1
|
Dershowitz LB, Kaltschmidt JA. Enteric Nervous System Striped Patterning and Disease: Unexplored Pathophysiology. Cell Mol Gastroenterol Hepatol 2024; 18:101332. [PMID: 38479486 PMCID: PMC11176954 DOI: 10.1016/j.jcmgh.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The enteric nervous system (ENS) controls gastrointestinal (GI) motility, and defects in ENS development underlie pediatric GI motility disorders. In disorders such as Hirschsprung's disease (HSCR), pediatric intestinal pseudo-obstruction (PIPO), and intestinal neuronal dysplasia type B (INDB), ENS structure is altered with noted decreased neuronal density in HSCR and reports of increased neuronal density in PIPO and INDB. The developmental origin of these structural deficits is not fully understood. Here, we review the current understanding of ENS development and pediatric GI motility disorders incorporating new data on ENS structure. In particular, emerging evidence demonstrates that enteric neurons are patterned into circumferential stripes along the longitudinal axis of the intestine during mouse and human development. This novel understanding of ENS structure proposes new questions about the pathophysiology of pediatric GI motility disorders. If the ENS is organized into stripes, could the observed changes in enteric neuron density in HSCR, PIPO, and INDB represent differences in the distribution of enteric neuronal stripes? We review mechanisms of striped patterning from other biological systems and propose how defects in striped ENS patterning could explain structural deficits observed in pediatric GI motility disorders.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California; Wu Tsai Neurosciences Institute, Stanford University, Stanford, California.
| |
Collapse
|
2
|
Shepherd A, Feinstein L, Sabel S, Rastelli D, Mezhibovsky E, Matthews L, Muppirala A, Robinson A, Sharma KR, ElSeht A, Zeve D, Breault DT, Gershon MD, Rao M. RET Signaling Persists in the Adult Intestine and Stimulates Motility by Limiting PYY Release From Enteroendocrine Cells. Gastroenterology 2024; 166:437-449. [PMID: 37995867 PMCID: PMC10922887 DOI: 10.1053/j.gastro.2023.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS RET tyrosine kinase is necessary for enteric nervous system development. Loss-of-function RET mutations cause Hirschsprung disease (HSCR), in which infants are born with aganglionic bowel. Despite surgical correction, patients with HSCR often experience chronic defecatory dysfunction and enterocolitis, suggesting that RET is important after development. To test this hypothesis, we determined the location of postnatal RET and its significance in gastrointestinal (GI) motility. METHODS RetCFP/+ mice and human transcriptional profiling data were studied to identify the enteric neuronal and epithelial cells that express RET. To determine whether RET regulates gut motility in vivo, genetic, and pharmacologic approaches were used to disrupt RET in all RET-expressing cells, a subset of enteric neurons, or intestinal epithelial cells. RESULTS Distinct subsets of enteric neurons and enteroendocrine cells expressed RET in the adult intestine. RET disruption in the epithelium, rather than in enteric neurons, slowed GI motility selectively in male mice. RET kinase inhibition phenocopied this effect. Most RET+ epithelial cells were either enterochromaffin cells that release serotonin or L-cells that release peptide YY (PYY) and glucagon-like peptide 1 (GLP-1), both of which can alter motility. RET kinase inhibition exaggerated PYY and GLP-1 release in a nutrient-dependent manner without altering serotonin secretion in mice and human organoids. PYY receptor blockade rescued dysmotility in mice lacking epithelial RET. CONCLUSIONS RET signaling normally limits nutrient-dependent peptide release from L-cells and this activity is necessary for normal intestinal motility in male mice. These effects could contribute to dysmotility in HSCR, which predominantly affects males, and uncovers a mechanism that could be targeted to treat post-prandial GI dysfunction.
Collapse
Affiliation(s)
- Amy Shepherd
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Laurence Feinstein
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Svetlana Sabel
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Daniella Rastelli
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Esther Mezhibovsky
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Lynley Matthews
- Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Anoohya Muppirala
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ariel Robinson
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina R Sharma
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Abrahim ElSeht
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Daniel Zeve
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David T Breault
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael D Gershon
- Department of Pathology, Columbia University Medical Center, New York, New York
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Pediatrics, Columbia University Medical Center, New York, New York.
| |
Collapse
|
3
|
Kulkarni S, Saha M, Slosberg J, Singh A, Nagaraj S, Becker L, Zhang C, Bukowski A, Wang Z, Liu G, Leser JM, Kumar M, Bakhshi S, Anderson MJ, Lewandoski M, Vincent E, Goff LA, Pasricha PJ. Age-associated changes in lineage composition of the enteric nervous system regulate gut health and disease. eLife 2023; 12:RP88051. [PMID: 38108810 PMCID: PMC10727506 DOI: 10.7554/elife.88051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The enteric nervous system (ENS), a collection of neural cells contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the neural crest and remains largely unchanged thereafter. Here, we show that the lineage composition of maturing ENS changes with time, with a decline in the canonical lineage of neural-crest derived neurons and their replacement by a newly identified lineage of mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility which can be reversed by GDNF supplementation. Transcriptomic analyses of human gut tissues show reduced GDNF-RET signaling in patients with intestinal dysmotility which is associated with reduction in neural crest-derived neuronal markers and concomitant increase in transcriptional patterns specific to mesoderm-derived neurons. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical CenterBostonUnited States
- Division of Medical Sciences, Harvard Medical SchoolBostonUnited States
| | - Monalee Saha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jared Slosberg
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alpana Singh
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Sushma Nagaraj
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Laren Becker
- Division of Gastroenterology, Stanford University – School of MedicineStanfordUnited States
| | - Chengxiu Zhang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Alicia Bukowski
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Zhuolun Wang
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Guosheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Jenna M Leser
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Mithra Kumar
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Shriya Bakhshi
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Matthew J Anderson
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Mark Lewandoski
- Center for Cancer Research, National Cancer InstituteFrederickUnited States
| | - Elizabeth Vincent
- Department of Genetic Medicine, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University – School of MedicineBaltimoreUnited States
- Kavli Neurodiscovery Institute, Johns Hopkins University – School of MedicineBaltimoreUnited States
| | | |
Collapse
|
4
|
Gencpinar P, Bal Yuksel E, Basarir G, Kanik A, Arslan FD, Olgac Dundar N, Karakoyun I. The Role of Breast Milk Neurotrophin Levels in Infantile Colic Pathogenesis: A Cross-Sectional Case-Control Study. Breastfeed Med 2023; 18:908-912. [PMID: 38100441 DOI: 10.1089/bfm.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Objective: Immaturity of the digestive tract and enteric nervous system is a widely accepted theory for infantile colic (IC) etiopathogenesis. The study aimed to show whether neurotrophins that are necessary for normal functioning and development of the gastrointestinal system have a role in the pathogenesis of IC. Materials and Methods: The IC group (n = 75) comprising the mothers of infants with IC and the control group (n = 75) were included to this cross-sectional case-control study. Brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF), and nerve growth factor (NGF) levels of breast milk samples were evaluated by immunosorbent analysis method. Results: The mean age of infants with IC was 7.3 ± 2.8 weeks, while the mean age of the control group was 8.1 ± 2.9 weeks (p = 0.110). No significant difference was found between the breast milk BDNF, GDNF, CNTF, and NGF levels of two groups (p = 0.941, p = 0.510, p = 0.533, p = 0.839, respectively). Conclusions: This is the first report comparing the neurotrophin levels of the breast milk samples taken from the mothers of infants with and without IC. The study demonstrated that breast milk neurotrophin levels of the mothers did not differ significantly between the infants with and without IC.
Collapse
Affiliation(s)
- Pinar Gencpinar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Esra Bal Yuksel
- Department of Pediatrics, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Gunce Basarir
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Ali Kanik
- Department of Pediatrics, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Fatma Demet Arslan
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Tepecik Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Inanc Karakoyun
- Department of Medical Biochemistry, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| |
Collapse
|
5
|
Chatterjee S, Fries LE, Yaacov O, Hu N, Berk-Rauch HE, Chakravarti A. RET enhancer haplotype-dependent remodeling of the human fetal gut development program. PLoS Genet 2023; 19:e1011030. [PMID: 37948459 PMCID: PMC10664930 DOI: 10.1371/journal.pgen.1011030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States of America
| | - Lauren E. Fries
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Or Yaacov
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Nan Hu
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Hanna E. Berk-Rauch
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, United States of America
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, United States of America
| |
Collapse
|
6
|
Vincent E, Chatterjee S, Cannon GH, Auer D, Ross H, Chakravarti A, Goff LA. Ret deficiency decreases neural crest progenitor proliferation and restricts fate potential during enteric nervous system development. Proc Natl Acad Sci U S A 2023; 120:e2211986120. [PMID: 37585461 PMCID: PMC10451519 DOI: 10.1073/pnas.2211986120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
The receptor tyrosine kinase RET plays a critical role in the fate specification of enteric neural crest-derived cells (ENCDCs) during enteric nervous system (ENS) development. RET loss of function (LoF) is associated with Hirschsprung disease (HSCR), which is marked by aganglionosis of the gastrointestinal (GI) tract. Although the major phenotypic consequences and the underlying transcriptional changes from Ret LoF in the developing ENS have been described, cell type- and state-specific effects are unknown. We performed single-cell RNA sequencing on an enriched population of ENCDCs from the developing GI tract of Ret null heterozygous and homozygous mice at embryonic day (E)12.5 and E14.5. We demonstrate four significant findings: 1) Ret-expressing ENCDCs are a heterogeneous population comprising ENS progenitors as well as glial- and neuronal-committed cells; 2) neurons committed to a predominantly inhibitory motor neuron developmental trajectory are not produced under Ret LoF, leaving behind a mostly excitatory motor neuron developmental program; 3) expression patterns of HSCR-associated and Ret gene regulatory network genes are impacted by Ret LoF; and 4) Ret deficiency leads to precocious differentiation and reduction in the number of proliferating ENS precursors. Our results support a model in which Ret contributes to multiple distinct cellular phenotypes during development of the ENS, including the specification of inhibitory neuron subtypes, cell cycle dynamics of ENS progenitors, and the developmental timing of neuronal and glial commitment.
