1
|
Bhat N, Al-Mathkour M, Maacha S, Lu H, El-Rifai W, Ballout F. Esophageal adenocarcinoma models: a closer look. Front Mol Biosci 2024; 11:1440670. [PMID: 39600303 PMCID: PMC11589788 DOI: 10.3389/fmolb.2024.1440670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is a subtype of esophageal cancer with significant morbidity and mortality rates worldwide. Despite advancements in tumor models, the underlying cellular and molecular mechanisms driving EAC pathogenesis are still poorly understood. Therefore, gaining insights into these mechanisms is crucial for improving patient outcomes. Researchers have developed various models to better understand EAC and evaluate clinical management strategies. However, no single model fully recapitulates the complexity of EAC. Emerging technologies, such as patient-derived organoids and immune-competent mouse models, hold promise for personalized EAC research and drug development. In this review, we shed light on the various models for studying EAC and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Selma Maacha
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
2
|
Hamilton M, Mars Z, Sedeuil M, Rolland M, Jean D, Boudreau F, Giroux V. ASCL2 is a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium. Biol Open 2024; 13:bio059919. [PMID: 38252116 PMCID: PMC10836648 DOI: 10.1242/bio.059919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024] Open
Abstract
The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.
Collapse
Affiliation(s)
- Maude Hamilton
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Zoéline Mars
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
- Université Paris Cité, Magistère Européen de génétique, Paris 75006, France
| | - Molly Sedeuil
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Marjorie Rolland
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| |
Collapse
|
3
|
Klochkova A, Karami AL, Fuller AD, Parham LR, Panchani SR, Natarajan S, Jackson JL, Mu A, Tan Y, Cai KQ, Klein-Szanto AJ, Muir AB, Tétreault MP, Hamilton KE, Whelan KA. Autophagy contributes to homeostasis in esophageal epithelium where high autophagic vesicle content marks basal cells with limited proliferation and enhanced self-renewal potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558614. [PMID: 37781581 PMCID: PMC10541137 DOI: 10.1101/2023.09.20.558614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background & Aims Autophagy has been demonstrated to play roles in esophageal pathologies both benign and malignant. Here, we aim to define the role of autophagy in esophageal epithelium under homeostatic conditions. Methods We generated tamoxifen-inducible, squamous epithelial-specific Atg7 (autophagy related 7) conditional knockout mice to evaluate effects on esophageal homeostasis and response to the carcinogen 4-nitroquinoline 1-oxide (4NQO) using histological and biochemical analyses. We FACS sorted esophageal basal cells based upon fluorescence of the autophagic vesicle (AV)-identifying dye Cyto-ID, then subjected these cells to transmission electron microscopy, image flow cytometry, 3D organoid assays, RNA-Sequencing (RNA-Seq), and cell cycle analysis. 3D organoids were subjected to passaging, single cell (sc) RNA-Seq, cell cycle analysis, and immunostaining. Results Genetic autophagy inhibition in squamous epithelium resulted in increased proliferation of esophageal basal cells. Esophageal basal cells with high AV level (Cyto-ID High ) displayed limited organoid formation capability upon initial plating but passaged more efficiently than their counterparts with low AV level (Cyto-ID Low ). RNA-Seq suggested increased autophagy in Cyto- ID High esophageal basal cells along with decreased cell cycle progression, the latter of which was confirmed by cell cycle analysis. scRNA-Seq of 3D organoids generated by Cyto-ID Low and Cyto- ID High cells identified expansion of 3 cell populations, enrichment of G2/M-associated genes, and aberrant localization of cell cycle-associated genes beyond basal cell populations in the Cyto- ID High group. Ki67 expression was also increased in organoids generated by Cyto-ID High cells, including in cells beyond the basal cell layer. Squamous epithelial-specific autophagy inhibition induced significant weight loss in mice treated with 4NQO that further displayed perturbed epithelial tissue architecture. Conclusions High AV level identifies esophageal epithelium with limited proliferation and enhanced self-renewal capacity that contributes to maintenance of the esophageal proliferation- differentiation gradient in vivo .
Collapse
|
4
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
5
|
Vercauteren Drubbel A, Beck B. Single-cell transcriptomics uncovers the differentiation of a subset of murine esophageal progenitors into taste buds in vivo. SCIENCE ADVANCES 2023; 9:eadd9135. [PMID: 36888721 PMCID: PMC9995038 DOI: 10.1126/sciadv.add9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mouse esophagus is lined with a stratified epithelium, which is maintained by the constant renewal of unipotent progenitors. In this study, we profiled mouse esophagus by single-cell RNA sequencing and found taste buds specifically in the cervical segment of the esophagus. These taste buds have the same cellular composition as the ones from the tongue but express fewer taste receptor types. State-of-the-art transcriptional regulatory network analysis allowed the identification of specific transcription factors associated to the differentiation of immature progenitors into the three different taste bud cell types. Lineage tracing experiments revealed that esophageal taste buds arise from squamous bipotent progenitor, thus demonstrating that all esophageal progenitors are not unipotent. Our cell resolution characterization of cervical esophagus epithelium will enable a better understanding of esophageal progenitor potency and insights into the mechanisms involved in the development of taste buds.
Collapse
Affiliation(s)
| | - Benjamin Beck
- IRIBHM, ULB/ Faculty of medicine, 808 Route de Lennik, 1070 Brussels, Belgium
- Welbio/FNRS Principal investigator at IRIBHM, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Single cell transcriptomic analysis reveals cellular diversity of murine esophageal epithelium. Nat Commun 2022; 13:2167. [PMID: 35443762 PMCID: PMC9021266 DOI: 10.1038/s41467-022-29747-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/30/2022] [Indexed: 12/09/2022] Open
Abstract
Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal squamous differentiation gradient, the molecular heterogeneity within cell types along this trajectory has yet to be classified at the single cell level. To address this knowledge gap, we perform single cell RNA-sequencing of 44,679 murine esophageal epithelial, to identify 11 distinct cell populations as well as pathways alterations along the basal-superficial axis and in each individual population. We evaluate the impact of aging upon esophageal epithelial cell populations and demonstrate age-associated mitochondrial dysfunction. We compare single cell transcriptomic profiles in 3D murine organoids and human esophageal biopsies with that of murine esophageal epithelium. Finally, we employ pseudotemporal trajectory analysis to develop a working model of cell fate determination in murine esophageal epithelium. These studies provide comprehensive molecular perspective on the cellular heterogeneity of murine esophageal epithelium in the context of homeostasis and aging. The level of cellular diversity in the esophageal epithelium has yet to be classified at the single cell level. Here the authors analyze the transcriptome of 44,679 murine esophageal keratinocytes to identify an unexpected level of cellular heterogeneity.
Collapse
|
7
|
Pan X, Wang J, Guo L, Na F, Du J, Chen X, Zhong A, Zhao L, Zhang L, Zhang M, Wan X, Wang M, Liu H, Dai S, Tan P, Chen J, Liu Y, Hu B, Chen C. Identifying a confused cell identity for esophageal squamous cell carcinoma. Signal Transduct Target Ther 2022; 7:122. [PMID: 35418165 PMCID: PMC9008022 DOI: 10.1038/s41392-022-00946-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
The cell identity of malignant cells and how they acquire it are fundamental for our understanding of cancer. Here, we report that esophageal squamous cell carcinoma (ESCC) cells display molecular features equally similar but distinct to all three types of normal esophageal epithelial cells, which we term as confused cell identity (CCI). CCI is an independent prognostic marker associated with poor prognosis in ESCC. Further, we identify tropomyosin 4 (TPM4) as a critical CCI gene that promotes the aggressiveness of ESCC in vitro and in vivo. And TPM4 creates CCI through activating the Jak/STAT-SOX2 pathway. Thus, our study suggests an unrecognized feature of ESCC cells, which might be of value for clinic prognosis and potential interference.
