1
|
Rajalingamgari P, Khatua B, Summers MJ, Kostenko S, Chang YHH, Elmallahy M, Anand A, Narayana Pillai A, Morsy M, Trivedi S, McFayden B, Jahangir S, Snozek CL, Singh VP. Prospective observational study and mechanistic evidence showing lipolysis of circulating triglycerides worsens hypertriglyceridemic acute pancreatitis. J Clin Invest 2024; 135:e184785. [PMID: 39509346 DOI: 10.1172/jci184785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDWhile most hypertriglyceridemia is asymptomatic, hypertriglyceridemia-associated acute pancreatitis (HTG-AP) can be more severe than AP of other etiologies. The reasons underlying this are unclear. We thus examined whether lipolytic generation of nonesterified fatty acids (NEFAs) from circulating triglycerides (TGs) could worsen clinical outcomes.METHODSAdmission serum TGs, NEFA composition, and concentrations were analyzed prospectively for 269 patients with AP. These parameters, demographics, and clinical outcomes were compared between HTG-AP (TGs >500 mg/dL; American Heart Association [AHA] 2018 guidelines) and AP of other etiologies. Serum NEFAs were correlated with serum TG fatty acids (TGFAs) alone and with the product of TGFA serum lipase (NEFAs - TGFAs × lipase). Studies in mice and rats were conducted to understand the role of HTG lipolysis in organ failure and to interpret the NEFA-TGFA correlations.RESULTSPatients with HTG-AP had higher serum NEFA and TG levels and more severe AP (19% vs. 7%; P < 0.03) than did individuals with AP of other etiologies. Correlations of long-chain unsaturated NEFAs with corresponding TGFAs increased with TG concentrations up to 500 mg/dL and declined thereafter. However, NEFA - TGFA × lipase correlations became stronger with TGs above 500 mg/dL. AP and intravenous lipase infusion in rodents caused lipolysis of circulating TGs to NEFAs. This led to multisystem organ failure, which was prevented by pancreatic TG lipase deletion or lipase inhibition.CONCLUSIONSHTG-AP is made severe by the NEFAs generated from intravascular lipolysis of circulating TGs. Strategies that prevent TG lipolysis may be effective in improving clinical outcomes for patients with HTG-AP.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK, NIH) (RO1DK092460 and R01DK119646); Department of Defense (PR191945 under W81XWH-20-1-0400); National Institute on Alcohol Abuse and Alcoholism (NIAAA), NIH (R01AA031257).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Vijay P Singh
- Department of Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Arizona, USA
| |
Collapse
|
2
|
Kume H, Harigane R, Rikimaru M. Involvement of Lysophospholipids in Pulmonary Vascular Functions and Diseases. Biomedicines 2024; 12:124. [PMID: 38255229 PMCID: PMC10813361 DOI: 10.3390/biomedicines12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular lysophospholipids (lysophosphatidic acid, lysophosphatidylcholine, sphingosine 1-phosphate, etc.), which are synthesized from phospholipids in the cell membrane, act as lipid mediators, and mediate various cellular responses in constituent cells in the respiratory system, such as contraction, proliferation, migration, and cytoskeletal organization. In addition to these effects, the expression of the adhesion molecules is enhanced by these extracellular lysophospholipids in pulmonary endothelial cells. These effects are exerted via specific G protein-coupled receptors. Rho, Ras, and phospholipase C (PLC) have been proven to be their signaling pathways, related to Ca2+ signaling due to Ca2+ dynamics and Ca2+ sensitization. Therefore, lysophospholipids probably induce pulmonary vascular remodeling through phenotype changes in smooth muscle cells, endothelial cells, and fibroblasts, likely resulting in acute respiratory distress syndrome due to vascular leak, pulmonary hypertension, and pulmonary fibrosis. Moreover, lysophospholipids induce the recruitment of inflammatory cells to the lungs via the enhancement of adhesion molecules in endothelial cells, potentially leading to the development of asthma. These results demonstrate that lysophospholipids may be novel therapeutic targets not only for injury, fibrosis, and hypertension in the lung, but also for asthma. In this review, we discuss the mechanisms of the effects of lysophospholipids on the respiratory system, and the possibility of precision medicine targeting lysophospholipids as treatable traits of these diseases.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Infectious Diseases and Respiratory Medicine, Fukushima Medical University Aizu Medical Center, 21-2 Maeda, Tanisawa, Kawahigashi, Aizuwakamatsu City 969-3492, Fukushima, Japan; (R.H.); (M.R.)
| | | | | |
Collapse
|
3
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
4
|
Le TNU, Nguyen TQ, Kalailingam P, Nguyen YTK, Sukumar VK, Tan CKH, Tukijan F, Couty L, Hasan Z, Del Gaudio I, Wenk MR, Cazenave-Gassiot A, Camerer E, Nguyen LN. Mfsd2b and Spns2 are essential for maintenance of blood vessels during development and in anaphylactic shock. Cell Rep 2022; 40:111208. [PMID: 35977478 DOI: 10.1016/j.celrep.2022.111208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/23/2022] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a potent lipid mediator that is secreted by several cell types. We recently showed that Mfsd2b is an S1P transporter from hematopoietic cells that contributes approximately 50% plasma S1P. Here we report the characterization of compound deletion of Mfsd2b and Spns2, another S1P transporter active primarily in endothelial cells. Global deletion of Mfsd2b and Spns2 (global double knockout [gDKO]) results in embryonic lethality beyond embryonic day 14.5 (E14.5), with severe hemorrhage accompanied by defects of tight junction proteins, indicating that Mfsd2b and Spns2 provide S1P for signaling, which is essential for blood vessel integrity. Compound postnatal deletion of Mfsd2b and Spns2 using Mx1Cre (ctDKO-Mx1Cre) results in maximal 80% reduction of plasma S1P. ctDKO-Mx1Cre mice exhibit severe susceptibility to anaphylaxis, indicating that S1P from Mfsd2b and Spns2 is indispensable for vascular homeostasis. Our results show that S1P export from Mfsd2b and Spns2 is essential for developing and mature vasculature.
Collapse
Affiliation(s)
- Thanh Nha Uyen Le
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Toan Q Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Pazhanichamy Kalailingam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Yen Thi Kim Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Viresh Krishnan Sukumar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Clarissa Kai Hui Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Farhana Tukijan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Zafrul Hasan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ilaria Del Gaudio
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Eric Camerer
- Université Paris Cité, PARCC, INSERM U970, 56 Rue Leblanc, 75015 Paris, France
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Cardiovascular Disease Research (CVD) Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
5
|
Nuñez-Borque E, Fernandez-Bravo S, Yuste-Montalvo A, Esteban V. Pathophysiological, Cellular, and Molecular Events of the Vascular System in Anaphylaxis. Front Immunol 2022; 13:836222. [PMID: 35371072 PMCID: PMC8965328 DOI: 10.3389/fimmu.2022.836222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 01/10/2023] Open
Abstract
Anaphylaxis is a systemic hypersensitivity reaction that can be life threatening. Mechanistically, it results from the immune activation and release of a variety of mediators that give rise to the signs and symptoms of this pathological event. For years, most of the research in anaphylaxis has focused on the contribution of the immune component. However, approaches that shed light on the participation of other cellular and molecular agents are necessary. Among them, the vascular niche receives the various signals (e.g., histamine) that elicit the range of anaphylactic events. Cardiovascular manifestations such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and cardiac alterations are crucial in the pathophysiology of anaphylaxis and are highly involved to the development of the most severe cases. Specifically, the endothelium, vascular smooth muscle cells, and their molecular signaling outcomes play an essential role downstream of the immune reaction. Therefore, in this review, we synthesized the vascular changes observed during anaphylaxis as well as its cellular and molecular components. As the risk of anaphylaxis exists both in clinical procedures and in routine life, increasing our knowledge of the vascular physiology and their molecular mechanism will enable us to improve the clinical management and how to treat or prevent anaphylaxis. Key Message Anaphylaxis, the most severe allergic reaction, involves a variety of immune and non-immune molecular signals that give rise to its pathophysiological manifestations. Importantly, the vascular system is engaged in processes relevant to anaphylactic events such as increased vascular permeability, vasodilation, hypotension, vasoconstriction, and decreased cardiac output. The novelty of this review focuses on the fact that new studies will greatly improve the understanding of anaphylaxis when viewed from a vascular molecular angle and specifically from the endothelium. This knowledge will improve therapeutic options to treat or prevent anaphylaxis.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Sergio Fernandez-Bravo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alma Yuste-Montalvo
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto en Investigación Sanitaria - Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
6
|
Sphk2 deletion is involved in structural abnormalities and Th17 response but does not aggravate colon inflammation induced by sub-chronic stress. Sci Rep 2022; 12:4073. [PMID: 35260749 PMCID: PMC8904788 DOI: 10.1038/s41598-022-08011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
The chronic inflammatory process that characterizes inflammatory bowel diseases (IBD) is mainly driven by T-cell response to microbial and environmental antigens. Psychological stress is a potential trigger of clinical flares of IBD, and sphingosine-1-phosphate (S1P) is involved in T-cell recruitment. Hence, stress impact and the absence of sphingosine kinase 2 (Sphk2), an enzyme of S1P metabolism, were evaluated in the colon of mice after sub-chronic stress exposure. Here, we show that sub-chronic stress increased S1P in the mouse colon, possibly due to a decrease in its degradation enzymes and Sphk2. S1P accumulation could lead to inflammation and immune dysregulation reflected by upregulation of toll-like receptor 4 (TLR4) pathway, inhibition of anti-inflammatory mechanisms, cytokine-expression profile towards a T-helper lymphocyte 17 (Th17) polarization, plasmacytosis, decrease in IgA+ lymphoid lineage cells (CD45+)/B cells/plasmablasts, and increase in IgM+ B cells. Stress also enhanced intestinal permeability. Sphk2 knockout mice presented a cytokine-expression profile towards a boosted Th17 response, lower expression of claudin 3,4,7,8, and structural abnormalities in the colon. Intestinal pathophysiology should consider stress and S1P as modulators of the immune response. S1P-based drugs, including Sphk2 potentiation, represent a promising approach to treat IBD.
