1
|
Ye J, Qiu C, Zhang L. Knockdown of Leucine-rich alpha-2-glycoprotein 1 alleviates renal ischemia-reperfusion injury by inhibiting NOX4-mediated apoptosis, inflammation, and oxidative stress. Exp Cell Res 2025; 444:114341. [PMID: 39566877 DOI: 10.1016/j.yexcr.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Renal ischemia-reperfusion (I/R) injury leads mainly to acute kidney injury. Leucine-rich alpha-2-glycoprotein 1 (LRG) is upregulated in kidney tissues of mice after renal I/R injury. However, its role in renal I/R injury has not been fully elucidated. A mouse model of renal I/R injury was constructed by unilateral renal pedicle clamping and reperfusion. Mice undergoing I/R procedures exhibited renal function impairment and increased LRG protein expression compared with mice receiving sham operations. Tail vein injection with lentivirus carrying shLRG decreased renal I/R injury-induced increase in caspase-3 activity, IL-1β and IL-18 concentrations, and ROS production. Furthermore, shRNA-mediated LRG knockdown in HK-2 cells protected against H/R-induced cell damage. LRG could upregulate the expression of NADPH oxidase 4 (NOX4). We also determined the increased NOX4 expression in kidney tissues of renal I/R-operated mice and H/R-treated HK-2 cells. NOX4 overexpression reversed the inhibitory role of LRG knockdown in HK-2 cell damage caused by H/R. Collectively, our findings demonstrate that LRG knockdown decreases the NOX4 expression, thereby alleviating renal I/R injury by inhibiting cell apoptosis, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Jianfeng Ye
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cheng Qiu
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lexi Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Xu W, Zhu Y, Wang S, Liu J, Li H. From Adipose to Ailing Kidneys: The Role of Lipid Metabolism in Obesity-Related Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1540. [PMID: 39765868 PMCID: PMC11727289 DOI: 10.3390/antiox13121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Obesity has emerged as a significant public health crisis, closely linked to the pathogenesis and progression of chronic kidney disease (CKD). This review explores the intricate relationship between obesity-induced lipid metabolism disorders and renal health. We discuss how excessive free fatty acids (FFAs) lead to lipid accumulation in renal tissues, resulting in cellular lipotoxicity, oxidative stress, and inflammation, ultimately contributing to renal injury. Key molecular mechanisms, including the roles of transcriptional regulators like PPARs and SREBP-1, are examined for their implications in lipid metabolism dysregulation. The review also highlights the impact of glomerular and tubular lipid overload on kidney pathology, emphasizing the roles of podocytes and tubular cells in maintaining kidney function. Various therapeutic strategies targeting lipid metabolism, including pharmacological agents such as statins and SGLT2 inhibitors, as well as lifestyle modifications, are discussed for their potential to mitigate CKD progression in obese individuals. Future research directions are suggested to better understand the mechanisms linking lipid metabolism to kidney disease and to develop personalized therapeutic approaches. Ultimately, addressing obesity-related lipid metabolism disorders may enhance kidney health and improve outcomes for individuals suffering from CKD.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Zhu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Morales DD, Ryu J, Wei C, Hadley JT, Smith MR, Bai J, Lopez-Alvarenga JC, Mummidi S, Duggirala R, Lynch JL, Liu F, Dong LQ. Diet-enhanced LRG1 expression promotes insulin hypersecretion and ER stress in pancreatic beta cells. Diabetologia 2024:10.1007/s00125-024-06331-0. [PMID: 39589509 DOI: 10.1007/s00125-024-06331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/13/2024] [Indexed: 11/27/2024]
Abstract
AIMS/HYPOTHESIS Upregulation of serum leucine-rich α-2-glycoprotein 1 (LRG1) has been implicated in diet-induced obesity and metabolic disorders. However, its specific hormonal actions remain unclear. This study aimed to determine whether diet-enhanced serum LRG1 levels promote hyperinsulinaemia by directly stimulating insulin secretion from pancreatic beta cells. METHODS Human serum samples were obtained from individuals (both male and female) undergoing plastic surgery. Male C57BL/6 wild-type and Lrg1 whole-body knockout (Lrg1KO) mice were fed a 45% high-fat diet, with serum samples collected every 2 weeks to monitor LRG1 and insulin levels throughout diet-induced obesity. MIN6 beta cells were used to investigate the effects of LRG1 on insulin secretion and intracellular Ca2+ release. Antibodies targeting various LRG1 epitopes were used to neutralise LRG1 stimulation in MIN6 cells, and their effectiveness was tested in vivo to assess their ability to prevent LRG1-induced hyperinsulinaemia. RESULTS We observed a significant positive association between human serum LRG1 levels and both age and BMI, with elevated levels observed in individuals with vs without type 2 diabetes. In mice fed a high-fat diet, LRG1 upregulation in serum was associated with hyperinsulinaemia. Lrg1 knockout protected mice from diet-induced islet hyperplasia and the loss of beta cell mass. Furthermore, neutralising LRG1 activity prevented the onset of diet-induced hyperinsulinaemia and preserved glucose tolerance. Mechanistically, LRG1 induces inositol triphosphate (IP3) production and intracellular Ca2+ release from the endoplasmic reticulum (ER) in a phospholipase C (PLC)-dependent manner, leading to excessive insulin secretion and ER stress in MIN6 beta cells. CONCLUSIONS/INTERPRETATION In summary, this study identifies LRG1 as a significant contributor to hyperinsulinaemia and beta cell dysfunction. Targeting LRG1 activity emerges as a promising therapeutic approach for addressing diet-induced beta cell dysfunction and managing type 2 diabetes.
