1
|
He Y, Xu B, Zhang M, Chen D, Wu S, Gao J, Liu Y, Zhang Z, Kuang J, Fang Q. Advances in GLP-1 receptor agonists for pain treatment and their future potential. J Headache Pain 2025; 26:46. [PMID: 40016636 PMCID: PMC11869436 DOI: 10.1186/s10194-025-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) show substantial efficacy in regulating blood glucose levels and lipid metabolism, initially as an effective treatment for diabetes mellitus. In recent years, GLP-1RAs have become a focal point in the medical community due to their innovative treatment mechanisms, robust therapeutic efficacy, and expansive development prospects. Notably, GLP-1RAs benefit pain management through their neuroprotective and metabolic regulatory properties, such as inhibiting inflammation responses and oxidative stress, promoting β-endorphin release and modulating several other crucial biological pathways. Hence GLP-1RAs hold promise for repurposing as treatments for pain disorders. In this narrative review, we thoroughly trace the current preclinical and clinical evidence of seven pain modalities, including inflammatory pain, osteoarthritis, visceral pain, neuropathic pain, diabetic neuropathy, cancer pain and headache, to support the efficacy and underlying biological mechanisms of GLP-1RAs as therapeutic agents for pain suffering. Despite these promising findings, further research is necessary to establish their long-term efficacy, optimal dosing strategies, and potential synergistic interactions of GLP-1RAs with existing pain management therapies. Future clinical trials should aim to distinguish the direct analgesic effects of GLP-1RAs from their metabolic benefits and explore their broader applications in pain conditions. The ongoing exploration of new indications for GLP-1RAs further highlights their transformative potential in advancing medical treatments across diverse clinical fields.
Collapse
Affiliation(s)
- Yongtao He
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Jie Gao
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Yongpeng Liu
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Zixin Zhang
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Junzhe Kuang
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Holst JJ. Annual Prize Lecture 2024: Endogenous physiological mechanisms as basis for the treatment of obesity and type 2 diabetes. J Physiol 2024; 602:6613-6629. [PMID: 39520693 DOI: 10.1113/jp287461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In 1964, it was proven that postprandial insulin secretion is largely regulated by gut hormones and, in 1973, it was proposed that a gut hormone would also regulate appetite and food intake. Several gut hormones were tested for metabolic actions with disappointing results until the discovery of the proglucagon derivative, glucagon-like peptide-1 (GLP-1). This peptide from the distal intestine has preserved activity on insulin secretion in people with type 2 diabetes and turned out to regulate both secretion and motility in the gastrointestinal tract and importantly, appetite and food intake, thus functioning as an efficient 'ileal brake' hormone. However, the natural hormone acts predominantly via sensory afferent systems and is extremely rapidly removed from the circulation by enzymatic degradation and renal elimination, and increasing the doses merely results in nausea and vomiting. Lipidation of analogs turned out to provide both stability and limit renal elimination, and very slow up-titration of dosing improves tolerance. Indeed, the most recent agonists may near-normalize glycaemic control in type 2 diabetes, may cause weight losses of up to 25% of body weight, and significantly reduce cardiovascular risk, effects that resemble those of bariatric surgery. Thus, a solution to one of the most serious health problems of modern civilization, the increased morbidity and mortality of the metabolic syndrome, may be addressed by mobilization of one of the body's own regulatory mechanisms.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, The Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, Denmark
| |
Collapse
|
3
|
Go EJ, Hwang SM, Jo H, Rahman MM, Park J, Lee JY, Jo YY, Lee BG, Jung Y, Berta T, Kim YH, Park CK. GLP-1 and its derived peptides mediate pain relief through direct TRPV1 inhibition without affecting thermoregulation. Exp Mol Med 2024; 56:2449-2464. [PMID: 39482537 PMCID: PMC11612315 DOI: 10.1038/s12276-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/07/2024] [Accepted: 08/13/2024] [Indexed: 11/03/2024] Open
Abstract
Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1, as well as a GLP-1R antagonist, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI), in mice without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among the exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, suggesting exendin 20-29 as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Eun Jin Go
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Hyunjung Jo
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Jaeik Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Ji Yeon Lee
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Youn Yi Jo
- Department of Anesthesiology and Pain Medicine, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Byung-Gil Lee
- Lee Gil Ya Cancer and Diabetes Institute Gachon University, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute Gachon University, Incheon, 21999, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
4
|
Yun Y, Guo S, Xie X. V1bR enhances glucose-stimulated insulin secretion by paracrine production of glucagon which activates GLP-1 receptor. Cell Biosci 2024; 14:110. [PMID: 39217353 PMCID: PMC11365140 DOI: 10.1186/s13578-024-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Arginine vasopressin (AVP) has been reported to regulate insulin secretion and glucose homeostasis in the body. Previous study has shown that AVP and its receptor V1bR modulate insulin secretion via the hypothalamic-pituitary-adrenal axis. AVP has also been shown to enhance insulin secretion in islets, but the exact mechanism remains unclear. RESULTS In our study, we unexpectedly discovered that AVP could only stimulates insulin secretion from islets, but not β cells, and AVP-induced insulin secretion could be blocked by V1bR selective antagonist. Single-cell transcriptome analysis identified that V1bR is only expressed by the α cells. Further studies indicated that activation of the V1bR stimulates the α cells to secrete glucagon, which then promotes glucose-dependent insulin secretion from β cells in a paracrine way by activating GLP-1R but not GCGR on these cells. CONCLUSIONS Our study revealed a crosstalk between α and β cells initiated by AVP/V1bR and mediated by glucagon/GLP-1R, providing a mechanism to develop new glucose-controlling therapies targeting V1bR.
Collapse
Affiliation(s)
- Ying Yun
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China
| | - Xin Xie
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai, 201203, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Hoffman S, Adeli K. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism. MEDICAL REVIEW (2021) 2024; 4:301-311. [PMID: 39135603 PMCID: PMC11317082 DOI: 10.1515/mr-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 08/15/2024]
Abstract
Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Cardiovascular & Metabolic Disease, Merck Research Laboratories, South San Francisco, CA, USA
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Gaffey RH, Takyi AK, Shukla A. Investigational and emerging gastric inhibitory polypeptide (GIP) receptor-based therapies for the treatment of obesity. Expert Opin Investig Drugs 2024; 33:757-773. [PMID: 38984950 DOI: 10.1080/13543784.2024.2377319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION One billion people live with obesity. The most promising medications for its treatment are incretin-based therapies, based on enteroendocrine peptides released in response to oral nutrients, specifically glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The mechanisms by which GLP-1 receptor agonism cause weight reduction are becoming increasingly understood. However, the mechanisms by which GIP receptor-modulating medications cause weight loss remain to be clarified. AREAS COVERED This review describes GLP-1 and GIP physiology and explores the conflicting data regarding GIP and weight management. It details examples of how to reconcile the contradictory findings that both GIP receptor agonism and antagonism cause weight reduction. Specifically, it discusses the concept of 'biased agonism' wherein exogenous peptides cause different post-receptor signaling patterns than native ligands. It discusses how GIP effects in adipose tissue and the central nervous system may cause weight reduction. It describes GIP receptor-modulating compounds and their most current trials regarding weight reduction. EXPERT OPINION Effects of GIP receptor-modulating compounds on different tissues have implications for both weight reduction and other cardiometabolic diseases. Further study is needed to understand the implications of GIP agonism on not just weight reduction, but also cardiovascular disease, liver disease, bone health and fat storage.
Collapse
Affiliation(s)
- Robert H Gaffey
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Afua K Takyi
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alpana Shukla
- Comprehensive Weight Control Center, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Helsted MM, Schaltz NL, Gasbjerg LS, Christensen MB, Vilsbøll T, Knop FK. Safety of native glucose-dependent insulinotropic polypeptide in humans. Peptides 2024; 177:171214. [PMID: 38615716 DOI: 10.1016/j.peptides.2024.171214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
In this systematic review, we assessed the safety and possible safety events of native glucose-dependent insulinotropic polypeptide (GIP)(1-42) in human studies with administration of synthetic human GIP. We searched the PubMed database for all trials investigating synthetic human GIP(1-42) administration. A total of 67 studies were included. Study duration ranged from 30 min to 6 days. In addition to healthy individuals, the studies included individuals with impaired glucose tolerance, type 2 diabetes, type 1 diabetes, chronic pancreatitis and secondary diabetes, latent autoimmune diabetes in adults, diabetes caused by a mutation in the hepatocyte nuclear factor 1-alpha gene, end-stage renal disease, chronic renal insufficiency, critical illness, hypoparathyroidism, or cystic fibrosis-related diabetes. Of the included studies, 78% did not mention safety events, 10% of the studies reported that no safety events were observed in relation to GIP administration, and 15% of the studies reported safety events in relation to GIP administration with most frequently reported event being a moderate and transient increased heart rate. Gastrointestinal safety events, and changes in blood pressure were also reported. Plasma concentration of active GIP(1-42) increased linearly with dose independent of participant phenotype. There was no significant correlation between achieved maximal concentration of GIP(1-42) and reported safety events. Clearance rates of GIP(1-42) were similar between participant groups. In conclusion, the available data indicate that GIP(1-42) in short-term (up to 6 days) infusion studies is generally well-tolerated. The long-term safety of continuous GIP(1-42) administration is unknown.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Schaltz
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
8
|
Park CK, Go EJ, Jo H, Hwang SM, Rahman MM, Park J, Lee JY, Jo YY, Jung Y, Berta T, Kim YH. GLP-1 and Its Derived Peptides Mediate Pain Relief Through Direct TRPV1 Inhibition Without Affecting Thermoregulation. RESEARCH SQUARE 2024:rs.3.rs-4233732. [PMID: 38798444 PMCID: PMC11118710 DOI: 10.21203/rs.3.rs-4233732/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on the transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1 and an antagonist of GLP-1, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, the exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI) in mice, without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, proposing exendin 20-29 as a promising therapeutic candidate.