Collapse
|
7
|
Abstract
Lysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems. Indeed, recent research into LPA and S1P has revealed their important roles in cellular stress signaling, inflammation, resolution, and host defense responses. In this review, we focus on how LPA regulates fibrosis, neuropathic pain, abnormal angiogenesis, endometriosis, and disorders of neuroectodermal development such as hydrocephalus and alopecia. In addition, we discuss how S1P controls collective behavior, apoptotic cell clearance, and immunosurveillance of cancers. Advances in lysophospholipid research have led to new therapeutics in autoimmune diseases, with many more in earlier stages of development for a wide variety of diseases, such as fibrotic disorders, vascular diseases, and cancer.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
8
|
Diao X, Cui Q, Tian N, Zhou Z, Xiang W, Jiang Y, Deng J, Liao H, Lin X, Li Q, Liao R. Hemorrhage-Induced Sphingosine Kinase 1 Contributes to Ferroptosis-Mediated Secondary Brain Injury in Intracerebral Hemorrhage. Mol Neurobiol 2022; 59:1381-1397. [PMID: 34993846 DOI: 10.1007/s12035-021-02605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
The pathogenic processes of brain injury after intracerebral hemorrhage (ICH) have not yet been fully elucidated. Increasing evidence suggests that ferroptosis activation aggravates injury after ICH, but the underlying mechanism remains unclear. Sphingosine kinase 1 (Sphk1) is a key enzyme in the regulation of sphingosine metabolism involved in the ferroptosis pathway, but its role in ICH needs clarification. In this study, transcriptional changes in ICH patients were assessed by microarray data, exposing Sphk1 as a highly upregulated gene during ICH. Furthermore, Sphk1 chemical inhibitors and siRNA were used to inhibit ICH-induced Sphk1 upregulation in in vivo and in vitro models, showing that Sphk1 inhibition after protects against ferroptosis and attenuates secondary brain injury and cell death. Mechanistically, this study unveiled that sphingosine kinase 1/sphingosine 1-phosphate/extracellular-regulated protein kinases/phosphorylated extracellular-regulated protein kinases (Sphk1/S1p/ERK/p-ERK) pathway is responsible for regulation of ferroptosis leading to secondary brain injury and cell death following ICH. Collectively, this study demonstrates that ferroptosis is closely associated with ICH, and that Sphk1 has a critical role in this lethal process. These results suggest a novel unique and effective therapeutic approach for ICH prevention and treatment.
Collapse
Affiliation(s)
- Xiaojun Diao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Qi Cui
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Ning Tian
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Zixian Zhou
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Wenjing Xiang
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China
| | - Yanlin Jiang
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Jungang Deng
- Department of Pharmacology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Hongzhan Liao
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Xiaohui Lin
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China.
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| | - Rujia Liao
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
9
|
Sasset L, Di Lorenzo A. Sphingolipid Metabolism and Signaling in Endothelial Cell Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:87-117. [PMID: 35503177 DOI: 10.1007/978-981-19-0394-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The endothelium, inner layer of blood vessels, constitutes a metabolically active paracrine, endocrine, and autocrine organ, able to sense the neighboring environment and exert a variety of biological functions important to preserve the health of vasculature, tissues, and organs. Sphingolipids are both fundamental structural components of the eukaryotic membranes and signaling molecules regulating a variety of biological functions. Ceramide and sphingosine-1-phosphate (S1P), bioactive sphingolipids, have emerged as important regulators of cardiovascular functions in health and disease. In this review we discuss recent insights into the role of ceramide and S1P biosynthesis and signaling in regulating endothelial cell functions, in health and diseases. We also highlight advances into the mechanisms regulating serine palmitoyltransferase, the first and rate-limiting enzyme of de novo sphingolipid biosynthesis, with an emphasis on its inhibitors, ORMDL and NOGO-B. Understanding the molecular mechanisms regulating the sphingolipid de novo biosynthesis may provide the foundation for therapeutic modulation of this pathway in a variety of conditions, including cardiovascular diseases, associated with derangement of this pathway.
Collapse
Affiliation(s)
- Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Rohrhofer J, Zwirzitz B, Selberherr E, Untersmayr E. The Impact of Dietary Sphingolipids on Intestinal Microbiota and Gastrointestinal Immune Homeostasis. Front Immunol 2021; 12:635704. [PMID: 34054805 PMCID: PMC8160510 DOI: 10.3389/fimmu.2021.635704] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The large surfaces of gastrointestinal (GI) organs are well adapted to their diverse tasks of selective nutritional uptake and defense against the external environment. To maintain a functional balance, a vast number of immune cells is located within the mucosa. A strictly regulated immune response is required to impede constant inflammation and to maintain barrier function. An increasing prevalence of GI diseases has been reported in Western societies over the past decades. This surge in GI disorders has been linked to dietary changes followed by an imbalance of the gut microbiome, leading to a chronic, low grade inflammation of the gut epithelium. To counteract the increasing health care costs associated with diseases, it is paramount to understand the mechanisms driving immuno-nutrition, the associations between nutritional compounds, the commensal gut microbiota, and the host immune response. Dietary compounds such as lipids, play a central role in GI barrier function. Bioactive sphingolipids (SLs), e.g. sphingomyelin (SM), sphingosine (Sph), ceramide (Cer), sphingosine-1- phosphate (S1P) and ceramide-1-phosphate (C1P) may derive from dietary SLs ingested through the diet. They are not only integral components of cell membranes, they additionally modulate cell trafficking and are precursors for mediators and second messenger molecules. By regulating intracellular calcium levels, cell motility, cell proliferation and apoptosis, SL metabolites have been described to influence GI immune homeostasis positively and detrimentally. Furthermore, dietary SLs are suggested to induce a shift in the gut microbiota. Modes of action range from competing with the commensal bacteria for intestinal cell attachment to prevention from pathogen invasion by regulating innate and immediate defense mechanisms. SL metabolites can also be produced by gut microorganisms, directly impacting host metabolic pathways. This review aims to summarize recent findings on SL signaling and functional variations of dietary SLs. We highlight novel insights in SL homeostasis and SL impact on GI barrier function, which is directly linked to changes of the intestinal microbiota. Knowledge gaps in current literature will be discussed to address questions relevant for understanding the pivotal role of dietary SLs on chronic, low grade inflammation and to define a balanced and healthy diet for disease prevention and treatment.