Collapse
Affiliation(s)
- Desirae D Morales
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jiyoon Ryu
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Cong Wei
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jason T Hadley
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maia R Smith
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juli Bai
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juan C Lopez-Alvarenga
- Division of Population Health & Biostatistics, The University of Texas at Rio Grande Valley, Edinburg, TX, USA
| | - Srinivas Mummidi
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Ravindranath Duggirala
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, USA
| | - Jane L Lynch
- Department of Pediatrics, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital Central South University, Changsha, Hunan, China
- Metabolic Syndrome Research Center, The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Lily Q Dong
- Department of Cell Systems & Anatomy, The University of Texas Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Krienke M, Kralisch S, Wagner L, Tönjes A, Miehle K. Serum Leucine-Rich Alpha-2 Glycoprotein 1 Levels in Patients with Lipodystrophy Syndromes. Biomolecules 2024; 14:1474. [PMID: 39595649 PMCID: PMC11592172 DOI: 10.3390/biom14111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Serum concentrations of leucine-rich alpha-2 glycoprotein 1 (LRG1) are elevated in several cardio-metabolic and inflammatory diseases. LRG1 also plays an important role in the development of hepatic steatosis and insulin resistance. In lipodystrophies (LDs), severe cardio-metabolic complications can be observed. The dysregulation of several adipokines plays a significant role in the clinical manifestation of this syndrome. To date, there have been no studies of LRG1 levels in non-HIV-LD patients. We performed a cross-sectional analysis of LRG1 serum levels in 60 patients with non-HIV-associated LD and in 60 age-, sex-, and BMI-matched healthy controls. Furthermore, we investigated the gene expression of Lrg1 in a mouse model of generalised LD. No significant difference was found in the median concentration of LRG1 serum levels between LD patients (18.2 ng/L; interquartile range 8.3 ng/L) and healthy controls (17.8 ng/L; interquartile range 11.0 ng/L). LRG1 serum concentrations correlated positively with CRP serum levels (p < 0.001). Lrg1 mRNA expression was downregulated in the adipose tissue, whereas in the liver, no difference in Lrg1 expression between LD and wild-type mice was detected. In summary, circulating levels of LRG1 are associated with low-grade inflammation but cannot distinguish between patients with LD and controls.
Collapse
Affiliation(s)
| | | | | | | | - Konstanze Miehle
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Liebigstraße 20, 04103 Leipzig, Germany (S.K.); (L.W.); (A.T.)
| |
Collapse
|
5
|
Henne WM, Ugrankar-Banerjee R, Tran S, Bowerman J, Paul B, Zacharias L, Mathews T, DeBerardinis R. Metabolic rewiring in fat-depleted Drosophila reveals triglyceride:glycogen crosstalk and identifies cDIP as a new regulator of energy metabolism. RESEARCH SQUARE 2024:rs.3.rs-4505077. [PMID: 39483909 PMCID: PMC11527204 DOI: 10.21203/rs.3.rs-4505077/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tissues store excess nutrients as triglyceride or glycogen, but how these reserves are sensed and communicate remains poorly understood. Here we identify molecular players orchestrating this metabolic balance during fat depletion. We show fat body (FB)-specific depletion of fatty acyl-CoA synthase FASN1 in Drosophila causes near-complete fat loss and metabolic remodeling that dramatically elevates glycogen storage and carbohydrate metabolism. Proteomics and metabolomics identify key factors necessary for rewiring including glycolysis enzymes and target-of-brain-insulin (tobi). FASN1-deficient flies are viable but starvation sensitive, oxidatively stressed, and infertile. We also identify CG10824/cDIP as upregulated in FASN1-depleted Drosophila. cDIP is a leucine-rich-repeat protein with homology to secreted adipokines that fine-tune energy signaling, and is required for fly development in the absence of FASN1. Collectively, we show fat-depleted Drosophila rewire their metabolism to complete development, and identify cDIP as a putative new cytokine that signals fat insufficiency and may regulate energy homeostasis.
Collapse
|
6
|
Wang X, Sun Z, Fu J, Fang Z, Zhang W, He JC, Lee K. LRG1 loss effectively restrains glomerular TGF-β signaling to attenuate diabetic kidney disease. Mol Ther 2024; 32:3177-3193. [PMID: 38910328 PMCID: PMC11403230 DOI: 10.1016/j.ymthe.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Transforming growth factor (TGF)-β signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-β signaling regulators can substantially influence TGF-β's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-β-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-β-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-β signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-β signaling to attenuate DKD.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeguo Sun
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengying Fang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John C He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, NY 10468, USA.
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
7
|
Roy S, Saha P, Bose D, Trivedi A, More M, Lin C, Wu J, Oakes M, Chatterjee S. Periodic heat waves-induced neuronal etiology in the elderly is mediated by gut-liver-brain axis: a transcriptome profiling approach. Sci Rep 2024; 14:10555. [PMID: 38719902 PMCID: PMC11079080 DOI: 10.1038/s41598-024-60664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.
Collapse
Affiliation(s)
- Subhajit Roy
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Ayushi Trivedi
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Madhura More
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA
| | - Christina Lin
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Melanie Oakes
- Genomics Research and Technology Hub, Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, 92697, USA.