Collapse
Affiliation(s)
- Xiangyu Pan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linjie Guo
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feifei Na
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiajia Du
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelan Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailing Zhong
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhao
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengsha Zhang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xudong Wan
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Manli Wang
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siqi Dai
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Tan
- Dpartment of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyao Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bing Hu
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Chong Chen
- Department of Gastroenterology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Hishida T, Vazquez-Ferrer E, Hishida-Nozaki Y, Takemoto Y, Hatanaka F, Yoshida K, Prieto J, Sahu SK, Takahashi Y, Reddy P, O’Keefe DD, Rodriguez Esteban C, Knoepfler PS, Nuñez Delicado E, Castells A, Campistol JM, Kato R, Nakagawa H, Izpisua Belmonte JC. Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Front Cell Dev Biol 2022; 10:786031. [PMID: 35309931 PMCID: PMC8931341 DOI: 10.3389/fcell.2022.786031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that cellular senescence plays a critical role in both aging and cancer, and that senescence is a fundamental, permanent growth arrest that somatic cells cannot avoid. Here we show that Myc plays an important role in self-renewal of esophageal epithelial cells, contributing to their resistance to cellular senescence. Myc is homogeneously expressed in basal cells of the esophageal epithelium and Myc positively regulates their self-renewal by maintaining their undifferentiated state. Indeed, Myc knockout induced a loss of the undifferentiated state of esophageal epithelial cells resulting in cellular senescence while forced MYC expression promoted oncogenic cell proliferation. A superoxide scavenger counteracted Myc knockout-induced senescence, therefore suggesting that a mitochondrial superoxide takes part in inducing senescence. Taken together, these analyses reveal extremely low levels of cellular senescence and senescence-associated phenotypes in the esophageal epithelium, as well as a critical role for Myc in self-renewal of basal cells in this organ. This provides new avenues for studying and understanding the links between stemness and resistance to cellular senescence.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuto Takemoto
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Kei Yoshida
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Javier Prieto
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sanjeeb Kumar Sahu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - David D. O’Keefe
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | | | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | | | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Josep M. Campistol
- Gastroenterology Department, Hospital Clinic, CIBEREHD, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Ryuji Kato
- Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, Philadelphia, PA, United States
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
- *Correspondence: Juan Carlos Izpisua Belmonte,
| |
Collapse
|
9
|
CD73 + Epithelial Progenitor Cells That Contribute to Homeostasis and Renewal Are Depleted in Eosinophilic Esophagitis. Cell Mol Gastroenterol Hepatol 2022; 13:1449-1467. [PMID: 35108658 PMCID: PMC8957025 DOI: 10.1016/j.jcmgh.2022.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Although basal cell hyperplasia is a histologic hallmark of eosinophilic esophagitis (EoE), little is known about the capabilities of epithelial renewal and differentiation in the EoE inflammatory milieu. In murine esophageal epithelium, there are self-renewing and slowly proliferating basal stem-like cells characterized by concurrent expression of CD73 (5'-nucleotidase ecto) and CD104 (integrin β4). Here, we investigated CD73+CD104+ cells within the basal population of human esophageal epithelium and clarified the biological significance of these cells in the EoE epithelium. METHODS We performed flow cytometry on esophageal biopsy samples from EoE and non-EoE patients to determine the quantity of CD73+CD104+ cells in the epithelium. Simulating the EoE milieu we stimulated primary patient-derived and immortalized cell line-derived esophageal organoids with interleukin (IL)4 and IL13 and analyzed by flow cytometry, immunohistochemistry, and quantitative reverse-transcription polymerase chain reaction. We performed single-cell RNA sequencing on primary organoids in the setting of IL13 stimulation and evaluated the CD73+CD104+ population. We performed fluorescent-activated cell sorting to purify CD73+CD104+ and CD73- CD104+ populations and seeded these groups in organoid culture to evaluate the organoid formation rate and organoid size. We used RNA interference to knock down CD73 in esophageal organoids to evaluate organoid formation rates and size. We evaluated the effects of signal transducer and activator of transcription 6 (STAT6) signaling inhibition by RNA interference, a STAT6 inhibitor, AS1517499, as well as the proton pump inhibitor omeprazole. RESULTS EoE patients showed decreased epithelial CD73+CD104+ cell content. IL4 and IL13 stimulation depleted this population in 3-dimensional organoids with a recapitulation of basal cell hyperplasia as corroborated by single-cell RNA sequencing of the organoids, which suggests depletion of CD73+CD104+ cells. The CD73+CD104+ population had enhanced organoid formation compared with the CD73-CD104+ population. Similarly, knock-down of CD73 resulted in decreased organoid formation rate. Genetic and pharmacologic inhibition of STAT6 prevented T helper 2 cytokine-induced depletion of CD73+CD104+ cells. Lastly, omeprazole treatment prevented the effects of IL4 and IL13 on the CD73+CD104+ population. CONCLUSIONS This study addressed the role of CD73+CD104+ cells in epithelial renewal and homeostasis in the context of EoE. The depletion of the CD73+CD104+ self-renewal population by helper T cell 2 cytokines in EoE milieu may be perpetuating epithelial injury. Future therapies targeting epithelial restitution in EoE could decrease the need for immune modulation and steroid therapy.
Collapse
|
10
|
Korsós MM, Bellák T, Becskeházi E, Gál E, Veréb Z, Hegyi P, Venglovecz V. Mouse organoid culture is a suitable model to study esophageal ion transport mechanisms. Am J Physiol Cell Physiol 2021; 321:C798-C811. [PMID: 34524930 DOI: 10.1152/ajpcell.00295.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl-/HCO3- anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR), and anoctamin 1 Cl- channels was detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.
Collapse
Affiliation(s)
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
- BioTalentum Ltd., Gödöllő, Hungary
| | - Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Specific Smad2/3 Linker Phosphorylation Indicates Esophageal Non-neoplastic and Neoplastic Stem-Like Cells and Neoplastic Development. Dig Dis Sci 2021; 66:1862-1874. [PMID: 32705438 DOI: 10.1007/s10620-020-06489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/11/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND There is little known about stem cells in human non-neoplastic and neoplastic esophageal epithelia. We have demonstrated expression of linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr), suggesting presence of stem-like cells in mouse esophageal epithelium, and identified presence of pSmad2/3L-Thr-positive cells that might function as cancer stem cells in mouse model of colorectal carcinoma. AIMS We explore whether pSmad2/3L-Thr can be used as a biomarker for stem cells of human esophageal epithelia and/or neoplasms. METHODS We have used esophageal tissues from inpatients undergoing endoscopic submucosal dissection and performed double immunofluorescent staining of pSmad2/3L-Thr and Ki67, CDK4, p63, Sox2, CK14, p53, ALDH1, CD44 or D2-40 after which the sections were stained with hematoxylin and eosin. RESULTS pSmad2/3L-Thr-positive cells showed immunohistochemical co-localization with CDK4, p63, CD44 and Sox2 in the basal and parabasal layers of non-neoplastic esophageal epithelia. In esophageal neoplasms, they showed immunohistochemical co-localization with p53, CDK4, ALDH1 and CD44. There was a significant increase in the percentage of pSmad2/3L-Thr-positive cells in the p53-positive neoplastic cell population with development of esophageal neoplasia. pSmad2/3L-Thr-positive cells localized to the lower section of low-grade intraepithelial neoplasia and were observed up to the upper section in carcinoma in situ. In invasive squamous cell carcinoma, they were scattered throughout the tumor with disappearance of polarity and were found in intraepithelial primary lesions and sites of submucosal and vessel invasion. CONCLUSIONS We determined significant expression of pSmad2/3L-Thr in human esophageal non-neoplastic and neoplastic epithelia, indicating that these are epithelial stem-like cells and cancer stem cells, respectively, that correlate with developing esophageal neoplasms.
Collapse
|
12
|
Zhang Y, Bailey D, Yang P, Kim E, Que J. The development and stem cells of the esophagus. Development 2021; 148:148/6/dev193839. [PMID: 33782045 PMCID: PMC8034879 DOI: 10.1242/dev.193839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The esophagus is derived from the anterior portion of the foregut endoderm, which also gives rise to the respiratory system. As it develops, the esophageal lining is transformed from a simple columnar epithelium into a stratified squamous cell layer, accompanied by the replacement of unspecified mesenchyme with layers of muscle cells. Studies in animal models have provided significant insights into the roles of various signaling pathways in esophageal development. More recent studies using human pluripotent stem cells (hPSCs) further demonstrate that some of these signaling pathways are conserved in human esophageal development. In addition, a combination of mouse genetics and hPSC differentiation approaches have uncovered new players that control esophageal morphogenesis. In this Review, we summarize these new findings and discuss how the esophagus is established and matures throughout different stages, including its initial specification, respiratory-esophageal separation, epithelial morphogenesis and maintenance. We also discuss esophageal muscular development and enteric nervous system innervation, which are essential for esophageal structure and function.
Collapse
Affiliation(s)
- Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China,Authors for correspondence (; )
| | - Dominique Bailey
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Patrick Yang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA,Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA,Authors for correspondence (; )
| |
Collapse
|
13
|
Krüger L, Pridgen TA, Taylor ER, Garman KS, Blikslager AT. Lubiprostone protects esophageal mucosa from acid injury in porcine esophagus. Am J Physiol Gastrointest Liver Physiol 2020; 318:G613-G623. [PMID: 32068440 PMCID: PMC7191458 DOI: 10.1152/ajpgi.00086.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Esophageal injury from acid exposure related to gastroesophageal reflux disease is a common problem and a risk factor for development of Barrett's esophagus and esophageal adenocarcinoma. Our previous work highlights the benefits of using porcine esophagus to study human esophageal disease because of the similarities between porcine and human esophagus. In particular, esophageal submucosal glands (ESMGs) are present in human esophagus and proximal porcine esophagus but not in rodent esophagus. Although CFTR is expressed in the ducts of ESMGs, very little is known about CFTR and alternate anion channels, including ClC-2, in the setting of acid-related esophageal injury. After finding evidence of CFTR and ClC-2 in the basal layers of the squamous epithelium, and in the ducts of the ESMGs, we developed an ex vivo porcine model of esophageal acid injury. In this model, esophageal tissue was placed in Ussing chambers to determine the effect of pretreatment with the ClC-2 agonist lubiprostone on tissue damage related to acid exposure. Pretreatment with lubiprostone significantly reduced the level of acid injury and significantly augmented the recovery of the injured tissue (P < 0.05). Evaluation of the interepithelial tight junctions showed well-defined membrane localization of occludin in lubiprostone-treated injured tissues. Pretreatment of tissues with the Na+-K+-2Cl- cotransporter inhibitor bumetanide blocked lubiprostone-induced increases in short-circuit current and inhibited the reparative effect of lubiprostone. Furthermore, inhibition of ClC-2 with ZnCl2 blocked the effects of lubiprostone. We conclude that ClC-2 contributes to esophageal protection from acid exposure, potentially offering a new therapeutic target.NEW & NOTEWORTHY This research is the first to describe the presence of anion channels ClC-2 and CFTR localized to the basal epithelia of porcine esophageal mucosa and the esophageal submucosal glands. In the setting of ex vivo acid exposure, the ClC-2 agonist lubiprostone reduced acid-related injury and enhanced recovery of the epithelial barrier. This work may ultimately provide an alternate mechanism for treating gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Leandi Krüger
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Tiffany A. Pridgen
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Ellie R. Taylor
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Katherine S. Garman
- 2Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Anthony T. Blikslager
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
14
|
Gastric squamous-columnar junction contains a large pool of cancer-prone immature osteopontin responsive Lgr5 -CD44 + cells. Nat Commun 2020; 11:84. [PMID: 31901081 PMCID: PMC6941991 DOI: 10.1038/s41467-019-13847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Areas of a junction between two types of epithelia are known to be cancer-prone in many organ systems. However, mechanisms for preferential malignant transformation at the junction areas remain insufficiently elucidated. Here we report that inactivation of tumor suppressor genes Trp53 and Rb1 in the gastric squamous-columnar junction (SCJ) epithelium results in preferential formation of metastatic poorly differentiated neoplasms, which are similar to human gastroesophageal carcinoma. Unlike transformation-resistant antral cells, SCJ cells contain a highly proliferative pool of immature Lgr5−CD44+ cells, which are prone to transformation in organoid assays, comprise early dysplastic lesions, and constitute up to 30% of all neoplastic cells. CD44 ligand osteopontin (OPN) is preferentially expressed in and promotes organoid formation ability and transformation of the SCJ glandular epithelium. OPN and CD44 overexpression correlate with the worst prognosis of human gastroesophageal carcinoma. Thus, detection and selective targeting of the active OPN-CD44 pathway may have direct clinical relevance. Cancers arising from the gastric squamous-columnar junction have high incidence and are characterized by a poor prognosis. Here, the authors use genetic mouse models to show that loss of p53 and Rb1 expression results in preferential tumour development at the gastric squamous-columnar junction that contains a large pool of osteopontin responsive Lgr5-CD44+ cells.