Collapse
Affiliation(s)
- Johanna Rohrhofer
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Zwirzitz
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Eva Untersmayr
- Gastrointestinal Immunology Group, Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Bugajev V, Halova I, Demkova L, Cernohouzova S, Vavrova P, Mrkacek M, Utekal P, Draberova L, Kuchar L, Schuster B, Draber P. ORMDL2 Deficiency Potentiates the ORMDL3-Dependent Changes in Mast Cell Signaling. Front Immunol 2021; 11:591975. [PMID: 33643282 PMCID: PMC7905224 DOI: 10.3389/fimmu.2020.591975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
The systemic anaphylactic reaction is a life-threatening allergic response initiated by activated mast cells. Sphingolipids are an essential player in the development and attenuation of this response. De novo synthesis of sphingolipids in mammalian cells is inhibited by the family of three ORMDL proteins (ORMDL1, 2, and 3). However, the cell and tissue-specific functions of ORMDL proteins in mast cell signaling are poorly understood. This study aimed to determine cross-talk of ORMDL2 and ORMDL3 proteins in IgE-mediated responses. To this end, we prepared mice with whole-body knockout (KO) of Ormdl2 and/or Ormdl3 genes and studied their role in mast cell-dependent activation events in vitro and in vivo. We found that the absence of ORMDL3 in bone marrow-derived mast cells (BMMCs) increased the levels of cellular sphingolipids. Such an increase was further raised by simultaneous ORMDL2 deficiency, which alone had no effect on sphingolipid levels. Cells with double ORMDL2 and ORMDL3 KO exhibited increased intracellular levels of sphingosine-1-phosphate (S1P). Furthermore, we found that concurrent ORMDL2 and ORMDL3 deficiency increased IκB-α phosphorylation, degranulation, and production of IL-4, IL-6, and TNF-α cytokines in antigen-activated mast cells. Interestingly, the chemotaxis towards antigen was increased in all mutant cell types analyzed. Experiments in vivo showed that passive cutaneous anaphylaxis (PCA), which is initiated by mast cell activation, was increased only in ORMDL2,3 double KO mice, supporting our in vitro observations with mast cells. On the other hand, ORMDL3 KO and ORMDL2,3 double KO mice showed faster recovery from passive systemic anaphylaxis, which could be mediated by increased levels of blood S1P presented in such mice. Our findings demonstrate that Ormdl2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling.
Collapse
Affiliation(s)
- Viktor Bugajev
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Livia Demkova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Sara Cernohouzova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Vavrova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Mrkacek
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Pavol Utekal
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ladislav Kuchar
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Björn Schuster
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Nemkov T, Stefanoni D, Bordbar A, Issaian A, Palsson BO, Dumont LJ, Hay A, Song A, Xia Y, Redzic JS, Eisenmesser EZ, Zimring JC, Kleinman S, Hansen KC, Busch MP, D'Alessandro A. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight 2021; 6:146175. [PMID: 33351786 PMCID: PMC7934844 DOI: 10.1172/jci.insight.146175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine — though rarely detected in the blood donor population — has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could — through mechanisms involving sphingosine 1–phosphate–dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin — improve erythrocyte metabolism and storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Ariel Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Anren Song
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Xia
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | |
Collapse
|
13
|
Buchborn T, Lyons T, Song C, Feilding A, Knöpfel T. The serotonin 2A receptor agonist 25CN-NBOH increases murine heart rate and neck-arterial blood flow in a temperature-dependent manner. J Psychopharmacol 2020; 34:786-794. [PMID: 32048564 PMCID: PMC7488829 DOI: 10.1177/0269881120903465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Serotonin 2A receptors, the molecular target of psychedelics, are expressed by neuronal and vascular cells, both of which might contribute to brain haemodynamic characteristics for the psychedelic state. AIM Aiming for a systemic understanding of psychedelic vasoactivity, here we investigated the effect of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine - a new-generation agonist with superior serotonin 2A receptor selectivity - on brain-supplying neck-arterial blood flow. METHODS We recorded core body temperature and employed non-invasive, collar-sensor based pulse oximetry in anesthetised mice to extract parameters of local blood perfusion, oxygen saturation, heart and respiration rate. Hypothesising an overlap between serotonergic pulse- and thermoregulation, recordings were done under physiological and elevated pad temperatures. RESULTS N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (1.5 mg/kg, subcutaneous) significantly increased the frequency of heart beats accompanied by a slight elevation of neck-arterial blood flow. Increasing the animal-supporting heat-pad temperature from 37°C to 41°C enhanced the drug's effect on blood flow while counteracting tachycardia. Additionally, N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine promoted bradypnea, which, like tachycardia, quickly reversed at the elevated pad temperature. The interrelatedness of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine's respiro-cardiovascular effects and thermoregulation was further corroborated by the drug selectively increasing the core body temperature at the elevated pad temperature. Arterial oxygen saturation was not affected by N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine at either temperature. CONCLUSIONS Our findings imply that selective serotonin 2A receptor activation modulates systemic cardiovascular functioning in orchestration with thermoregulation and with immediate relevance to brain-imminent neck (most likely carotid) arteries. As carotid branching is a critical last hub to channel cardiovascular output to or away from the brain, our results might have implications for the brain haemodynamics associated with psychedelia.
Collapse
Affiliation(s)
- Tobias Buchborn
- Laboratory for Neuronal Circuit Dynamics, Department of Medicine, Imperial College, London, UK,Centre for Psychedelic Research, Department of Medicine, Imperial College, London, UK,Tobias Buchborn, Laboratory for Neuronal Circuit Dynamics, Department of Medicine, Imperial College, Du Cane Road, Burlington Danes, London, W12 0NN, UK.
| | - Taylor Lyons
- Laboratory for Neuronal Circuit Dynamics, Department of Medicine, Imperial College, London, UK,Centre for Psychedelic Research, Department of Medicine, Imperial College, London, UK
| | - Chenchen Song
- Laboratory for Neuronal Circuit Dynamics, Department of Medicine, Imperial College, London, UK
| | | | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, Department of Medicine, Imperial College, London, UK,Centre for Neurotechnology, Institute of Biomedical Engineering, Imperial College, London, UK
| |
Collapse
|
14
|
Hernández-Coronado CG, Guzmán A, Castillo-Juárez H, Zamora-Gutiérrez D, Rosales-Torres AM. Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. ANNALES D'ENDOCRINOLOGIE 2019; 80:263-272. [DOI: 10.1016/j.ando.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
|
15
|
Park SJ, Im DS. Blockage of sphingosine-1-phosphate receptor 2 attenuates allergic asthma in mice. Br J Pharmacol 2019; 176:938-949. [PMID: 30706444 DOI: 10.1111/bph.14597] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate 2 (S1P2 ) receptors have been implicated in degranulation of mast cells. However, functions of S1P2 receptors have not been investigated in an in vivo model of allergic asthma. EXPERIMENTAL APPROACH Using an ovalbumin (OVA)-induced asthma model, the function of S1P2 receptors was evaluated in S1P2 -deficient mice or in mice treated with JTE-013, a selective S1P2 antagonist. Bone marrow-derived dendritic cells (BMDCs) were used to investigate the roles of S1P2 receptors in dendritic cell maturation and migration. KEY RESULTS Eosinophil accumulation and elevated Th2 cytokine levels in bronchoalveolar lavage fluid and inflamed lung tissues were strongly inhibited by administration of JTE-013 before OVA sensitization, before OVA challenge, and before both events. In S1P2 -deficient mice, allergic responses were significantly lower than in wild-type mice. LPS- and OVA-induced maturation of BMDCs was significantly blunted in dendritic cells from S1P2 -deficient mice and by treatment with JTE-013. Migrations of immature and mature BMDCs were also dependent on S1P2 receptors. It was found that OVA-challenged mice into which in vitro OVA primed BMDCs from S1P2 -deficient mice were adoptively transferred, had less severe asthma responses than OVA-challenged mice into which OVA-primed BMDCs from wild-type mice were adoptively transferred. CONCLUSIONS AND IMPLICATIONS Pro-allergic functions of S1P2 receptors were elucidated in a murine asthma model. S1P2 receptors were involved not only in maturation and migration of dendritic cells in the sensitization phase but also in mast cell degranulation in the challenge phase. These results suggest S1P2 receptor as a therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
16
|
Greig FH, Nather K, Ballantyne MD, Kazi ZH, Alganga H, Ewart MA, Zaborska KE, Fertig B, Pyne NJ, Pyne S, Kennedy S. Requirement for sphingosine kinase 1 in mediating phase 1 of the hypotensive response to anandamide in the anaesthetised mouse. Eur J Pharmacol 2018; 842:1-9. [PMID: 30359564 PMCID: PMC6318480 DOI: 10.1016/j.ejphar.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023]
Abstract
In the isolated rat carotid artery, the endocannabinoid anandamide induces endothelium-dependent relaxation via activation of the enzyme sphingosine kinase (SK). This generates sphingosine-1-phosphate (S1P) which can be released from the cell and activates S1P receptors on the endothelium. In anaesthetised mice, anandamide has a well-characterised triphasic effect on blood pressure but the contribution of SK and S1P receptors in mediating changes in blood pressure has never been studied. Therefore, we assessed this in the current study. The peak hypotensive response to 1 and 10 mg/kg anandamide was measured in control C57BL/6 mice and in mice pretreated with selective inhibitors of SK1 (BML-258, also known as SK1-I) or SK2 ((R)-FTY720 methylether (ROMe), a dual SK1/2 inhibitor (SKi) or an S1P1 receptor antagonist (W146). Vasodilator responses to S1P were also studied in isolated mouse aortic rings. The hypotensive response to anandamide was significantly attenuated by BML-258 but not by ROMe. Antagonising S1P1 receptors with W146 completely blocked the fall in systolic but not diastolic blood pressure in response to anandamide. S1P induced vasodilation in denuded aortic rings was blocked by W146 but caused no vasodilation in endothelium-intact rings. This study provides evidence that the SK1/S1P regulatory-axis is necessary for the rapid hypotension induced by anandamide. Generation of S1P in response to anandamide likely activates S1P1 to reduce total peripheral resistance and lower mean arterial pressure. These findings have important implications in our understanding of the hypotensive and cardiovascular actions of cannabinoids.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Margaret D Ballantyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Zeshan H Kazi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Husam Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Marie-Ann Ewart
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Karolina E Zaborska
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Bracy Fertig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Abstract
Sphingosine kinases (SK1 and SK2) are key, druggable targets within the sphingolipid metabolism pathway that promote tumor growth and pathologic inflammation. A variety of isozyme-selective and dual inhibitors of SK1 and SK2 have been described in the literature, and at least one compound has reached clinical testing in cancer patients. In this chapter, we will review the rationale for targeting SKs and summarize the preclinical and emerging clinical data for ABC294640 as the first-in-class selective inhibitor of SK2.