Collapse
Affiliation(s)
- Elizabeth Vincent
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY10016
| | - Gabrielle H. Cannon
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Dallas Auer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Holly Ross
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY10016
| | - Loyal A. Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kavli Neurodiscovery Institute, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
7
|
Good PI, Li L, Hurst HA, Serrano Herrera I, Xu K, Rao M, Bateman DA, Al-Awqati Q, D’Agati VD, Costantini F, Lin F. Low nephron endowment increases susceptibility to renal stress and chronic kidney disease. JCI Insight 2023; 8:e161316. [PMID: 36626229 PMCID: PMC9977438 DOI: 10.1172/jci.insight.161316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated potentially novel mouse models with a 30%-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy, followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared with controls with normal nephron number. Mice with low nephron number had reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Collapse
Affiliation(s)
| | - Ling Li
- Department of Pediatrics and
| | | | | | - Katherine Xu
- Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons New York, New York, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston Massachusetts, USA
| | | | - Qais Al-Awqati
- Department of Internal Medicine, Columbia University Vagelos College of Physicians and Surgeons New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology and Cellular Biology at Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Frank Costantini
- Department of Genetics and Development at Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
8
|
Sunardi M, Ito K, Sato Y, Uesaka T, Iwasaki M, Enomoto H. A Single RET Mutation in Hirschsprung Disease Induces Intestinal Aganglionosis Via a Dominant-Negative Mechanism. Cell Mol Gastroenterol Hepatol 2022; 15:1505-1524. [PMID: 36521661 DOI: 10.1016/j.jcmgh.2022.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of the enteric nervous system (ENS). HSCR potentially involves multiple gene aberrations and displays complex patterns of inheritance. Mutations of the RET gene, encoding the RET receptor tyrosine kinase, play a central role in the pathogenesis of HSCR. Although a wide variety of coding RET mutations have been identified, their pathogenetic significance in vivo has remained largely unclear. METHODS We introduced a HSCR-associated RET missense mutation, RET(S811F), into the corresponding region (S812) of the mouse Ret gene. Pathogenetic impact of Ret(S812F) was assessed by histologic and functional analyses of the ENS and by biochemical analyses. Interactions of the Ret(S812F) allele with HSCR susceptibility genes, the RET9 allele and the Ednrb gene, were examined by genetic crossing in mice. RESULTS RetS812F/+ mice displayed intestinal aganglionosis (incidence, 50%) or hypoganglionosis (50%), impaired differentiation of enteric neurons, defecation deficits, and increased lethality. Biochemical analyses revealed that Ret(S811F) protein was not only kinase-deficient but also abrogated function of wild-type RET in trans. Moreover, the Ret(S812F) allele interacted with other HSCR susceptibility genes and caused intestinal aganglionosis with full penetrance. CONCLUSIONS This study demonstrates that a single RET missense mutation alone induces intestinal aganglionosis via a dominant-negative mechanism. The RetS812F/+ mice model HSCR displays dominant inheritance with incomplete penetrance and serves as a valuable platform for better understanding of the pathogenetic mechanism of HSCR caused by coding RET mutations.
Collapse
Affiliation(s)
- Mukhamad Sunardi
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Keisuke Ito
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yuya Sato
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Mitsuhiro Iwasaki
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan.
| |
Collapse
|
9
|
Alhawaj AF. Stem cell-based therapy for hirschsprung disease, do we have the guts to treat? Gene Ther 2022; 29:578-587. [PMID: 34121091 PMCID: PMC9684071 DOI: 10.1038/s41434-021-00268-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital anomaly of the colon that results from failure of enteric nervous system formation, leading to a constricted dysfunctional segment of the colon with variable lengths, and necessitating surgical intervention. The underlying pathophysiology includes a defect in neural crest cells migration, proliferation and differentiation, which are partially explained by identified genetic and epigenetic alterations. Despite the high success rate of the curative surgeries, they are associated with significant adverse outcomes such as enterocolitis, fecal soiling, and chronic constipation. In addition, some patients suffer from extensive lethal variants of the disease, all of which justify the need for an alternative cure. During the last 5 years, there has been considerable progress in HSCR stem cell-based therapy research. However, many major issues remain unsolved. This review will provide concise background information on HSCR, outline the future approaches of stem cell-based HSCR therapy, review recent key publications, discuss technical and ethical challenges the field faces prior to clinical translation, and tackle such challenges by proposing solutions and evaluating existing approaches to progress further.
Collapse
Affiliation(s)
- Ali Fouad Alhawaj
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom.
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
10
|
Baker PA, Ibarra-García-Padilla R, Venkatesh A, Singleton EW, Uribe RA. In toto imaging of early enteric nervous system development reveals that gut colonization is tied to proliferation downstream of Ret. Development 2022; 149:278609. [PMID: 36300492 PMCID: PMC9686996 DOI: 10.1242/dev.200668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/27/2022] [Indexed: 01/19/2023]
Abstract
The enteric nervous system is a vast intrinsic network of neurons and glia within the gastrointestinal tract and is largely derived from enteric neural crest cells (ENCCs) that emigrate into the gut during vertebrate embryonic development. Study of ENCC migration dynamics and their genetic regulators provides great insights into fundamentals of collective cell migration and nervous system formation, and these are pertinent subjects for study due to their relevance to the human congenital disease Hirschsprung disease (HSCR). For the first time, we performed in toto gut imaging and single-cell generation tracing of ENCC migration in wild type and a novel ret heterozygous background zebrafish (retwmr1/+) to gain insight into ENCC dynamics in vivo. We observed that retwmr1/+ zebrafish produced fewer ENCCs localized along the gut, and these ENCCs failed to reach the hindgut, resulting in HSCR-like phenotypes. Specifically, we observed a proliferation-dependent migration mechanism, where cell divisions were associated with inter-cell distances and migration speed. Lastly, we detected a premature neuronal differentiation gene expression signature in retwmr1/+ ENCCs. These results suggest that Ret signaling may regulate maintenance of a stem state in ENCCs.
Collapse
Affiliation(s)
- Phillip A. Baker
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | - Rodrigo Ibarra-García-Padilla
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA
| | | | | | - Rosa. A. Uribe
- BioSciences Department, Rice University, Houston, TX 77005, USA,Biochemistry and Cell Biology Program, Rice University, Houston, TX 77005, USA,Author for correspondence ()
| |
Collapse
|
11
|
Virtanen H, Garton D, Andressoo JO. Reply. Cell Mol Gastroenterol Hepatol 2022; 14:968-969. [PMID: 35940207 PMCID: PMC9500437 DOI: 10.1016/j.jcmgh.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Heikki Virtanen
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Daniel Garton
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Department of Pharmacology, Faculty of Medicine and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Neurobiology, Care Sciences and Society, Neurogeriatrik, Karolinska Institutet, Sweden
| |
Collapse
|
12
|
Natarajan D, McCann C, Dattani J, Pachnis V, Thapar N. Multiple Roles of Ret Signalling During Enteric Neurogenesis. Front Mol Neurosci 2022; 15:832317. [PMID: 35694443 PMCID: PMC9186293 DOI: 10.3389/fnmol.2022.832317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of the enteric nervous system is formed by vagal neural crest cells which enter the foregut and migrate rostrocaudally to colonise the entire length of the gastrointestinal tract. Absence of enteric ganglia from the distal colon are the hallmark of Hirschsprung disease, a congenital disorder characterised by severe intestinal dysmotility. Mutations in the receptor tyrosine kinase RET have been identified in approximately 50% of familial cases of Hirschsprung disease but the cellular processes misregulated in this condition remain unclear. By lineage tracing neural crest cells in mice homozygous for a knock-in allele of Ret (Ret51/51), we demonstrate that normal activity of this receptor is required in vivo for the migration of enteric nervous system progenitors throughout the gut. In mutant mice, progenitors of enteric neurons fail to colonise the distal colon, indicating that failure of colonisation of the distal intestine is a major contributing factor for the pathogenesis of Hirschsprung disease. Enteric nervous system progenitors in the ganglionic proximal guts of mutant mice are also characterised by reduced proliferation and differentiation. These findings suggest that the functional abnormalities in Hirschsprung disease result from a combination of colonic aganglionosis and deficits in neuronal circuitry of more proximal gut segments. The reduced neurogenesis in the gut of Ret51/51 mutants was reproduced in the multilineage enteric nervous system progenitors isolated from these animals. Correction of the molecular defects of such progenitors fully restored their neurogenic potential in culture. These observations enhance our understanding of the pathogenesis of Hirschsprung disease and highlight potential approaches for its treatment.