Collapse
|
15
|
Hishida T, Vazquez-Ferrer E, Hishida-Nozaki Y, Sancho-Martinez I, Takahashi Y, Hatanaka F, Wu J, Ocampo A, Reddy P, Wu MZ, Gerken L, Shaw RJ, Rodriguez Esteban C, Benner C, Nakagawa H, Guillen Garcia P, Nuñez Delicado E, Castells A, Campistol JM, Liu GH, Izpisua Belmonte JC. Mutations in foregut SOX2 + cells induce efficient proliferation via CXCR2 pathway. Protein Cell 2019; 10:485-495. [PMID: 31041783 PMCID: PMC6588654 DOI: 10.1007/s13238-019-0630-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/26/2022] Open
Abstract
Identification of the precise molecular pathways involved in oncogene-induced transformation may help us gain a better understanding of tumor initiation and promotion. Here, we demonstrate that SOX2+ foregut epithelial cells are prone to oncogenic transformation upon mutagenic insults, such as KrasG12D and p53 deletion. GFP-based lineage-tracing experiments indicate that SOX2+ cells are the cells-of-origin of esophagus and stomach hyperplasia. Our observations indicate distinct roles for oncogenic KRAS mutation and P53 deletion. p53 homozygous deletion is required for the acquisition of an invasive potential, and KrasG12D expression, but not p53 deletion, suffices for tumor formation. Global gene expression analysis reveals secreting factors upregulated in the hyperplasia induced by oncogenic KRAS and highlights a crucial role for the CXCR2 pathway in driving hyperplasia. Collectively, the array of genetic models presented here demonstrate that stratified epithelial cells are susceptible to oncogenic insults, which may lead to a better understanding of tumor initiation and aid in the design of new cancer therapeutics.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ignacio Sancho-Martinez
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yuta Takahashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jun Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Min-Zu Wu
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos 135, Guadalupe, 30107, Spain
| | - Laurie Gerken
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Concepcion Rodriguez Esteban
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Christopher Benner
- Integrative Genomics Core, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pedro Guillen Garcia
- Department of Traumatology and Research Unit, Clinica CEMTRO, Av. Ventisquero de la Condesa, 42, Madrid, 28035, Spain
| | - Estrella Nuñez Delicado
- Universidad Catolica, San Antonio de Murcia, Campus de los Jeronimos 135, Guadalupe, 30107, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, 08036, Spain
| | - Josep M Campistol
- Gastroenterology Department, Hospital Clinic, University of Barcelona, IDIBAPS, CIBEREHD, Barcelona, 08036, Spain
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Insitute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Brain Disorder, Beijing, 100069, China.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
16
|
Trisno SL, Philo KED, McCracken KW, Catá EM, Ruiz-Torres S, Rankin SA, Han L, Nasr T, Chaturvedi P, Rothenberg ME, Mandegar MA, Wells SI, Zorn AM, Wells JM. Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell 2018; 23:501-515.e7. [PMID: 30244869 DOI: 10.1016/j.stem.2018.08.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/24/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Tracheal and esophageal disorders are prevalent in humans and difficult to accurately model in mice. We therefore established a three-dimensional organoid model of esophageal development through directed differentiation of human pluripotent stem cells. Sequential manipulation of bone morphogenic protein (BMP), Wnt, and RA signaling pathways was required to pattern definitive endoderm into foregut, anterior foregut (AFG), and dorsal AFG spheroids. Dorsal AFG spheroids grown in a 3D matrix formed human esophageal organoids (HEOs), and HEO cells could be transitioned into two-dimensional cultures and grown as esophageal organotypic rafts. In both configurations, esophageal tissues had proliferative basal progenitors and a differentiated stratified squamous epithelium. Using HEO cultures to model human esophageal birth defects, we identified that Sox2 promotes esophageal specification in part through repressing Wnt signaling in dorsal AFG and promoting survival. Consistently, Sox2 ablation in mice causes esophageal agenesis. Thus, HEOs present a powerful platform for modeling human pathologies and tissue engineering.
Collapse
Affiliation(s)
- Stephen L Trisno
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine E D Philo
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Emily M Catá
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Scott A Rankin
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Talia Nasr
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
17
|
Zhang Y, Yang Y, Jiang M, Huang SX, Zhang W, Al Alam D, Danopoulos S, Mori M, Chen YW, Balasubramanian R, Chuva de Sousa Lopes SM, Serra C, Bialecka M, Kim E, Lin S, Toste de Carvalho ALR, Riccio PN, Cardoso WV, Zhang X, Snoeck HW, Que J. 3D Modeling of Esophageal Development using Human PSC-Derived Basal Progenitors Reveals a Critical Role for Notch Signaling. Cell Stem Cell 2018; 23:516-529.e5. [PMID: 30244870 DOI: 10.1016/j.stem.2018.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells (PSCs) could provide a powerful system to model development of the human esophagus, whose distinct tissue organization compared to rodent esophagus suggests that developmental mechanisms may not be conserved between species. We therefore established an efficient protocol for generating esophageal progenitor cells (EPCs) from human PSCs. We found that inhibition of TGF-ß and BMP signaling is required for sequential specification of EPCs, which can be further purified using cell-surface markers. These EPCs resemble their human fetal counterparts and can recapitulate normal development of esophageal stratified squamous epithelium during in vitro 3D cultures and in vivo. Importantly, combining hPSC differentiation strategies with mouse genetics elucidated a critical role for Notch signaling in the formation of this epithelium. These studies therefore not only provide an efficient approach to generate EPCs, but also offer a model system to study the regulatory mechanisms underlying development of the human esophagus.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ying Yang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Sarah Xuelian Huang
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Munemasa Mori
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Ya-Wen Chen
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Revathi Balasubramanian
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands; Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Carlos Serra
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Eugene Kim
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ana Luisa Rodrigues Toste de Carvalho
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Paul N Riccio
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY 10032, USA; Columbia Center for Human Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, Kasagi Y, Kikuchi O, Tanaka K, Giroux V, Muir AB, Whelan KA, Ohashi S, Naganuma S, Klein-Szanto AJ, Shinden Y, Sasaki K, Omoto I, Kita Y, Muto M, Bass AJ, Diehl JA, Ginsberg GG, Doki Y, Mori M, Uchikado Y, Arigami T, Avadhani NG, Basu D, Rustgi AK, Natsugoe S. Three-Dimensional Organoids Reveal Therapy Resistance of Esophageal and Oropharyngeal Squamous Cell Carcinoma Cells. Cell Mol Gastroenterol Hepatol 2018; 7:73-91. [PMID: 30510992 PMCID: PMC6260338 DOI: 10.1016/j.jcmgh.2018.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Oropharyngeal and esophageal squamous cell carcinomas, especially the latter, are a lethal disease, featuring intratumoral cancer cell heterogeneity and therapy resistance. To facilitate cancer therapy in personalized medicine, three-dimensional (3D) organoids may be useful for functional characterization of cancer cells ex vivo. We investigated the feasibility and the utility of patient-derived 3D organoids of esophageal and oropharyngeal squamous cell carcinomas. METHODS We generated 3D organoids from paired biopsies representing tumors and adjacent normal mucosa from therapy-naïve patients and cell lines. We evaluated growth and structures of 3D organoids treated with 5-fluorouracil ex vivo. RESULTS Tumor-derived 3D organoids were grown successfully from 15 out of 21 patients (71.4%) and passaged with recapitulation of the histopathology of the original tumors. Successful formation of tumor-derived 3D organoids was associated significantly with poor response to presurgical neoadjuvant chemotherapy or chemoradiation therapy in informative patients (P = 0.0357, progressive and stable diseases, n = 10 vs. partial response, n = 6). The 3D organoid formation capability and 5-fluorouracil resistance were accounted for by cancer cells with high CD44 expression and autophagy, respectively. Such cancer cells were found to be enriched in patient-derived 3D organoids surviving 5-fluorouracil treatment. CONCLUSIONS The single cell-based 3D organoid system may serve as a highly efficient platform to explore cancer therapeutics and therapy resistance mechanisms in conjunction with morphological and functional assays with implications for translation in personalized medicine.
Collapse
Key Words
- 3D Organoids
- 3D, 3-dimensional
- 5-Fluorouracil
- 5FU, 5-fluorouracil
- AV, autophagy vesicle
- Autophagy
- CD44
- CD44H, high expression of CD44
- CQ, chloroquine
- DMEM, Dulbecco’s modified Eagle medium
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- IC50, half maximal inhibitory concentration
- IHC, immunohistochemistry
- LC3, light chain 3
- OPSCC, oropharyngeal squamous cell carcinoma
- PI, propidium iodide
- SCCs, squamous cell carcinomas
- TE11R, 5-fluorouracil–resistant derivative of TE11
Collapse
Affiliation(s)
- Takashi Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| | - Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Prasanna M Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Takeo Hara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Varun Sahu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Osamu Kikuchi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Koji Tanaka
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania; Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Veronique Giroux
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Amanda B Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania; Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Shinya Ohashi
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi University School of Medicine, Nankoku, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ken Sasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Itaru Omoto
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Gregory G Ginsberg
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuto Uchikado
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
19
|
Zhang W, Wang DH. Origins of Metaplasia in Barrett's Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease? Dig Dis Sci 2018; 63:2005-2012. [PMID: 29675663 PMCID: PMC6783253 DOI: 10.1007/s10620-018-5069-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of esophageal adenocarcinoma has been increasing in Western countries over the past several decades. Though Barrett's esophagus, in which the normal esophageal squamous epithelium is replaced with metaplastic intestinalized columnar cells due to chronic damage from gastroesophageal reflux, is accepted as the requisite precursor lesion for esophageal adenocarcinoma, the Barrett's esophagus cell of origin and the molecular mechanism underlying esophageal epithelial metaplasia remain controversial. Much effort has been dedicated towards identifying the Barrett's esophagus cell of origin since this could lead to more effective prevention and treatment strategies for both Barrett's esophagus and esophageal adenocarcinoma. Previously, it was hypothesized that terminally differentiated esophageal squamous cells might undergo direct conversion into specialized intestinal columnar cells via the process of transdifferentiation. However, there is increasing evidence that stem and/or progenitor cells are molecularly reprogrammed through the process of transcommitment to differentiate into the columnar cell lineages that characterize Barrett's esophagus. Given that Barrett's esophagus originates at the gastroesophageal junction, the boundary between the distal esophagus and gastric cardia, potential sources of these stem and/or progenitor cells include columnar cells from the squamocolumnar junction or neighboring gastric cardia, native esophageal squamous cells, native esophageal cuboidal or columnar cells from submucosal glands or ducts, or circulating bone marrow-derived cells. In this review, we focus on native esophageal specific stem and/or progenitor cells and detail molecular mediators of transcommitment based on recent insights gained from novel mouse models and clinical observations from patients.