Collapse
|
18
|
Engel N, Adamus A, Frank M, Kraft K, Kühn J, Müller P, Nebe B, Kasten A, Seitz G. First evidence of SGPL1 expression in the cell membrane silencing the extracellular S1P siren in mammary epithelial cells. PLoS One 2018; 13:e0196854. [PMID: 29718989 PMCID: PMC5931664 DOI: 10.1371/journal.pone.0196854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/20/2018] [Indexed: 11/19/2022] Open
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is a main regulator of cell survival, proliferation, motility, and platelet aggregation, and it is essential for angiogenesis and lymphocyte trafficking. In that S1P acts as a second messenger intra- and extracellularly, it might promote cancer progression. The main cause is found in the high S1P concentration in the blood, which encourage cancer cells to migrate through the endothelial barrier into the blood vessels. The irreversible degradation of S1P is solely caused by the sphingosine-1-phosphate lyase (SGPL1). SGPL1 overexpression reduces cancer cell migration and therefore silences the endogenous S1P siren, which promotes cancer cell attraction-the main reason for metastasis. Since our previous metabolomics studies revealed an increased SGPL1 activity in association with successful breast cancer cell treatment in vitro, we further investigated expression and localization of SGPL1. Expression analyses confirmed a very low SGPL1 expression in all breast cancer samples, regardless of their subtype. Additionally, we were able to prove a novel SGPL expression in the cytoplasm membrane of non-tumorigenic breast cells by fusing three independent methods. The general SGPL1 downregulation and the loss of the plasma membrane expression resulted in S1P dependent stimulation of migration in the breast cancer cell lines MCF-7 and BT-20. Not only S1P stimulated migration could be repressed by overexpressing the natural SGPL1 variant not but also more general migratory activity was significantly reduced. Here, for the first time, we report on the SGPL1 plasma membrane location in human, non-malignant breast epithelial cell lines silencing the extracellular S1P siren in vitro, and thereby regulating pivotal cellular functions. Loss of this plasma membrane distribution as well as low SGPL1 expression levels could be a potential prognostic marker and a viable target for therapy. Therefore, the precise role of SGPL1 for cancer treatment should be evaluated.
Collapse
Affiliation(s)
- Nadja Engel
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
- Department of Cell Biology, University Medicine Rostock, Schillingallee, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee, Rostock, Germany
- * E-mail: ,
| | - Anna Adamus
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
- Department of Cell Biology, University Medicine Rostock, Schillingallee, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Strempelstraße, Rostock, Germany
| | - Karin Kraft
- Complementary Medicine, Center of Internal Medicine, University Medicine Rostock, Ernst-Heydemann-Straße, Rostock, Germany
| | - Juliane Kühn
- Department of Cell Biology, University Medicine Rostock, Schillingallee, Rostock, Germany
- Institute for Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer, Greifswald-Insel Riems, Germany
| | - Petra Müller
- Department of Cell Biology, University Medicine Rostock, Schillingallee, Rostock, Germany
| | - Barbara Nebe
- Department of Cell Biology, University Medicine Rostock, Schillingallee, Rostock, Germany
| | - Annika Kasten
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee, Rostock, Germany
| | - Guido Seitz
- Department of Pediatric Surgery, University Hospital Marburg, Baldingerstraße, Marburg, Germany
| |
Collapse
|
19
|
S1P₄ Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. Int J Mol Sci 2018; 19:ijms19051279. [PMID: 29693558 PMCID: PMC5983835 DOI: 10.3390/ijms19051279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells are key players in the development of inflammatory allergic reactions. Cross-linking of the high-affinity receptor for IgE (FcεRI) on mast cells leads to the generation and secretion of the sphingolipid mediator, sphingosine-1-phosphate (S1P) which is able, in turn, to transactivate its receptors on mast cells. Previous reports have identified the expression of two of the five receptors for S1P on mast cells, S1P1 and S1P2, with functions in FcεRI-mediated chemotaxis and degranulation, respectively. Here, we show that cultured mouse mast cells also express abundant message for S1P4. Genetic deletion of S1pr4 did not affect the differentiation of bone marrow progenitors into mast cells or the proliferation of mast cells in culture. A comprehensive characterization of IgE-mediated responses in S1P4-deficient bone marrow-derived and peritoneal mouse mast cells indicated that this receptor is dispensable for mast cell degranulation, cytokine/chemokine production and FcεRI-mediated chemotaxis in vitro. However, interleukin-33 (IL-33)-mediated enhancement of IgE-induced degranulation was reduced in S1P4-deficient peritoneal mast cells, revealing a potential negative regulatory role for S1P4 in an IL-33-rich environment. Surprisingly, genetic deletion of S1pr4 resulted in exacerbation of passive systemic anaphylaxis to IgE/anti-IgE in mice, a phenotype likely related to mast cell-extrinsic influences, such as the high circulating levels of IgE in these mice which increases FcεRI expression and consequently the extent of the response to FcεRI engagement. Thus, we provide evidence that S1P4 modulates anaphylaxis in an unexpected manner that does not involve regulation of mast cell responsiveness to IgE stimulation.
Collapse
|
20
|
Lax S, Rayes J, Thickett DR, Watson SP. Effect of anti-podoplanin antibody administration during lipopolysaccharide-induced lung injury in mice. BMJ Open Respir Res 2017; 4:e000257. [PMID: 29435346 PMCID: PMC5687585 DOI: 10.1136/bmjresp-2017-000257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/02/2022] Open
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a devastating pulmonary condition in the critically ill patient. A therapeutic intervention is yet to be found that can prevent progression to ARDS. We recently demonstrated that the interaction between podoplanin expressed on inflammatory alveolar macrophages (iAMs) and its endogenous ligand, platelet C-type lectin-like 2 (CLEC-2), protects against exaggerated lung inflammation during a mouse model of ARDS. In this study, we aim to investigate the therapeutic use of a crosslinking/activating anti-podoplanin antibody (α-PDPN, clone 8.1.1) during lipopolysaccharide (LPS)-induced lung inflammation in mice. Methods Intravenous administration of α-PDPN was performed 6 hours after intratracheal LPS in wildtype, C57Bl/6 mice. Lung function decline was measured by pulse oximetry as well as markers of local inflammation including bronchoalveolar lavage neutrophilia and cytokine/chemokine expression. In parallel, alveolar macrophages were isolated and cultured in vitro from haematopoietic-specific podoplanin-deficient mice (Pdpnfl/flVAV1cre+) and floxed-only controls treated with or without LPS in the presence or absence of α-PDPN. Results Lung function decline as well as alveolar neutrophil recruitment was significantly decreased in mice treated with the crosslinking/activating α-PDPN in vivo. Furthermore, we demonstrate that, in vitro, activation of podoplanin on iAMs regulates their secretion of proinflammatory cytokines and chemokines. Conclusions These data confirm the importance of the CLEC-2–podoplanin pathway during intratracheal (IT)-LPS and demonstrate the beneficial effect of targeting podoplanin during IT-LPS in mice possibly via modulation of local cytokine/chemokine expression. Moreover, these data suggest that podoplanin-targeted therapies may have a beneficial effect in patients at risk of developing ARDS.