Collapse
|
9
|
Oertel M, Ziegler CG, Kohlhaas M, Nickel A, Kloock S, Maack C, Sequeira V, Fassnacht M, Dischinger U. GLP-1 and PYY for the treatment of obesity: a pilot study on the use of agonists and antagonists in diet-induced rats. Endocr Connect 2024; 13:e230398. [PMID: 38300808 PMCID: PMC10895316 DOI: 10.1530/ec-23-0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
Objective Combination therapies with gut hormone analogs represent promising treatment strategies for obesity. This pilot study investigates the therapeutic potential of modulators of the glucagon-like peptide 1 (GLP-1) and neuropeptide Y (NPY) system using GLP-1 receptor agonists (semaglutide) and antagonists (exendin 9-39), as well as non-selective and NPY-Y2-receptor selective peptide tyrosine tyrosine (PYY) analogs (PYY3-36/NNC0165-0020 and NNC0165-1273) and an NPY-Y2 receptor antagonist (JNJ31020028). Methods High-fat diet (HFD)-induced obese rats were randomized into following treatment groups: group 1, nonselective PYY analog + semaglutide (n = 4); group 2, non-selective and NPY-Y2 receptor selective PYY analog + semaglutide (n = 2); group 3, GLP-1 receptor antagonist + NPY-Y2 receptor antagonist (n = 3); group 4, semaglutide (n = 5); and group 5, control (n = 5). Animals had free access to HFD and low-fat diet. Food intake, HFD preference and body weight were measured daily. Results A combinatory treatment with a non-selective PYY analog and semaglutide led to a maximum body weight loss of 14.0 ± 4.9% vs 9.9 ± 1.5% with semaglutide alone. Group 2 showed a maximum weight loss of 20.5 ± 2.4%. While HFD preference was decreased in group 2, a strong increase in HFD preference was detected in group 3. Conclusions PYY analogs (especially NPY-Y2 selective receptor agonists) could represent a promising therapeutic approach for obesity in combination with GLP-1 receptor agonists. Additionally, combined GLP-1 and PYY3-36 receptor agonists might have beneficial effects on food preference.
Collapse
Affiliation(s)
- Marie Oertel
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Christian G Ziegler
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, University of Würzburg, Würzburg, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | | | - Simon Kloock
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | | | | | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Ulrich Dischinger
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Center, Würzburg, Germany
| |
Collapse
|
10
|
Drucker DJ. The GLP-1 journey: from discovery science to therapeutic impact. J Clin Invest 2024; 134:e175634. [PMID: 38226625 PMCID: PMC10786682 DOI: 10.1172/jci175634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
|
11
|
Welch AA, Farahani RA, Egan AM, Laurenti MC, Zeini M, Vella M, Bailey KR, Cobelli C, Dalla Man C, Matveyenko A, Vella A. Glucagon-like peptide-1 receptor blockade impairs islet secretion and glucose metabolism in humans. J Clin Invest 2023; 133:e173495. [PMID: 37751301 PMCID: PMC10645389 DOI: 10.1172/jci173495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUNDProglucagon can be processed to glucagon-like peptide1 (GLP-1) within the islet, but its contribution to islet function in humans remains unknown. We sought to understand whether pancreatic GLP-1 alters islet function in humans and whether this is affected by type 2 diabetes.METHODSWe therefore studied individuals with and without type 2 diabetes on two occasions in random order. On one occasion, exendin 9-39, a competitive antagonist of the GLP-1 Receptor (GLP1R), was infused, while on the other, saline was infused. The tracer dilution technique ([3-3H] glucose) was used to measure glucose turnover during fasting and during a hyperglycemic clamp.RESULTSExendin 9-39 increased fasting glucose concentrations; fasting islet hormone concentrations were unchanged, but inappropriate for the higher fasting glucose observed. In people with type 2 diabetes, fasting glucagon concentrations were markedly elevated and persisted despite hyperglycemia. This impaired suppression of endogenous glucose production by hyperglycemia.CONCLUSIONThese data show that GLP1R blockade impairs islet function, implying that intra-islet GLP1R activation alters islet responses to glucose and does so to a greater degree in people with type 2 diabetes.TRIAL REGISTRATIONThis study was registered at ClinicalTrials.gov NCT04466618.FUNDINGThe study was primarily funded by NIH NIDDK DK126206. AV is supported by DK78646, DK116231 and DK126206. CDM was supported by MIUR (Italian Minister for Education) under the initiative "Departments of Excellence" (Law 232/2016).
Collapse
Affiliation(s)
- Andrew A. Welch
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Rahele A. Farahani
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Aoife M. Egan
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marcello C. Laurenti
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Maya Zeini
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Max Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Kent R. Bailey
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Chiara Dalla Man
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Folli F, Finzi G, Manfrini R, Galli A, Casiraghi F, Centofanti L, Berra C, Fiorina P, Davalli A, La Rosa S, Perego C, Higgins PB. Mechanisms of action of incretin receptor based dual- and tri-agonists in pancreatic islets. Am J Physiol Endocrinol Metab 2023; 325:E595-E609. [PMID: 37729025 PMCID: PMC10874655 DOI: 10.1152/ajpendo.00236.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Simultaneous activation of the incretin G-protein-coupled receptors (GPCRs) via unimolecular dual-receptor agonists (UDRA) has emerged as a new therapeutic approach for type 2 diabetes. Recent studies also advocate triple agonism with molecules also capable of binding the glucagon receptor. In this scoping review, we discuss the cellular mechanisms of action (MOA) underlying the actions of these novel and therapeutically important classes of peptide receptor agonists. Clinical efficacy studies of several UDRAs have demonstrated favorable results both as monotherapies and when combined with approved hypoglycemics. Although the additive insulinotropic effects of dual glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic peptide receptor (GIPR) agonism were anticipated based on the known actions of either glucagon-like peptide-1 (GLP-1) or glucose-dependent insulinotropic peptide (GIP) alone, the additional benefits from GCGR were largely unexpected. Whether additional synergistic or antagonistic interactions among these G-protein receptor signaling pathways arise from simultaneous stimulation is not known. The signaling pathways affected by dual- and tri-agonism require more trenchant investigation before a comprehensive understanding of the cellular MOA. This knowledge will be essential for understanding the chronic efficacy and safety of these treatments.
Collapse
Affiliation(s)
- Franco Folli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giovanna Finzi
- Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Roberto Manfrini
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Unit of Diabetes, Endocrinology and Metabolism, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alessandra Galli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Francesca Casiraghi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Cesare Berra
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alberto Davalli
- Diabetes and Endocrinology Unit, Department of Internal Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Carla Perego
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paul B Higgins
- Department of Life & Physical Sciences, Atlantic Technological University, Letterkenny, Ireland
| |
Collapse
|
13
|
Yin M, Wang Y, Han M, Liang R, Li S, Wang G, Gang X. Mechanisms of bariatric surgery for weight loss and diabetes remission. J Diabetes 2023; 15:736-752. [PMID: 37442561 PMCID: PMC10509523 DOI: 10.1111/1753-0407.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity and type 2 diabetes(T2D) lead to defects in intestinal hormones secretion, abnormalities in the composition of bile acids (BAs), increased systemic and adipose tissue inflammation, defects of branched-chain amino acids (BCAAs) catabolism, and dysbiosis of gut microbiota. Bariatric surgery (BS) has been shown to be highly effective in the treatment of obesity and T2D, which allows us to view BS not simply as weight-loss surgery but as a means of alleviating obesity and its comorbidities, especially T2D. In recent years, accumulating studies have focused on the mechanisms of BS to find out which metabolic parameters are affected by BS through which pathways, such as which hormones and inflammatory processes are altered. The literatures are saturated with the role of intestinal hormones and the gut-brain axis formed by their interaction with neural networks in the remission of obesity and T2D following BS. In addition, BAs, gut microbiota and other factors are also involved in these benefits after BS. The interaction of these factors makes the mechanisms of metabolic improvement induced by BS more complicated. To date, we do not fully understand the exact mechanisms of the metabolic alterations induced by BS and its impact on the disease process of T2D itself. This review summarizes the changes of intestinal hormones, BAs, BCAAs, gut microbiota, signaling proteins, growth differentiation factor 15, exosomes, adipose tissue, brain function, and food preferences after BS, so as to fully understand the actual working mechanisms of BS and provide nonsurgical therapeutic strategies for obesity and T2D.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Yao Wang
- Department of OrthopedicsThe Second Hospital Jilin UniversityChangchunChina
| | - Mingyue Han
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Ruishuang Liang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Shanshan Li
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Guixia Wang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| | - Xiaokun Gang
- Department of Endocrinology and MetabolismThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
14
|
Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health, diabetes mellitus and other metabolic diseases. Nat Rev Endocrinol 2023; 19:321-335. [PMID: 36932176 DOI: 10.1038/s41574-023-00817-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Insulin and glucagon exert opposing effects on glucose metabolism and, consequently, pancreatic islet β-cells and α-cells are considered functional antagonists. The intra-islet hypothesis has previously dominated the understanding of glucagon secretion, stating that insulin acts to inhibit the release of glucagon. By contrast, glucagon is a potent stimulator of insulin secretion and has been used to test β-cell function. Over the past decade, α-cells have received increasing attention due to their ability to stimulate insulin secretion from neighbouring β-cells, and α-cell-β-cell crosstalk has proven central for glucose homeostasis in vivo. Glucagon is not only the counter-regulatory hormone to insulin in glucose metabolism but also glucagon secretion is more susceptible to changes in the plasma concentration of certain amino acids than to changes in plasma concentrations of glucose. Thus, the actions of glucagon also include a central role in amino acid turnover and hepatic fat oxidation. This Review provides insights into glucagon secretion, with a focus on the local paracrine actions on glucagon and the importance of α-cell-β-cell crosstalk. We focus on dysregulated glucagon secretion in obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus. Lastly, the future potential of targeting hyperglucagonaemia and applying dual and triple receptor agonists with glucagon receptor-activating properties in combination with incretin hormone receptor agonism is discussed.