Collapse
Affiliation(s)
- Wei Zhang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David H. Wang
- Esophageal Diseases Center, Department of Internal Medicine and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA,Medical Service, Dallas VA Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Abstract
The incidence of esophageal adenocarcinoma (EAC) and its precursor lesion Barrett's esophagus (BE) has been increasing steadily in the western world in recent decades. Understanding the cellular origins of BE and the conditions responsible for their malignant transformation would greatly facilitate risk assessment and identification of patients at risk of progression, but this topic remains a source of debate. Here, we review recent findings that have provided support for the gastroesophageal junction (GEJ) as the main source of stem cells that give rise to BE and EAC. These include both gastric cardia cells and transitional basal cells. Furthermore, we discuss the role of chronic injury and inflammation in a tumor microenvironment as a major factor in promoting stem cell expansion and proliferation as well as transformation of the GEJ-derived stem cells and progression to EAC. We conclude that there exists a large amount of empirical support for the GEJ as the likely source of BE stem cells. While BE seems to resemble a successful adaptation to esophageal damage, carcinogenesis appears as a consequence of natural selection at the level of GEJ stem cells, and later glands, that expand into the esophagus wherein the local ecology creates the selective landscape for cancer progression.
Collapse
|
21
|
Morrisey EE, Rustgi AK. The Lung and Esophagus: Developmental and Regenerative Overlap. Trends Cell Biol 2018; 28:738-748. [PMID: 29871822 DOI: 10.1016/j.tcb.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/28/2022]
Abstract
Lung and esophageal development and organogenesis involve a complex interplay of signaling pathways and transcriptional factors. Once the lung and esophagus do separate, their epithelial proliferation and differentiation programs share certain common properties that may fuel adaptive responses to injury and subsequent regeneration. Lung and esophageal tissue organogenesis and regeneration provide perspectives on squamous cell cancers and adenocarcinomas in each tissue.
Collapse
Affiliation(s)
- Edward E Morrisey
- Division of Cardiovascular Medicine, Center for Pulmonary Biology, Cardiovascular Institute, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Institute for Regenerative Medicine, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Abstract
Oesophageal cancer remains one of the least explored malignancies. However, in recent years its increasing incidence and poor prognosis have stimulated interest from the cancer community to understand the pathways to the initiation and progression of the disease. Critical understanding of the molecular processes controlling changes in stem cell fate and the cross-talk with their adjacent stromal neighbours will provide essential knowledge on the mechanisms that go awry in oesophageal carcinogenesis. Advances in lineage tracing techniques have represented a powerful tool to start understanding changes in oesophageal cell behaviour in response to mutations and mutagens that favour tumour development. Environmental cues constitute an important factor in the aetiology of oesophageal cancer. The oesophageal epithelium is a tissue exposed to harsh conditions that not only damage the DNA of epithelial cells but also result in an active stromal reaction, promoting tumour progression. Ultimately, cancer represents a complex interplay between malignant cells and their microenvironment. Indeed, increasing evidence suggests that the accumulation of somatic mutations is not the sole cause of cancer. Instead, non-cell autonomous components, coming from the stroma, can significantly contribute from the earliest stages of tumour formation. The realisation that stromal cells play an important role in cancer has transformed this cellular compartment into an attractive and emerging field of research. It is becoming increasingly clear that the tumour microenvironment provides unique opportunities to identify early diagnostic and prognostic markers, as well as potential therapeutic strategies that may synergise with those targeting tumour cells. This chapter compiles recent observations on oesophageal epithelial stem cell biology, and how environmental and micro-environmental changes may lead to oesophageal disease and cancer.
Collapse
Affiliation(s)
- Maria P Alcolea
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, CB2 1QR, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, CB2 0XZ, Cambridge, UK
| |
Collapse
|
23
|
Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, Wang J, Benitez AJ, DeMarshall M, Tobias JW, Hamilton KE, Falk GW, Spergel JM, Klein-Szanto AJ, Rustgi AK, Muir AB, Nakagawa H. The Esophageal Organoid System Reveals Functional Interplay Between Notch and Cytokines in Reactive Epithelial Changes. Cell Mol Gastroenterol Hepatol 2018; 5:333-352. [PMID: 29552622 PMCID: PMC5852293 DOI: 10.1016/j.jcmgh.2017.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Aberrations in the esophageal proliferation-differentiation gradient are histologic hallmarks in eosinophilic esophagitis (EoE) and gastroesophageal reflux disease. A reliable protocol to grow 3-dimensional (3D) esophageal organoids is needed to study esophageal epithelial homeostasis under physiological and pathologic conditions. METHODS We modified keratinocyte-serum free medium to grow 3D organoids from endoscopic esophageal biopsies, immortalized human esophageal epithelial cells, and murine esophagi. Morphologic and functional characterization of 3D organoids was performed following genetic and pharmacologic modifications or exposure to EoE-relevant cytokines. The Notch pathway was evaluated by transfection assays and by gene expression analyses in vitro and in biopsies. RESULTS Both murine and human esophageal 3D organoids displayed an explicit proliferation-differentiation gradient. Notch inhibition accumulated undifferentiated basal keratinocytes with deregulated squamous cell differentiation in organoids. EoE patient-derived 3D organoids displayed normal epithelial structure ex vivo in the absence of the EoE inflammatory milieu. Stimulation of esophageal 3D organoids with EoE-relevant cytokines resulted in a phenocopy of Notch inhibition in organoid 3D structures with recapitulation of reactive epithelial changes in EoE biopsies, where Notch3 expression was significantly decreased in EoE compared with control subjects. CONCLUSIONS Esophageal 3D organoids serve as a novel platform to investigate regulatory mechanisms in squamous epithelial homeostasis in the context of EoE and other diseases. Notch-mediated squamous cell differentiation is suppressed by cytokines known to be involved in EoE, suggesting that this may contribute to epithelial phenotypes associated with disease. Genetic and pharmacologic manipulations establish proof of concept for the utility of organoids for future studies and personalized medicine in EoE and other esophageal diseases.
Collapse
Key Words
- 3D, 3-dimensional
- BCH, basal cell hyperplasia
- DAPI, 4′,6-Diamidino-2-Phenylindole, Dihydrochloride
- DNMAML1, dominant negative MAML1
- DOX, doxycycline
- EGF, epidermal growth factor
- EMT, epithelial-mesenchymal transition
- EoE, eosinophilic esophagitis
- Eosinophilic Esophagitis
- GERD, gastroesophageal reflux disease
- GFP, green fluorescent protein
- GSI, γ-secretase inhibitor
- H&E, hematoxylin and eosin
- IF, immunofluorescence
- IHC, immunohistochemistry
- IL, interleukin
- IVL, Involucrin
- KSFM, keratinocyte SFM
- KSFMC, KSFM containing 0.6 mM Ca2+
- Keratinocytes
- MAML1, Mastermind-like protein1
- OFR, organoid formation rate
- Squamous Cell Differentiation
- TNF-α, tumor necrosis factor-α
- Three-Dimensional
- Tslp, thymic stromal lymphopoietin
- aDMEM/F12, advanced Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
Collapse
Affiliation(s)
- Yuta Kasagi
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Prasanna M. Chandramouleeswaran
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Kelly A. Whelan
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Koji Tanaka
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Veronique Giroux
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Medha Sharma
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Joshua Wang
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alain J. Benitez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maureen DeMarshall
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John W. Tobias
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E. Hamilton
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Gary W. Falk
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan M. Spergel
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anil K. Rustgi
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- University of Pennsylvania Abramson Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Whelan KA, Muir AB, Nakagawa H. Esophageal 3D Culture Systems as Modeling Tools in Esophageal Epithelial Pathobiology and Personalized Medicine. Cell Mol Gastroenterol Hepatol 2018; 5:461-478. [PMID: 29713660 PMCID: PMC5924738 DOI: 10.1016/j.jcmgh.2018.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
The stratified squamous epithelium of the esophagus shows a proliferative basal layer of keratinocytes that undergo terminal differentiation in overlying suprabasal layers. Esophageal pathologies, including eosinophilic esophagitis, gastroesophageal reflux disease, Barrett's esophagus, squamous cell carcinoma, and adenocarcinoma, cause perturbations in the esophageal epithelial proliferation-differentiation gradient. Three-dimensional (3D) culture platforms mimicking in vivo esophageal epithelial tissue architecture ex vivo have emerged as powerful experimental tools for the investigation of esophageal biology in the context of homeostasis and pathology. Herein, we describe types of 3D culture that are used to model the esophagus, including organotypic, organoid, and spheroid culture systems. We discuss the development and optimization of various esophageal 3D culture models; highlight the applications, strengths, and limitations of each method; and summarize how these models have been used to evaluate the esophagus under homeostatic conditions as well as under the duress of inflammation and precancerous/cancerous conditions. Finally, we present future perspectives regarding the use of esophageal 3D models in basic science research as well as translational studies with the potential for personalized medicine.
Collapse
Key Words
- 3D, 3-dimensional
- BE, Barrett’s esophagus
- COX, cyclooxygenase
- CSC, cancer stem cell
- EADC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- ESCC, esophageal squamous cell carcinoma
- EoE, eosinophilic esophagitis
- Esophageal Disease
- FEF3, primary human fetal esophageal fibroblast
- GERD, gastroesophageal reflux disease
- OTC, organotypic 3-dimensional culture
- Organoid
- Organotypic Culture
- STAT3, signal transducer and activator of transcription-3
- Spheroid Culture
Collapse
Affiliation(s)
- Kelly A. Whelan
- Pathology and Laboratory Medicine, Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda B. Muir
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence Address correspondence to: Amanda B. Muir, MD, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Abramson Research Center 902E, Philadelphia, Pennsylvania 19103. fax: (267) 426–7814.