Collapse
Affiliation(s)
- Dipa Natarajan
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- *Correspondence: Dipa Natarajan,
| | - Conor McCann
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Justine Dattani
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Vassilis Pachnis,
| | - Nikhil Thapar
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Nikhil Thapar,
| |
Collapse
|
13
|
Xiao Y, Sun Y, Lu Y, Du J, Tian X, Cai W, Wang Y. Loss function of Bcr mutation causes gastrointestinal dysmotility and brain developmental defects. Neurogastroenterol Motil 2021; 33:e14190. [PMID: 34190380 DOI: 10.1111/nmo.14190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The breakpoint cluster region (BCR) is a protein that originally forms a fusion protein with c-Abl tyrosine kinase and induces leukemia. Researchers have shown that BCR is enriched in the central nervous system and may contribute to neurological disorders. We aimed to investigate the physiological function of BCR in neural development in the gastrointestinal (GI) tract and brain. METHODS Whole-exome sequencing was used to screen for mutations in the BCR. Bcr knockout mice (Bcr-/- , ΔExon 2-22) were generated using the CRISPR/Cas9 system. Transit of carmine red dye and glass bead expulsion assays were used to record total and proximal GI transit and distal colonic transit. KEY RESULTS In an infant with pediatric intestinal pseudo-obstruction, we found a heterozygous de novo mutation (NM_004327.3:c.3072+1G>A) in BCR. Bcr deficiency mice (Bcr-/- ) exhibited growth retardation and impaired gastrointestinal motility. Bcr-/- mice had a prolonged average total GI transit time with increased distal colonic transit and proximal GI transit in isolation. Morphology analysis indicated that Bcr-/- mice had a less number of neurons in the submucosal plexus and myenteric plexus. Bcr-/- mice exhibited apparent structural defects in the brain, particularly in the cortex. Additionally, Bcr- depletion in the mouse cortex altered the expression of Ras homologous (Rho) family small GTPases. CONCLUSIONS AND INFERENCES BCR mutations are associated with intestinal obstruction in children. Loss of Bcr can cause intestinal dysmotility and brain developmental defects may via regulation of Rho GTPases.
Collapse
Affiliation(s)
- Yongtao Xiao
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yu Sun
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xinbei Tian
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Division of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Chatterjee S, Karasaki KM, Fries LE, Kapoor A, Chakravarti A. A multi-enhancer RET regulatory code is disrupted in Hirschsprung disease. Genome Res 2021; 31:2199-2208. [PMID: 34782358 PMCID: PMC8647834 DOI: 10.1101/gr.275667.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/05/2021] [Indexed: 01/25/2023]
Abstract
The major genetic risk factors for Hirschsprung disease (HSCR) are three common polymorphisms within cis-regulatory elements (CREs) of the receptor tyrosine kinase gene RET, which reduce its expression during enteric nervous system (ENS) development. These risk variants attenuate binding of the transcription factors RARB, GATA2, and SOX10 to their cognate CREs, reduce RET gene expression, and dysregulate other ENS and HSCR genes in the RET-EDNRB gene regulatory network (GRN). Here, we use siRNA, ChIP, and CRISPR-Cas9 deletion analyses in the SK-N-SH cell line to ask how many additional HSCR-associated risk variants reside in RET CREs that affect its gene expression. We identify 22 HSCR-associated variants in candidate RET CREs, of which seven have differential allele-specific in vitro enhancer activity, and four of these seven affect RET gene expression; of these, two enhancers are bound by the transcription factor PAX3. We also show that deleting multiple variant-containing enhancers leads to synergistic effects on RET gene expression. These, coupled with our prior results, show that common sequence variants in at least 10 RET enhancers affect HSCR risk, seven with experimental evidence of affecting RET gene expression, extending the known RET-EDNRB GRN to reveal an extensive regulatory code modulating disease risk at a single gene.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Kameko M Karasaki
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Lauren E Fries
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Ashish Kapoor
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Aravinda Chakravarti
- Center for Human Genetics and Genomics, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York 10016, USA
| |
Collapse
|
15
|
Muzyka VV, Badea TC. Genetic interplay between transcription factor Pou4f1/Brn3a and neurotrophin receptor Ret in retinal ganglion cell type specification. Neural Dev 2021; 16:5. [PMID: 34548095 PMCID: PMC8454062 DOI: 10.1186/s13064-021-00155-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022] Open
Abstract
Background While the transcriptional code governing retinal ganglion cell (RGC) type specification begins to be understood, its interplay with neurotrophic signaling is largely unexplored. In mice, the transcription factor Brn3a/Pou4f1 is expressed in most RGCs, and is required for the specification of RGCs with small dendritic arbors. The Glial Derived Neurotrophic Factor (GDNF) receptor Ret is expressed in a subset of RGCs, including some expressing Brn3a, but its role in RGC development is not defined. Methods Here we use combinatorial genetic experiments using conditional knock-in reporter alleles at the Brn3a and Ret loci, in combination with retina- or Ret specific Cre drivers, to generate complete or mosaic genetic ablations of either Brn3a or Ret in RGCs. We then use sparse labelling to investigate Brn3a and Ret gene dosage effects on RGC dendritic arbor morphology. In addition, we use immunostaining and/or gene expression profiling by RNASeq to identify transcriptional targets relevant for the potential Brn3a-Ret interaction in RGC development. Results We find that mosaic gene dosage manipulation of the transcription factor Brn3a/Pou4f1 in neurotrophic receptor Ret heterozygote RGCs results in altered cell fate decisions and/or morphological dendritic defects. Specific RGC types are lost if Brn3a is ablated during embryogenesis and only mildly affected by postnatal Brn3a ablation. Sparse but not complete Brn3a heterozygosity combined with complete Ret heterozygosity has striking effects on RGC type distribution. Brn3a only mildly modulates Ret transcription, while Ret knockouts exhibit slightly skewed Brn3a and Brn3b expression during development that is corrected by adult age. Brn3a loss of function modestly but significantly affects distribution of Ret co-receptors GFRα1-3, and neurotrophin receptors TrkA and TrkC in RGCs. Conclusions Based on these observations, we propose that Brn3a and Ret converge onto developmental pathways that control RGC type specification, potentially through a competitive mechanism requiring signaling from the surrounding tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s13064-021-00155-z.
Collapse
Affiliation(s)
- Vladimir Vladimirovich Muzyka
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Institute of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russia.
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, USA. .,Research and Development Institute, School of Medicine, Transilvania University of Brasov, Brasov, Romania.
| |
Collapse
|
16
|
Uesaka T, Okamoto M, Nagashimada M, Tsuda Y, Kihara M, Kiyonari H, Enomoto H. Enhanced enteric neurogenesis by Schwann cell precursors in mouse models of Hirschsprung disease. Glia 2021; 69:2575-2590. [PMID: 34272903 DOI: 10.1002/glia.24059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/31/2022]
Abstract
Hirschsprung disease (HSCR) is characterized by congenital absence of enteric neurons in distal portions of the gut. Although recent studies identified Schwann cell precursors (SCPs) as a novel cellular source of enteric neurons, it is unknown how SCPs contribute to the disease phenotype of HSCR. Using Schwann cell-specific genetic labeling, we investigated SCP-derived neurogenesis in two mouse models of HSCR; Sox10 haploinsufficient mice exhibiting distal colonic aganglionosis and Ednrb knockout mice showing small intestinal aganglionosis. We also examined Ret dependency in SCP-derived neurogenesis using mice displaying intestinal aganglionosis in which Ret expression was conditionally removed in the Schwann cell lineage. SCP-derived neurons were abundant in the transition zone lying between the ganglionated and aganglionic segments, although SCP-derived neurogenesis was scarce in the aganglionic region. In the transition zone, SCPs mainly gave rise to nitrergic neurons that are rarely observed in the SCP-derived neurons under the normal condition. Enhanced SCP-derived neurogenesis was also detected in the transition zone of mice lacking RET expression in the Schwann cell lineage. Increased SCP-derived neurogenesis in the transition zone suggests that reduction in the vagal neural crest-derived enteric neurons promotes SCP-derived neurogenesis. SCPs may adopt a neuronal subtype by responding to changes in the gut environment. Robust SCP-derived neurogenesis can occur in a Ret-independent manner, which suggests that SCPs are a cellular source to compensate for missing enteric neurons in HSCR.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsumasa Okamoto
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Department of Pediatric Surgery, Japanese Red Cross Society, Himeji Hospital, Himeji, Hyogo, Japan
| | - Mayumi Nagashimada
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.,Division of Health Science, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoshihiro Tsuda
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Hideki Enomoto
- Division for Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
17
|
Increased RET Activity Coupled with a Reduction in the RET Gene Dosage Causes Intestinal Aganglionosis in Mice. eNeuro 2021; 8:ENEURO.0534-20.2021. [PMID: 33958373 PMCID: PMC8174796 DOI: 10.1523/eneuro.0534-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations of the gene encoding the RET tyrosine kinase causes Hirschsprung's disease (HSCR) and medullary thyroid carcinoma (MTC). Current consensus holds that HSCR and MTC are induced by inactivating and activating RET mutations, respectively. However, it remains unknown whether activating mutations in the RET gene have adverse effects on ENS development in vivo We addressed this issue by examining mice engineered to express RET51(C618F), an activating mutation identified in MTC patients. Although Ret51(C618F)/51(C618F) mice displayed hyperganglionosis of the ENS, Ret51(C618F)/- mice exhibited severe intestinal aganglionosis because of premature neuronal differentiation. Reduced levels of glial cell-derived neurotrophic factor (GDNF), a RET-activating neurotrophic factor, ameliorated the ENS phenotype of Ret51(C618F)/- mice, demonstrating that GDNF-mediated activation of RET51(C618F) is responsible for severe aganglionic phenotype. The RET51(C618F) allele showed genetic interaction with Ednrb gene, one of modifier genes for HSCR. These data reveal that proliferation and differentiation of ENS precursors are exquisitely controlled by both the activation levels and total dose of RET. Increased RET activity coupled with a decreased gene dosage can cause intestinal aganglionosis, a finding that provides novel insight into HSCR pathogenesis.