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Long Beach VA Medical Center, Long Beach, CA, 90822, USA.
| |
Collapse
|
8
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells 2024; 13:663. [PMID: 38667278 PMCID: PMC11049175 DOI: 10.3390/cells13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (I.D.); (C.A.); (M.L.B.)
| |
Collapse
|
10
|
Tsuruta H, Yasuda-Yamahara M, Yoshibayashi M, Kuwagata S, Yamahara K, Tanaka-Sasaki Y, Chin-Kanasaki M, Matsumoto S, Ema M, Kume S. Fructose overconsumption accelerates renal dysfunction with aberrant glomerular endothelial-mesangial cell interactions in db/db mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167074. [PMID: 38354758 DOI: 10.1016/j.bbadis.2024.167074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
For the advancement of DKD treatment, identifying unrecognized residual risk factors is essential. We explored the impact of obesity diversity derived from different carbohydrate qualities, with an emphasis on the increasing trend of excessive fructose consumption and its effect on DKD progression. In this study, we utilized db/db mice to establish a novel diabetic model characterized by fructose overconsumption, aiming to uncover the underlying mechanisms of renal damage. Compared to the control diet group, the fructose-fed db/db mice exhibited more pronounced obesity yet demonstrated milder glucose intolerance. Plasma cystatin C levels were elevated in the fructose model compared to the control, and this elevation was accompanied by enhanced glomerular sclerosis, even though albuminuria levels and tubular lesions were comparable. Single-cell RNA sequencing of the whole kidney highlighted an increase in Lrg1 in glomerular endothelial cells (GECs) in the fructose model, which appeared to drive mesangial fibrosis through enhanced TGF-β1 signaling. Our findings suggest that excessive fructose intake exacerbates diabetic kidney disease progression, mediated by aberrant Lrg1-driven crosstalk between GECs and mesangial cells.
Collapse
Affiliation(s)
- Hiroaki Tsuruta
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mako Yasuda-Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Mamoru Yoshibayashi
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shogo Kuwagata
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Yuki Tanaka-Sasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masami Chin-Kanasaki
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shoma Matsumoto
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Tsukinowa-cho, Otsu, Shiga, Japan.
| |
Collapse
|
11
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
12
|
Gu J, Liu C, Yao Y. Prognostic potency of plasma LRG1 measurement at multiple time points in acute ischemic stroke patients. Biomark Med 2024; 18:181-190. [PMID: 38440887 DOI: 10.2217/bmm-2023-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: This study aimed to investigate the prognostic potency of LRG1 in acute ischemic stroke (AIS) patients. Methods: Plasma LRG1 levels were detected at admission and on days 3, 7 and 30 in 150 AIS patients. Results: LRG1 positively correlated with total cholesterol (p = 0.016), triglycerides (p = 0.046), C-reactive protein (p < 0.001), TNF-α (p = 0.001) and IL-6 (p = 0.004). After admission, LRG1 showed a decreasing trend (p < 0.001). Interestingly, LRG1 levels at admission (p = 0.014), day 3 (p = 0.027), day 7 (p = 0.008) and day 30 (p = 0.002) were higher in patients with modified Rankin scale score ≥2 versus those with scores <2. The LRG1 levels at day 7 (p = 0.032) and day 30 (p = 0.023) were higher in patients with recurrence versus no recurrence. Conclusion: LRG1 correlates with blood lipids, inflammation and short-term prognosis of AIS.
Collapse
Affiliation(s)
- Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Chao Liu
- Department of CT Diagnosis, Cangzhou Central Hospital, Cangzhou, 061001, China
| | - Yan Yao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061001, China
| |
Collapse
|
13
|
Yao X, Zhao Z, Zhang W, Liu R, Ni T, Cui B, Lei Y, Du J, Ai D, Jiang H, Lv H, Li X. Specialized Retinal Endothelial Cells Modulate Blood-Retina Barrier in Diabetic Retinopathy. Diabetes 2024; 73:225-236. [PMID: 37976214 DOI: 10.2337/db23-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xuyang Yao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ruixin Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Tianwen Ni
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Du
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huizhen Lv
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Huang X, He W, Fan S, Li H, Ye G. IGF2BP3-mediated enhanced stability of MYLK represses MSC adipogenesis and alleviates obesity and insulin resistance in HFD mice. Cell Mol Life Sci 2024; 81:17. [PMID: 38196046 PMCID: PMC10776757 DOI: 10.1007/s00018-023-05076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Mesenchymal stem cells (MSCs) hold immense potential as multipotent stem cells and serve as a primary source of adipocytes. The process of MSC adipogenesis plays a crucial role in maintaining systemic metabolic homeostasis and has garnered significant attention in tissue bioengineering. N6-methyladenosine (m6A), the most prevalent RNA modification, is known to regulate cell fate and disease. However, the precise involvement of m6A readers in MSC adipogenesis remains unclear. In this study, we investigated the impact of IGF2BP3, a prominent m6A reader, on MSC adipogenesis. Our findings revealed a decrease in IGF2BP3 expression during the natural adipogenic differentiation of MSCs. Furthermore, IGF2BP3 was found to repress MSC adipogenesis by augmenting the levels of MYLK, a calcium/calmodulin-dependent kinase. Mechanistically, IGF2BP3 interacted with MYLK mRNA in an m6A-dependent manner, extending its half-life and subsequently inhibiting the phosphorylation of the ERK1/2 pathway, thereby impeding the adipogenic differentiation of MSCs. Additionally, we successfully achieved the overexpression of IGF2BP3 through intraperitoneal injection of adeno-associated virus serotype Rec2, which specifically targeted adipose tissue. This intervention resulted in reduced body weight and improved insulin resistance in high-fat diet mice. Overall, our study provides novel insights into the role of IGF2BP3 in MSC adipogenesis, shedding light on adipocyte-related disorders and presenting potential targets for related biomedical applications.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Shuai Fan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
| |
Collapse
|
15
|