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Testa U, Castelli G, Pelosi E. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution. MEDICINES (BASEL, SWITZERLAND) 2017; 4:E67. [PMID: 28930282 PMCID: PMC5622402 DOI: 10.3390/medicines4030067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
Abstract
Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett's esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00141 Rome, Italy.
| |
Collapse
|
26
|
Krüger L, Gonzalez LM, Pridgen TA, McCall SJ, von Furstenberg RJ, Harnden I, Carnighan GE, Cox AM, Blikslager AT, Garman KS. Ductular and proliferative response of esophageal submucosal glands in a porcine model of esophageal injury and repair. Am J Physiol Gastrointest Liver Physiol 2017; 313:G180-G191. [PMID: 28572084 PMCID: PMC5625137 DOI: 10.1152/ajpgi.00036.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 02/08/2023]
Abstract
Esophageal injury is a risk factor for diseases such as Barrett's esophagus (BE) and esophageal adenocarcinoma. To improve understanding of signaling pathways associated with both normal and abnormal repair, animal models are needed. Traditional rodent models of esophageal repair are limited by the absence of esophageal submucosal glands (ESMGs), which are present in the human esophagus. Previously, we identified acinar ductal metaplasia in human ESMGs in association with both esophageal injury and cancer. In addition, the SOX9 transcription factor has been associated with generation of columnar epithelium and the pathogenesis of BE and is present in ESMGs. To test our hypothesis that ESMGs activate after esophageal injury with an increase in proliferation, generation of a ductal phenotype, and expression of SOX9, we developed a porcine model of esophageal injury and repair using radiofrequency ablation (RFA). The porcine esophagus contains ESMGs, and RFA produces a consistent and reproducible mucosal injury in the esophagus. Here we present a temporal assessment of this model of esophageal repair. Porcine esophagus was evaluated at 0, 6, 18, 24, 48, and 72 h and 5 and 7 days following RFA and compared with control uninjured esophagus. Following RFA, ESMGs demonstrated an increase in ductal phenotype, echoing our prior studies in humans. Proliferation increased in both squamous epithelium and ESMGs postinjury with a prominent population of SOX9-positive cells in ESMGs postinjury. This model promises to be useful in future experiments evaluating mechanisms of esophageal repair.NEW & NOTEWORTHY A novel porcine model of injury and repair using radiofrequency ablation has been developed, allowing for reproducible injury to the esophagus to study repair in an animal model with esophageal submucosal glands, a key anatomical feature and missing in rodent models but possibly harboring progenitor cells. There is a strong translational component to this porcine model given the anatomical and physiological similarities between pigs and humans.
Collapse
Affiliation(s)
- Leandi Krüger
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Liara M. Gonzalez
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Tiffany A. Pridgen
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | | | | | - Ivan Harnden
- 2Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina; and
| | - Gwendolyn E. Carnighan
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Abigail M. Cox
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Anthony T. Blikslager
- 1Center for Gastrointestinal Biology and Disease, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina;
| | - Katherine S. Garman
- 2Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina; and
| |
Collapse
|
27
|
von Furstenberg RJ, Li J, Stolarchuk C, Feder R, Campbell A, Kruger L, Gonzalez LM, Blikslager AT, Cardona DM, McCall SJ, Henning SJ, Garman KS. Porcine Esophageal Submucosal Gland Culture Model Shows Capacity for Proliferation and Differentiation. Cell Mol Gastroenterol Hepatol 2017; 4:385-404. [PMID: 28936470 PMCID: PMC5602779 DOI: 10.1016/j.jcmgh.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/13/2017] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Although cells comprising esophageal submucosal glands (ESMGs) represent a potential progenitor cell niche, new models are needed to understand their capacity to proliferate and differentiate. By histologic appearance, ESMGs have been associated with both overlying normal squamous epithelium and columnar epithelium. Our aim was to assess ESMG proliferation and differentiation in a 3-dimensional culture model. METHODS We evaluated proliferation in human ESMGs from normal and diseased tissue by proliferating cell nuclear antigen immunohistochemistry. Next, we compared 5-ethynyl-2'-deoxyuridine labeling in porcine ESMGs in vivo before and after esophageal injury with a novel in vitro porcine organoid ESMG model. Microarray analysis of ESMGs in culture was compared with squamous epithelium and fresh ESMGs. RESULTS Marked proliferation was observed in human ESMGs of diseased tissue. This activated ESMG state was recapitulated after esophageal injury in an in vivo porcine model, ESMGs assumed a ductal appearance with increased proliferation compared with control. Isolated and cultured porcine ESMGs produced buds with actively cycling cells and passaged to form epidermal growth factor-dependent spheroids. These spheroids were highly proliferative and were passaged multiple times. Two phenotypes of spheroids were identified: solid squamous (P63+) and hollow/ductal (cytokeratin 7+). Microarray analysis showed spheroids to be distinct from parent ESMGs and enriched for columnar transcripts. CONCLUSIONS Our results suggest that the activated ESMG state, seen in both human disease and our porcine model, may provide a source of cells to repopulate damaged epithelium in a normal manner (squamous) or abnormally (columnar epithelium). This culture model will allow the evaluation of factors that drive ESMGs in the regeneration of injured epithelium. The raw microarray data have been uploaded to the National Center for Biotechnology Information Gene Expression Omnibus (accession number: GSE100543).
Collapse
Key Words
- 3D Culture
- 3D, 3-dimensional
- ANOVA, analysis of variance
- Acinar Ductal Metaplasia
- Adult Stem Cell
- BE, Barrett’s esophagus
- Barrett’s Esophagus
- CK7, cytokeratin 7
- DMSO, dimethyl sulfoxide
- EAC, esophageal adenocarcinoma
- EGF, epidermal growth factor
- ESMG, esophageal submucosal gland
- EdU, 5-ethynyl-2′-deoxyuridine
- Esophagus
- IHC, immunohistochemistry
- PBS, phosphate-buffered saline
- PCNA, proliferating cell nuclear antigen
- RFA, radiofrequency ablation
Collapse
Affiliation(s)
| | - Joy Li
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Christina Stolarchuk
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Rachel Feder
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Alexa Campbell
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Leandi Kruger
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Liara M. Gonzalez
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina
| | - Diana M. Cardona
- Department of Pathology, Duke University, Durham, North Carolina
| | | | - Susan J. Henning
- Division of Gastroenterology, Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Katherine S. Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina,Correspondence Address correspondence to: Katherine S. Garman, MD, Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Box 3913, Durham, North Carolina 27710. fax: (919) 684-4983.Division of GastroenterologyDepartment of MedicineDuke University Medical CenterBox 3913DurhamNorth Carolina 27710
| |
Collapse
|
28
|
Whelan KA, Merves JF, Giroux V, Tanaka K, Guo A, Chandramouleeswaran PM, Benitez AJ, Dods K, Que J, Masterson JC, Fernando SD, Godwin BC, Klein-Szanto AJ, Chikwava K, Ruchelli ED, Hamilton KE, Muir AB, Wang ML, Furuta GT, Falk GW, Spergel JM, Nakagawa H. Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut 2017; 66:1197-1207. [PMID: 26884425 PMCID: PMC4987278 DOI: 10.1136/gutjnl-2015-310341] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The influence of eosinophilic oesophagitis (EoE)-associated inflammation upon oesophageal epithelial biology remains poorly understood. We investigated the functional role of autophagy in oesophageal epithelial cells (keratinocytes) exposed to the inflammatory EoE milieu. DESIGN Functional consequences of genetic or pharmacological autophagy inhibition were assessed in endoscopic oesophageal biopsies, human oesophageal keratinocytes, single cell-derived ex vivo murine oesophageal organoids as well as a murine model recapitulating EoE-like inflammation and basal cell hyperplasia. Gene expression, morphological and functional characterisation of autophagy and oxidative stress were performed by transmission electron microscopy, immunostaining, immunoblotting, live cell imaging and flow cytometry. RESULTS EoE-relevant inflammatory conditions promoted autophagy and basal cell hyperplasia in three independent murine EoE models and oesophageal organoids. Inhibition of autophagic flux via chloroquine treatment augmented basal cell hyperplasia in these model systems. Oesophageal keratinocytes stimulated with EoE-relevant cytokines, including tumour necrosis factor-α and interleukin-13 exhibited activation of autophagic flux in a reactive oxygen species-dependent manner. Autophagy inhibition via chloroquine treatment or depletion of Beclin-1 or ATG-7, augmented oxidative stress induced by EoE-relevant stimuli in murine EoE, oesophageal organoids and human oesophageal keratinocytes. Oesophageal epithelia of paediatric EoE patients with active inflammation displayed increased autophagic vesicle content compared with normal and EoE remission subjects. Functional flow cytometric analysis revealed autophagic flux in human oesophageal biopsies. CONCLUSIONS Our findings reveal for the first time that autophagy may function as a cytoprotective mechanism to maintain epithelial redox balance and homeostasis under EoE inflammation-associated stress, providing mechanistic insights into the role of autophagy in EoE pathogenesis.
Collapse
Affiliation(s)
- Kelly A. Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Jamie F. Merves
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Andy Guo
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Prasanna M. Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Alain J. Benitez
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kara Dods
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jianwen Que
- Center for Human Development and Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Joanne C. Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Shahan D. Fernando
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Bridget C. Godwin
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andres J. Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kudakwashe Chikwava
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Eduardo D. Ruchelli
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Perelman School of Medicine at the University of Pennsylvania, PA 19104, USA
| | - Kathryn E. Hamilton
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Amanda B. Muir
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mei-Lun Wang
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Glenn T. Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, University of Colorado Denver School of Medicine Aurora, Colorado, USA
| | - Gary W. Falk
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan M. Spergel
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Allergy and Immunology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Jiménez P, Chueca E, Arruebo M, Strunk M, Solanas E, Serrano T, García-González MA, Lanas Á. CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells. Front Pharmacol 2017; 8:321. [PMID: 28611669 PMCID: PMC5447731 DOI: 10.3389/fphar.2017.00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023] Open
Abstract
The cancer stem cell (CSC) model suggests that there are subsets of cells within a tumor with increased proliferation and self-renewal capacity, which play a key role in therapeutic resistance. The importance of cyclooxygenase-2 (COX-2) in carcinogenesis has been previously established and the use of COX-2 inhibitors as celecoxib has been shown to exert antitumor effects. The present study investigated whether treatment of esophageal adenocarcinoma (EAC) cells with 5-fluorouracil (5-FU) or the growth of tumor spheres increased the proportion of CSCs and also if treatment with celecoxib was able to reduce the putative CSC markers in this tumor. OE19 and OE33 EAC cells surviving 5-FU exposure exhibited an increase in CSC markers CD24 and ABCG2 and also an increased resistance to apoptosis. EAC cell lines had the capacity to form multiple spheres displaying typical CSC functionalities such as self-renewal and increased CD24 levels. In addition, after the induction of differentiation, cancer cells reached levels of CD24 similar to those observed in the parental cells. Treatment with celecoxib alone or in combination with 5-FU also resulted in a reduction of CD24 expression. Moreover, celecoxib inhibited the growth of tumor spheres. These findings showing a reduction in CSC markers induced by celecoxib suggest that the COX-2 inhibitor might be a candidate for combined chemotherapy in the treatment of EAC. However, additional clinical and experimental studies are needed.