Collapse
Affiliation(s)
- Sofie Hædersdal
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
| | - Andreas Andersen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
| | - Filip K Knop
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Center for Clinical Metabolic Research, Copenhagen University Hospital - Herlev and Gentofte, Hellerup, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Hindsø M, Hedbäck N, Svane MS, Møller A, Martinussen C, Jørgensen NB, Dirksen C, Gasbjerg LS, Kristiansen VB, Hartmann B, Rosenkilde MM, Holst JJ, Madsbad S, Bojsen-Møller KN. The Importance of Endogenously Secreted GLP-1 and GIP for Postprandial Glucose Tolerance and β-Cell Function After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy Surgery. Diabetes 2023; 72:336-347. [PMID: 36478039 DOI: 10.2337/db22-0568] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Enhanced secretion of glucagon-like peptide 1 (GLP-1) seems to be essential for improved postprandial β-cell function after Roux-en-Y gastric bypass (RYGB) but is less studied after sleeve gastrectomy (SG). Moreover, the role of the other major incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), is relatively unexplored after bariatric surgery. We studied the effects of separate and combined GLP-1 receptor (GLP-1R) and GIP receptor (GIPR) blockade during mixed-meal tests in unoperated (CON), SG-operated, and RYGB-operated people with no history of diabetes. Postprandial GLP-1 concentrations were highest after RYGB but also higher after SG compared with CON. In contrast, postprandial GIP concentrations were lowest after RYGB. The effect of GLP-1R versus GIPR blockade differed between groups. GLP-1R blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the surgical groups but had no effect in CON. GIPR blockade reduced β-cell glucose sensitivity and increased or tended to increase postprandial glucose responses in the CON and SG groups but had no effect in the RYGB group. Our results support that GIP is the most important incretin hormone in unoperated people, whereas GLP-1 and GIP are equally important after SG, and GLP-1 is the most important incretin hormone after RYGB.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Møller
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Nils B Jørgensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carsten Dirksen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Viggo B Kristiansen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
16
|
McLean BA, Wong CK, Kabir MG, Drucker DJ. Glucagon-like Peptide-1 receptor Tie2+ cells are essential for the cardioprotective actions of liraglutide in mice with experimental myocardial infarction. Mol Metab 2022; 66:101641. [PMID: 36396031 PMCID: PMC9706177 DOI: 10.1016/j.molmet.2022.101641] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce the rates of major cardiovascular events, including myocardial infarction in people with type 2 diabetes, and decrease infarct size while preserving ventricular function in preclinical studies. Nevertheless, the precise cellular sites of GLP-1R expression that mediate the cardioprotective actions of GLP-1 in the setting of ischemic cardiac injury are uncertain. METHODS Publicly available single cell RNA sequencing (scRNA-seq) datasets on mouse and human heart cells were analyzed for Glp1r/GLP1R expression. Fluorescent activated cell sorting was used to localize Glp1r expression in cell populations from the mouse heart. The importance of endothelial and hematopoietic cells for the cardioprotective response to liraglutide in the setting of acute myocardial infarction (MI) was determined by inactivating the Glp1r in Tie2+ cell populations. Cardiac gene expression profiles regulated by liraglutide were examined using RNA-seq to interrogate mouse atria and both infarcted and non-infarcted ventricular tissue after acute coronary artery ligation. RESULTS In mice, cardiac Glp1r mRNA transcripts were exclusively detected in endocardial cells by scRNA-seq. In contrast, analysis of human heart by scRNA-seq localized GLP1R mRNA transcripts to populations of atrial and ventricular cardiomyocytes. Moreover, very low levels of GIPR, GCGR and GLP2R mRNA transcripts were detected in the human heart. Cell sorting and RNA analyses detected cardiac Glp1r expression in endothelial cells (ECs) within the atria and ventricle in the ischemic and non-ischemic mouse heart. Transcriptional responses to liraglutide administration were not evident in wild type mouse ventricles following acute MI, however liraglutide differentially regulated genes important for inflammation, cardiac repair, cell proliferation, and angiogenesis in the left atrium, while reducing circulating levels of IL-6 and KC/GRO within hours of acute MI. Inactivation of the Glp1r within the Tie2+ cell expression domain encompassing ECs revealed normal cardiac structure and function, glucose homeostasis and body weight in Glp1rTie2-/- mice. Nevertheless, the cardioprotective actions of liraglutide to reduce infarct size, augment ejection fraction, and improve survival after experimental myocardial infarction (MI), were attenuated in Glp1rTie2-/- mice. CONCLUSIONS These findings identify the importance of the murine Tie2+ endothelial cell GLP-1R as a target for the cardioprotective actions of GLP-1R agonists and support the importance of the atrial and ventricular endocardial GLP-1R as key sites of GLP-1 action in the ischemic mouse heart. Hitherto unexplored species-specific differences in cardiac GLP-1R expression challenge the exclusive use of mouse models for understanding the mechanisms of GLP-1 action in the normal and ischemic human heart.
Collapse
|
17
|
Ferrari F, Moretti A, Villa RF. Incretin-based drugs as potential therapy for neurodegenerative diseases: current status and perspectives. Pharmacol Ther 2022; 239:108277. [DOI: 10.1016/j.pharmthera.2022.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
18
|
Shah A, Prasad M, Mark V, Holst JJ, Laferrère B. Glucagon-like peptide-1 effect on β-cell function varies according to diabetes remission status after Roux-en-Y gastric bypass. Diabetes Obes Metab 2022; 24:2081-2089. [PMID: 35676799 PMCID: PMC9595602 DOI: 10.1111/dom.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
AIMS The contribution of endogenous glucagon-like peptide (GLP)-1 to β-cell function after Roux-en-Y gastric bypass surgery (RYGB) is well established in normoglycaemic individuals, but not in those with postoperative hyperglycaemia. We, therefore, studied the effect of GLP-1 on β-cell function in individuals with varying degrees of type 2 diabetes mellitus (T2D) control after RYGB. MATERIALS AND METHODS Glucose, insulin secretion rates, β-cell glucose sensitivity and glucagon were measured during an oral glucose tolerance test before (saline only) and at 3, 12 and 24 months after RYGB with and without infusion of the GLP-1 receptor blocker exendin9-39 (EX9). The cohort was retrospectively classified based on T2D remission (REM) status at the latest study time point: REM (n = 5), persistent T2D (n = 8), or impaired glucose tolerance (n = 16). RESULTS EX9 blunted the increase in β-cell glucose sensitivity at 3 months (-44.1%, p < .001) and 12 months (-43.3%, p < .001), but not at 24 months (-12.4%, p = .243). EX9 enhanced postprandial glucagon concentrations by 62.0% at 3 months (p = .008), 46.5% at 12 months (p = .055), and 30.4% at 24 months (p = .017). EX9 counterintuitively decreased glucose concentrations at 3 months in the entire cohort (p < .001) but had no effect on glycaemia at 12 and 24 months in persistent T2D and impaired glucose tolerance; it minimally worsened glycaemia in REM at 12 months. CONCLUSIONS GLP-1 blockade reversed the improvement in β-cell function observed after RYGB, but this effect varied temporally and by REM status. GLP-1 blockade transiently and minimally worsened glycaemia only in REM, and lowered postprandial glucose values at 3 months, regardless of REM status.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Malini Prasad
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
19
|
In vitro evaluation of the anti-diabetic potential of soymilk yogurt and identification of inhibitory compounds on the formation of advanced glycation end-products. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Gray SM, Hoselton AL, Krishna R, Slentz CA, D’Alessio DA. GLP-1 Receptor Blockade Reduces Stimulated Insulin Secretion in Fasted Subjects With Low Circulating GLP-1. J Clin Endocrinol Metab 2022; 107:2500-2510. [PMID: 35775723 PMCID: PMC9387711 DOI: 10.1210/clinem/dgac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Glucagon-like peptide 1 (GLP-1), an insulinotropic peptide released into the circulation from intestinal enteroendocrine cells, is considered a hormonal mediator of insulin secretion. However, the physiological actions of circulating GLP-1 have been questioned because of the short half-life of the active peptide. Moreover, there is mounting evidence for localized, intra-islet mediation of GLP-1 receptor (GLP-1r) signaling including a role for islet dipeptidyl-peptidase 4 (DPP4). OBJECTIVE To determine whether GLP-1r signaling contributes to insulin secretion in the absence of enteral stimulation and increased plasma levels, and whether this is affected by DPP4. METHODS Single-site study conducted at an academic medical center of 20 nondiabetic subjects and 13 subjects with type 2 diabetes. This was a crossover study in which subjects received either a DPP4 inhibitor (DPP4i; sitagliptin) or placebo on 2 separate days. On each day they received a bolus of intravenous (IV) arginine during sequential 60-minute infusions of the GLP-1r blocker exendin[9-39] (Ex-9) and saline. The main outcome measures were arginine-stimulated secretion of C-Peptide (C-PArg) and insulin (InsArg). RESULTS Plasma GLP-1 remained at fasting levels throughout the experiments and IV arginine stimulated both α- and β-cell secretion in all subjects. Ex-9 infusion reduced C-PArg in both the diabetic and nondiabetic groups by ~14% (P < .03 for both groups). Sitagliptin lowered baseline glycemia but did not affect the primary measures of insulin secretion. However, a significant interaction between sitagliptin and Ex-9 suggested more GLP-1r activation with DPP4i treatment in subjects with diabetes. CONCLUSION GLP-1r activation contributes to β-cell secretion in diabetic and nondiabetic people during α-cell activation, but in the absence of increased circulating GLP-1. These results are compatible with regulation of β-cells by paracrine signals from α-cells. This process may be affected by DPP4 inhibition.