Wen R, Huang R, Xu K, Cheng Y, Yi X. Beneficial effects of Apelin-13 on metabolic diseases and exercise. Front Endocrinol (Lausanne) 2023; 14:1285788. [PMID: 38089606 PMCID: PMC10714012 DOI: 10.3389/fendo.2023.1285788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Garcia NA, Mellergaard M, Gonzalez-King H, Salomon C, Handberg A. Comprehensive Strategy for Identifying Extracellular Vesicle Surface Proteins as Biomarkers for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:13326. [PMID: 37686134 PMCID: PMC10487973 DOI: 10.3390/ijms241713326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder that has become a global health concern due to its increasing prevalence. There is a need for reliable biomarkers to aid in the diagnosis and prognosis of NAFLD. Extracellular vesicles (EVs) are promising candidates in biomarker discovery, as they carry proteins that reflect the pathophysiological state of the liver. In this review, we developed a list of EV proteins that could be used as diagnostic biomarkers for NAFLD. We employed a multi-step strategy that involved reviewing and comparing various sources of information. Firstly, we reviewed papers that have studied EVs proteins as biomarkers in NAFLD and papers that have studied circulating proteins as biomarkers in NAFLD. To further identify potential candidates, we utilized the EV database Vesiclepedia.org to qualify each protein. Finally, we consulted the Human Protein Atlas to search for candidates' localization, focusing on membrane proteins. By integrating these sources of information, we developed a comprehensive list of potential EVs membrane protein biomarkers that could aid in diagnosing and monitoring NAFLD. In conclusion, our multi-step strategy for identifying EV-based protein biomarkers for NAFLD provides a comprehensive approach that can also be applied to other diseases. The protein candidates identified through this approach could have significant implications for the development of non-invasive diagnostic tests for NAFLD and improve the management and treatment of this prevalent liver disorder.
Collapse
Affiliation(s)
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD 4029, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg Hobrovej 18-22, 9000 Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, 9000 Aalborg, Denmark
| |
Collapse
|
17
|
Sun W, Lin Y, Huang Y, Chan J, Terrillon S, Rosenbaum AI, Contrepois K. Robust and High-Throughput Analytical Flow Proteomics Analysis of Cynomolgus Monkey and Human Matrices with Zeno SWATH Data Independent Acquisition. Mol Cell Proteomics 2023:100562. [PMID: 37142056 DOI: 10.1016/j.mcpro.2023.100562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
Modern mass spectrometers routinely allow deep proteome coverage in a single experiment. These methods are typically operated at nano and micro flow regimes, but they often lack throughput and chromatographic robustness, which is critical for large-scale studies. In this context, we have developed, optimized and benchmarked LC-MS methods combining the robustness and throughput of analytical flow chromatography with the added sensitivity provided by the Zeno trap across a wide range of cynomolgus monkey and human matrices of interest for toxicological studies and clinical biomarker discovery. SWATH data independent acquisition (DIA) experiments with Zeno trap activated (Zeno SWATH DIA) provided a clear advantage over conventional SWATH DIA in all sample types tested with improved sensitivity, quantitative robustness and signal linearity as well as increased protein coverage by up to 9-fold. Using a 10-min gradient chromatography, up to 3,300 proteins were identified in tissues at 2 μg peptide load. Importantly, the performance gains with Zeno SWATH translated into better biological pathway representation and improved the ability to identify dysregulated proteins and pathways associated with two metabolic diseases in human plasma. Finally, we demonstrate that this method is highly stable over time with the acquisition of reliable data over the injection of 1,000+ samples (14.2 days of uninterrupted acquisition) without the need for human intervention or normalization. Altogether, Zeno SWATH DIA methodology allows fast, sensitive and robust proteomic workflows using analytical flow and is amenable to large-scale studies. This work provides detailed method performance assessment on a variety of relevant biological matrices and serves as a valuable resource for the proteomics community.
Collapse
Affiliation(s)
- Weiwen Sun
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Yuan Lin
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Josolyn Chan
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Sonia Terrillon
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA.
| | - Kévin Contrepois
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA.
| |
Collapse
|
18
|
Ba H, Zhang L, Peng H, He X, Lin Y, Li X, Li S, Zhu L, Qin Y, Zhang X, Wang Y. Identification of Hub Biomarkers and Immune and Inflammation Pathways Contributing to Kawasaki Disease Progression with RT-qPCR Verification. J Immunol Res 2023; 2023:1774260. [PMID: 39670237 PMCID: PMC11637630 DOI: 10.1155/2023/1774260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Accepted: 03/18/2023] [Indexed: 05/14/2024] Open
Abstract
Background Kawasaki disease (KD) is characterized by a disordered inflammation response of unknown etiology. Immune cells are closely associated with its onset, although the immune-related genes' expression and possibly involved immune regulatory mechanisms are little known. This study aims to identify KD-implicated significant immune- and inflammation-related biomarkers and pathways and their association with immune cell infiltration. Patients and Methods. Gene microarray data were collected from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were used to find KD hub markers. GSEA was used to assess the infiltration by 28 immune cell types and their connections to essential gene markers. Receiver operating characteristic (ROC) curves were used to examine hub markers' diagnostic effectiveness. Finally, hub genes' expressions were validated in Chinese KD patients by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results One hundred and fifty-one unique genes were found. Among 10 coexpression modules at WGCNA, one hub module exhibited the strongest association with KD. Thirty-six overlapping genes were identified. Six hub genes were potential biomarkers according to LASSO analysis. Immune infiltration revealed connections among activated and effector memory CD4+ T cells, neutrophils, activated dendritic cells, and macrophages. The six hub genes' diagnostic value was shown by ROC curve analysis. Hub genes were enriched in immunological and inflammatory pathways. RT-qPCR verification results of FCGR1B (P < 0.001), GPR84 (P < 0.001), KREMEN1 (P < 0.001), LRG1 (P < 0.001), and TDRD9 (P < 0.001) upregulated expression in Chinese KD patients are consistent with our database analysis. Conclusion Neutrophils, macrophages, and activated dendritic cells are strongly linked to KD pathophysiology. Through immune-related signaling pathways, hub genes such as FCGR1B, GPR84, KREMEN1, LRG1, and TDRD9 may be implicated in KD advancement.