Collapse
Affiliation(s)
| | - Eduardo Chueca
- CIBERehdMadrid, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain
| | - María Arruebo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain
| | - Mark Strunk
- Centro de Investigación Biomédica de Aragón, IACS Aragón, Instituto Aragonés de Ciencias de la Salud, Servicio de Secuenciación y Genómica FuncionalZaragoza, Spain
| | - Estela Solanas
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain
| | - Trinidad Serrano
- Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain.,Department of Gastroenterology, Hospital Clínico Universitario Lozano BlesaZaragoza, Spain
| | - María A García-González
- CIBERehdMadrid, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain.,Instituto Aragonés de Ciencias de la Salud (IACS)Zaragoza, Spain
| | - Ángel Lanas
- CIBERehdMadrid, Spain.,Instituto de Investigación Sanitaria Aragón (IIS Aragón)Zaragoza, Spain.,Department of Gastroenterology, Hospital Clínico Universitario Lozano BlesaZaragoza, Spain.,Department of Medicine, University of ZaragozaZaragoza, Spain
| |
Collapse
|
30
|
Giroux V, Lento AA, Islam M, Pitarresi JR, Kharbanda A, Hamilton KE, Whelan KA, Long A, Rhoades B, Tang Q, Nakagawa H, Lengner CJ, Bass AJ, Wileyto EP, Klein-Szanto AJ, Wang TC, Rustgi AK. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest 2017; 127:2378-2391. [PMID: 28481227 DOI: 10.1172/jci88941] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15- basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium.
Collapse
Affiliation(s)
- Véronique Giroux
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley A Lento
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirazul Islam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akriti Kharbanda
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apple Long
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Rhoades
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiaosi Tang
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - E Paul Wileyto
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andres J Klein-Szanto
- Department of Pathology and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
McCauley HA, Chevrier V, Birnbaum D, Guasch G. De-repression of the RAC activator ELMO1 in cancer stem cells drives progression of TGFβ-deficient squamous cell carcinoma from transition zones. eLife 2017; 6:e22914. [PMID: 28219480 PMCID: PMC5319840 DOI: 10.7554/elife.22914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/27/2017] [Indexed: 01/18/2023] Open
Abstract
Squamous cell carcinomas occurring at transition zones are highly malignant tumors with poor prognosis. The identity of the cell population and the signaling pathways involved in the progression of transition zone squamous cell carcinoma are poorly understood, hence representing limited options for targeted therapies. Here, we identify a highly tumorigenic cancer stem cell population in a mouse model of transitional epithelial carcinoma and uncover a novel mechanism by which loss of TGFβ receptor II (Tgfbr2) mediates invasion and metastasis through de-repression of ELMO1, a RAC-activating guanine exchange factor, specifically in cancer stem cells of transition zone tumors. We identify ELMO1 as a novel target of TGFβ signaling and show that restoration of Tgfbr2 results in a complete block of ELMO1 in vivo. Knocking down Elmo1 impairs metastasis of carcinoma cells to the lung, thereby providing insights into the mechanisms of progression of Tgfbr2-deficient invasive transition zone squamous cell carcinoma.
Collapse
Affiliation(s)
- Heather A McCauley
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
| | - Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Géraldine Guasch
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, United States
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, F-13009, CNRS, UMR7258, F-13009, Institut Paoli-Calmettes, F-13009, Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
32
|
Zhang Y, Jiang M, Kim E, Lin S, Liu K, Lan X, Que J. Development and stem cells of the esophagus. Semin Cell Dev Biol 2016; 66:25-35. [PMID: 28007661 DOI: 10.1016/j.semcdb.2016.12.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023]
Abstract
The esophagus is derived from the anterior portion of the developmental intermediate foregut, a structure that also gives rise to other organs including the trachea, lung, and stomach. Genetic studies have shown that multiple signaling pathways (e.g. Bmp) and transcription factors (e.g. SOX2) are required for the separation of the esophagus from the neighboring respiratory system. Notably, some of these signaling pathways and transcription factors continue to play essential roles in the subsequent morphogenesis of the esophageal epithelium which undergoes a simple columnar-to-stratified squamous conversion. Reactivation of the relevant signaling pathways has also been associated with pathogenesis of esophageal diseases that affect the epithelium and its stem cells in adults. In this review we will summarize these findings. We will also discuss new data regarding the cell-of-origin for the striated and smooth muscles surrounding the esophagus and how they are differentiated from the mesenchyme during development.
Collapse
Affiliation(s)
- Yongchun Zhang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Ming Jiang
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Eugene Kim
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Sijie Lin
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA
| | - Kuancan Liu
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA; Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Xiaopeng Lan
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian 350025, PR China
| | - Jianwen Que
- Division of Digestive and Liver Diseases and Center for Human Development, Department of Medicine, Columbia University, NY 10032, USA.
| |
Collapse
|
33
|
Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis Model Mech 2016; 9:487-99. [PMID: 27112333 PMCID: PMC4892664 DOI: 10.1242/dmm.024232] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions.
Collapse
Affiliation(s)
- Hongjie Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| |
Collapse
|
34
|
Shen C, Zhang H, Wang P, Feng J, Li J, Xu Y, Zhang A, Shao S, Yu X, Yan W, Xia Y, Hu J, Fang D. Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2. Cell Cycle 2016; 15:1439-49. [PMID: 27096226 DOI: 10.1080/15384101.2016.1175252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Barrett's esophagus (BE) is essentially a metaplasia in which the normal stratified squamous epithelium is replaced by columnar epithelium. This study focuses on the involvement of OCT4 and SOX2, 2 key cell-reprogramming factors, in the deoxycholic acid (DCA)-induced expression of the intestinal hallmarks Cdx2 and MUC2 using both in vivo and in vitro models. Up-regulated expression of OCT4 and down-regulated expression of SOX2 were observed in BE compared with normal esophagus and esophagitis. Consistent with the data in vivo, DCA induced time-dependent expression of OCT4 at both the mRNA and protein levels and decreased nuclear expression of SOX2 in Het-1A cells. Down-regulation of OCT4 expression by siRNA abrogated DCA-induced expression of Cdx2 and MUC2, whereas siRNA against SOX2 significantly upregulated the expression of both Cdx2 and MUC2. Our data indicate that both OCT4 and SOX2 play important roles in the development of BE triggered by bile acid reflux.
Collapse
Affiliation(s)
- Caifei Shen
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Haoxiang Zhang
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Pu Wang
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Ji Feng
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Jingwen Li
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Yin Xu
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Anran Zhang
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Shunzi Shao
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Xiaona Yu
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Wu Yan
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Yiju Xia
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Jiali Hu
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| | - Dianchun Fang
- a Department of Gastroenterology , Southwest Hospital, Third Military Medical University , Chongqing , China
| |
Collapse
|
35
|
Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium. Sci Rep 2015; 5:14142. [PMID: 26374466 PMCID: PMC4570974 DOI: 10.1038/srep14142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Acetaldehyde is an ethanol-derived definite carcinogen that causes oesophageal squamous cell carcinoma (ESCC). Aldehyde dehydrogenase 2 (ALDH2) is a key enzyme that eliminates acetaldehyde, and impairment of ALDH2 increases the risk of ESCC. ALDH2 is produced in various tissues including the liver, heart, and kidney, but the generation and functional roles of ALDH2 in the oesophagus remain elusive. Here, we report that ethanol drinking increased ALDH2 production in the oesophagus of wild-type mice. Notably, levels of acetaldehyde-derived DNA damage represented by N2-ethylidene-2′-deoxyguanosine were higher in the oesophagus of Aldh2-knockout mice than in wild-type mice upon ethanol consumption. In vitro experiments revealed that acetaldehyde induced ALDH2 production in both mouse and human oesophageal keratinocytes. Furthermore, the N2-ethylidene-2′-deoxyguanosine levels increased in both Aldh2-knockout mouse keratinocytes and ALDH2-knockdown human keratinocytes treated with acetaldehyde. Conversely, forced production of ALDH2 sharply diminished the N2-ethylidene-2′-deoxyguanosine levels. Our findings provide new insight into the preventive role of oesophageal ALDH2 against acetaldehyde-derived DNA damage.
Collapse
|
36
|
Garman KS, Kruger L, Thomas S, Swiderska-Syn M, Moser BK, Diehl AM, McCall SJ. Ductal metaplasia in oesophageal submucosal glands is associated with inflammation and oesophageal adenocarcinoma. Histopathology 2015; 67:771-82. [PMID: 25847432 DOI: 10.1111/his.12707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/29/2015] [Indexed: 12/19/2022]
Abstract
AIMS Recent studies have suggested that oesophageal submucosal gland (ESMG) ducts harbour progenitor cells that may contribute to oesophageal metaplasia. Our objective was to determine whether histological differences exist between the ESMGs of individuals with and without oesophageal adenocarcinoma (EAC). METHODS AND RESULTS We performed histological assessment of 343 unique ESMGs from 30 control patients, 24 patients with treatment-naïve high-grade columnar dysplasia (HGD) or EAC, and 23 non-EAC oesophagectomy cases. A gastrointestinal pathologist assessed haematoxylin and eosin-stained ESMG images by using a scoring system that assigns individual ESMG acini to five histological types (mucous, serous, oncocytic, dilated, or ductal metaplastic). In our model, ductal metaplastic acini were more common in patients with HGD/EAC (12.7%) than in controls (3.5%) (P = 0.006). We also identified greater proportions of acini with dilation (21.9%, P < 0.001) and, to a lesser extent, ductal metaplasia (4.3%, P = 0.001) in non-EAC oesophagectomy cases than in controls. Ductal metaplasia tended to occur in areas of mucosal ulceration or tumour. CONCLUSIONS We found a clear association between ductal metaplastic ESMG acini and HGD/EAC. Non-EAC cases had dilated acini and some ductal dilation. Because ESMGs and ducts harbour putative progenitor cells, these associations could have significance for understanding the pathogenesis of EAC.