Collapse
|
18
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
19
|
Tang W, Chen M, Guo X, Zhou K, Wen Z, Liu F, Liu X, Mao X, He X, Hu W, Sun X, Tang J, Li H, White RA, Lv W, Wang P, Hang B, Sun R, Wang X, Xia Y. Multiple 'omics'-analysis reveals the role of prostaglandin E2 in Hirschsprung's disease. Free Radic Biol Med 2021; 164:390-398. [PMID: 33465467 DOI: 10.1016/j.freeradbiomed.2020.12.456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
The etiology and pathogenesis of Hirschsprung's disease (HSCR) remain largely unknown. We examined colon tissues from three independent populations with a combined analysis of metabolomics, transcriptomics and proteomics to understand HSCR pathogenesis, according to which mouse model was used to examine prostaglandin E2 (PGE2) induced clinical presentation of HSCR. SH-SY5Y and SK-N-BE(2) cell lines were studied for PGE2 inhibited cell migration through EP2. Our integrated multiple 'omics'-analysis suggests that the levels of PGE2, the expression of the gene encoding PGE2 receptor (EP2), and PGE2 synthesis enzyme genes (PTGS1 and PTGES) increased in HSCR colon tissues, together with a decreased synthesis of PGE2-related byproducts. In vivo, the pregnant mice treated with PGE2 gave birth to offspring with the decrease of ganglion cells in their colon and gut function. In in vitro study, when EP2 was blocked, the PGE2-inhibited cell migration was recovered. Our study identified a novel pathway highlighting the link between expression of PTGS1 and PTGES, levels of PGE2, expression of PTGER2, and neural crest cell migration in HSCR, providing a novel strategy for future diagnosis and prevention of HSCR.
Collapse
Affiliation(s)
- Weibing Tang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zechao Wen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Fengli Liu
- Department of Pediatric Surgery, Xuzhou Children's Hospital, Xuzhou, 221006, China
| | - Xiang Liu
- Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Xiaohua Mao
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaowei He
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xian Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Junwei Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Richard Allen White
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Wei Lv
- School of Business, Nanjing University, Nanjing, 210093, China
| | - Pin Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA; Department of Gastroenterology, The Drum Tower Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, 94720, USA
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
20
|
Kameneva P, Kastriti ME, Adameyko I. Neuronal lineages derived from the nerve-associated Schwann cell precursors. Cell Mol Life Sci 2021; 78:513-529. [PMID: 32748156 PMCID: PMC7873084 DOI: 10.1007/s00018-020-03609-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/18/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
For a long time, neurogenic placodes and migratory neural crest cells were considered the immediate sources building neurons of peripheral nervous system. Recently, a number of discoveries revealed the existence of another progenitor type-a nerve-associated multipotent Schwann cell precursors (SCPs) building enteric and parasympathetic neurons as well as neuroendocrine chromaffin cells. SCPs are neural crest-derived and are similar to the crest cells by their markers and differentiation potential. Such similarities, but also considerable differences, raise many questions pertaining to the medical side, fundamental developmental biology and evolution. Here, we discuss the genesis of Schwann cell precursors, their role in building peripheral neural structures and ponder on their role in the origin in congenial diseases associated with peripheral nervous systems.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, 171 77, Sweden.
- Department of Molecular Neurosciences, Center for Brain Research, Medical University Vienna, Vienna, 1090, Austria.
| |
Collapse
|
21
|
Abstract
Investigations of the cellular and molecular mechanisms that mediate the development of the autonomic nervous system have identified critical genes and signaling pathways that, when disrupted, cause disorders of the autonomic nervous system. This review summarizes our current understanding of how the autonomic nervous system emerges from the organized spatial and temporal patterning of precursor cell migration, proliferation, communication, and differentiation, and discusses potential clinical implications for developmental disorders of the autonomic nervous system, including familial dysautonomia, Hirschsprung disease, Rett syndrome, and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
22
|
Cardinal T, Bergeron KF, Soret R, Souchkova O, Faure C, Guillon A, Pilon N. Male-biased aganglionic megacolon in the TashT mouse model of Hirschsprung disease involves upregulation of p53 protein activity and Ddx3y gene expression. PLoS Genet 2020; 16:e1009008. [PMID: 32898154 PMCID: PMC7500598 DOI: 10.1371/journal.pgen.1009008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder of neural crest development resulting in incomplete formation of the enteric nervous system (ENS). This life-threatening neurocristopathy affects 1/5000 live births, with a currently unexplained male-biased ratio. To address this lack of knowledge, we took advantage of the TashT mutant mouse line, which is the only HSCR model to display a robust male bias. Our prior work revealed that the TashT insertional mutation perturbs a Chr.10 silencer-enriched non-coding region, leading to transcriptional dysregulation of hundreds of genes in neural crest-derived ENS progenitors of both sexes. Here, through sex-stratified transcriptome analyses and targeted overexpression in ENS progenitors, we show that male-biased ENS malformation in TashT embryos is not due to upregulation of Sry-the murine ortholog of a candidate gene for the HSCR male bias in humans-but instead involves upregulation of another Y-linked gene, Ddx3y. This discovery might be clinically relevant since we further found that the DDX3Y protein is also expressed in the ENS of a subset of male HSCR patients. Mechanistically, other data including chromosome conformation captured-based assays and CRISPR/Cas9-mediated deletions suggest that Ddx3y upregulation in male TashT ENS progenitors is due to increased transactivation by p53, which appears especially active in these cells yet without triggering apoptosis. Accordingly, in utero treatment of TashT embryos with the p53 inhibitor pifithrin-α decreased Ddx3y expression and abolished the otherwise more severe ENS defect in TashT males. Our data thus highlight novel pathogenic roles for p53 and DDX3Y during ENS formation in mice, a finding that might help to explain the intriguing male bias of HSCR in humans.
Collapse
Affiliation(s)
- Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Karl-Frédérik Bergeron
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Lipid Metabolism Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Rodolphe Soret
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Christophe Faure
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
- Division de gastroentérologie, hépatologie et nutrition pédiatrique, Centre hospitalier universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Amélina Guillon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
- Centre d'excellence en recherche sur les maladies orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
- Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Zoumboulakis D, Cirella KR, Gougeon PY, Lourenssen SR, Blennerhassett MG. MMP-9 Processing of Intestinal Smooth Muscle-derived GDNF is Required for Neurotrophic Action on Enteric Neurons. Neuroscience 2020; 443:8-18. [PMID: 32682824 DOI: 10.1016/j.neuroscience.2020.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/11/2022]
Abstract
The neurotrophin GDNF guides development of the enteric nervous system (ENS) in embryogenesis and directs survival and axon outgrowth in postnatal myenteric neurons in vitro. GDNF expression in intestinal smooth muscle cells is dynamic, with upregulation by inflammatory cytokines in vitro or intestinal inflammation in vivo, but the role of post-translational proteolytic cleavage is undefined. In a co-culture model of myenteric neurons, smooth muscle and glia, inhibition of serine or cysteine protease activity was ineffective against the >2-fold increase in axon density caused by TNFα. However, inhibitors of metalloproteinases (MMP) identified an essential role of MMP-9, and qPCR and western blotting showed that pro-inflammatory cytokines increased both mRNA and protein expression for MMP-9, in both cellular lysates and conditioned medium (CM). Inhibition of MMP-9 prevented the cytokine-induced increase in mature GDNF in CM or cellular lysates of co-cultures or cell lines of intestinal smooth muscle cells (ISMC) from adult rat colon. Western blotting showed parallel upregulation of mature GDNF and MMP-9 vs control in ISMC isolated on Day 2 of TNBS-induced colitis. Nonetheless, transfection of GDNF plasmid into HEK-293 cells as a carrier system, or directly into the co-culture model, conveyed a strong neurotrophic effect that was MMP-9 dependent. We conclude that MMP-9 activity is required for the neurotrophic effects of GDNF on myenteric neurons in vitro. However, the coordinated upregulation of GDNF and MMP-9 in intestinal smooth muscle by inflammatory cytokines provides a supportive, target cell-derived environment that limits inflammatory damage to the ENS.
Collapse
Affiliation(s)
- Demetri Zoumboulakis
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Kirsten R Cirella
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Pierre-Yves Gougeon
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | - Sandra R Lourenssen
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, ON K7L 2V7, Canada
| | | |
Collapse
|
24
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
25
|
Neubarth NL, Emanuel AJ, Liu Y, Springel MW, Handler A, Zhang Q, Lehnert BP, Guo C, Orefice LL, Abdelaziz A, DeLisle MM, Iskols M, Rhyins J, Kim SJ, Cattel SJ, Regehr W, Harvey CD, Drugowitsch J, Ginty DD. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 2020; 368:eabb2751. [PMID: 32554568 PMCID: PMC7354383 DOI: 10.1126/science.abb2751] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
Meissner corpuscles are mechanosensory end organs that densely occupy mammalian glabrous skin. We generated mice that selectively lacked Meissner corpuscles and found them to be deficient in both perceiving the gentlest detectable forces acting on glabrous skin and fine sensorimotor control. We found that Meissner corpuscles are innervated by two mechanoreceptor subtypes that exhibit distinct responses to tactile stimuli. The anatomical receptive fields of these two mechanoreceptor subtypes homotypically tile glabrous skin in a manner that is offset with respect to one another. Electron microscopic analysis of the two Meissner afferents within the corpuscle supports a model in which the extent of lamellar cell wrappings of mechanoreceptor endings determines their force sensitivity thresholds and kinetic properties.
Collapse
Affiliation(s)
- Nicole L Neubarth
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Yin Liu
- Department of Biochemistry, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, 279 Campus Drive, Stanford, CA 94305, USA
| | - Mark W Springel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Annie Handler
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Qiyu Zhang
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chong Guo
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lauren L Orefice
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Amira Abdelaziz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M DeLisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael Iskols
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Julia Rhyins
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Soo J Kim
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Stuart J Cattel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Wade Regehr
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
26
|
Gao N, Hou P, Wang J, Zhou T, Wang D, Zhang Q, Mu W, Lv X, Li A. Increased Fibronectin Impairs the Function of Excitatory/Inhibitory Synapses in Hirschsprung Disease. Cell Mol Neurobiol 2020; 40:617-628. [PMID: 31760535 DOI: 10.1007/s10571-019-00759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Although approximately 50% of cases have a known genetic defect, the precise pathogenesis of Hirschsprung disease (HSCR) is still unclear. We recently reported that expression of fibronectin (FN), which is involved in the migration, colonization, and differentiation of enteric neural crest cells (ENCCs), is increased in aganglionic colonic segments obtained from patients. We hypothesized that abnormally high levels of FN might play a role in the etiology of HSCR. Here, to test this hypothesis, we investigated aganglionic, transitional, and ganglionic colon segments from 63 children with HSCR and distal colon from thirty healthy Wistar rats at embryonic day 20, in addition to in vitro studies with PC12 Adh neural crest cells. We measured the protein and mRNA expression levels of FN, together with a panel of excitatory (VGLUT1, GluA1, GluN1, PSD-95, and NL-1) and inhibitory (GAD67, GABA AR-α1, NL-2, and SLC32) synaptic markers. Expression of all these synaptic markers was significantly decreased in aganglionic colon, compared to ganglionic colon, whereas expression of FN was significantly increased. In a neural crest cell line, PC12 Adh, knockdown of FN with small-interfering RNA increased the expression of synaptic markers. Co-culture of colons from embryonic day 20 rats with RGD recombinant protein, which contains the RGD motif of FN, reduced the expression of excitatory and inhibitory synaptic markers. These results are consistent with the idea that the etiology of HSCR involves aberrant overexpression of FN, which may impair synaptic function and enteric nervous system development, leading to motor dysfunction of intestinal muscles.