Collapse
Affiliation(s)
- Hongjun Ba
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
- Key Laboratory on Assisted Circulation, Ministry of Health, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Lili Zhang
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Huimin Peng
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Xiufang He
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Yuese Lin
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Xuandi Li
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Shujuan Li
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Ling Zhu
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Youzhen Qin
- Department of Pediatric Cardiology, Heart Center, First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou 510080, China
| | - Xing Zhang
- Department of Cardiology, Kunming Children's Hospital, 288 Qianxing Road, Xishan District, Kunming 650034, Yunnan, China
| | - Yao Wang
- Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China
| |
Collapse
|
19
|
Metformin suppresses LRG1 and TGFβ1/ALK1-induced angiogenesis and protects against ultrastructural changes in rat diabetic nephropathy. Biomed Pharmacother 2023; 158:114128. [PMID: 36525822 DOI: 10.1016/j.biopha.2022.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) has high prevalence and poor prognosis which make it a research priority for scientists. Since metformin, a hypoglycaemic drug, has been found to prolong the survival of mice with DN. This study aims at investigating the molecular mechanisms leading to DN in rats and to explore the role of leucine-rich α-2-glycoprotein-1 (LRG1), activin-like kinase1 (ALK1), and transforming growth factor-β (TGFβ1) in the pathologic alterations seen in DN. The aim was also extended to explore the protective action of metformin against DN in rats and its influence on LRG1and ALK1/TGFβ1 induced renal angiogenesis. 24 male rats were used. Rats were assigned as, the vehicle group, the diabetic control group and diabetic + metformin (100 and 200 mg/kg) groups. Kidney samples were processed for histopathology, immunohistochemistry and biochemical analysis. Bioinformatic analysis of studied proteins was done to determine protein-protein interactions. Metformin reduced serum urea and creatinine significantly, decreased the inflammatory cytokine levels and reduced LRG1, TGFβ1, ALK1 and vascular endothelial growth factor (VEGF) proteins in rat kidneys. Bioinformatic analysis revealed interactions between the studied proteins. Metformin alleviated the histopathological changes observed in the diabetic rats such as the glomerular surface area and increased Bowman's space diameter. Metformin groups showed decreased VEGF immunostaining compared to diabetic group. Metformin shows promising renoprotective effects in diabetic model that was at least partly mediated by downregulation of LRG1 and TGFβ1/ALK1-induced renal angiogenesis. These results further explain the molecular mechanism of metformin in DN management.
Collapse
|
20
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
21
|
Wang QY, Liao ZZ, Lai J, Xiao XH. Editorial: The role of exosomes and organokines in metabolic and endocrine disease. Front Endocrinol (Lausanne) 2023; 14:1198791. [PMID: 37152957 PMCID: PMC10162493 DOI: 10.3389/fendo.2023.1198791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Qi-Yu Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, United States
- *Correspondence: Xin-Hua Xiao, ; Jinping Lai,
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xin-Hua Xiao, ; Jinping Lai,
| |
Collapse
|
22
|
Filipović M, Flegar D, Aničić S, Šisl D, Kelava T, Kovačić N, Šućur A, Grčević D. Transcriptome profiling of osteoclast subsets associated with arthritis: A pathogenic role of CCR2 hi osteoclast progenitors. Front Immunol 2022; 13:994035. [PMID: 36591261 PMCID: PMC9797520 DOI: 10.3389/fimmu.2022.994035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The existence of different osteoclast progenitor (OCP) subsets has been confirmed by numerous studies. However, pathological inflammation-induced osteoclastogenesis remains incompletely understood. Detailed characterization of OCP subsets may elucidate the pathophysiology of increased osteoclast activity causing periarticular and systemic bone resorption in arthritis. In our study, we rely on previously defined OCP subsets categorized by the level of CCR2 expression as circulatory-like committed CCR2hi OCPs, which are substantially expanded in arthritis, and marrow-resident CCR2lo OCPs of immature phenotype and behavior. Methods In order to perform transcriptome characterization of those subsets in the context of collagen-induced arthritis (CIA), we sorted CCR2hi and CCR2lo periarticular bone marrow OCPs of control and arthritic mice, and performed next-generation RNA sequencing (n=4 for each group) to evaluate the differential gene expression profile using gene set enrichment analysis with further validation. Results A disparity between CCR2hi and CCR2lo subset transcriptomes (863 genes) was detected, with the enrichment of pathways for osteoclast differentiation, chemokine and NOD-like receptor signaling in the CCR2hi OCP subset, and ribosome biogenesis in eukaryotes and ribosome pathways in the CCR2lo OCP subset. The effect of intervention (CIA) within each subset was greater in CCR2hi (92 genes) than in CCR2lo (43 genes) OCPs. Genes associated with the osteoclastogenic pathway (Fcgr1, Socs3), and several genes involved in cell adhesion and migration (F11r, Cd38, Lrg1) identified the CCR2hi subset and distinguish CIA from control group, as