Collapse
Affiliation(s)
- Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA.,Duke Cancer Institute, Duke University, Durham, NC, USA.,Durham Veterans Affairs Medical Center, Duke University, Durham, NC, USA
| | - Leandi Kruger
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Samantha Thomas
- Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Marzena Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Barry K Moser
- Department of Medicine and Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA.,Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University, Durham, NC, USA.,Department of Pathology, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Abstract
One of the limitations of conventional tissue culture on flat two-dimensional surfaces is the loss of complex interactions between the epithelium and stroma. We have devised a culture system that recreates the salient features of the stratified epithelium using primary cell cultures from mouse models. The protocol described here is applicable to the esophageal epithelium, but stratified epithelial cells from other organs (e.g., skin) can be grown. Once established, the system can be used to interrogate the effect of various pharmacologic and genetic manipulations on epithelial homeostasis and invasion.
Collapse
Affiliation(s)
- Andrew D Rhim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Anil K Rustgi
- Gastroenterology Division, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
38
|
Jiang M, Ku WY, Zhou Z, Dellon ES, Falk GW, Nakagawa H, Wang ML, Liu K, Wang J, Katzka DA, Peters JH, Lan X, Que J. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J Clin Invest 2015; 125:1557-68. [PMID: 25774506 DOI: 10.1172/jci78850] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett's intestinal differentiation; however, in mice, basal progenitor cell-specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE.
Collapse
|
39
|
Song S, Honjo S, Jin J, Chang SS, Scott AW, Chen Q, Kalhor N, Correa AM, Hofstetter WL, Albarracin CT, Wu TT, Johnson RL, Hung MC, Ajani JA. The Hippo Coactivator YAP1 Mediates EGFR Overexpression and Confers Chemoresistance in Esophageal Cancer. Clin Cancer Res 2015; 21:2580-90. [PMID: 25739674 DOI: 10.1158/1078-0432.ccr-14-2191] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/13/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Esophageal cancer is an aggressive malignancy and often resistant to therapy. Overexpression of EGFR has been associated with poor prognosis of patients with esophageal cancer. However, clinical trials using EGFR inhibitors have not provided benefit for patients with esophageal cancer. Failure of EGFR inhibition may be due to crosstalk with other oncogenic pathways. EXPERIMENTAL DESIGN In this study, expression of YAP1 and EGFR were examined in EAC-resistant tumor tissues versus sensitive tissues by IHC. Western blot analysis, immunofluorescence, real-time PCR, promoter analysis, site-directed mutagenesis, and in vitro and in vivo functional assays were performed to elucidate the YAP1-mediated EGFR expression and transcription and the relationship with chemoresistance in esophageal cancer. RESULTS We demonstrate that Hippo pathway coactivator YAP1 can induce EGFR expression and transcription in multiple cell systems. Both YAP1 and EGFR are overexpressed in resistant esophageal cancer tissues compared with sensitive esophageal cancer tissues. Furthermore, we found that YAP1 increases EGFR expression at the level of transcription requiring an intact TEAD-binding site in the EGFR promoter. Most importantly, exogenous induction of YAP1 induces resistance to 5-fluorouracil and docetaxcel, whereas knockdown of YAP1 sensitizes esophageal cancer cells to these cytotoxics. Verteporfin, a YAP1 inhibitor, effectively inhibits both YAP1 and EGFR expression and sensitizes cells to cytotoxics. CONCLUSIONS Our data provide evidence that YAP1 upregulation of EGFR plays an important role in conferring therapy resistance in esophageal cancer cells. Targeting YAP1-EGFR axis may be more efficacious than targeting EGFR alone in esophageal cancer.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Soichiro Honjo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shih-Shin Chang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiongrong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neda Kalhor
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Constance T Albarracin
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Tsung-Teh Wu
- Department of Pathology, Mayo Clinic, Rochester, Minnesota
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Barbera M, di Pietro M, Walker E, Brierley C, MacRae S, Simons BD, Jones PH, Stingl J, Fitzgerald RC. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut 2015; 64:11-9. [PMID: 24572143 PMCID: PMC4283695 DOI: 10.1136/gutjnl-2013-306171] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/06/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Knowledge of the cellular mechanisms involved in homeostasis of human squamous oesophagus in the steady state and following chronic injury is limited. We aimed to better understand these mechanisms by using a functional 3D approach. DESIGN Proliferation, mitosis and the expression of progenitor lineage markers were assessed in normal squamous oesophagus from 10 patients by immunofluorescence on 3D epithelial whole mounts. Cells expressing differential levels of epithelial and progenitor markers were isolated using flow cytometry sorting and characterised by qPCR and IF. Their self-renewing potential was investigated by colony forming cells assays and in vitro organotypic culture models. RESULTS Proliferation and mitotic activity was highest in the interpapillary basal layer and decreased linearly towards the tip of the papilla (p<0.0001). The orientation of mitosis was random throughout the basal layer, and asymmetric divisions were not restricted to specific cell compartments. Cells sorted into distinct populations based on the expression of epithelial and progenitor cell markers (CD34 and EpCAM) showed no difference in self-renewal in 2D culture, either as whole populations or as single cells. In 3D organotypic cultures, all cell subtypes were able to recapitulate the architecture of the tissue of origin and the main factor determining the success of the 3D culture was the number of cells plated, rather than the cell type. CONCLUSIONS Oesophageal epithelial cells demonstrate remarkable plasticity for self-renewal. This situation could be viewed as an ex vivo wounding response and is compatible with recent findings in murine models.
Collapse
Affiliation(s)
| | | | - Elaine Walker
- MRC Cancer Unit, University of Cambridge Cambridge, UK
| | | | - Shona MacRae
- MRC Cancer Unit, University of Cambridge Cambridge, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue University of Cambridge, Cambridge, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Phil H Jones
- MRC Cancer Unit, University of Cambridge Cambridge, UK
| | - John Stingl
- University of Cambridge, CRUK—Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
41
|
Abstract
PURPOSE Long-gap esophageal atresia represents a significant challenge for pediatric surgeons and current surgical approaches are associated with significant morbidity. A tissue-engineered esophagus, comprising cells seeded onto a scaffold, represents a therapeutic alternative. In this study, we aimed to determine the optimal techniques for isolation and culture of mouse esophageal epithelial cells and to isolate CD34-positive esophageal epithelial stem cells from cadaveric mouse specimens. METHODS Primary epithelial cells were isolated from mouse esophagi by enzymatic dissociation from the mucosal layer (Dispase, Trypsin/EDTA) using three different protocols. In protocol A, isolated mucosa was minced and incubated with trypsin once. In protocol B, intact mucosal sheets underwent two trypsin incubations yielding a single-cell suspension. In protocol C, intact mucosa explants were plated epithelial side down. Epithelial cells were cultured on collagen-coated wells. RESULTS Initial findings showed that Protocol B gave the best results in terms of yield, viability, and least contamination with different cell types and microbes. Esophageal epithelial cells isolated using Protocol B were stained for CD34 and sorted using fluorescence-activated cell sorting (FACS). Of the total cells sorted, 8.3% (2-11.3) [%median (range)] were CD34 positive. CONCLUSIONS Our results demonstrate that mouse esophageal epithelial cells can be successfully isolated from fresh mouse esophagi using two consecutive trypsin incubations of intact mucosal sheets. Furthermore, the cells obtained using this method were successfully stained for CD34, a putative esophageal epithelial stem cell marker. Further research into the factors necessary for the successful proliferation of CD34 positive stem cell lines is needed to progress toward clinical application.
Collapse
|
42
|
Spurrier RG, Speer AL, Hou X, El-Nachef WN, Grikscheit TC. Murine and human tissue-engineered esophagus form from sufficient stem/progenitor cells and do not require microdesigned biomaterials. Tissue Eng Part A 2014; 21:906-15. [PMID: 25298083 DOI: 10.1089/ten.tea.2014.0357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Tissue-engineered esophagus (TEE) may serve as a therapeutic replacement for absent foregut. Most prior esophagus studies have favored microdesigned biomaterials and yielded epithelial growth alone. None have generated human TEE with mesenchymal components. We hypothesized that sufficient progenitor cells might only require basic support for successful generation of murine and human TEE. MATERIALS AND METHODS Esophageal organoid units (EOUs) were isolated from murine or human esophagi and implanted on a polyglycolic acid/poly-l-lactic acid collagen-coated scaffold in adult allogeneic or immune-deficient mice. Alternatively, EOU were cultured for 10 days in vitro prior to implantation. RESULTS TEE recapitulated all key components of native esophagus with an epithelium and subjacent muscularis. Differentiated suprabasal and proliferative basal layers of esophageal epithelium, muscle, and nerve were identified. Lineage tracing demonstrated that multiple EOU could contribute to the epithelium and mesenchyme of a single TEE. Cultured murine EOU grew as an expanding sphere of proliferative basal cells on a neuromuscular network that demonstrated spontaneous peristalsis in culture. Subsequently, cultured EOU generated TEE. CONCLUSIONS TEE forms after transplantation of mouse and human organ-specific stem/progenitor cells in vivo on a relatively simple biodegradable scaffold. This is a first step toward future human therapies.
Collapse
Affiliation(s)
- Ryan Gregory Spurrier
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute , USC Keck School of Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | | | | | | | | |
Collapse
|
43
|
Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population. Cell Rep 2014; 9:701-11. [PMID: 25373907 DOI: 10.1016/j.celrep.2014.09.027] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 01/10/2023] Open
Abstract
Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.