Collapse
Affiliation(s)
- Ni Gao
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Peimin Hou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Tingting Zhou
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Dongming Wang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Weijing Mu
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaona Lv
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
27
|
Nakatani T, Iwasaki M, Yamamichi A, Yoshioka Y, Uesaka T, Bitoh Y, Maeda K, Fukumoto T, Takemoto T, Enomoto H. Point mutagenesis in mouse reveals contrasting pathogenetic effects between MEN2B‐ and Hirschsprung disease‐associated missense mutations of the
RET
gene. Dev Growth Differ 2020; 62:214-222. [DOI: 10.1111/dgd.12664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Taichi Nakatani
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
- Division of Pediatric Surgery Department of Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Mitsuhiro Iwasaki
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Atsuhiro Yamamichi
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Yuta Yoshioka
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Toshihiro Uesaka
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Yuko Bitoh
- Division of Pediatric Surgery Department of Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Kosaku Maeda
- Department of Surgery Hyogo Prefectural Kobe Children's Hospital Kobe Japan
| | - Takumi Fukumoto
- Division of Hepato‐Biliary‐Pancreatic surgery Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| | - Tatsuya Takemoto
- Institute of Advanced Medical Sciences Tokushima University Tokushima Japan
| | - Hideki Enomoto
- Division for Neural Differentiation and Regeneration Department of Physiology and Cell Biology Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
28
|
Chatterjee S, Nandakumar P, Auer DR, Gabriel SB, Chakravarti A. Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease. Proc Natl Acad Sci U S A 2019; 116:26697-26708. [PMID: 31818953 PMCID: PMC6936708 DOI: 10.1073/pnas.1908756116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of the gut from endodermal tissue to an organ with multiple distinct structures and functions occurs over a prolonged time during embryonic days E10.5-E14.5 in the mouse. During this process, one major event is innervation of the gut by enteric neural crest cells (ENCCs) to establish the enteric nervous system (ENS). To understand the molecular processes underpinning gut and ENS development, we generated RNA-sequencing profiles from wild-type mouse guts at E10.5, E12.5, and E14.5 from both sexes. We also generated these profiles from homozygous Ret null embryos, a model for Hirschsprung disease (HSCR), in which the ENS is absent. These data reveal 4 major features: 1) between E10.5 and E14.5 the developmental genetic programs change from expression of major transcription factors and its modifiers to genes controlling tissue (epithelium, muscle, endothelium) specialization; 2) the major effect of Ret is not only on ENCC differentiation to enteric neurons but also on the enteric mesenchyme and epithelium; 3) a muscle genetic program exerts significant effects on ENS development; and 4) sex differences in gut development profiles are minor. The genetic programs identified, and their changes across development, suggest that both cell autonomous and nonautonomous factors, and interactions between the different developing gut tissues, are important for normal ENS development and its disorders.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Priyanka Nandakumar
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Dallas R. Auer
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| | - Stacey B. Gabriel
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Center for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
29
|
Radu AG, Torch S, Fauvelle F, Pernet-Gallay K, Lucas A, Blervaque R, Delmas V, Schlattner U, Lafanechère L, Hainaut P, Tricaud N, Pingault V, Bondurand N, Bardeesy N, Larue L, Thibert C, Billaud M. LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. SCIENCE ADVANCES 2019; 5:eaau5106. [PMID: 31328154 PMCID: PMC6636984 DOI: 10.1126/sciadv.aau5106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.
Collapse
Affiliation(s)
- Anca G. Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Florence Fauvelle
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
- Univ. Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
| | - Anthony Lucas
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Renaud Blervaque
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Univ Grenoble Alpes, 38185 Grenoble, France
- INSERM U1055, 38041 Grenoble France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre Hainaut
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | | | | | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- Corresponding author. (M.B.); (C.T.)
| | - Marc Billaud
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- “Clinical and experimental model of lymphomagenesis” Univ Lyon, Université Claude Bernard Lyon1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon France
- Corresponding author. (M.B.); (C.T.)
| |
Collapse
|
30
|
Jonscher R, Belkind-Gerson J. Concise Review: Cellular and Molecular Mechanisms of Postnatal Injury-Induced Enteric Neurogenesis. Stem Cells 2019; 37:1136-1143. [PMID: 31145813 DOI: 10.1002/stem.3045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
Abstract
Although still controversial, there is increasing agreement that postnatal neurogenesis occurs in the enteric nervous system (ENS) in response to injury. Following acute colitis, there is significant cell death of enteric neurons and evidence suggests that subsequent neural regeneration follows. An enteric neural stem/progenitor cell population with neurogenic potential has been identified in culture; in vivo, compensatory neurogenesis is driven by enteric glia and may also include de-differentiated Schwann cells. Recent evidence suggests that changes in the enteric microenvironment due to injury-associated increases in glial cell-derived neurotrophic factor (GDNF), serotonin (5-hydroxytryptamine [HT]), products from the gut microbiome, and possibly endocannabinoids may lead to the transdifferentiation of mature enteric glia and may reprogram recruited Schwann cells. Targeting neurogenic pathways presents a promising avenue toward the development of new and innovative treatments for acquired damage to the ENS. In this review, we discuss potential sources of newly generated adult enteric neurons, the involvement of GDNF, 5-HT, endocannabinoids, and lipopolysaccharide, as well as therapeutic applications of this evolving work. Stem Cells 2019;37:1136-1143.
Collapse
Affiliation(s)
- Raleigh Jonscher
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Neurogastroenterology Program, Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
31
|
Kuehn ED, Meltzer S, Abraira VE, Ho CY, Ginty DD. Tiling and somatotopic alignment of mammalian low-threshold mechanoreceptors. Proc Natl Acad Sci U S A 2019; 116:9168-9177. [PMID: 30996124 PMCID: PMC6511030 DOI: 10.1073/pnas.1901378116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Innocuous mechanical stimuli acting on the skin are detected by sensory neurons, known as low-threshold mechanoreceptors (LTMRs). LTMRs are classified based on their response properties, action potential conduction velocity, rate of adaptation to static indentation of the skin, and terminal anatomy. Here, we report organizational properties of the cutaneous and central axonal projections of the five principal hairy skin LTMR subtypes. We find that axons of neurons within a particular LTMR class are largely nonoverlapping with respect to their cutaneous end organs (e.g., hair follicles), with Aβ rapidly adapting-LTMRs being the sole exception. Individual neurons of each LTMR class are mostly nonoverlapping with respect to their associated hair follicles, with the notable exception of C-LTMRs, which exhibit multiple branches that redundantly innervate individual hair follicles. In the spinal cord, LTMR central projections exhibit rostrocaudal elongation and mediolateral compression, compared with their cutaneous innervation patterns, and these central projections also exhibit a fine degree of homotypic topographic adjacency. These findings thus reveal homotypic tiling of LTMR subtype axonal projections in hairy skin and a remarkable degree of spatial precision of spinal cord axonal termination patterns, suggesting a somatotopically precise tactile encoding capability of the mechanosensory dorsal horn.
Collapse
Affiliation(s)
- Emily D Kuehn
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shan Meltzer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Victoria E Abraira
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| | - Cheng-Ying Ho
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
32
|
Russell JP, Mohammadi E, Ligon C, Latorre R, Johnson AC, Hoang B, Krull D, Ho MWY, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B. Enteric RET inhibition attenuates gastrointestinal secretion and motility via cholinergic signaling in rat colonic mucosal preparations. Neurogastroenterol Motil 2019; 31:e13479. [PMID: 30311722 DOI: 10.1111/nmo.13479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND The expression of RET in the developing enteric nervous system (ENS) suggests that RET may contribute to adult intestinal function. ENS cholinergic nerves play a critical role in the control of colonic function through the release of acetylcholine (ACh). In the current study, we hypothesized that a RET-mediated mechanism may regulate colonic ion transport and motility through modulation of cholinergic nerves. METHODS The effect of RET inhibition on active ion transport was assessed electrophysiologically in rat colonic tissue mounted in Ussing chambers via measurements of short circuit current (Isc) upon electrical field stimulation (EFS) or pharmacologically with cholinergic agonists utilizing a gastrointestinal (GI)-restricted RET inhibitor. We assessed the effect of the RET inhibitor on propulsive motility via quantification of fecal pellet output (FPO) induced by the acetylcholinesterase inhibitor neostigmine. KEY RESULTS We found that enteric ganglia co-expressed RET and choline acetyltransferase (ChAT) transcripts. In vitro, the RET kinase inhibitor GSK3179106 attenuated the mean increase in Isc induced by either EFS or carbachol but not bethanechol. In vivo, GSK3179106 significantly reduced the prokinetic effect of neostigmine. CONCLUSION AND INFERENCES Our findings provide evidence that RET-mediated mechanisms regulate colonic function by maintaining cholinergic neuronal function and enabling ACh-evoked chloride secretion and motility. We suggest that modulating the cholinergic control of the colon via a RET inhibitor may represent a novel target for the treatment of intestinal disorders associated with increased secretion and accelerated GI transit such as irritable bowel syndrome with diarrhea (IBS-D).