Collapse
Affiliation(s)
- Sarah M Gray
- Duke University Division of Endocrinology, Durham, NC 27710, USA
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Andrew L Hoselton
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Radha Krishna
- Duke University Division of Endocrinology, Durham, NC 27710, USA
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - Cris A Slentz
- Department of Medicine, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Durham, NC 27710, USA
| | - David A D’Alessio
- Correspondence: David A. D’Alessio, MD, Duke University Medical Center, Division of Endocrinology, Metabolism and Nutrition, DUMC Box 3921, Durham, NC 27710, USA. david.d'
| |
Collapse
|
21
|
Cabrera O, Ficorilli J, Shaw J, Echeverri F, Schwede F, Chepurny OG, Leech CA, Holz GG. Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. J Biol Chem 2022; 298:101484. [PMID: 34896391 PMCID: PMC8789663 DOI: 10.1016/j.jbc.2021.101484] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
We report that intra-islet glucagon secreted from α-cells signals through β-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on β-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the β-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise increase of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
Collapse
Affiliation(s)
- Over Cabrera
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - James Ficorilli
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Janice Shaw
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Frank Schwede
- Biolog Life Science Institute GmbH & Co KG, Bremen, Germany
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
22
|
Zhu C, Wang L, Ding J, Li H, Wan D, Sun Y, Guo B, He Z, Ren X, Jiang S, Gao C, Guo H, Sun T, Wang F. Effects of Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 on the Reinstatement of Cocaine-Mediated Conditioned Place Preference in Mice. Front Behav Neurosci 2022; 15:769664. [PMID: 35069139 PMCID: PMC8766416 DOI: 10.3389/fnbeh.2021.769664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
A high percentage of relapse to compulsive cocaine-taking and cocaine-seeking behaviors following abstinence constitutes a major obstacle to the clinical treatment of cocaine addiction. Thus, there is a substantial need to develop effective pharmacotherapies for the prevention of cocaine relapse. The reinstatement paradigm is known as the most commonly used animal model to study relapse in abstinent human addicts. The primary aim of this study is to investigate the potential effects of systemic administration of glucagon-like peptide-1 receptor agonist (GLP-1RA) exendin-4 (Ex4) on the cocaine- and stress-triggered reinstatement of cocaine-induced conditioned place preference (CPP) in male C57BL/6J mice. The biased CPP paradigm was induced by alternating administration of saline and cocaine (20 mg/kg), followed by extinction training and then reinstatement by either a cocaine prime (10 mg/kg) or exposure to swimming on the reinstatement test day. To examine the effects of Ex4 on the reinstatement, Ex4 was systemically administered 1 h after the daily extinction session. Additionally, we also explored the associated molecular basis of the behavioral effects of Ex4. The expression of nuclear factor κβ (NF-κβ) in the nucleus accumbens (NAc) was detected using Western blotting. As a result, all animals that were treated with cocaine during the conditioning period successfully acquired CPP, and their CPP response was extinguished after 8 extinction sessions. Furthermore, the animals that were exposed to cocaine or swimming on the reinstatement day showed a significant reinstatement of CPP. Interestingly, systemic pretreatment with Ex4 was sufficient to attenuate cocaine- and stress-primed reinstatement of cocaine-induced CPP. Additionally, the expression of NF-κβ, which was upregulated by cocaine, was normalized by Ex4 in the cocaine-experienced mice. Altogether, our study reveals the novel effect of Ex4 on the reinstatement of cocaine-induced CPP and suggests that GLP-1R agonists appear to be highly promising drugs in the treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hailiang Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Din Wan
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yangyang Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Baorui Guo
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Zhenquan He
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xiaofan Ren
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Shucai Jiang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Caibing Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Hua Guo,
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Tao Sun,
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Feng Wang,
| |
Collapse
|
23
|
Danowitz M, De Leon DD. The Role of GLP-1 Signaling in Hypoglycemia due to Hyperinsulinism. Front Endocrinol (Lausanne) 2022; 13:863184. [PMID: 35399928 PMCID: PMC8987579 DOI: 10.3389/fendo.2022.863184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023] Open
Abstract
Incretin hormones play an important role in the regulation of glucose homeostasis through their actions on the beta cells and other tissues. Glucagon-like peptide-1 (GLP-1) and glucose dependent insulinotropic polypeptide (GIP) are the two main incretins and are secreted by enteroendocrine L- and K-cells, respectively. New evidence suggests that incretin hormones, particularly GLP-1, play a role in the pathophysiology of hyperinsulinemic hypoglycemia. In individuals with acquired hyperinsulinemic hypoglycemia after gastrointestinal surgery, including Nissen fundoplication and gastric bypass surgery, the incretin response to a meal is markedly increased and antagonism of the GLP-1 receptor prevents the hyperinsulinemic response. In individuals with congenital hyperinsulinism due to inactivating mutations in the genes encoding the beta cell KATP channels, the GLP-1 receptor antagonist, exendin-(9-39), increases fasting plasma glucose and prevents protein-induced hypoglycemia. Studies in human and mouse islets lacking functional KATP channels have demonstrated that the effect on plasma glucose is at least in part mediated by inhibition of insulin secretion resulting from lower cytoplasmic cAMP levels. The understanding of the role of incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia is important for the exploration of the GLP-1 receptor as a therapeutic target for these conditions. In this article, we will review incretin physiology and evidence supporting a role of the incretin hormones in the pathophysiology of hyperinsulinemic hypoglycemia, as well as results from proof-of concept studies exploring a therapeutic approach targeting the GLP-1 receptor to treat hyperinsulinemic hypoglycemia.
Collapse
Affiliation(s)
- Melinda Danowitz
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Diva D. De Leon
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Diva D. De Leon,
| |
Collapse
|
24
|
Gadgaard S, van der Velden WJC, Schiellerup SP, Hunt JE, Gabe MBN, Windeløv JA, Boer GA, Kissow H, Ørskov C, Holst JJ, Hartmann B, Rosenkilde MM. Novel agonist- and antagonist-based radioligands for the GLP-2 receptor - useful tools for studies of basic GLP-2R pharmacology. Br J Pharmacol 2021; 179:1998-2015. [PMID: 34855984 PMCID: PMC9303331 DOI: 10.1111/bph.15766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Background Glucagon‐like peptide‐2 (GLP‐2) is a pro‐glucagon‐derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP‐2(1–33) is cleaved by DPP‐4, forming GLP‐2(3–33), having low intrinsic activity and competitive antagonism properties at GLP‐2 receptors. We created radioligands based on these two molecules. Experimental approach The methionine in position 10 of GLP‐2(1–33) and GLP‐2(3–33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y). Both were characterized by competition binding, on‐and‐off‐rate determination and receptor activation. Receptor expression was determined by target‐tissue autoradiography and immunohistochemistry. Key results Both M10Y‐substituted peptides induced cAMP production via the GLP‐2 receptor comparable to the wildtype peptides. GLP‐2(3–33,M10Y) maintained the antagonistic properties of GLP‐2(3–33). However, hGLP‐2(1–33,M10Y) had lower arrestin recruitment than hGLP‐2(1–33). High affinities for the hGLP‐2 receptor were observed using [125I]‐hGLP‐2(1–33,M10Y) and [125I]‐hGLP‐2(3–33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP‐1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP‐2 receptor specific antibody that in turn was confirmed in GLP‐2 receptor knock‐out mice. Conclusion and implications Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP‐2 receptor expression.
Collapse
Affiliation(s)
- Sarina Gadgaard
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bainan Biotech, Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Department of Computational & Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Sine P Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jenna Elizabeth Hunt
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Maria B N Gabe
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Geke Aline Boer
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cathrine Ørskov
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens J Holst
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Endocrinology and Metabolism, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Gasbjerg LS, Bari EJ, Christensen M, Knop FK. Exendin(9-39)NH 2 : Recommendations for clinical use based on a systematic literature review. Diabetes Obes Metab 2021; 23:2419-2436. [PMID: 34351033 DOI: 10.1111/dom.14507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
AIM To present an overview of exendin(9-39)NH2 usage as a scientific tool in humans and provide recommendations for dosage and infusion regimes. METHODS We systematically searched the literature on exendin(9-39)NH2 and included for review 44 clinical studies reporting use of exendin(9-39)NH2 in humans. RESULTS Exendin(9-39)NH2 binds to the orthosteric binding site of the glucagon-like peptide-1 (GLP-1) receptor with high affinity. The plasma elimination half-life of exendin(9-39)NH2 after intravenous administration is ~30 minutes, requiring ~2.5 hours of constant infusion before steady-state plasma concentrations can be expected. Studies utilizing infusions with exendin(9-39)NH2 in humans have applied varying regimens (priming with a bolus or constant infusion) and dosages (continuous infusion rate range 30-900 pmol/kg/min) with subsequent differences in effects. Administration of exendin(9-39)NH2 in healthy individuals, patients with diabetes, obese patients, and patients who have undergone bariatric surgery significantly increases fasting and postprandial levels of glucose and glucagon, but has inconsistent effects on circulating concentrations of insulin and C-peptide, gastric emptying, appetite sensations, and food intake. Importantly, exendin(9-39)NH2 induces secretion of all L cell products (ie, in addition to GLP-1, also peptide YY, glucagon-like peptide-2, oxyntomodulin, and glicentin) complicating use of exendin(9-39)NH2 as a tool to study the isolated effect of GLP-1. CONCLUSIONS Exendin(9-39)NH2 is selective for the GLP-1 receptor, with numerous and complex whole-body effects. To obtain GLP-1 receptor blockade in humans, we recommend an initial high-dose infusion, followed by a continuous infusion rate aiming at a ratio of exendin(9-39)NH2 to GLP-1 of 2000:1. Highlights Exendin(9-39)NH2 is a competitive antagonist of the human GLP-1 receptor. Exendin(9-39)NH2 has been used as a tool to delineate human GLP-1 physiology since 1998. Exendin(9-39)NH2 induces secretion of GLP-1 and other L cell products. Reported effects of exendin(9-39)NH2 on insulin levels and food intake are inconsistent. Here, we provide recommendations for the use of exendin(9-39)NH2 in clinical studies.