Collapse
Affiliation(s)
- Sian Lax
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Institute of Inflammation and Ageing, University of Birmingham Research Labs, QE Hospital, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Vu TM, Ishizu AN, Foo JC, Toh XR, Zhang F, Whee DM, Torta F, Cazenave-Gassiot A, Matsumura T, Kim S, Toh SAES, Suda T, Silver DL, Wenk MR, Nguyen LN. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 2017; 550:524-528. [PMID: 29045386 DOI: 10.1038/nature24053] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022]
Abstract
Sphingosine-1-phosphate (S1P), a potent signalling lipid secreted by red blood cells and platelets, plays numerous biologically significant roles. However, the identity of its long-sought exporter is enigmatic. Here we show that the major facilitator superfamily transporter 2b (Mfsd2b), an orphan transporter, is essential for S1P export from red blood cells and platelets. Comprehensive lipidomic analysis indicates a dramatic and specific accumulation of S1P species in Mfsd2b knockout red blood cells and platelets compared with that of wild-type controls. Consistently, biochemical assays from knockout red blood cells, platelets, and cell lines overexpressing human and mouse Mfsd2b proteins demonstrate that Mfsd2b actively exports S1P. Plasma S1P level in knockout mice is significantly reduced by 42-54% of that of wild-type level, indicating that Mfsd2b pathway contributes approximately half of the plasma S1P pool. The reduction of plasma S1P in knockout mice is insufficient to cause blood vessel leakiness, but it does render the mice more sensitive to anaphylactic shock. Stress-induced erythropoiesis significantly increased plasma S1P levels and knockout mice were sensitive to these treatments. Surprisingly, knockout mice exhibited haemolysis associated with red blood cell stomatocytes, and the haemolytic phenotype was severely increased with signs of membrane fragility under stress erythropoiesis. We show that S1P secretion by Mfsd2b is critical for red blood cell morphology. Our data reveal an unexpected physiological role of red blood cells in sphingolipid metabolism in circulation. These findings open new avenues for investigating the signalling roles of S1P derived from red blood cells and platelets.
Collapse
Affiliation(s)
- Thiet M Vu
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545
| | - Ayako-Nakamura Ishizu
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Xiu Ru Toh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545
| | - Fangyu Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545
| | - Ding Ming Whee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Takayoshi Matsumura
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - Sangho Kim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.,Biomedical Institute for Global Health Research and Technology, National University of Singapore, 14 Medical Drive, Singapore 117599.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Sue-Anne E S Toh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599
| | - Toshio Suda
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599
| | - David L Silver
- Signature Research Program in Cardiovascular & Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 5 Medical Drive, Singapore 117545
| |
Collapse
|
22
|
Elevated intrathymic sphingosine-1-phosphate promotes thymus involution during sepsis. Mol Immunol 2017; 90:255-263. [PMID: 28846923 DOI: 10.1016/j.molimm.2017.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/03/2017] [Accepted: 08/14/2017] [Indexed: 12/24/2022]
Abstract
Sepsis mouse models revealed thymus atrophy, characterised by decreased thymus weight and loss of thymocytes due to apoptosis. Mice suffered from lymphopenia, a lack of T cells in the periphery, which attenuates their ability to fight against recurring and secondary infections during sepsis progression. Key players in thymus atrophy are IL-6, which is directly involved in thymus involution, and the sphingosine-1-phosphate - sphingosine-1-phosphate receptor 1 signaling, influencing thymocytes emigration. In healthy individuals a sphingosine-1-phosphate (S1P) gradient from lymphoid organs to the circulatory system serves as signal for mature T cell egress. In the present study we investigated, whether inhibition of S1P generation improves thymus involution. In sepsis, induced by cecal ligation and puncture (CLP), S1P in the thymus increased, while it decreased in serum, thus disrupting the naturally occurring S1P gradient. As a potential source of S1P we identified increased numbers of apoptotic cells in the thymic cortex of septic mice. Pharmacological inhibition of the S1P generating sphingosine kinases, by 4- [[4-(4-Chlorophenyl)-2-thiazolyl]amino]phenol (SK I-II), administered directly following CLP, prevented thymus atrophy. This was reflected by lymphocytosis, diminished apoptosis, decreased IL-6 expression, and an unaltered thymus weight. In addition SK I-II-treatment preserved the S1P balance and prevented S1P-dependent internalization of the sphingosine-1-phosphate receptor 1. Our data suggest that inhibition of sphingosine kinase and thus, S1P generation during sepsis restores thymic T cell egress, which might improve septic outcome.
Collapse
|
23
|
Lax S, Rayes J, Wichaiyo S, Haining EJ, Lowe K, Grygielska B, Laloo R, Flodby P, Borok Z, Crandall ED, Thickett DR, Watson SP. Platelet CLEC-2 protects against lung injury via effects of its ligand podoplanin on inflammatory alveolar macrophages in the mouse. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1016-L1029. [PMID: 28839100 PMCID: PMC5814702 DOI: 10.1152/ajplung.00023.2017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/04/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
There is no therapeutic intervention proven to prevent acute respiratory distress syndrome (ARDS). Novel mechanistic insights into the pathophysiology of ARDS are therefore required. Platelets are implicated in regulating many of the pathogenic processes that occur during ARDS; however, the mechanisms remain elusive. The platelet receptor CLEC-2 has been shown to regulate vascular integrity at sites of acute inflammation. Therefore the purpose of this study was to establish the role of CLEC-2 and its ligand podoplanin in a mouse model of ARDS. Platelet-specific CLEC-2-deficient, as well as alveolar epithelial type I cell (AECI)-specific or hematopoietic-specific podoplanin deficient, mice were established using cre-loxP strategies. Combining these with intratracheal (IT) instillations of lipopolysaccharide (LPS), we demonstrate that arterial oxygen saturation decline in response to IT-LPS in platelet-specific CLEC-2-deficient mice is significantly augmented. An increase in bronchoalveolar lavage (BAL) neutrophils and protein was also observed 48 h post-IT-LPS, with significant increases in pro-inflammatory chemokines detected in BAL of platelet-specific CLEC-2-deficient animals. Deletion of podoplanin from hematopoietic cells but not AECIs also reduces lung function and increases pro-inflammatory chemokine expression following IT-LPS. Furthermore, we demonstrate that following IT-LPS, platelets are present in BAL in aggregates with neutrophils, which allows for CLEC-2 interaction with podoplanin expressed on BAL inflammatory alveolar macrophages. Taken together, these data suggest that the platelet CLEC-2-podoplanin signaling axis regulates the severity of lung inflammation in mice and is a possible novel target for therapeutic intervention in patients at risk of developing ARDS.