Collapse
Affiliation(s)
- John P Russell
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Ehsan Mohammadi
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Casey Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rocco Latorre
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bao Hoang
- Exploratory Biomarker Assay Group, GlaxoSmithKline, Collegeville, Pennsylvania
| | - David Krull
- Exploratory Biomarker Assay Group, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Melisa W-Y Ho
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Hilary S Eidam
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Michael P DeMartino
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Mui Cheung
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Allen I Oliff
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Sanjay Kumar
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | | |
Collapse
|
33
|
Porokuokka LL, Virtanen HT, Lindén J, Sidorova Y, Danilova T, Lindahl M, Saarma M, Andressoo JO. Gfra1 Underexpression Causes Hirschsprung's Disease and Associated Enterocolitis in Mice. Cell Mol Gastroenterol Hepatol 2018; 7:655-678. [PMID: 30594740 PMCID: PMC6444303 DOI: 10.1016/j.jcmgh.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS RET, the receptor for the glial cell line-derived neurotrophic factor (GDNF) family ligands, is the most frequently mutated gene in congenital aganglionic megacolon or Hirschsprung's disease (HSCR). The leading cause of mortality in HSCR is HSCR-associated enterocolitis (HAEC), which is characterized by altered mucin composition, mucin retention, bacterial adhesion to enterocytes, and epithelial damage, although the order of these events is obscure. In mice, loss of GDNF signaling leads to a severely underdeveloped enteric nervous system and neonatally fatal kidney agenesis, thereby precluding the use of these mice for modeling postnatal HSCR and HAEC. Our aim was to generate a postnatally viable mouse model for HSCR/HAEC and analyze HAEC etiology. METHODS GDNF family receptor alpha-1 (GFRa1) hypomorphic mice were generated by placing a selectable marker gene in the sixth intron of the Gfra1 locus using gene targeting in mouse embryonic stem cells. RESULTS We report that 70%-80% reduction in GDNF co-receptor GFRa1 expression levels in mice results in HSCR and HAEC, leading to death within the first 25 postnatal days. These mice mirror the disease progression and histopathologic findings in children with untreated HSCR/HAEC. CONCLUSIONS In GFRa1 hypomorphic mice, HAEC proceeds from goblet cell dysplasia, with abnormal mucin production and retention, to epithelial damage. Microbial enterocyte adherence and tissue invasion are late events and therefore unlikely to be the primary cause of HAEC. These results suggest that goblet cells may be a potential target for preventative treatment and that reduced expression of GFRa1 may contribute to HSCR susceptibility.
Collapse
Affiliation(s)
| | - Heikki T Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jere Lindén
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Yulia Sidorova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
34
|
Russell JP, Mohammadi E, Ligon CO, Johnson AC, Gershon MD, Rao M, Shen Y, Chan CC, Eidam HS, DeMartino MP, Cheung M, Oliff AI, Kumar S, Greenwood-Van Meerveld B. Exploring the Potential of RET Kinase Inhibition for Irritable Bowel Syndrome: A Preclinical Investigation in Rodent Models of Colonic Hypersensitivity. J Pharmacol Exp Ther 2018; 368:299-307. [PMID: 30413627 DOI: 10.1124/jpet.118.252973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022] Open
Abstract
Abdominal pain represents a significant complaint in patients with irritable bowel syndrome (IBS). While the etiology of IBS is incompletely understood, prior exposure to gastrointestinal inflammation or psychologic stress is frequently associated with the development of symptoms. Inflammation or stress-induced expression of growth factors or cytokines may contribute to the pathophysiology of IBS. Here, we aimed to investigate the therapeutic potential of inhibiting the receptor of glial cell line-derived neurotrophic factor, rearranged during transfection (RET), in experimental models of inflammation and stress-induced visceral hypersensitivity resembling IBS sequelae. In RET-cyan fluorescent protein [(CFP) RetCFP/+] mice, thoracic and lumbosacral dorsal root ganglia were shown to express RET, which colocalized with calcitonin gene-related peptide. To understand the role of RET in visceral nociception, we employed GSK3179106 as a potent, selective, and gut-restricted RET kinase inhibitor. Colonic hyperalgesia, quantified as exaggerated visceromotor response to graded pressures (0-60 mm Hg) of isobaric colorectal distension (CRD), was produced in multiple rat models induced 1) by colonic irritation, 2) following acute colonic inflammation, 3) by adulthood stress, and 4) by early life stress. In all the rat models, RET inhibition with GSK3179106 attenuated the number of abdominal contractions induced by CRD. Our findings identify a role for RET in visceral nociception. Inhibition of RET kinase with a potent, selective, and gut-restricted small molecule may represent a novel therapeutic strategy for the treatment of IBS through the attenuation of post-inflammatory and stress-induced visceral hypersensitivity.
Collapse
Affiliation(s)
- John P Russell
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Ehsan Mohammadi
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Casey O Ligon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Anthony C Johnson
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael D Gershon
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Meenakshi Rao
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Yuhong Shen
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Chi-Chung Chan
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Hilary S Eidam
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Michael P DeMartino
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Mui Cheung
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Allen I Oliff
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Sanjay Kumar
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| | - Beverley Greenwood-Van Meerveld
- Virtual Proof of Concept Discovery Performance Unit, GlaxoSmithKline, King of Prussia, Pennsylvania (J.P.R., H.S.E., M.P.D., M.C., A.I.O., S.K.); Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (E.M., C.O.L., A.C.J., B.G.-V.M.); Department of Pathology and Cell Biology, College of Physicians and Surgeons (M.D.G.) and Department of Pediatrics (M.R.), Columbia University, New York, New York; and WuXi AppTec Co., Ltd., Waigaoqiao Free Trade Zone, Shanghai, China (Y.S., C.-C.C.)
| |
Collapse
|
35
|
Olson W, Luo W. Somatotopic organization of central arbors from nociceptive afferents develops independently of their intact peripheral target innervation. J Comp Neurol 2018; 526:3058-3065. [PMID: 30225912 DOI: 10.1002/cne.24533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Functionally important regions of sensory maps are overrepresented in the sensory pathways and cortex, but the underlying developmental mechanisms are not clear. In the spinal cord dorsal horn (DH), we recently showed that paw innervating Mrgprd+ nonpeptidergic nociceptors display distinctive central arbor morphologies that well correlate with increased synapse transmission efficiency and heightened sensitivity of distal limb skin. Given that peripheral and central arbor formation of Mrgprd+ neurons co-occurs around the time of birth, we tested whether peripheral cues from different skin areas and/or postnatal reorganization mechanisms could instruct this somatotopic difference among central arbors. We found that, while terminal outgrowth/refinement occurs during early postnatal development in both the skin and the DH, postnatal refinement of central terminals precedes that of peripheral terminals. Furthermore, we used single-cell ablation of Ret to genetically disrupt epidermal innervation of Mrgprd+ neurons and revealed that the somatotopic difference among their central arbors was unaffected by this manipulation. Finally, we saw that region-specific Mrgprd+ central terminal arbors are present from the earliest postnatal stages, before skin terminals are evident. In summary, we find that region-specific organization of Mrgprd+ neuron central arbors is present shortly after initial central terminal formation, which likely develops independently of peripheral target innervation. Our data suggest that either cell-intrinsic and/or DH prepatterning mechanisms are likely to establish this somatotopic difference.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Toiyama Y, Okugawa Y, Kondo S, Okita Y, Araki T, Kusunoki K, Uchino M, Ikeuchi H, Hirota S, Mitsui A, Takehana K, Umezawa T, Kusunoki M. Comprehensive analysis identifying aberrant DNA methylation in rectal mucosa from ulcerative colitis patients with neoplasia. Oncotarget 2018; 9:33149-33159. [PMID: 30237858 PMCID: PMC6145694 DOI: 10.18632/oncotarget.26032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background There are no biomarkers to facilitate the identification of patients with ulcerative colitis (UC) who are at high risk for developing colorectal cancer (CRC). In our current study, we used rectal tissues from UC patients to identify aberrant DNA methylations and evaluated whether they could be used to identify UC patients with coexisting colorectal neoplasia. Results Using a training set, we identified 484 differentially methylated regions (DMRs) with absolute delta beta-values > 0.1 in rectal mucosa by using the ChAMP algorithm. Next, pathway enrichment analysis was performed using 484 DMRs to select coordinately methylated DMRs, resulting in the selection of 187 aberrant DMRs in rectal tissues from UC-CRC. Then, the Elastic Net classification algorithm was performed to narrow down optimal aberrant DMRs, and we finally selected 11 DMRs as biomarkers for identification of UC-CRC patients. The 11 chosen DMRs could discriminate UC patients with or without CRC in a training set (area under the curve, 0.96) and the validation set (area under the curve, 0.81). Conclusions In conclusion, we identified 11 DMRs that could identify UC patients with CRC complications. Prospective studies should further confirm the validity of these biomarkers. Methods We performed genome-wide DNA methylation profiles in rectal mucosal tissues (n = 48) from 24 UC-CRC and 24 UC patients in a training set. Next, we performed comprehensive DNA methylation analysis using rectal mucosal tissues (n = 16) from 8 UC-CRC and 8 UC patients for validation.