Collapse
Affiliation(s)
- Laerke Smidt Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Johanning Bari
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, Gentofte, Denmark
| |
Collapse
|
26
|
Holst JJ. Treatment of Type 2 Diabetes and Obesity on the Basis of the Incretin System: The 2021 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2021; 70:2468-2475. [PMID: 34711671 PMCID: PMC8928930 DOI: 10.2337/dbi21-0026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In my lecture given on the occasion of the 2021 Banting Medal for Scientific Achievement, I briefly described the history of the incretin effect and summarized some of the developments leading to current therapies of obesity and diabetes based on the incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In the text below, I discuss in further detail the role of these two hormones for postprandial insulin secretion in humans on the basis of recent studies with antagonists. Their direct and indirect actions on the β-cells are discussed next as well as their contrasting actions on glucagon secretion. After a brief discussion of their effect on insulin sensitivity, I describe their immediate actions in patients with type 2 diabetes and emphasize the actions of GLP-1 on β-cell glucose sensitivity, followed by a discussion of their extrapancreatic actions, including effects on appetite and food intake in humans. Finally, possible mechanisms of action of GIP-GLP-1 coagonists are discussed, and it is concluded that therapies based on incretin actions are likely to change the current hesitant therapy of both obesity and diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
28
|
Henquin JC. Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies. Metabolism 2021; 122:154821. [PMID: 34174327 DOI: 10.1016/j.metabol.2021.154821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Optimal metabolic homeostasis requires precise temporal and quantitative control of insulin secretion. Both in vivo and in vitro studies have often focused on the regulation by glucose although many additional factors including other nutrients, neurotransmitters, hormones and drugs, modulate the secretory function of pancreatic β-cells. This review is based on the analysis of clinical investigations characterizing the effects of non-glucose modulators of insulin secretion in healthy subjects, and of experimental studies testing the same modulators in islets isolated from normal human donors. The aim was to determine whether the information gathered in vitro can reliably be translated to the in vivo situation. The comparison evidenced both convincing similarities and areas of discordance. The lack of coherence generally stems from the use of exceedingly high concentrations of test agents at too high or too low glucose concentrations in vitro, which casts doubts on the physiological relevance of a number of observations made in isolated islets. Future projects resorting to human islets should avoid extreme experimental conditions, such as oversized stimulations or inhibitions of β-cells, which are unlikely to throw light on normal insulin secretion and contribute to the elucidation of its defects.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, Faculty of Medicine, University of Louvain, Brussels, Belgium.
| |
Collapse
|
29
|
Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol 2021; 179:727-742. [PMID: 34235727 DOI: 10.1111/bph.15611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) is inactivated by the enzyme dipeptidyl peptidase-4 even before it leaves the gut, but it seems to act predominantly via activation of intestinal sensory neurons expressing GLP-1 receptors. Thus, activation of vagal afferents is probably responsible for its effects on appetite and food intake, gastrointestinal secretion and motility, and pancreatic endocrine secretion. However, GLP-1 receptors are widely expressed in the gastrointestinal (GI) tract, including epithelial cells in the stomach, and the Brunner glands, in endocrine cells of the gut epithelium, and on mucosal lymphocytes. In this way, GLP-1 may have important local actions of epithelial protection and endocrine signalling and may interact with the immune system. We review the formation and release of GLP-1 from the endocrine L cells and its fate after release and describe the localization of its receptor throughout the GI tract and discuss its direct or indirect actions in the GI tract.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bjørklund Andersen
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Villum Grunddal
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Holst JJ, Gasbjerg LS, Rosenkilde MM. The Role of Incretins on Insulin Function and Glucose Homeostasis. Endocrinology 2021; 162:6199910. [PMID: 33782700 PMCID: PMC8168943 DOI: 10.1210/endocr/bqab065] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The incretin effect-the amplification of insulin secretion after oral vs intravenous administration of glucose as a mean to improve glucose tolerance-was suspected even before insulin was discovered, and today we know that the effect is due to the secretion of 2 insulinotropic peptides, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). But how important is it? Physiological experiments have shown that, because of the incretin effect, we can ingest increasing amounts of amounts of glucose (carbohydrates) without increasing postprandial glucose excursions, which otherwise might have severe consequences. The mechanism behind this is incretin-stimulated insulin secretion. The availability of antagonists for GLP-1 and most recently also for GIP has made it possible to directly estimate the individual contributions to postprandial insulin secretion of a) glucose itself: 26%; b) GIP: 45%; and c) GLP-1: 29%. Thus, in healthy individuals, GIP is the champion. When the action of both incretins is prevented, glucose tolerance is pathologically impaired. Thus, after 100 years of research, we now know that insulinotropic hormones from the gut are indispensable for normal glucose tolerance. The loss of the incretin effect in type 2 diabetes, therefore, contributes greatly to the impaired postprandial glucose control.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
- Correspondence: Jens Juul Holst, MD, University of Copenhagen, Department of Biomedical Sciences, The Panum Institute, 3 Blegdamsvej, Copenhagen, DK-2200 Denmark.
| | - Lærke Smidt Gasbjerg
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences and the NovoNordisk Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Copenhagen N, DK-2200 Denmark
| |
Collapse
|
31
|
Hindsø M, Svane MS, Hedbäck N, Holst JJ, Madsbad S, Bojsen-Møller KN. The role of GLP-1 in postprandial glucose metabolism after bariatric surgery: a narrative review of human GLP-1 receptor antagonist studies. Surg Obes Relat Dis 2021; 17:1383-1391. [PMID: 33771461 DOI: 10.1016/j.soard.2021.01.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
The Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG) bariatric procedures lead to remission or improvement of type 2 diabetes. A weight loss-independent augmentation of postprandial insulin secretion contributes to the improvement in glycemic control after RYGB and is associated with a ∼10-fold increase in plasma concentrations of the incretin hormone glucagon-like peptide-1 (GLP-1). However, the physiologic importance of the markedly increased postprandial GLP-1 secretion after RYGB has been much debated. The effect of GLP-1 receptor blockade after RYGB has been investigated in 12 studies. The studies indicate a shift toward a more prominent role for GLP-1 in postprandial β-cell function after RYGB. The effect of GLP-1 receptor antagonism on glucose tolerance after RYGB is more complex and is associated with important methodological challenges. The postprandial GLP-1 response is less enhanced after SG compared with RYGB. However, the effect of GLP-1 receptor blockade after SG has been examined in 1 study only and needs further investigation.
Collapse
Affiliation(s)
- Morten Hindsø
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Nora Hedbäck
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen and Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
32
|
Helsted MM, Gasbjerg LS, Lanng AR, Bergmann NC, Stensen S, Hartmann B, Christensen MB, Holst JJ, Vilsbøll T, Rosenkilde MM, Knop FK. The role of endogenous GIP and GLP-1 in postprandial bone homeostasis. Bone 2020; 140:115553. [PMID: 32730920 DOI: 10.1016/j.bone.2020.115553] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are well known for their insulinotropic effects and they are thought to affect bone homeostasis as mediators in the so-called entero-osseous axis. We examined the contributions of endogenous GIP and GLP-1, respectively, to postprandial bone homeostasis, in healthy subjects in two randomized and double-blind crossover studies. We included healthy men who received either four oral glucose tolerance tests (OGTTs) (n = 18, median age 27 (range 20-70), BMI 27.2 (22.4-37.0) kg/m2) or liquid mixed meal tests (MMTs) (n = 12, age 23 (19-65), BMI 23.7 (20.3-25.5) kg/m2) with infusions of 1) the GIP receptor antagonist GIP(3-30)NH2, 2) the GLP-1 receptor antagonist exendin(9-39)NH2, 3) both GIP(3-30)NH2 and exendin(9-39)NH2, or 4) placebo infusions (saline) on four separate visits. Bone resorption was evaluated from levels of circulating carboxy-terminal collagen crosslinks (CTX) and bone formation from levels of procollagen type 1 amino-terminal propeptide (P1NP). During placebo infusions, baseline-subtracted area under the curve values for CTX were -39 ± 5.0 (OGTT) and -57 ± 4.3 ng/ml × min (MMT). When GIP(3-30)NH2 was administered, CTX suppression was significantly diminished compared to placebo (-30 ± 4.8 (OGTT) and -45 ± 4.6 ng/ml × min (MMT), P = 0.0104 and P = 0.0288, respectively, compared to placebo. During exendin(9-39)NH2 infusion, CTX suppression after OGTT/MMT was similar to placebo (P = 0.28 (OGTT) and P = 0.93 (MMT)). The relative contribution of endogenous GIP to postprandial suppression of bone resorption during both OGTT and MMT was similar and reached 22-25%. There were no differences in P1NP concentrations between interventions. In conclusion, endogenous GIP contributes by up to 25% to postprandial suppression of bone resorption in humans whereas an effect of endogenous GLP-1 could not be demonstrated.
Collapse
Affiliation(s)
- Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| |
Collapse
|
33
|
Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. J Clin Endocrinol Metab 2020; 105:dgaa327. [PMID: 32459834 PMCID: PMC7308078 DOI: 10.1210/clinem/dgaa327] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/21/2022]
Abstract
The 2 hormones responsible for the amplification of insulin secretion after oral as opposed to intravenous nutrient administration are the gut peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). However, whereas GLP-1 also inhibits appetite and food intake and improves glucose regulation in patients with type 2 diabetes (T2DM), GIP seems to be devoid of these activities, although the 2 hormones as well as their receptors are highly related. In fact, numerous studies have suggested that GIP may promote obesity. However, chimeric peptides, combining elements of both peptides and capable of activating both receptors, have recently been demonstrated to have remarkable weight-losing and glucose-lowering efficacy in obese individuals with T2DM. At the same time, antagonists of the GIP receptor have been reported to reduce weight gain/cause weight loss in experimental animals including nonhuman primates. This suggests that both agonists and antagonist of the GIP receptor should be useful, at least for weight-losing therapy. How is this possible? We here review recent experimental evidence that agonist-induced internalization of the two receptors differs markedly and that modifications of the ligand structures, as in co-agonists, profoundly influence these cellular processes and may explain that an antagonist may activate while an agonist may block receptor signaling.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
34
|
Tan M, Lamendola C, Luong R, McLaughlin T, Craig C. Safety, efficacy and pharmacokinetics of repeat subcutaneous dosing of avexitide (exendin 9-39) for treatment of post-bariatric hypoglycaemia. Diabetes Obes Metab 2020; 22:1406-1416. [PMID: 32250530 DOI: 10.1111/dom.14048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
AIM To evaluate the safety, efficacy and pharmacokinetics of repeat dosing of two formulations of subcutaneous (SC) avexitide (exendin 9-39) in patients with post-bariatric hypoglycaemia (PBH). METHODS In this phase 2, multiple-ascending-dose study conducted at Stanford University, 19 women with PBH underwent a baseline oral glucose tolerance test (OGTT), with metabolic and symptomatic assessments. Fourteen were then sequentially assigned to receive one of four ascending-dose levels of twice-daily lyophilized (Lyo) avexitide by SC injection for 3 days. On the basis of safety, efficacy and tolerability, five additional participants then received a novel liquid formulation (Liq) of avexitide by SC injection at a fixed dose of 30 mg twice daily for 3 days. All 19 participants underwent a repeat OGTT on day 3 of dosing to quantify metabolic, symptomatic and pharmacokinetic responses. RESULTS Treatment with Lyo avexitide reduced the magnitude of symptomatic hyperinsulinaemic hypoglycaemia at all dose levels, with dose-dependent improvements in glucose nadir, insulin peak and symptom score; doses ≥20 mg twice daily did not require glycaemic rescue (administered at glucose <2.8 mmol/L). Participants receiving Liq avexitide 30 mg twice daily did not require any glycaemic rescue, and on average achieved a 47% increase in glucose nadir, a 67% reduction in peak insulin, and a 47% reduction in overall symptom score. Equivalent doses of Liq versus Lyo avexitide yielded higher and more sustained plasma concentrations. Both formulations were well tolerated. CONCLUSIONS In patients with PBH, twice-daily administration of SC avexitide effectively raised the glucose nadir and prevented severe hypoglycaemia requiring rescue intervention. Avexitide may represent a viable therapy for PBH.