Collapse
Affiliation(s)
- Siân Lax
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom;
| | - Julie Rayes
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Surasak Wichaiyo
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Elizabeth J Haining
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kate Lowe
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ryan Laloo
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - David R Thickett
- Institute of Inflammation and Ageing, University of Birmingham Research Labs, QE Hospital, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
24
|
Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol 2017; 140:335-348. [PMID: 28780941 PMCID: PMC5657389 DOI: 10.1016/j.jaci.2017.06.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Anaphylaxis is a severe systemic hypersensitivity reaction that is rapid in onset; characterized by life-threatening airway, breathing, and/or circulatory problems; and usually associated with skin and mucosal changes. Because it can be triggered in some persons by minute amounts of antigen (eg, certain foods or single insect stings), anaphylaxis can be considered the most aberrant example of an imbalance between the cost and benefit of an immune response. This review will describe current understanding of the immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the disorder. Evidence from studies of anaphylaxis in human subjects will be discussed, as well as insights gained from analyses of animal models, including mice genetically deficient in the antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis and mice that have been "humanized" for some of these elements. We also review possible host factors that might influence the occurrence or severity of anaphylaxis. Finally, we will speculate about anaphylaxis from an evolutionary perspective and argue that, in the context of severe envenomation by arthropods or reptiles, anaphylaxis might even provide a survival advantage.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Immunology, Unit of Antibodies in Therapy and Pathology, Institut Pasteur, Paris, France; Institut National de la Santé et de la Recherche Médicale, Paris, France; Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University School of Medicine, Stanford, Calif
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
25
|
Cantalupo A, Gargiulo A, Dautaj E, Liu C, Zhang Y, Hla T, Di Lorenzo A. S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure. Hypertension 2017; 70:426-434. [PMID: 28607130 DOI: 10.1161/hypertensionaha.117.09088] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/01/2017] [Accepted: 05/10/2017] [Indexed: 01/16/2023]
Abstract
Nitric oxide is one of the major endothelial-derived vasoactive factors that regulate blood pressure (BP), and the bioactive lipid mediator S1P (sphingosine-1-phosphate) is a potent activator of endothelial nitric oxide synthase through G protein-coupled receptors. Endothelial-derived S1P and the autocrine/paracrine activation of S1PR (S1P receptors) play an important role in preserving vascular functions and BP homeostasis. Furthermore, FTY720 (fingolimod), binding to 4 out of 5 S1PRs recently approved by the Food and Drug Administration to treat autoimmune conditions, induces a modest and transient decrease in heart rate in both animals and humans, suggesting that drugs targeting sphingolipid signaling affect cardiovascular functions in vivo. However, the role of specific S1P receptors in BP homeostasis remains unknown. The aim of this study is to determine the role of the key vascular S1P receptors, namely, S1PR1 and S1PR3, in BP regulation in physiological and hypertensive conditions. The specific loss of endothelial S1PR1 decreases basal and stimulated endothelial-derived nitric oxide and resets BP to a higher-than-normal value. Interestingly, we identified a novel and important role for S1PR1 signaling in flow-mediated mechanotransduction. FTY720, acting as functional antagonist of S1PR1, markedly decreases endothelial S1PR1, increases BP in control mice, and exacerbates hypertension in angiotensin II mouse model, underlining the antihypertensive functions of S1PR1 signaling. Our study identifies S1P-S1PR1-nitric oxide signaling as a new regulatory pathway in vivo of vascular relaxation to flow and BP homeostasis, providing a novel therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Anna Cantalupo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Antonella Gargiulo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Elona Dautaj
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Catherine Liu
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Yi Zhang
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Timothy Hla
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.)
| | - Annarita Di Lorenzo
- From the Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, New York (A.C., A.G., E.D., C.L., Y.Z., T.H., A.D.L.); and Department of Pharmacy, Faculty of Pharmacy, University of Naples "Federico II", Naples, Italy (A.G.).
| |
Collapse
|
26
|
4-Aminopyridine, A Blocker of Voltage-Dependent K+ Channels, Restores Blood Pressure and Improves Survival in the Wistar Rat Model of Anaphylactic Shock. Crit Care Med 2017; 44:e1082-e1089. [PMID: 27270180 DOI: 10.1097/ccm.0000000000001822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Anaphylactic shock is associated with severe hypotension. Potassium channel blockers, such as 4-aminopyridine, induce vasoconstriction. The objective of this study was to test the ability of 4-aminopyridine to restore blood pressure and increase survival in anaphylactic shock. DESIGN Experimental study. SETTING Physiology laboratory. SUBJECTS Adult male Wistar rats. INTERVENTIONS Rats were sensitized with ovalbumin (1 mg SC), and anaphylactic shock was induced by IV injection of ovalbumin (1 mg). Experimental groups included non-allergic rats (NA) (n = 6); allergic rats (Controls) (n = 6); allergic rats treated with 4-aminopyridine (4-aminopyridine) (1 mg/kg) (n = 6); and allergic rats treated with epinephrine (EPI) (10 µg/kg) (n = 6). Treatments were administered 1 minute after induction of anaphylactic shock. MEASUREMENTS AND MAIN RESULTS Mean arterial blood pressure, heart rate, and survival were measured for 60 minutes. Plasma levels of histamine, leukotriene B4, prostaglandin E2, prostaglandin F2, pH, and HCO3 were measured. Mean arterial blood pressure was normal in the NA group; severe hypotension and high mortality were observed in controls; normalization of mean arterial blood pressure, heart rate, and increased survival were observed in 4-aminopyridine and EPI groups. All allergic 4-aminopyridine-treated rats survived after the induction of anaphylactic shock. Histamine level was higher in controls and the 4-aminopyridine group but reduced in the EPI group. Prostaglandin E2 increased in controls and EPI group and decreased in 4-aminopyridine group; prostaglandin F2 increased in controls but decreased in 4-aminopyridine and EPI groups. Leukotriene B4 decreased in 4-aminopyridine and EPI groups. Metabolic acidosis was prevented in the 4-aminopyridine group. CONCLUSIONS Our data suggest that voltage-dependent K+ channel inhibition with 4-aminopyridine treatment restores blood pressure and increases survival in the Wistar rat model of anaphylactic shock. 4-aminopyridine or related voltage-dependent K channel blockers could be a useful additional therapeutic approach to treatment of refractory anaphylactic shock.
Collapse
|
27
|
Meissner A, Miro F, Jiménez-Altayó F, Jurado A, Vila E, Planas AM. Sphingosine-1-phosphate signalling—a key player in the pathogenesis of Angiotensin II-induced hypertension. Cardiovasc Res 2017; 113:123-133. [DOI: 10.1093/cvr/cvw256] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/30/2016] [Accepted: 12/17/2016] [Indexed: 12/19/2022] Open
|
28
|
Sahlholm K, Ielacqua GD, Xu J, Jones LA, Schlegel F, Mach RH, Rudin M, Schroeter A. The role of beta-arrestin2 in shaping fMRI BOLD responses to dopaminergic stimulation. Psychopharmacology (Berl) 2017; 234:2019-2030. [PMID: 28382543 PMCID: PMC5486931 DOI: 10.1007/s00213-017-4609-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/18/2017] [Indexed: 01/11/2023]
Abstract
RATIONALE The dopamine D2 receptor (D2R) couples to inhibitory Gi/o proteins and is targeted by antipsychotic and antiparkinsonian drugs. Beta-arrestin2 binds to the intracellular regions of the agonist-occupied D2R to terminate G protein activation and promote internalization, but also to initiate downstream signaling cascades which have been implicated in psychosis. Functional magnetic resonance imaging (fMRI) has proven valuable for measuring dopamine receptor-mediated changes in neuronal activity, and might enable beta-arrestin2 function to be studied in vivo. OBJECTIVES The present study examined fMRI blood oxygenation level dependent (BOLD) signal changes elicited by a dopamine agonist in wild-type (WT) and beta-arrestin2 knockout (KO) mice, to investigate whether genetic deletion of beta-arrestin2 prolongs or otherwise modifies D2R-dependent responses. METHODS fMRI BOLD data were acquired on a 9.4 T system. During scans, animals received 0.2 mg/kg apomorphine, i.v. In a subset of experiments, animals were pretreated with 2 mg/kg of the D2R antagonist, eticlopride. RESULTS Following apomorphine administration, BOLD signal decreases were observed in caudate/putamen of WT and KO animals. The time course of response decay in caudate/putamen was significantly slower in KO vs. WT animals. In cingulate cortex, an initial BOLD signal decrease was followed by a positive response component in WT but not in KO animals. Eticlopride pretreatment significantly reduced apomorphine-induced BOLD signal changes. CONCLUSIONS The prolonged striatal response decay rates in KO animals might reflect impaired D2R desensitization, consistent with the known function of beta-arrestin2. Furthermore, the apomorphine-induced positive response component in cingulate cortex may depend on beta-arrestin2 signaling downstream of D2R.