Collapse
Affiliation(s)
- Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Satoru Kondo
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Toshimitsu Araki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| | - Kurando Kusunoki
- Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Motoi Uchino
- Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Hiroki Ikeuchi
- Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Akira Mitsui
- Institute for Innovation, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Kenji Takehana
- R&D Planning Department, EA Pharma Co., Ltd., Tokyo, Japan
| | | | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie, Japan
| |
Collapse
|
37
|
Abstract
The gastrointestinal tract contains its own set of intrinsic neuroglial circuits - the enteric nervous system (ENS) - which detects and responds to diverse signals from the environment. Here, we address recent advances in the understanding of ENS development, including how neural-crest-derived progenitors migrate into and colonize the bowel, the formation of ganglionated plexuses and the molecular mechanisms of enteric neuronal and glial diversification. Modern lineage tracing and transcription-profiling technologies have produced observations that simultaneously challenge and affirm long-held beliefs about ENS development. We review many genetic and environmental factors that can alter ENS development and exert long-lasting effects on gastrointestinal function, and discuss how developmental defects in the ENS might account for some of the large burden of digestive disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Song Z, Yang F, Du H, Li X, Liu J, Dong M, Xu X. Role of artemin in non-small cell lung cancer. Thorac Cancer 2018; 9:555-562. [PMID: 29575549 PMCID: PMC5928368 DOI: 10.1111/1759-7714.12615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Background In this study, we investigated the role of artemin, a member of the glial cell‐derived neurotrophic factor of ligands, in the malignant phenotype of lung cancer. Methods Artemin expression was examined in various types of lung cancer and normal lung tissues, as well as in lung cancer cell lines by immunohistochemistry and semi‐quantitative PCR. Functional studies were performed using artemin overexpression or knockdown vectors in lung cancer cell lines. Methyl thiazolyl tetrazolium, flow cytometry, wound healing, and transwell assays were conducted to evaluate the contribution of artemin on tumor cell proliferation, migration, and invasion. Results Artemin is broadly expressed in lung cancer tissues, and is associated with tumor staging. Overexpression of artemin in NL9980 large cell lung cancer cells increased proliferating cells and enhanced migrating capability in wound healing and transwell assays, as well as demonstrating enhanced invasion capability. Silencing artemin in LTEP‐α‐2 adenocarcinoma cell lines decreased cellular proliferation, migration, and invasion capabilities. Conclusion Artemin could promote the proliferation and invasiveness of lung cancer cells in vitro and therefore could be a new potential target to combat lung cancer.
Collapse
Affiliation(s)
- Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hui Du
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Dong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- College of Nursing, Tianjin Medical University, Tianjin, China.,Institute of Acupuncture, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
39
|
Investigation of the expression of apoptosis-inducing factor-mediated apoptosis in Hirschsprung's disease. Neuroreport 2018; 28:571-578. [PMID: 28562483 DOI: 10.1097/wnr.0000000000000798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the widely accepted hypotheses of Hirschsprung's disease (HD) is that the absence of ganglion cells in the distal part of the intestine is caused by the death of enteric neural crest-derived cells following migration. Although a caspase-dependent pathway has not yet been detected in the HD bowel, it is unclear whether a caspase-independent pathway contributes toward aganglionosis. In the current study, we observed highly condensed marginal heterochromatin in nuclei only in the transitional segment using electron microscopy and a high proportion of TUNEL-positive cells were observed in the transitional segment. Activation of caspase was not observed in any segments of the HD bowel upon characterization of the apoptotic pathway. Rather, real-time PCR results showed that apoptosis-inducing factor (AIF) and calpain-1 mRNAs were highly expressed in the transitional segment, whereas autophagy protein 5 (Atg5) was highly expressed in the narrow segment. Western blot results were consistent with mRNA levels, with increased AIF, calpain-1, and Atg5 expressions in the transitional segment compared with the dilated segment. Furthermore, correlation analysis indicated an inverse correlation between calpain-1 and Atg5 mRNA levels in both the narrow segment and the transitional segment. These results indicated that apoptosis occurs in the HD bowel. The detection of related genes indicates that the AIF-mediated apoptotic pathway may be responsible for the absence of ganglion cells in HD and calpain-1 may act as the regulatory switch between autophagy and apoptosis.
Collapse
|
40
|
Parmhans N, Sajgo S, Niu J, Luo W, Badea TC. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol 2017; 526:742-766. [PMID: 29218725 DOI: 10.1002/cne.24367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/07/2017] [Accepted: 11/22/2017] [Indexed: 11/11/2022]
Abstract
We report the retinal expression pattern of Ret, a receptor tyrosine kinase for the glial derived neurotrophic factor (GDNF) family ligands (GFLs), during development and in the adult mouse. Ret is initially expressed in retinal ganglion cells (RGCs), followed by horizontal cells (HCs) and amacrine cells (ACs), beginning with the early stages of postmitotic development. Ret expression persists in all three classes of neurons in the adult. Using RNA sequencing, immunostaining and random sparse recombination, we show that Ret is expressed in at least three distinct types of ACs, and ten types of RGCs. Using intersectional genetics, we describe the dendritic arbor morphologies of RGC types expressing Ret in combination with each of the three members of the POU4f/Brn3 family of transcription factors. Ret expression overlaps with Brn3a in 4 RGC types, with Brn3b in 5 RGC types, and with Brn3c in one RGC type, respectively. Ret+ RGCs project to the lateral geniculate nucleus (LGN), pretectal area (PTA) and superior colliculus (SC), and avoid the suprachiasmatic nucleus and accessory optic system. Brn3a+ Ret+ and Brn3c+ Ret+ RGCs project preferentially to contralateral retinorecipient areas, while Brn3b+ Ret+ RGCs shows minor ipsilateral projections to the olivary pretectal nucleus and the LGN. Our findings establish intersectional genetic approaches for the anatomic and developmental characterization of individual Ret+ RGC types. In addition, they provide necessary information for addressing the potential interplay between GDNF neurotrophic signaling and transcriptional regulation in RGC type specification.
Collapse
Affiliation(s)
- Nadia Parmhans
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Szilard Sajgo
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tudor Constantin Badea
- Retinal Circuit Development & Genetics Unit, Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, NIH, Bethesda, Maryland
| |
Collapse
|
41
|
Hirst CS, Stamp LA, Bergner AJ, Hao MM, Tran MX, Morgan JM, Dutschmann M, Allen AM, Paxinos G, Furlong TM, McKeown SJ, Young HM. Kif1bp loss in mice leads to defects in the peripheral and central nervous system and perinatal death. Sci Rep 2017; 7:16676. [PMID: 29192291 PMCID: PMC5709403 DOI: 10.1038/s41598-017-16965-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/19/2017] [Indexed: 12/29/2022] Open
Abstract
Goldberg-Shprintzen syndrome is a poorly understood condition characterized by learning difficulties, facial dysmorphism, microcephaly, and Hirschsprung disease. GOSHS is due to recessive mutations in KIAA1279, which encodes kinesin family member 1 binding protein (KIF1BP, also known as KBP). We examined the effects of inactivation of Kif1bp in mice. Mice lacking Kif1bp died shortly after birth, and exhibited smaller brains, olfactory bulbs and anterior commissures, and defects in the vagal and sympathetic innervation of the gut. Kif1bp was found to interact with Ret to regulate the development of the vagal innervation of the stomach. Although newborn Kif1bp−/− mice had neurons along the entire bowel, the colonization of the gut by neural crest-derived cells was delayed. The data show an essential in vivo role for KIF1BP in axon extension from some neurons, and the reduced size of the olfactory bulb also suggests additional roles for KIF1BP. Our mouse model provides a valuable resource to understand GOSHS.
Collapse
Affiliation(s)
- Caroline S Hirst
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Mai X Tran
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Jan M Morgan
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia
| | - Matthias Dutschmann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew M Allen
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - George Paxinos
- Neuroscience Research Australia and School of Medical Sciences, The University of New South Wales, 2031, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia and School of Medical Sciences, The University of New South Wales, 2031, NSW, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia. .,Cancer Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Victoria, 3800, Australia.
| | - Heather M Young
- Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
42
|
Kapoor A, Auer DR, Lee D, Chatterjee S, Chakravarti A. Testing the Ret and Sema3d genetic interaction in mouse enteric nervous system development. Hum Mol Genet 2017; 26:1811-1820. [PMID: 28334784 DOI: 10.1093/hmg/ddx084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/02/2017] [Indexed: 12/20/2022] Open
Abstract
For most multigenic disorders, clinical manifestation (penetrance) and presentation (expressivity) are likely to be an outcome of genetic interaction between multiple susceptibility genes. Here, using gene knockouts in mice, we evaluated genetic interaction between loss of Ret and loss of Sema3d, two Hirschsprung disease susceptibility genes. We intercrossed Ret and Sema3d double null heterozygotes to generate mice with the nine possible genotypes and assessed survival by counting various genotypes, myenteric plexus presence by acetylcholinesterase staining and embryonic day 12.5 (E12.5) intestine transcriptome by RNA-sequencing. Survival rates of Ret wild-type, null heterozygote and null homozygote mice at E12.5, birth and weaning were not influenced by the genotypes at Sema3d locus and vice versa. Loss of myenteric plexus was observed only in all Ret null homozygotes, irrespective of the genotypes at Sema3d locus, and Sema3d null heterozygote and homozygote mice had normal intestinal innervation. As compared with wild-type mice intestinal gene expression, loss of Ret in null homozygotes led to differential expression of ∼300 genes, whereas loss of Sema3d in null homozygotes had no major consequence and there was no evidence supporting major interaction between the two genes influencing intestine transcriptome. Overall, given the null alleles and phenotypic assays used, we did not find evidence for genetic interaction between Ret and Sema3d affecting survival, presence of myenteric plexus or intestine transcriptome.