Collapse
Affiliation(s)
- Marilyn Tan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Cynthia Lamendola
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | - Roger Luong
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Colleen Craig
- Eiger BioPharmaceuticals, Consultant, Palo Alto, California, USA
| |
Collapse
|
35
|
Gasbjerg LS, Helsted MM, Hartmann B, Sparre-Ulrich AH, Veedfald S, Stensen S, Lanng AR, Bergmann NC, Christensen MB, Vilsbøll T, Holst JJ, Rosenkilde MM, Knop FK. GIP and GLP-1 Receptor Antagonism During a Meal in Healthy Individuals. J Clin Endocrinol Metab 2020; 105:5741259. [PMID: 32077470 DOI: 10.1210/clinem/dgz175] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
CONTEXT The actions of both endogenous incretin hormones during a meal have not previously been characterized. OBJECTIVE Using specific receptor antagonists, we investigated the individual and combined contributions of endogenous glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) to postprandial glucose metabolism, energy expenditure, and gallbladder motility. DESIGN Randomized, double-blinded, placebo-controlled, crossover design. SETTING On four separate days, four liquid mixed meal tests (1894 kJ) over 270 minutes (min). PATIENTS OR OTHER PARTICIPANTS Twelve healthy male volunteers. INTERVENTIONS Infusions of the GIP receptor antagonist GIP(3-30)NH2 (800 pmol/kg/min), the GLP-1 receptor antagonist exendin(9-39)NH2 (0-20 min: 1000 pmol/kg/min; 20-270 min: 450 pmol/kg/min), GIP(3-30)NH2+exendin(9-39)NH2, or placebo/saline. MAIN OUTCOME MEASURE Baseline-subtracted area under the curve (bsAUC) of C-peptide. RESULTS Infusion of GIP(3-30)NH2+exendin(9-39)NH2 significantly increased plasma glucose excursions (bsAUC: 261 ± 142 mmol/L × min) during the liquid mixed meals compared with GIP(3-30)NH2 (180 ± 141 mmol/L × min; P = 0.048), exendin(9-39)NH2 (171 ± 114 mmol/L × min; P = 0.046), and placebo (116 ± 154 mmol/L × min; P = 0.015). Correspondingly, C-peptide:glucose ratios during GIP(3-30)NH2+exendin(9-39)NH2 infusion were significantly lower than during GIP(3-30)NH2 (P = 0.0057), exendin(9-39)NH2 (P = 0.0038), and placebo infusion (P = 0.014). GIP(3-30)NH2 resulted in significantly lower AUCs for glucagon than exendin(9-39)NH2 (P = 0.0417). Gallbladder ejection fraction was higher during GIP(3-30)NH2 compared with placebo (P = 0.004). For all interventions, energy expenditure and respiratory quotient were similar. CONCLUSIONS Endogenous GIP and GLP-1 lower postprandial plasma glucose excursions and stimulate insulin secretion but only endogenous GIP affects gallbladder motility. The two incretin hormones potentiate each other's effects in the control of postprandial glycemia in healthy men.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander H Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Antag Therapeutics ApS, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Amalie R Lanng
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Zealand Pharma A/S, Søborg, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Hellerup, Denmark
| |
Collapse
|
36
|
Holst JJ, Rosenkilde MM. Recent advances of GIP and future horizons. Peptides 2020; 125:170230. [PMID: 31838219 DOI: 10.1016/j.peptides.2019.170230] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Recently GIP-GLP-1 co-agonists with powerful effects on glycemic control and body weight in patients with type 2 diabetes have been described. While such effects are the expected ones from a glucagonlike peptide-1 receptor agonist, similar contributions from the GIP component of the co-agonist would be surprising and contrast to the existing literature. Conventionally, GIP is thought of as an important incretin hormone regulating postprandial insulin secretion in glucose tolerant individuals, but such effects are weak or absent in patients with type 2 diabetes, and GIP has been proposed to an obesity-promoting hormone, rather than the opposite. Recent studies with a GIP receptor antagonist suitable for human studies have confirmed these concepts regarding the actions of endogenous GIP and point to potential beneficial metabolic effects of GIP receptor antagonists rather than agonist in the treatment of obesity and type 2 diabetes. So how is it possible that apparently similar results can be obtained with GIP receptor agonists and antagonists? Maybe the explanation should be sought in GIP receptor dynamics, where the agonists clearly elicit beta-arrestin mediated receptor internalization, rendering the target tissues unresponsive, whereas antagonists block the internalization and increase receptor expression on the cell surfaces. This may explain that both antagonists and agonists show efficacy in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark; NNF Center for Basic Metabolic Research, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health Sciences, The Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
37
|
Gasbjerg LS, Bergmann NC, Stensen S, Christensen MB, Rosenkilde MM, Holst JJ, Nauck M, Knop FK. Evaluation of the incretin effect in humans using GIP and GLP-1 receptor antagonists. Peptides 2020; 125:170183. [PMID: 31693916 DOI: 10.1016/j.peptides.2019.170183] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) potentiate glucose-induced insulin secretion and are therefore thought to be responsible for the incretin effect. The magnitude of the incretin effect, defined as the fraction of postprandial insulin secretion stimulated by intestinal factors, has been reported to be up to ∼60% in healthy individuals. In several pathological conditions but especially in patients with type 2 diabetes, the incretin effect is severely reduced or even absent. In line with this, the insulinotropic effects of GIP and GLP-1 are impaired in patients with type 2 diabetes, even when administered in supraphysiological doses. In healthy individuals, GIP has been proposed to be the most important incretin hormone of the two, but the individual contribution of the two is difficult to determine. However, using incretin hormone receptor antagonists: the novel GIP receptor antagonist GIP(3-30)NH2 and the widely used GLP-1 receptor antagonist exendin(9-39)NH2, we can now distinguish between the effects of the two hormones. In this review, we present and discuss studies in which the individual contribution of GIP and GLP-1 to the incretin effect in healthy individuals have been estimated and discuss the limitations of using incretin hormone receptor antagonists.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Signe Stensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nauck
- Diabetes Division, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
38
|
Intra-islet GLP-1, but not CCK, is necessary for β-cell function in mouse and human islets. Sci Rep 2020; 10:2823. [PMID: 32071395 PMCID: PMC7028949 DOI: 10.1038/s41598-020-59799-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) are gut-derived peptide hormones known to play important roles in the regulation of gastrointestinal motility and secretion, appetite, and food intake. We have previously demonstrated that both GLP-1 and CCK are produced in the endocrine pancreas of obese mice. Interestingly, while GLP-1 is well known to stimulate insulin secretion by the pancreatic β-cells, direct evidence of CCK promoting insulin release in human islets remains to be determined. Here, we tested whether islet-derived GLP-1 or CCK is necessary for the full stimulation of insulin secretion. We confirm that mouse pancreatic islets secrete GLP-1 and CCK, but only GLP-1 acts locally within the islet to promote insulin release ex vivo. GLP-1 is exclusively produced in approximately 50% of α-cells in lean mouse islets and 70% of α-cells in human islets, suggesting a paracrine α to β-cell signaling through the β-cell GLP-1 receptor. Additionally, we provide evidence that islet CCK expression is regulated by glucose, but its receptor signaling is not required during glucose-stimulated insulin secretion (GSIS). We also see no increase in GSIS in response to CCK peptides. Importantly, all these findings were confirmed in islets from non-diabetic human donors. In summary, our data suggest no direct role for CCK in stimulating insulin secretion and highlight the critical role of intra-islet GLP-1 signaling in the regulation of human β-cell function.
Collapse
|
39
|
Aulinger BA, Perabo M, Seeley RJ, Parhofer KG, D'Alessio DA. Rapid hepatic metabolism blunts the endocrine action of portally infused GLP-1 in male rats. Am J Physiol Endocrinol Metab 2020; 318:E189-E197. [PMID: 31743041 PMCID: PMC7052580 DOI: 10.1152/ajpendo.00298.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an enteral peptide that contributes to the incretin effect. GLP-1 action is typically described as endocrine, but this mechanism has been questioned because rapid inactivation in the circulation by dipeptidylpeptidase 4 (DPP4) results in a short half-life, limiting the amount of the hormone that can reach the pancreatic islet. An alternative mechanism for GLP-1 to regulate insulin secretion through neuroendocrine signaling originating from sensors in the portal vein has been proposed. We hypothesized that portal infusion of GLP-1 would cause greater glucose-stimulated insulin secretion than equimolar administration into the jugular vein. To test this, hyperglycemic clamps with superimposed graded infusions of GLP-1 into the jugular or portal veins of male rats were performed. These experiments were repeated with pharmacologic DPP4 inhibition to determine the effect of GLP-1 metabolism in the jugular and portal venous beds. Contrary to our hypothesis, we found a higher insulinotropic effect with jugular compared with portal GLP-1, which was associated with higher plasma concentrations of intact GLP-1. The greater insulinotropic effect of jugular venous GLP-1 persisted even with pharmacological DPP4 inhibition. These findings do not support an important role of portal vein GLP-1 signaling for the incretin effect but highlight the hepatoportal bed as a major site of GLP-1 degradation that persists even with pharmacological inhibition. Together, these results support rapid inactivation of enterally released GLP-1 in the liver as limiting endocrine actions on the β-cell and raise questions about the conventional endocrine model of pharmacologic effects of DPP4 inhibitors.
