to map the non-linear association. RESULTS The cohort had an average age of 43.53 ± 8.89 years, with a male majority of 52.00%. NAFLD was identified in 17.59% of the participants. After adjusting for confounding factors, a significant positive correlation between RFM and NAFLD risk was observed (OR: 1.15, 95%CI: 1.10-1.21, P < 0.0001 for females; OR: 1.15, 95%CI: 1.10-1.19, P < 0.0001 for males). Additionally, a non-linear relationship between RFM and the incidence of NAFLD was detected in both genders. The RFM threshold was identified as 34.95 for women and 23.40 for men. RFM was positively associated with the risk of NAFLD when RFM was below the respective threshold (OR: 1.29, 95%CI: 1.19-1.40, P < 0.0001 for females; OR: 1.23, 95%CI: 1.17-1.29, P < 0.0001 for males), whereas no significant association was found when RFM was above the threshold (OR: 1.05, 95%CI: 0.98-1.12, P = 0.1829 for females; OR: 1.01, 95%CI: 0.95-1.08, P = 0.7392 for males). CONCLUSION Our findings suggest a positive, nonlinear relationship between RFM and the risk of NAFLD, with a saturation effect. These results imply that maintaining RFM at a lower level may be advantageous in mitigating the risk of NAFLD.
Collapse
Affiliation(s)
- Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong, China
| | - Meiling Huang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No.3002, Sungang West Road, Futian District, Shenzhen, 518000, Guangdong, China
| | - Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Xiaohua Zhang
- Department of Rehabilitation, Shenzhen Dapeng New District Nan'ao People's Hospital, No. 6, Renmin Road, Dapeng New District, Shenzhen, 518000, Guangdong, China.
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China.
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No.3002, Sungang West Road, Futian District, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
49
|
Han T, Li Y, Xiao J, Gong H, Deng F, Jiang W, Wang C, Chen F, Zhang C, Deng J, Zhang Y. Diagnostic Utility of Triglyceride-Glucose Index in Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study on Lean Population. Diabetes Metab Syndr Obes 2024; 17:3547-3556. [PMID: 39328264 PMCID: PMC11424687 DOI: 10.2147/dmso.s469398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Background Approximately 10-20% of individuals with non-alcoholic fatty liver disease (NAFLD) are lean, and the underlying pathophysiology is not yet understood. This study aims to explore the characteristics and the diagnostic value of triglyceride-glucose index (TyG) in early diagnosis of lean NAFLD. Methods 99 patients with lean NAFLD and 1891 healthy controls were included in the health examination. The characteristics were compared between groups. Restricted cubic spline was utilized to analyze the relationship between TyG index and the risk of lean NAFLD. Logistic regression and receiver operating curve (ROC) were applied to explore the diagnostic value of TyG index for lean NAFLD. Results Overall, 99 (4.97%) patients had lean NAFLD. Patients with lean NAFLD have significant abnormal glycolipid metabolism and higher TyG index. Restriction cube spline analysis showed a significant dose-response relationship between the TyG index and risk of lean NAFLD. After adjusting for confounders, the relationship remained and the risk of developing lean NAFLD increased 2.99 times for per unit increase of TyG index (95% CI: 1.94, 4.67, P<0.001). The areas under the ROC of the TyG index for lean NAFLD detection were 0.851 (0.815 to 0.886). Conclusion The TyG index is positively associated with the risk of developing lean NAFLD and could be a useful marker for early diagnosis of lean NAFLD.
Collapse
Affiliation(s)
- Tuo Han
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Ying Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Jing Xiao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Hong Gong
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Fuxue Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Wei Jiang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Congxia Wang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Fangyao Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Chunyan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Yan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| |
Collapse
|
50
|
Heikelä H, Mairinoja L, Ruohonen ST, Rytkönen KT, de Brot S, Laiho A, Koskinen S, Suomi T, Elo LL, Strauss L, Poutanen M. Disruption of HSD17B12 in mouse hepatocytes leads to reduced body weight and defect in the lipid droplet expansion associated with microvesicular steatosis. FASEB J 2024; 38:e70034. [PMID: 39248019 DOI: 10.1096/fj.202400333rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
The function of hydroxysteroid dehydrogenase 12 (HSD17B12) in lipid metabolism is poorly understood. To study this further, we created mice with hepatocyte-specific knockout of HSD17B12 (LiB12cKO). From 2 months on, these mice showed significant fat accumulation in their liver. As they aged, they also had a reduced whole-body fat percentage. Interestingly, the liver fat accumulation did not result in the typical formation of large lipid droplets (LD); instead, small droplets were more prevalent. Thus, LiB12KO liver did not show increased macrovesicular steatosis with the increasing fat content, while microvesicular steatosis was the predominant feature in the liver. This indicates a failure in the LD expansion. This was associated with liver damage, presumably due to lipotoxicity. Notably, the lipidomics data did not support an essential role of HSD17B12 in fatty acid (FA) elongation. However, we did observe a decrease in the quantity of specific lipid species that contain FAs with carbon chain lengths of 18 and 20 atoms, including oleic acid. Of these, phosphatidylcholine and phosphatidylethanolamine have been shown to play a key role in LD formation, and a limited amount of these lipids could be part of the mechanism leading to the dysfunction in LD expansion. The increase in the Cidec expression further supported the deficiency in LD expansion in the LiB12cKO liver. This protein is crucial for the fusion and growth of LDs, along with the downregulation of several members of the major urinary protein family of proteins, which have recently been shown to be altered during endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Hanna Heikelä
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura Mairinoja
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kalle T Rytkönen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Satu Koskinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Leena Strauss
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|