Collapse
|
44
|
Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B, Lee JH, Wadhwa R, Sudo K, Stroehlein JR, Martin JF, Hung MC, Johnson RL. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res 2014; 74:4170-82. [PMID: 24906622 DOI: 10.1158/0008-5472.can-13-3569] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cancer stem cells (CSC) are purported to initiate and maintain tumor growth. Deregulation of normal stem cell signaling may lead to the generation of CSCs; however, the molecular determinants of this process remain poorly understood. Here we show that the transcriptional coactivator YAP1 is a major determinant of CSC properties in nontransformed cells and in esophageal cancer cells by direct upregulation of SOX9. YAP1 regulates the transcription of SOX9 through a conserved TEAD binding site in the SOX9 promoter. Expression of exogenous YAP1 in vitro or inhibition of its upstream negative regulators in vivo results in elevated SOX9 expression accompanied by the acquisition of CSC properties. Conversely, shRNA-mediated knockdown of YAP1 or SOX9 in transformed cells attenuates CSC phenotypes in vitro and tumorigenicity in vivo. The small-molecule inhibitor of YAP1, verteporfin, significantly blocks CSC properties in cells with high YAP1 and a high proportion of ALDH1(+). Our findings identify YAP1-driven SOX9 expression as a critical event in the acquisition of CSC properties, suggesting that YAP1 inhibition may offer an effective means of therapeutically targeting the CSC population.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Soichiro Honjo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiongrong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Todd R Heallen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brian Weston
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey H Lee
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roopma Wadhwa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kazuki Sudo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John R Stroehlein
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
45
|
Blacher S, Erpicum C, Lenoir B, Paupert J, Moraes G, Ormenese S, Bullinger E, Noel A. Cell invasion in the spheroid sprouting assay: a spatial organisation analysis adaptable to cell behaviour. PLoS One 2014; 9:e97019. [PMID: 24806521 PMCID: PMC4013117 DOI: 10.1371/journal.pone.0097019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
The endothelial cell spheroid assay provides a suitable in vitro model to study (lymph) angiogenesis and test pro- and anti-(lymph) angiogenic factors or drugs. Usually, the extent of cell invasion, observed through optical microscopy, is measured. The present study proposes the spatial distribution of migrated cells as a new descriptor of the (lymph) angiogenic response. The utility of this novel method rests with its capacity to locally characterise spheroid structure, allowing not only the investigation of single and collective cell invasion but also the evolution of the spheroid core itself. Moreover, the proposed method can be applied to 2D-projected spheroid images obtained by optical microscopy, as well as to 3D images acquired by confocal microscopy. To validate the proposed methodology, endothelial cell invasion was evaluated under different experimental conditions. The results were compared with widely used global parameters. The comparison shows that our method prevents local spheroid modifications from being overlooked and leading to the possible misinterpretation of results.
Collapse
Affiliation(s)
- Silvia Blacher
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Bénédicte Lenoir
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
- Laboratory of cardiovascular research, CRP santé, Luxembourg, Luxembourg
| | - Jenny Paupert
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Gustavo Moraes
- GIGA-Imaging and Flow Cytometry Platform, University of Liege, Liege, Belgium
| | - Sandra Ormenese
- GIGA-Imaging and Flow Cytometry Platform, University of Liege, Liege, Belgium
| | - Eric Bullinger
- GIGA Systems Biology and Chemical Biology, University of Liege, Liege, Belgium
| | - Agnès Noel
- Laboratory of tumor and developmental biology, GIGA-Cancer, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
46
|
Sox2 cooperates with inflammation-mediated Stat3 activation in the malignant transformation of foregut basal progenitor cells. Cell Stem Cell 2013; 12:304-15. [PMID: 23472872 DOI: 10.1016/j.stem.2013.01.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 12/05/2012] [Accepted: 01/10/2013] [Indexed: 12/18/2022]
Abstract
Sox2 regulates the self-renewal of multiple types of stem cells. Recent studies suggest it also plays oncogenic roles in the formation of squamous carcinoma in several organs, including the esophagus where Sox2 is predominantly expressed in the basal progenitor cells of the stratified epithelium. Here, we use mouse genetic models to reveal a mechanism by which Sox2 cooperates with microenvironmental signals to malignantly transform epithelial progenitor cells. Conditional overexpression of Sox2 in basal cells expands the progenitor population in both the esophagus and forestomach. Significantly, carcinoma only develops in the forestomach, where pathological progression correlates with inflammation and nuclear localization of Stat3 in progenitor cells. Importantly, co-overexpression of Sox2 and activated Stat3 (Stat3C) also transforms esophageal basal cells but not the differentiated suprabasal cells. These findings indicate that basal stem/progenitor cells are the cells of origin of squamous carcinoma and that cooperation between Sox2 and microenvironment-activated Stat3 is required for Sox2-driven tumorigenesis.
Collapse
|
47
|
Hong JS, Romero R, Kusanovic JP, Kim JS, Lee J, Jin M, El Azzamy H, Lee DC, Topping V, Ahn S, Jacques S, Qureshi F, Chaiworapongsa T, Hassan SS, Korzeniewski SJ, Than NG, Kim CJ. "Trophoblast islands of the chorionic connective tissue" (TICCT): a novel placental histologic feature. Placenta 2013; 34:360-8. [PMID: 23453248 DOI: 10.1016/j.placenta.2013.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/25/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION We found isolated or clustered trophoblasts in the chorionic connective tissue of the extraplacental membranes, and defined this novel histologic feature as the "trophoblast islands of the chorionic connective tissue" (TICCT). This study was conducted to determine the clinical significance of TICCT. METHODS Immunohistochemistry for cytokeratin-7 was performed on the chorioamniotic membranes (N = 2155) obtained from singleton pregnancies of 1199 uncomplicated term and 956 preterm deliveries. The study groups comprised 1236 African-American and 919 Hispanic women. Gestational age ranged from 24(+0) weeks to 41(+6) weeks. Multiple logistic regression analysis was performed to investigate the magnitude of association between patient characteristics and the presence of TICCT. RESULTS The likelihood of TICCT was significantly associated with advancing gestational age both in term (OR: 1.29, 95% CI: 1.16-1.45, p < 0.001) and preterm deliveries (OR: 1.19, 95% CI: 1.07-1.32, p = 0.001) . Hispanic women were less likely than African-American women to have TICCT across gestation in term (OR: 0.23, 95% CI: 0.18-0.31, p < 0.001) and preterm pregnancies (OR: 0.41, 95% CI: 0.29-0.58, p < 0.001). Women with a female fetus were significantly more likely to have TICCT than women with a male fetus, in both term (OR: 1.64, 95% CI: 1.28-2.11, p < 0.001) and preterm gestations (OR: 2.04, 95% CI: 1.46-2.85, p < 0.001). TICCT was 40% less frequent in the presence of chronic placental inflammation [term (OR: 0.60, 95% CI: 0.45-0.81, p = 0.001) and preterm gestations (OR: 0.58, 95% CI: 0.40-0.84, p = 0.003)] and in parous women at term (OR: 0.60, 95% CI: 0.44-0.81, p = 0.001). CONCLUSIONS Our findings suggest that the duration of pregnancy, fetal sex, and parity may influence the behavior of extravillous trophoblast and placental mesenchymal cells.
Collapse
Affiliation(s)
- J-S Hong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Doupé DP, Alcolea MP, Roshan A, Zhang G, Klein AM, Simons BD, Jones PH. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 2012; 337:1091-3. [PMID: 22821983 PMCID: PMC3527005 DOI: 10.1126/science.1218835] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Diseases of the esophageal epithelium (EE), such as reflux esophagitis and cancer, are rising in incidence. Despite this, the cellular behaviors underlying EE homeostasis and repair remain controversial. Here, we show that in mice, EE is maintained by a single population of cells that divide stochastically to generate proliferating and differentiating daughters with equal probability. In response to challenge with all-trans retinoic acid (atRA), the balance of daughter cell fate is unaltered, but the rate of cell division increases. However, after wounding, cells reversibly switch to producing an excess of proliferating daughters until the wound has closed. Such fate-switching enables a single progenitor population to both maintain and repair tissue without the need for a "reserve" slow-cycling stem cell pool.
Collapse
Affiliation(s)
- David P Doupé
- Medical Research Council (MRC) Cancer Cell Unit, Hutchison-MRC Research Centre, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The lumen of the esophagus is lined with a squamous stratified epithelium. In the model of Doupé et al . (based on the mouse esophageal epithelium), a single population of epithelial progenitor cells (yellow) is present above the basal lamina. The epithelium is maintained, under basal conditions, by these cells, which divide and produce both more progenitor cells or differentiate into the layers of the stratified epithelium
Collapse
Affiliation(s)
- Jake A Kushner
- McNair Medical Institute, Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Roth S, Franken P, Monkhorst K, Kong a San J, Fodde R. Generation and characterization of an inducible transgenic model for studying mouse esophageal biology. BMC DEVELOPMENTAL BIOLOGY 2012; 12:18. [PMID: 22690876 PMCID: PMC3483200 DOI: 10.1186/1471-213x-12-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/22/2012] [Indexed: 11/21/2022]
Abstract
Background To facilitate the in vivo study of esophageal (stem) cell biology in homeostasis and cancer, novel mouse models are necessary to elicit expression of candidate genes in a tissue-specific and inducible fashion. To this aim, we developed and studied a mouse model to allow labeling of esophageal cells with the histone 2B-GFP (H2B-GFP) fusion protein. Results First, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the promoter (ED-L2) of the Epstein-Barr virus (EBV) gene encoding the latent membrane protein-1 (LMP-1). The newly generated ED-L2-rtTA2-M2 (ED-L2-rtTA) mice were then bred with the previously developed tetO-HIST1H2BJ/GFP (tetO-H2B-GFP) model to assess inducibility and tissue-specificity. Expression of the H2B-GFP fusion protein was observed upon doxycycline induction but was restricted to the terminally differentiated cells above the basal cell layer. To achieve expression in the basal compartment of the esophagus, we subsequently employed a different transgenic model expressing the reverse transactivator rtTA2S-M2 under the control of the ubiquitous, methylation-free CpG island of the human hnRNPA2B1-CBX3 gene (hnRNP-rtTA). Upon doxycycline administration to the compound hnRNP-rtTA/tetO-H2B-GFP mice, near-complete labeling of all esophageal cells was achieved. Pulse-chase experiments confirmed that complete turnover of the esophageal epithelium in the adult mouse is achieved within 7–10 days. Conclusions We show that the esophagus-specific promoter ED-L2 is expressed only in the differentiated cells above the basal layer. Moreover, we confirmed that esophageal turn-over in the adult mouse does not exceed 7–10 days.
Collapse
Affiliation(s)
- Sabrina Roth
- Department of Pathology, Josephine Nefkens Institute, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|