validated by qPCR (n=6 for control mice, n=9 for CIA mice). The latter gene set showed a significant positive correlation with arthritis clinical score and frequency of CCR2hi OCPs. Protein-level validation by flow cytometry showed increased proportion of OCPs expressing F11r/CD321, CD38 and Lrg1 in CIA, indicating that they could be used as disease markers. Moreover, osteoclast pathway-identifying genes remained similarly expressed (Fcgr1) or even induced by several fold (Socs3) in preosteoclasts differentiated in vitro from CIA mice compared to pre-cultured levels, suggesting their importance for enhanced osteoclastogenesis of the CCR2hi OCPs in arthritis. Conclusion Our approach detected differentially expressed genes that could identify distinct subset of OCPs associated with arthritis as well as indicate possible therapeutic targets aimed to modulate osteoclast activity.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| |
Collapse
|
23
|
Choi CHJ, Barr W, Zaman S, Model C, Park A, Koenen M, Lin Z, Szwed SK, Marchildon F, Crane A, Carroll TS, Molina H, Cohen P. LRG1 is an adipokine that promotes insulin sensitivity and suppresses inflammation. eLife 2022; 11:e81559. [PMID: 36346018 PMCID: PMC9674348 DOI: 10.7554/elife.81559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
While dysregulation of adipocyte endocrine function plays a central role in obesity and its complications, the vast majority of adipokines remain uncharacterized. We employed bio-orthogonal non-canonical amino acid tagging (BONCAT) and mass spectrometry to comprehensively characterize the secretome of murine visceral and subcutaneous white and interscapular brown adip ocytes. Over 600 proteins were identified, the majority of which showed cell type-specific enrichment. We here describe a metabolic role for leucine-rich α-2 glycoprotein 1 (LRG1) as an obesity-regulated adipokine secreted by mature adipocytes. LRG1 overexpression significantly improved glucose homeostasis in diet-induced and genetically obese mice. This was associated with markedly reduced white adipose tissue macrophage accumulation and systemic inflammation. Mechanistically, we found LRG1 binds cytochrome c in circulation to dampen its pro-inflammatory effect. These data support a new role for LRG1 as an insulin sensitizer with therapeutic potential given its immunomodulatory function at the nexus of obesity, inflammation, and associated pathology.
Collapse
Affiliation(s)
- Chan Hee J Choi
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - William Barr
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Samir Zaman
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Corey Model
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Annsea Park
- Department of Immunobiology, Yale UniversityNew HavenUnited States
| | - Mascha Koenen
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Zeran Lin
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Sarah K Szwed
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Francois Marchildon
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Audrey Crane
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resouce Center, Rockefeller UniversityNew YorkUnited States
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller UniversityNew YorkUnited States
| | - Paul Cohen
- Laboratory of Molecular Metabolism, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
24
|
Effects of Cichorium glandulosum on hyperglycemia, dyslipidemia and intestinal flora in db/db mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Alhammad R, Abu-Farha M, Hammad MM, Thanaraj TA, Channanath A, Alam-Eldin N, Al-Sabah R, Shaban L, Alduraywish A, Al-Mulla F, Rahman A, Abubaker J. Increased LRG1 Levels in Overweight and Obese Adolescents and Its Association with Obesity Markers, Including Leptin, Chemerin, and High Sensitivity C-Reactive Protein. Int J Mol Sci 2022; 23:ijms23158564. [PMID: 35955698 PMCID: PMC9369195 DOI: 10.3390/ijms23158564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Leucine-rich α-2 glycoprotein1 (LRG1) is a member of the leucine-rich repeat (LRR) family that is implicated in multiple diseases, including cancer, aging, and heart failure, as well as diabetes and obesity. LRG1 plays a key role in diet-induced hepatosteatosis and insulin resistance by mediating the crosstalk between adipocytes and hepatocytes. LRG1 also promotes hepatosteatosis by upregulating de novo lipogenesis in the liver and suppressing fatty acid β-oxidation. In this study, we investigated the association of LRG1 with obesity markers, including leptin and other adipokines in adolescents (11−14 years; n = 425). BMI-for-age classification based on WHO growth charts was used to define obesity. Plasma LRG1 was measured by ELISA, while other markers were measured by multiplexing assay. Median (IQR) of LRG1 levels was higher in obese (30 (25, 38) µg/mL) and overweight (30 (24, 39) µg/mL) adolescents, compared to normal-weight participants (27 (22, 35) µg/mL). The highest tertile of LRG1 had an OR [95% CI] of 2.55 [1.44, 4.53] for obesity. LRG1 was positively correlated to plasma levels of high sensitivity c-reactive protein (HsCRP) (ρ = 0.2), leptin (ρ = 0.2), and chemerin (ρ = 0.24) with p < 0.001. Additionally, it was positively associated with plasma level of IL6 (ρ = 0.17) and IL10 (ρ = 0.14) but not TNF-α. In conclusion, LRG1 levels are increased in obese adolescents and are associated with increased levels of adipogenic markers. These results suggest the usefulness of LRG1 as an early biomarker for obesity and its related pathologies in adolescents.