Collapse
Affiliation(s)
- Ashish Kapoor
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dallas R Auer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sumantra Chatterjee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Kawano T, Hosomichi K, Inoue I, Shimono R, Onishi S, Nakame K, Kaji T, Matsufuji H, Ieiri S. Identification of a novel variant of the RET proto-oncogene in a novel family with Hirschsprung's disease. Pediatr Surg Int 2017; 33:1041-1046. [PMID: 28799054 DOI: 10.1007/s00383-017-4134-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a congenital disorder of the enteric nervous system characterized by the absence of ganglion cells in the Auerbach's and Meissner's plexuses. Although about 7% of cases are hereditary, the causal mutations have not been completely characterized. We encountered a novel family with inherited HSCR and screened them for causal mutations. METHODS A Japanese family of five female patients and six unaffected individuals was subjected to a whole-exome analysis with a next-generation sequencer. RESULTS After exome sequencing and the annotation of mutations, we identified co-segregated mutations with sequential filtering steps via a standard protocol. Eight mutations were identified: two on chromosome 10 and six on chromosome 11. We used pathogenicity prediction tools such as Genomic Evolutionary Rate Profiling, SIFT, and PolyPhen2 to predict the impact of mutations on the protein activity. S922Y, a novel mutation of RET, was identified as a likely causal mutation. In addition, a mutation of rs2435357T, known as enhancer of RET located in intron 1 of RET, was detected in this family. CONCLUSION The coexistence of RET mutations in both the exon (S922Y) and intron1 (rs2435357T) indicated a risk of HSCR in this family.
Collapse
Affiliation(s)
- Takafumi Kawano
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan
| | - Ryuichi Shimono
- Department of Pediatric Surgery, Faculty of Medicine, Kagawa University Hospital, Kita, Japan
| | - Shun Onishi
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Kazuhiko Nakame
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Tatsuru Kaji
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hiroshi Matsufuji
- Department of Pediatric Surgery, St. Luke's International Hospital, Tokyo, Japan
| | - Satoshi Ieiri
- Department of Pediatric Surgery, Research Field in Medicine and Health Sciences, Medical and Dental Sciences Area, Research and Education Assembly, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|
44
|
Hutson JM, Farmer PJ, Peck CJ, Chow CW, Southwell BR. Multiple endocrine neoplasia 2B: Differential increase in enteric nerve subgroups in muscle and mucosa. World J Gastrointest Pathophysiol 2017; 8:142-149. [PMID: 28868184 PMCID: PMC5561435 DOI: 10.4291/wjgp.v8.i3.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/24/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023] Open
Abstract
Multiple endocrine neoplasia 2B (MEN2B) is a rare syndrome caused by an activating mutation of the RET gene, leading to enteric gangliomatosis. This child presented with constipation at 1-mo old, was diagnosed with MEN2B by rectal biopsy at 4 mo, had thyroidectomy at 9 mo and a colectomy at 4 years. We studied the extent of neuronal and nerve fibre proliferation and which classes of enteric nerves are affected by examining the colon with multiple neuronal antibodies. Resected transverse colon was fixed, frozen, sectioned and processed for fluorescence immunohistochemistry labelling with antibodies against TUJ1, Hu, ChAT, NOS, VIP, SP and CGRP and cKit. Control transverse colon was from the normal margin of Hirschsprung (HSCR) colon (4-year-old) and a child with familial adenomatous polyposis (FAP, 12 year). Myenteric ganglia were increased in size to as wide as the circular muscle. There was a large increase in nerve cells and nerve fibres. ChAT-, NOS-, VIP- and SP-immunoreactive nerve fibres all increased in the myenteric ganglia. NOS-IR nerves preferentially increased in the muscle, while VIP and SP increased in submucosal ganglia and mucosal nerve fibres. The density of ICC was normal. RET overactivation in MEN2B lead to a large increase in intrinsic nerve fibres in the myenteric and submucosal ganglia, with a relative increase in NOS-IR nerve fibres in the circular muscle and VIP and SP in the submucosal ganglia and mucosa. The changes were associated with severe constipation resulting in colectomy at 4 years.
Collapse
|
45
|
A RET-ER81-NRG1 Signaling Pathway Drives the Development of Pacinian Corpuscles. J Neurosci 2017; 36:10337-10355. [PMID: 27707970 DOI: 10.1523/jneurosci.2160-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
Abstract
Axon-Schwann cell interactions are crucial for the development, function, and repair of the peripheral nervous system, but mechanisms underlying communication between axons and nonmyelinating Schwann cells are unclear. Here, we show that ER81 is functionally required in a subset of mouse RET+ mechanosensory neurons for formation of Pacinian corpuscles, which are composed of a single myelinated axon and multiple layers of nonmyelinating Schwann cells, and Ret is required for the maintenance of Er81 expression. Interestingly, Er81 mutants have normal myelination but exhibit deficient interactions between axons and corpuscle-forming nonmyelinating Schwann cells. Finally, ablating Neuregulin-1 (Nrg1) in mechanosensory neurons results in no Pacinian corpuscles, and an Nrg1 isoform not required for communication with myelinating Schwann cells is specifically decreased in Er81-null somatosensory neurons. Collectively, our results suggest that a RET-ER81-NRG1 signaling pathway promotes axon communication with nonmyelinating Schwann cells, and that neurons use distinct mechanisms to interact with different types of Schwann cells. SIGNIFICANCE STATEMENT Communication between neurons and Schwann cells is critical for development, normal function, and regeneration of the peripheral nervous system. Despite many studies about axonal communication with myelinating Schwann cells, mostly via a specific isoform of Neuregulin1, the molecular nature of axonal communication with nonmyelinating Schwann cells is poorly understood. Here, we described a RET-ER81-Neuregulin1 signaling pathway in neurons innervating Pacinian corpuscle somatosensory end organs, which is essential for communication between the innervating axon and the end organ nonmyelinating Schwann cells. We also showed that this signaling pathway uses isoforms of Neuregulin1 that are not involved in myelination, providing evidence that neurons use different isoforms of Neuregulin1 to interact with different types of Schwann cells.
Collapse
|
46
|
Lai FPL, Lau ST, Wong JKL, Gui H, Wang RX, Zhou T, Lai WH, Tse HF, Tam PKH, Garcia-Barcelo MM, Ngan ESW. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function. Gastroenterology 2017; 153:139-153.e8. [PMID: 28342760 DOI: 10.1053/j.gastro.2017.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. METHODS We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET+/- and RET-/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. RESULTS ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. CONCLUSIONS We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis.
Collapse
Affiliation(s)
- Frank Pui-Ling Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin-Ting Lau
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - John Kwong-Leong Wong
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hongsheng Gui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Reeson Xu Wang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tingwen Zhou
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Hon Lai
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Paul Kwong-Hang Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
47
|
Cheng LS, Hotta R, Graham HK, Belkind-Gerson J, Nagy N, Goldstein AM. Postnatal human enteric neuronal progenitors can migrate, differentiate, and proliferate in embryonic and postnatal aganglionic gut environments. Pediatr Res 2017; 81:838-846. [PMID: 28060794 PMCID: PMC5769482 DOI: 10.1038/pr.2017.4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/30/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Enteric neural stem/progenitor cells (ENSCs) offer an innovative approach to treating Hirschsprung disease (HSCR) and other enteric neuropathies. However, postnatal-derived human ENSCs have not been thoroughly characterized and their behavior in the embryonic and postnatal intestinal environment is unknown. METHODS ENSCs were isolated from the intestines of 25 patients undergoing bowel resection, including 7 children with HSCR. Neuronal differentiation and proliferation of ENSCs from submucosal and myenteric plexuses from patients with and without HSCR were characterized. ENSC migration and differentiation were studied following transplantation into embryonic chick neural crest, embryonic chick hindgut, and postnatal mouse aganglionic colon. RESULTS The proliferative and neurogenic potential of ENSCs from HSCR intestine is equivalent to that of non-HSCR controls. Similarly, no difference was observed between myenteric- and submucosal-derived ENSCs. Postnatal ENSCs transplanted to embryonic neural crest pathways and to aneural hindgut migrate normally and differentiate into appropriate neural crest-derived cell types. ENSCs in postnatal mouse aganglionic colon differentiate into neurons and glia both ex vivo and in vivo. CONCLUSIONS ENSCs isolated from the postnatal intestine of patients with and without HSCR can behave like embryonic neural crest-derived cells. These results support the feasibility of cell-based therapy for future treatment of neurointestinal disease.
Collapse
Affiliation(s)
- Lily S. Cheng
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah K. Graham
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaime Belkind-Gerson
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Nagy N, Goldstein AM. Enteric nervous system development: A crest cell's journey from neural tube to colon. Semin Cell Dev Biol 2017; 66:94-106. [PMID: 28087321 DOI: 10.1016/j.semcdb.2017.01.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is comprised of a network of neurons and glial cells that are responsible for coordinating many aspects of gastrointestinal (GI) function. These cells arise from the neural crest, migrate to the gut, and then continue their journey to colonize the entire length of the GI tract. Our understanding of the molecular and cellular events that regulate these processes has advanced significantly over the past several decades, in large part facilitated by the use of rodents, avians, and zebrafish as model systems to dissect the signals and pathways involved. These studies have highlighted the highly dynamic nature of ENS development and the importance of carefully balancing migration, proliferation, and differentiation of enteric neural crest-derived cells (ENCCs). Proliferation, in particular, is critically important as it drives cell density and speed of migration, both of which are important for ensuring complete colonization of the gut. However, proliferation must be tempered by differentiation among cells that have reached their final destination and are ready to send axonal extensions, connect to effector cells, and begin to produce neurotransmitters or other signals. Abnormalities in the normal processes guiding ENCC development can lead to failure of ENS formation, as occurs in Hirschsprung disease, in which the distal intestine remains aganglionic. This review summarizes our current understanding of the factors involved in early development of the ENS and discusses areas in need of further investigation.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States; Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Center for Neurointestinal Health, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
50
|
The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell 2016; 168:295-310.e19. [PMID: 28041852 PMCID: PMC5236062 DOI: 10.1016/j.cell.2016.12.010] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
Abstract
The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception. Convergent LTMR and cortical inputs define the mechanosensory dorsal horn A dorsal horn molecular-genetic toolbox defines 11 interneuron subtypes Dorsal horn interneurons receive specific patterns of cortical and LTMR inputs Dorsal horn interneurons modulate output pathways and tactile perception
Collapse
|