Collapse
Affiliation(s)
- Benedikt A Aulinger
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Marta Perabo
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Klaus G Parhofer
- Department of Medicine IV, University Hospital, LMU Munich, Germany
| | - David A D'Alessio
- Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
40
|
Grandl G, Novikoff A, DiMarchi R, Tschöp MH, Müller TD. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019; 10:99-124. [PMID: 31853954 DOI: 10.1002/cphy.c180044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type-2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon-like peptide-1 (GLP-1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half-life and an often dose-dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP-1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99-124, 2020.
Collapse
Affiliation(s)
- Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany.,Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany
| |
Collapse
|
41
|
Jepsen SL, Grunddal KV, Wewer Albrechtsen NJ, Engelstoft MS, Gabe MBN, Jensen EP, Ørskov C, Poulsen SS, Rosenkilde MM, Pedersen J, Gribble FM, Reimann F, Deacon CF, Schwartz TW, Christ AD, Martin RE, Holst JJ. Paracrine crosstalk between intestinal L- and D-cells controls secretion of glucagon-like peptide-1 in mice. Am J Physiol Endocrinol Metab 2019; 317:E1081-E1093. [PMID: 31503512 PMCID: PMC6962500 DOI: 10.1152/ajpendo.00239.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DPP-4 inhibitors, used for treatment of type 2 diabetes, act by increasing the concentrations of intact glucagon-like peptide-1 (GLP-1), but at the same time, they inhibit secretion of GLP-1, perhaps by a negative feedback mechanism. We hypothesized that GLP-1 secretion is feedback regulated by somatostatin (SS) from neighboring D-cells, and blocking this feedback circuit results in increased GLP-1 secretion. We used a wide range of experimental techniques, including gene expression analysis, immunohistochemical approaches, and the perfused mouse intestine to characterize the paracrine circuit controlling GLP-1 and SS. We show that 1) antagonizing the SS receptor (SSTr) 2 and SSTr5 led to increased GLP-1 and SS secretion in the mouse, 2) SS exhibits strong tonic inhibition of GLP-1 secretion preferentially through SSTr5, and 3) the secretion of S was GLP-1 receptor dependent. We conclude that SS is a tonic inhibitor of GLP-1 secretion, and interventions in the somatostain-GLP-1 paracrine loop lead to increased GLP-1 secretion.
Collapse
Affiliation(s)
- Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare V Grunddal
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Maja S Engelstoft
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria B N Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, University of Copenhagen, Hilleroed, Denmark
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Carolyn F Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Christ
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Qin K, Zhang S, Wang J, Liu D, Xiang Y, Ji X, Wei Y. Screening GLP-1 Receptor Ligands from Natural Products in Herbs through High-Content Technique. Comb Chem High Throughput Screen 2019; 22:445-454. [PMID: 31538889 DOI: 10.2174/1386207322666190919143735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/15/2019] [Accepted: 08/26/2019] [Indexed: 11/22/2022]
Abstract
AIM AND OBJECTIVE Screening of active components from a natural product, especially from a crude extract, is a great challenge. To avoid potential activity interference of the N-terminus modification in the most common constructs based on GCPRs labeled with GFP technology, a Cterminus tGFP-labeled hGLP-1 receptor containing recombinant cell line hGLP-1R-tGFP was constructed and tried to be used in the screening of natural products from Chinese herb. MATERIALS AND METHODS The GLP1 receptor gene was amplified and the inserts pCMV6-AC-tGFP and tGFP were fused at the C-terminus of GLP1 receptor to construct a recombinant plasmid. The recombinant was transfected into U2OS cell and selected with antibiotics and flow cytometry. The constructed cell line was named as hGLP-1R-tGFP cell line. The expression levels of GLP-1R-tGFP protein were confirmed by western-blot. The fluorescence imaging of re-distribution from diffusing to aggregate spots inside the cells was quantitated and analyzed by High Content Screening (HCS) assay. Meanwhile, the specificity, stability and C-terminus function of hGLP-1R-tGFP cell line were characterized. In order to allow the recombinant cell line of hGLP-1R-tGFP to be suitable in highcontent system of Arrayscan-infinity-700 in screening mode, several conditions have also been optimized. In the end, a total of 100 crude extract samples provided by the Yunnan Institute of Materia Medica have been screened with this method. RESULTS Upon the activation of GLP-1 receptors by Exendin 4, fluorescent patches appeared on the cell membrane and subsequently internalized to form fluorescent aggregates inside the cells under fluorescent microscopy examination. The agonistic activity, sensitivity and specificity of the formation of fluorescent aggregate spot in hGLP-1R-tGFP cells have been confirmed by the activation of GLP-1R using the GLP-1analogues. The agonistic effects of GLP-1 analogues are blocked by a GLP-1R antagonist, Exendin9-39. The downstream of GLP-1 pathway, the activation of adenylate cyclase and the raising of cellular cAMP levels, remained intact in these tGFP modified C-terminus GLP-1 receptor cells. Meanwhile, a total of 100 crude extract samples from Chinese herbs have been screened by this method to find new active ingredients. CONCLUSION Combined with High Content Screening image and data automatic acquisition processing, a new screening assay based on a recombinant U2OS cell line which GFP labeled at the C terminus of GLP1 receptor has been developed. GLP-1R agonist activity in extracts of Astragalus propinquus and Panax notoginseng from Chinese herbs has been determined by this method.
Collapse
Affiliation(s)
- Kunhao Qin
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shengting Zhang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Wang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dongbo Liu
- State Key Laboratory of Subhealth Intervention Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yingying Xiang
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiuling Ji
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
43
|
O'Brien A, Andrews SP, Baig AH, Bortolato A, Brown AJH, Brown GA, Brown SH, Christopher JA, Congreve M, Cooke RM, De Graaf C, Errey JC, Fieldhouse C, Jazayeri A, Marshall FH, Mason JS, Mobarec JC, Okrasa K, Steele KN, Southall SM, Teobald I, Watson SP, Weir M. Identification of a novel allosteric GLP-1R antagonist HTL26119 using structure- based drug design. Bioorg Med Chem Lett 2019; 29:126611. [PMID: 31447084 DOI: 10.1016/j.bmcl.2019.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
A series of novel allosteric antagonists of the GLP-1 receptor (GLP-1R), exemplified by HTL26119, are described. SBDD approaches were employed to identify HTL26119, exploiting structural understanding of the allosteric binding site of the closely related Glucagon receptor (GCGR) (Jazayeri et al., 2016) and the homology relationships between GCGR and GLP-1R. The region around residue C3476.36b of the GLP-1R receptor represents a key difference from GCGR and was targeted for selectivity for GLP-1R.
Collapse
Affiliation(s)
- Alistair O'Brien
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom.
| | - Stephen P Andrews
- Alzheimer's Research UK, Alborada Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Asma H Baig
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Andrea Bortolato
- Schrodinger, 120 West 45th Street, 17th Floor, New York, NY 10036-4041, United States
| | - Alastair J H Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Giles A Brown
- OMass Therapeutics Ltd., Schrodinger Building, Heatley Road, Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Sue H Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - John A Christopher
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Miles Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert M Cooke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Chris De Graaf
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - James C Errey
- Evotec (UK), 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, United Kingdom
| | - Charlotte Fieldhouse
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Ali Jazayeri
- OMass Therapeutics Ltd., Schrodinger Building, Heatley Road, Oxford Science Park, Oxford OX4 4GE, United Kingdom
| | - Fiona H Marshall
- Merck Sharp and Dohme, 2, St. Pancras Square, London N1C 4AG, United Kingdom
| | - Jonathan S Mason
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Juan Carlos Mobarec
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Krzysztof Okrasa
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Kelly N Steele
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Stacey M Southall
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Iryna Teobald
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Steve P Watson
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Malcolm Weir
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| |
Collapse
|
44
|
Topical ocular administration of the GLP-1 receptor agonist liraglutide arrests hyperphosphorylated tau-triggered diabetic retinal neurodegeneration via activation of GLP-1R/Akt/GSK3β signaling. Neuropharmacology 2019; 153:1-12. [PMID: 31015047 DOI: 10.1016/j.neuropharm.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
45
|
Holst JJ. The incretin system in healthy humans: The role of GIP and GLP-1. Metabolism 2019; 96:46-55. [PMID: 31029770 DOI: 10.1016/j.metabol.2019.04.014] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 01/07/2023]
Abstract
The incretin effect, the amplification of insulin secretion occurring when glucose is taken in orally as compared to infused intravenously, is one of the factors that help the body to tolerate carbohydrate/glucose ingestion. These include 1) amount and type of carbohydrates; 2) gastric emptying rate; 3) digestion and absorption of the carbohydrates; 4) secretion and effect of the incretin hormones; 5) disposition of absorbed nutrients/glucose. The incretin effect can also be viewed as the fraction of the ingested glucose load handled via gastrointestinal mechanisms (including the incretin effect); it is calculated by comparison of the amount of glucose required to copy, by intravenous infusion, the oral load. Typically, for 75 g of oral glucose, about 25 g are required. This means that the GastroIntestinal Glucose Disposal (GIGD) is 66%. Both the GIGD and the incretin effect depend on the amount of glucose ingested: for higher doses the GIGD may amount to 80%, which shows that this effect is a major contributor to glucose tolerance. The main mechanism behind it is stimulation of insulin secretion by a proportional secretion of the insulinotropic hormones GIP and GLP-1. Recently it has become possible to estimate their contributions in healthy humans using specific and potent receptor antagonists. Both hormones act to improve glucose tolerance (i.e. the antagonists impair tolerance) and their effects are additive. GIP seems to be quantitatively the most important, particularly regarding insulin secretion, whereas the action of GLP-1 is mainly displayed via inhibition of glucagon secretion.