Collapse
Affiliation(s)
- Rashed Alhammad
- Department of Pharmacology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Maha M. Hammad
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Thangavel Alphonse Thanaraj
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Arshad Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Nada Alam-Eldin
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat 13060, Kuwait;
| | - Abdulrahman Alduraywish
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (T.A.T.); (A.C.); (F.A.-M.)
| | - Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Safat 13060, Kuwait;
- Correspondence: (A.R.); (J.A.); Tel.: +965-2463-3321 (A.R.); +965-2224-2999 (ext. 3563) (J.A.)
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait; (M.A.-F.); (M.M.H.); (N.A.-E.)
- Correspondence: (A.R.); (J.A.); Tel.: +965-2463-3321 (A.R.); +965-2224-2999 (ext. 3563) (J.A.)
| |
Collapse
|
26
|
Mantovani A, Csermely A, Sani E, Beatrice G, Petracca G, Lunardi G, Bonapace S, Lippi G, Targher G. Association between Higher Circulating Leucine-Rich α-2 Glycoprotein 1 Concentrations and Specific Plasma Ceramides in Postmenopausal Women with Type 2 Diabetes. Biomolecules 2022; 12:biom12070943. [PMID: 35883498 PMCID: PMC9312999 DOI: 10.3390/biom12070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Although ceramides are involved in the pathophysiology of cardiovascular disease and other inflammation-associated disorders, there is a paucity of data on the association between plasma ceramides and inflammatory biomarkers in type 2 diabetes mellitus (T2DM). Therefore, we explored whether there was an association between plasma leucine-rich α-2 glycoprotein 1 (LRG1) concentrations (i.e., a novel proinflammatory signaling molecule) and specific plasma ceramides in postmenopausal women with T2DM. Methods: We measured six previously identified plasma ceramides, which have been associated with increased cardiovascular risk [plasma Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), Cer(d18:1/24:0) and Cer(d18:1/24:1)], amongst 99 Caucasian postmenopausal women with non-insulin-treated T2DM (mean age 72 ± 8 years, mean hemoglobin A1c 6.9 ± 0.7%), who consecutively attended our diabetes outpatient service during a 3-month period. Plasma ceramide and LRG1 concentrations were measured with a targeted liquid chromatography-tandem mass spectrometry assay and a Milliplex® MAP human cardiovascular disease magnetic bead kit, respectively. Results: In linear regression analyses, higher plasma LRG1 levels (1st tertile vs. 2nd and 3rd tertiles combined) were associated with higher levels of plasma Cer(d18:1/16:0) (standardized β coefficient: 0.289, p = 0.004), Cer(d18:1/18:0) (standardized β coefficient: 0.307, p = 0.002), Cer(d18:1/20:0) (standardized β coefficient: 0.261, p = 0.009) or Cer(d18:1/24:1) (standardized β coefficient: 0.343, p < 0.001). These associations remained significant even after adjusting for age, body mass index, systolic blood pressure, total cholesterol level, hemoglobin A1c, insulin resistance and statin use. Conclusions: The results of our pilot exploratory study suggest that higher plasma LRG1 concentration was associated with higher levels of specific high-risk plasma ceramide molecules in elderly postmenopausal women with metabolically well-controlled T2DM, even after adjusting for known cardiovascular risk factors and other potential confounding variables.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
| | - Alessandro Csermely
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
| | - Elena Sani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
| | - Giorgia Beatrice
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
| | - Graziana Petracca
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusion Medicine & Clinical Pharmacology, “IRCCS Sacro Cuore-Don Calabria” Hospital, 37024 Negrar, Italy;
| | - Stefano Bonapace
- Division of Cardiology, “IRCCS Sacro Cuore-Don Calabria” Hospital, 37024 Negrar, Italy;
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy;
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, 37126 Verona, Italy; (A.M.); (A.C.); (E.S.); (G.B.); (G.P.)
- Correspondence:
| |
Collapse
|
27
|
Ho CK, Zheng D, Sun J, Wen D, Wu S, Yu L, Gao Y, Zhang Y, Li Q. LRG-1 promotes fat graft survival through the RAB31-mediated inhibition of hypoxia-induced apoptosis. J Cell Mol Med 2022; 26:3153-3168. [PMID: 35322540 PMCID: PMC9170820 DOI: 10.1111/jcmm.17280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/10/2022] [Accepted: 02/19/2022] [Indexed: 11/29/2022] Open
Abstract
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat.