Collapse
Affiliation(s)
- Kristoffer Sahlholm
- Institute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093, Zurich, Switzerland. .,Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA. .,Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-171 77, Stockholm, Sweden.
| | - Giovanna D. Ielacqua
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
| | - Jinbin Xu
- 0000 0001 2355 7002grid.4367.6Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 USA
| | - Lynne A. Jones
- 0000 0001 2355 7002grid.4367.6Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 USA
| | - Felix Schlegel
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland
| | - Robert H. Mach
- 0000 0004 1936 8972grid.25879.31Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 231 S. 34th St, Philadelphia, PA 19104 USA
| | - Markus Rudin
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland ,0000 0001 2156 2780grid.5801.cNeuroscience Center Zurich, University and ETH Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland ,0000 0004 1937 0650grid.7400.3Institute of Pharmacology and Toxicology, University of Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland
| | - Aileen Schroeter
- 0000 0001 2156 2780grid.5801.cInstitute for Biomedical Engineering, University and ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich, Switzerland ,0000 0001 2156 2780grid.5801.cNeuroscience Center Zurich, University and ETH Zurich, Winterthurer-Str. 190, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
30
|
Influence of microbiome and diet on immune responses in food allergy models. ACTA ACUST UNITED AC 2016; 17-18:71-80. [PMID: 29967644 DOI: 10.1016/j.ddmod.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The intestinal immune system is intimately connected with the vast array of microbes present within the gut and the diversity of food components that are consumed daily. The discovery of novel molecular mechanisms, which mediate host-microbe-nutrient communication, have highlighted the important roles played by microbes and dietary factors in influencing mucosal inflammatory and allergic responses. In this review, we summarize the recent important findings in this field, which are important for food allergy and particularly relevant to animal models of food allergy.
Collapse
|
31
|
Abstract
Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system.
Collapse
Affiliation(s)
- Keisuke Yanagida
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, Massachusetts 02115; ,
| |
Collapse
|
32
|
Hemdan NYA, Weigel C, Reimann CM, Gräler MH. Modulating sphingosine 1-phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis. Eur J Immunol 2016; 46:2767-2777. [PMID: 27683081 DOI: 10.1002/eji.201646417] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022]
Abstract
Sepsis is a systemic inflammatory response to pathogens and a leading cause of hospital related mortality worldwide. Sphingosine 1-phosphate (S1P) regulates multiple cellular processes potentially involved in the pathogenesis of sepsis, including antigen presentation, lymphocyte egress, and maintenance of vascular integrity. We thus explored the impact of manipulating S1P signaling in experimental polymicrobial sepsis in mice. Administration of 4-deoxypyridoxine (DOP), an inhibitor of the S1P-degrading enzyme S1P-lyase, or of the sphingosine analog FTY720 that serves as an S1P receptor agonist after phosphorylation ameliorated morbidity, improved recovery from sepsis in surviving mice, and reduced sepsis-elicited hypothermia and body weight loss. Treated mice developed lymphopenia, leading to an accumulation of lymphocytes in peripheral lymph nodes, and reduced bacterial burden in liver, but not in blood. Sepsis-induced upregulation of mRNA expression of cytokines in spleen remained unchanged, but reduction of IL-6, TNF-α, MCP-1, and IL-10 in plasma was evident. DOP and FTY720 treatment significantly reduced levels of Evans blue leakage from blood into liver and lung, decreased hematocrit values, and lowered plasma levels of VEGF-A in septic mice. Collectively, our results indicate that modulation of S1P signaling showed a protective phenotype in experimental sepsis by modulating vascular and immune functions.
Collapse
Affiliation(s)
- Nasr Y A Hemdan
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| | - Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany.,Fritz Lipmann Institute, Leibniz Institute on Aging, Jena, Germany
| | - Christina-Maria Reimann
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care (CSCC), and the Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena, Germany
| |
Collapse
|
33
|
Gazit SL, Mariko B, Thérond P, Decouture B, Xiong Y, Couty L, Bonnin P, Baudrie V, Le Gall SM, Dizier B, Zoghdani N, Ransinan J, Hamilton JR, Gaussem P, Tharaux PL, Chun J, Coughlin SR, Bachelot-Loza C, Hla T, Ho-Tin-Noé B, Camerer E. Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circ Res 2016; 119:e110-26. [PMID: 27582371 DOI: 10.1161/circresaha.116.308929] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Sphingosine-1-phosphate (S1P) signaling is essential for vascular development and postnatal vascular homeostasis. The relative importance of S1P sources sustaining these processes remains unclear. OBJECTIVE To address the level of redundancy in bioactive S1P provision to the developing and mature vasculature. METHODS AND RESULTS S1P production was selectively impaired in mouse platelets, erythrocytes, endothelium, or smooth muscle cells by targeted deletion of genes encoding sphingosine kinases -1 and -2. S1P deficiency impaired aggregation and spreading of washed platelets and profoundly reduced their capacity to promote endothelial barrier function ex vivo. However, and in contrast to recent reports, neither platelets nor any other source of S1P was essential for vascular development, vascular integrity, or hemostasis/thrombosis. Yet rapid and profound depletion of plasma S1P during systemic anaphylaxis rendered both platelet- and erythrocyte-derived S1P essential for survival, with a contribution from blood endothelium observed only in the absence of circulating sources. Recovery was sensitive to aspirin in mice with but not without platelet S1P, suggesting that platelet activation and stimulus-response coupling is needed. S1P deficiency aggravated vasoplegia in this model, arguing a vital role for S1P in maintaining vascular resistance during recovery from circulatory shock. Accordingly, the S1P2 receptor mediated most of the survival benefit of S1P, whereas the endothelial S1P1 receptor was dispensable for survival despite its importance for maintaining vascular integrity. CONCLUSIONS Although source redundancy normally secures essential S1P signaling in developing and mature blood vessels, profound depletion of plasma S1P renders both erythrocyte and platelet S1P pools necessary for recovery and high basal plasma S1P levels protective during anaphylactic shock.
Collapse
Affiliation(s)
- Salomé L Gazit
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Boubacar Mariko
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Patrice Thérond
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Decouture
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Yuquan Xiong
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Ludovic Couty
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Philippe Bonnin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Véronique Baudrie
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Sylvain M Le Gall
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Blandine Dizier
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Nesrine Zoghdani
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jessica Ransinan
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Justin R Hamilton
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pascale Gaussem
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Pierre-Louis Tharaux
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Jerold Chun
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Shaun R Coughlin
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Christilla Bachelot-Loza
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Timothy Hla
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Benoit Ho-Tin-Noé
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.)
| | - Eric Camerer
- From the INSERM U970, Paris Cardiovascular Research Centre, 75015 Paris, France (S.L.G., B.M., L.C., V.B., S.M.L.G., N.Z., J.R., P.-L.T., E.C.); Université Sorbonne Paris Cité, Paris, France (S.L.G., B.M., B. Decouture, L.C., P.B., V.B., S.M.L.G., B. Dizier, N.Z., J.R., P.G., P.-L.T., C.B.-L., B.H.-T.-N., E.C.); AP-HP, Hôpital Bicêtre, Service de Biochimie, 94275 Le Kremlin Bicêtre, France (P.T.); Lip(Sys)2-Biochimie appliquée, Université Paris-Sud, Université Paris-Saclay, 92290 Châtenay-Malabry, France (P.T.); INSERM U1140, Faculté de Pharmacie, 75006 Paris, France (B. Decouture, B. Dizier, P.G., C.B.-L.); Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York (Y.X., T.H.); AP-HP, Hôpital Lariboisière, Physiologie Clinique-Explorations-Fonctionnelles, INSERM U965, 75010, Paris, France (P.B.); Australian Centre for Blood Diseases & Department of Clinical Haematology, Monash University, Melbourne, Australia (J.R.H.); AP-HP, Hôpital Européen Georges Pompidou, Service d'Hématologie Biologique, Paris, France (P.G.); Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.); Cardiovascular Research Institute, University of California, San Francisco (S.R.C.); and INSERM U698, 75018 Paris, France (B.H.-T.-N.).