Collapse
Affiliation(s)
- Jens Juul Holst
- The NNF center for Basic Metabolic Research and Department of Biomedical Sciences, the Panum Institute, University of Copenhagen, DK-2200, Denmark.
| |
Collapse
|
46
|
Mulla CM, Goldfine AB, Dreyfuss JM, Houten S, Pan H, Pober DM, Wewer Albrechtsen NJ, Svane MS, Schmidt JB, Holst JJ, Craig CM, McLaughlin TL, Patti ME. Plasma FGF-19 Levels are Increased in Patients with Post-Bariatric Hypoglycemia. Obes Surg 2019; 29:2092-2099. [PMID: 30976983 PMCID: PMC6544487 DOI: 10.1007/s11695-019-03845-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hypoglycemia is an increasingly recognized complication of bariatric surgery. Mechanisms contributing to glucose lowering remain incompletely understood. We aimed to identify differentially abundant plasma proteins in patients with post-bariatric hypoglycemia (PBH) after Roux-en-Y gastric bypass (RYGB), compared to asymptomatic post-RYGB. METHODS Proteomic analysis of blood samples collected after overnight fast and mixed meal challenge in individuals with PBH, asymptomatic RYGB, severe obesity, or overweight recruited from outpatient hypoglycemia or bariatric clinics. RESULTS The top-ranking differentially abundant protein at 120 min after mixed meal was fibroblast growth factor 19 (FGF-19), an intestinally derived hormone regulated by bile acid-FXR signaling; levels were 2.4-fold higher in PBH vs. asymptomatic post-RYGB (mean + SEM, 1094 ± 141 vs. 428 ± 45, P < 0.001, FDR < 0.01). FGF-19 ELISA confirmed 3.5-fold higher concentrations in PBH versus asymptomatic (360 ± 70 vs. 103 ± 18, P = 0.025). To explore potential links between increased FGF-19 and GLP-1, residual samples from other human studies in which GLP-1 was modulated were assayed. FGF-19 levels did not change in response to infusion of GLP-1 and PYY in overweight/obese individuals. Infusion of the GLP-1 receptor antagonist exendin 9-39 in recently operated asymptomatic post-RYGB did not alter FGF-19 levels after mixed meal. By contrast, GLP-1 receptor antagonist infusion yielded a significant increase in FGF-19 levels after oral glucose in individuals with PBH. While plasma bile acids did not differ between PBH and asymptomatic post-RYGB, these data suggest unique interrelationships between GLP-1 and FGF-19 in PBH. CONCLUSIONS Taken together, these data support FGF-19 as a potential contributor to insulin-independent pathways driving postprandial hypoglycemia in PBH.
Collapse
Affiliation(s)
- Christopher M Mulla
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA
| | - Allison B Goldfine
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA
| | - Jonathan M Dreyfuss
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sander Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - David M Pober
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria S Svane
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Julie B Schmidt
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colleen M Craig
- Division of Endocrinology and Metabolism, Stanford University School of Medicine, Stanford, CA, USA
| | - Tracey L McLaughlin
- Division of Endocrinology and Metabolism, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, and Harvard Medical School, 1 Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
47
|
Chakraborty S, Halland M, Burton D, Desai A, Neja B, Low P, Singer W, Camilleri M, Zinsmeister AR, Bharucha AE. GI Dysfunctions in Diabetic Gastroenteropathy, Their Relationships With Symptoms, and Effects of a GLP-1 Antagonist. J Clin Endocrinol Metab 2019; 104:1967-1977. [PMID: 30358871 PMCID: PMC6467444 DOI: 10.1210/jc.2018-01623] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Delayed gastric emptying (GE) is common but often asymptomatic in diabetes. The relationship between symptoms, glycemia, and neurohormonal functions, including glucagonlike peptide 1 (GLP-1), are unclear. OBJECTIVES To assess whether GE disturbances, symptoms during a GE study, and symptoms during enteral lipid infusion explain daily symptoms and whether GLP-1 mediates symptoms during enteral lipid infusion. DESIGN In this randomized controlled trial, GE, enteral lipid infusion, gastrointestinal (GI) symptoms during these assessments, autonomic functions, glycosylated hemoglobin (HbA1c), and daily GI symptoms (2-week Gastroparesis Cardinal Symptom Index diary) were evaluated. During enteral lipid infusion, participants received the GLP-1 antagonist exendin 9-39 or placebo. SETTING Single tertiary referral center. PARTICIPANTS 24 healthy controls and 40 patients with diabetic gastroenteropathy. MAIN OUTCOME MEASURES GE, symptoms during enteral lipid infusion, and the effect of exendin 9-39 on the latter. RESULTS In patients, GE was normal (55%), delayed (33%), or rapid (12%). During lipid infusion, GI symptoms tended to be greater (P = 0.06) in patients with diabetes mellitus (DM) than controls; exendin 9-39 did not affect symptoms. The HbA1c was inversely correlated with the mean symptom score during the GE study (r = -0.46, P = 0.003) and lipid infusion (r = -0.47, P < 0.01). GE and symptoms during GE study accounted for 40% and 32%, respectively, of the variance in daily symptom severity and quality of life. CONCLUSIONS In DM gastroenteropathy, GE and symptoms during a GE study explain daily symptoms. Symptoms during enteral lipid infusion were borderline increased but not reduced by a GLP-1 antagonist.
Collapse
Affiliation(s)
| | - Magnus Halland
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Duane Burton
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Anshuman Desai
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Bridget Neja
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Phillip Low
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Alan R Zinsmeister
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
48
|
Gasbjerg LS, Helsted MM, Hartmann B, Jensen MH, Gabe MBN, Sparre-Ulrich AH, Veedfald S, Stensen S, Lanng AR, Bergmann NC, Christensen MB, Vilsbøll T, Holst JJ, Rosenkilde MM, Knop FK. Separate and Combined Glucometabolic Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide 1 in Healthy Individuals. Diabetes 2019; 68:906-917. [PMID: 30626611 DOI: 10.2337/db18-1123] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/05/2019] [Indexed: 11/13/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted postprandially and contribute importantly to postprandial glucose tolerance. In this study, we assessed the individual and combined contributions of endogenous GIP and GLP-1 to the postprandial changes in glucose and glucoregulatory hormones using the novel GIP receptor antagonist GIP(3-30)NH2 and the well-established GLP-1 receptor antagonist exendin(9-39)NH2 During 4-h oral glucose tolerance tests (75 g) combined with an ad libitum meal test, 18 healthy men received on four separate days in randomized, double-blinded order intravenous infusions of A) GIP(3-30)NH2 (800 pmol/kg/min) plus exendin(9-39)NH2 (0-20 min: 1,000 pmol/kg/min; 20-240 min: 450 pmol/kg/min), B) GIP(3-30)NH2, C) exendin(9-39)NH2, and D) saline, respectively. Glucose excursions were significantly higher during A than during B, C, and D, while glucose excursions during B were higher than during C and D. Insulin secretion (assessed by C-peptide/glucose ratio) was reduced by 37 ± 16% (A), 30 ± 17% (B), and 8.6 ± 16% (C) compared with D (mean ± SD). A and C resulted in higher glucagon levels and faster gastric emptying. In conclusion, endogenous GIP affects postprandial plasma glucose excursions and insulin secretion more than endogenous GLP-1, but the hormones contribute additively to postprandial glucose regulation in healthy individuals.
Collapse
Affiliation(s)
- Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads M Helsted
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Antag Therapeutics ApS, Copenhagen, Denmark
| | - Maria B N Gabe
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander H Sparre-Ulrich
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Antag Therapeutics ApS, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Stensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amalie R Lanng
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Zealand Pharma A/S, Glostrup, Denmark
| | - Mikkel B Christensen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Shah M, Laurenti MC, Dalla Man C, Ma J, Cobelli C, Rizza RA, Vella A. Contribution of endogenous glucagon-like peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after Roux-en-Y gastric bypass (RYGB). Metabolism 2019; 93:10-17. [PMID: 30586575 PMCID: PMC6401231 DOI: 10.1016/j.metabol.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023]
Abstract
UNLABELLED Glucagon-Like Peptide-1 (GLP-1) is an insulin secretagogue which is elevated after Roux-en-Y Gastric Bypass (RYGB). However, its contribution to glucose metabolism after RYGB remains uncertain. AIMS We tested the hypothesis that GLP-1 lowers postprandial glucose concentrations and improves β-cell function after RYGB. MATERIALS AND METHODS To address these questions we used a labeled mixed meal to assess glucose metabolism and islet function in 12 obese subjects with type 2 diabetes studied before and four weeks after RYGB. During the post-RYGB study subjects were randomly assigned to receive an infusion of either saline or Exendin-9,39 a competitive antagonist of GLP-1 at its receptor. Exendin-9,39 was infused at 300 pmol/kg/min for 6 h. All subjects underwent RYGB for medically-complicated obesity. RESULTS Exendin-9,39 resulted in increased integrated incremental postprandial glucose concentrations (181 ± 154 vs. 582 ± 129 mmol per 6 h, p = 0.02). In contrast, this was unchanged in the presence of saline (275 ± 88 vs. 315 ± 66 mmol per 6 h, p = 0.56) after RYGB. Exendin-9,39 also impaired β-cell responsivity to glucose but did not alter Disposition Index (DI). CONCLUSIONS These data indicate that the elevated GLP-1 concentrations that occur early after RYGB improve postprandial glucose tolerance by enhancing postprandial insulin secretion.
Collapse
Affiliation(s)
- Meera Shah
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | - Marcello C Laurenti
- Department of Information Engineering, University of Padua, Via Gradenigo 6A, Padua 35131, Italy.
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Via Gradenigo 6A, Padua 35131, Italy.
| | - Jing Ma
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | - Claudio Cobelli
- Department of Information Engineering, University of Padua, Via Gradenigo 6A, Padua 35131, Italy.
| | - Robert A Rizza
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | - Adrian Vella
- Division of Endocrinology, Diabetes & Metabolism, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
50
|
Liu Y, Harashima S, Wang Y, Suzuki K, Tokumoto S, Usui R, Tatsuoka H, Tanaka D, Yabe D, Harada N, Hayashi Y, Inagaki N. Sphingosine kinase 1–interacting protein is a dual regulator of insulin and incretin secretion. FASEB J 2019; 33:6239-6253. [DOI: 10.1096/fj.201801783rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanyan Liu
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Shin‐Ichi Harashima
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Yu Wang
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Kazuyo Suzuki
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Shinsuke Tokumoto
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Ryota Usui
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Hisato Tatsuoka
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Daisuke Tanaka
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Daisuke Yabe
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Norio Harada
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| | - Yoshitaka Hayashi
- Division of Stress Adaptation and ProtectionDepartment of GeneticsResearch Institute of Environmental MedicineNagoya University Nagoya Japan
| | - Nobuya Inagaki
- Department of DiabetesEndocrinology and NutritionGraduate School of MedicineKyoto University Kyoto Japan
| |
Collapse
|