Collapse
Affiliation(s)
- Chia-Kang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaming Sun
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Wu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
29
|
Lv Y, Zhang J, Yang T, Sun J, Hou J, Chen Z, Yu X, Yuan X, Lu X, Xie T, Yu T, Su X, Liu G, Zhang C, Li L. Non-Alcoholic Fatty Liver Disease (NAFLD) Is an Independent Risk Factor for Developing New-Onset Diabetes After Acute Pancreatitis: A Multicenter Retrospective Cohort Study in Chinese Population. Front Endocrinol (Lausanne) 2022; 13:903731. [PMID: 35692404 PMCID: PMC9174455 DOI: 10.3389/fendo.2022.903731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Numerous studies validated frequent glucose dysfunction in patients with acute pancreatitis (AP). However, the prevalence of new-onset diabetes in individuals after a first episode of AP varies widely among previous studies. This study aims to determine the incidence of post-acute pancreatitis diabetes mellitus (PPDM-A) in Chinese people and further identify potential risk factors that influence diabetes development in patients with AP. METHODS This was a multi-center retrospective cohort study including 6009 inpatients with a first attack of AP. A total of 1804 patients with AP without known endocrine pancreatic disorders or other pancreatic exocrine diseases were eligible for analysis. Data was collected from medical records by hospital information system and telephone follow-ups after discharge. The multiple logistic regression analysis was established to evaluate the potential influencing factors of PPDM-A. RESULTS The prevalence of newly diagnosed diabetes after a first episode of AP in China was 6.2%. Data showed that patients who developed PPDM-A were more likely to be younger (X2 = 6.329, P = 0.012), experienced longer hospital stays (X2 = 6.949, P = 0.008) and had a higher frequency of overweight or obesity (X2 = 11.559, P = 0.003) compared to those with normal glycemia. The frequency of stress hyperglycemia on admission (X2 = 53.815, P < 0.001), hyperlipidemia (X2 = 33.594, P < 0.001) and non-alcoholic fatty liver disease (NAFLD) (X2 = 36.335, P < 0.001) were significantly higher among individuals with PPDM-A compared with control group. Also, patients with PPDM-A were more likely to be hyperlipidemic AP (X2 = 16.304, P = 0.001) and show a higher degree of severity (X2 = 7.834, P = 0.020) and recurrence rate (X2 = 26.908, P < 0.001) of AP compared to those without diabetes. In addition, multiple logistic regression analysis indicated that stress hyperglycemia, hyperlipidemia, NAFLD and repeated attacks of AP were the independent influence factors for developing PPDM-A. CONCLUSION Our study first demonstrated the prevalence of secondary diabetes in Chinese patients after AP. The disorder of glucose metabolism in individuals with AP should be regularly evaluated in clinical practice. Further studies are needed to verify the relationship between liver and pancreas in keeping glucose homeostasis under AP condition.
Collapse
Affiliation(s)
- Yingqi Lv
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Yang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfang Sun
- Key Laboratory of Environmental, Medicine Engineering, Ministry of Education, school of Public Health, Southeast University, Nanjing, China
| | - Jiaying Hou
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Zhiwei Chen
- Department of Endocrinology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xuehua Yu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, China
| | - Xuelu Yuan
- Department of Endocrinology, Yixing Second People’s Hospital, Wuxi, China
| | - Xuejia Lu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Xie
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Yu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xianghui Su
- Department of Endocrinology, Changji Branch, First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Ling Li, ; Chi Zhang, ; Gaifang Liu,
| | - Chi Zhang
- Department of Endocrinology, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China
- *Correspondence: Ling Li, ; Chi Zhang, ; Gaifang Liu,
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Ling Li, ; Chi Zhang, ; Gaifang Liu,
| |
Collapse
|
30
|
Bai C, Wang Y, Niu Z, Guan Y, Huang J, Nian X, Zuo F, Zhao J, Kazumi T, Wu B. Exenatide improves hepatocyte insulin resistance induced by different regional adipose tissue. Front Endocrinol (Lausanne) 2022; 13:1012904. [PMID: 36246878 PMCID: PMC9558273 DOI: 10.3389/fendo.2022.1012904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is resulted from energy surplus and is characterized by abnormal adipose tissue accumulation and/or distribution. Adipokines secreted by different regional adipose tissue can induce changes in key proteins of the insulin signaling pathway in hepatocytes and result in impaired hepatic glucose metabolism. This study aimed to investigate whether exenatide affects key proteins of IRS2/PI3K/Akt2 signaling pathway in hepatocytes altered by the different regional fat depots. Six non-obese patients without endocrine diseases were selected as the research subjects. Their subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)were co-cultured with HepG2 cells in the transwell chamber. In the presence or absence of exenatide, adipokines content in the supernatant of each experimental group was detected by ELISA. In addition, HepG2 cells in each co-culture group with and without insulin were collected, and the expression of key proteins IRS2, p-IRS2(S731), PI3K-p85, Akt2, and p-Akt2(S473) was detected by western blotting (WB). The results showed that the adipokines IL-8, MCP-1, VEGF, and sTNFR2 in the supernatant of HepG2 cells induced by different regional adipose tissue were significantly higher than those in the HepG2 group, and VAT released more adipokines than SAT. Furthermore, these adipokines were significantly inhibited by exenatide. Importantly, the different regional fat depot affects the IRS2/PI3K/Akt2 insulin signaling pathway of hepatocytes. Exenatide can up-regulate the expression of hepatocyte proteins IRS2, PI3K-p85, p-Akt2(S731) inhibited by adipose tissue, and down-regulate the expression of hepatocyte proteins p-IRS2(S731) promoted by adipose tissue. The effect of VAT on the expression of these key proteins in hepatocytes is more significant than that of SAT. But there was no statistical difference in the expression of Akt2 protein among each experimental group, suggesting that exenatide has no influence on the expression of Akt2 protein in hepatocytes. In conclusion, exenatide may improve hepatic insulin resistance (IR) by inhibiting adipokines and regulating the expression of key proteins in the IRS2/PI3K/Akt2 pathway.
Collapse
Affiliation(s)
- Chuanmin Bai
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yujun Wang
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhi Niu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yaxin Guan
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, United States
| | - Xin Nian
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Juan Zhao
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Tsutomu Kazumi
- Open Research Center for Studying of Lifestyle−Related Diseases, Mukogawa Women’s University, Nishinomiya, Japan
- Research Institute for Nutrition Sciences, Mukogawa Women’s University, Nishinomiya, Japan
- Department of Medicine, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | - Bin Wu
- Department of Endocrinology, First Affiliated Hospital, Kunming Medical University, Kunming, China
- *Correspondence: Bin Wu,
| |
Collapse
|