| |
Collapse
|
34
|
Pankratz N, Schick UM, Zhou Y, Zhou W, Ahluwalia TS, Allende ML, Auer PL, Bork-Jensen J, Brody JA, Chen MH, Clavo V, Eicher JD, Grarup N, Hagedorn EJ, Hu B, Hunker K, Johnson AD, Leusink M, Lu Y, Lyytikäinen LP, Manichaikul A, Marioni RE, Nalls MA, Pazoki R, Smith AV, van Rooij FJA, Yang ML, Zhang X, Zhang Y, Asselbergs FW, Boerwinkle E, Borecki IB, Bottinger EP, Cushman M, de Bakker PIW, Deary IJ, Dong L, Feitosa MF, Floyd JS, Franceschini N, Franco OH, Garcia ME, Grove ML, Gudnason V, Hansen T, Harris TB, Hofman A, Jackson RD, Jia J, Kähönen M, Launer LJ, Lehtimäki T, Liewald DC, Linneberg A, Liu Y, Loos RJF, Nguyen VM, Numans ME, Pedersen O, Psaty BM, Raitakari OT, Rich SS, Rivadeneira F, Di Sant AMR, Rotter JI, Starr JM, Taylor KD, Thuesen BH, Tracy RP, Uitterlinden AG, Wang J, Wang J, Dehghan A, Huo Y, Cupples LA, Wilson JG, Proia RL, Zon LI, O’Donnell CJ, Reiner AP, Ganesh SK. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet 2016; 48:867-76. [PMID: 27399967 PMCID: PMC5145000 DOI: 10.1038/ng.3607] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Hematologic measures such as hematocrit and white blood cell (WBC) count are heritable and clinically relevant. We analyzed erythrocyte and WBC phenotypes in 52,531 individuals (37,775 of European ancestry, 11,589 African Americans, and 3,167 Hispanic Americans) from 16 population-based cohorts with Illumina HumanExome BeadChip genotypes. We then performed replication analyses of new discoveries in 18,018 European-American women and 5,261 Han Chinese. We identified and replicated four new erythrocyte trait-locus associations (CEP89, SHROOM3, FADS2, and APOE) and six new WBC loci for neutrophil count (S1PR4), monocyte count (BTBD8, NLRP12, and IL17RA), eosinophil count (IRF1), and total WBC count (MYB). The association of a rare missense variant in S1PR4 supports the role of sphingosine-1-phosphate signaling in leukocyte trafficking and circulating neutrophil counts. Loss-of-function experiments for S1pr4 in mouse and s1pr4 in zebrafish demonstrated phenotypes consistent with the association observed in humans and altered kinetics of neutrophil recruitment and resolution in response to tissue injury.
Collapse
Affiliation(s)
- Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Ursula M Schick
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yi Zhou
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tarunveer Singh Ahluwalia
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Maria Laura Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Paul L Auer
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
| | - Vinna Clavo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John D Eicher
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elliott J Hagedorn
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Bella Hu
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Kristina Hunker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Maarten Leusink
- Division Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Raha Pazoki
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Min-Lee Yang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoling Zhang
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ingrid B Borecki
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Cushman
- Department of Medicine, Division of Hematology/Oncology, University of Vermont, Burlington, VT, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Liguang Dong
- Jin Ding Street Community Healthy Center, Peking University Shougang Hospital, Beijing, China
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nora Franceschini
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Melissa E Garcia
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Megan L Grove
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca D Jackson
- Division of Endocrinology, Diabetes, and Metabolism, Ohio State University, Columbus, OH, USA
| | - Jia Jia
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - David C Liewald
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yongmei Liu
- Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vy M Nguyen
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Mattijs E Numans
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Public Health and Primary Care, Leiden University Medical Centre, Leiden, Netherlands
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Amanda M Rosa Di Sant
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Geriatric Medicine unit, University of Edinburgh, Edinburgh, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Colchester, VT, USA
- Department of Biochemistry, University of Vermont College of Medicine, Colchester, VT, USA
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jiansong Wang
- Chronic Diseases Research Center, Peking University Shougang Hospital, Beijing, China
| | - Judy Wang
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - L Adrienne Cupples
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonard I Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA, USA
| | - Christopher J O’Donnell
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Epidemiology and Human Genomics Branch, National Heart, Lung, and Blood Institute, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
- Cardiology Section, Department of Medicine, Boston Veteran’s Administration Healthcare, Boston, MA, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Hox V, O'Connell MP, Lyons JJ, Sackstein P, Dimaggio T, Jones N, Nelson C, Boehm M, Holland SM, Freeman AF, Tweardy DJ, Olivera A, Metcalfe DD, Milner JD. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J Allergy Clin Immunol 2016; 138:187-199. [PMID: 26948077 PMCID: PMC4931983 DOI: 10.1016/j.jaci.2015.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND During IgE-mediated immediate hypersensitivity reactions, vascular endothelial cells permeabilize in response to mast cell mediators. We have demonstrated previously that patients and mice with signal transducer and activator of transcription 3 (STAT3) mutations (autosomal dominant hyper-IgE syndrome [AD-HIES]) are partially protected from anaphylaxis. OBJECTIVES We sought to study the mechanism by which STAT3 contributes to anaphylaxis and determine whether small-molecule inhibition of STAT3 can prevent anaphylaxis. METHODS Using unaffected and STAT3-inhibited or genetic loss-of-function samples, we performed histamine skin prick tests, investigated the contribution of STAT3 to animal models of anaphylaxis, and measured endothelial cell permeability, gene and protein expression, and histamine receptor-mediated signaling. RESULTS Although mouse mast cell degranulation was minimally affected by STAT3 blockade, mast cell mediator-induced anaphylaxis was blunted in Stat3 mutant mice with AD-HIES and in wild-type mice subjected to small-molecule STAT3 inhibition. Histamine skin prick test responses were diminished in patients with AD-HIES. Human umbilical vein endothelial cells derived from patients with AD-HIES or treated with a STAT3 inhibitor did not signal properly through Src or cause appropriate dissolution of the adherens junctions made up of the proteins vascular endothelial-cadherin and β-catenin. Furthermore, we found that diminished STAT3 target microRNA17-92 expression in human umbilical vein endothelial cells from patients with AD-HIES is associated with increased phosphatase and tensin homolog (PTEN) expression, which inhibits Src, and increased E2F transcription factor 1 expression, which regulates β-catenin cellular dynamics. CONCLUSIONS These data demonstrate that STAT3-dependent transcriptional activity regulates critical components for the architecture and functional dynamics of endothelial junctions, thus permitting vascular permeability.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paul Sackstein
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas Dimaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nina Jones
- Clinical Research Directorate/CMRP, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Md
| | - Celeste Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - David J Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
36
|
Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Front Pharmacol 2016; 7:167. [PMID: 27445808 PMCID: PMC4914510 DOI: 10.3389/fphar.2016.00167] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular.
Collapse
Affiliation(s)
- Kira V Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
37
|
Cantalupo A, Di Lorenzo A. S1P Signaling and De Novo Biosynthesis in Blood Pressure Homeostasis. J Pharmacol Exp Ther 2016; 358:359-70. [PMID: 27317800 DOI: 10.1124/jpet.116.233205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023] Open
Abstract
Initially discovered as abundant components of eukaryotic cell membranes, sphingolipids are now recognized as important bioactive signaling molecules that modulate a variety of cellular functions, including those relevant to cancer and immunologic, inflammatory, and cardiovascular disorders. In this review, we discuss recent advances in our understanding of the role of sphingosine-1-phosphate (S1P) receptors in the regulation of vascular function, and focus on how de novo biosynthesized sphingolipids play a role in blood pressure homeostasis. The therapeutic potential of new drugs that target S1P signaling is also discussed.
Collapse
Affiliation(s)
- Anna Cantalupo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Center for Vascular Biology, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
38
|
Nema R, Vishwakarma S, Agarwal R, Panday RK, Kumar A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:3269-80. [PMID: 27330306 PMCID: PMC4898435 DOI: 10.2147/ott.s99989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Rahul Agarwal
- Jawaharlal Nehru Cancer Hospital & Research Centre, Indrapuri, Bhopal, India
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
39
|
Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS One 2016; 11:e0156303. [PMID: 27224249 PMCID: PMC4880337 DOI: 10.1371/journal.pone.0156303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases.
Collapse
Affiliation(s)
- Hong Yu
- Department of Oral Health Sciences, Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Jin L, Liu WR, Tian MX, Fan J, Shi YH. The SphKs/S1P/S1PR1 axis in immunity and cancer: more ore to be mined. World J Surg Oncol 2016; 14:131. [PMID: 27129720 PMCID: PMC4850705 DOI: 10.1186/s12957-016-0884-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/21/2016] [Indexed: 12/23/2022] Open
Abstract
Over the past two decades, huge amounts of research were launched to understand the functions of sphingosine. Many pathways were uncovered that convey the relative functions of biomacromolecules. In this review, we discuss the recent advances of the role of the SphKs/S1P/S1PR1 axis in immunity and cancer. Finally, we investigate the therapeutic potential of new drugs that target S1P signaling in cancer therapy.
Collapse
Affiliation(s)
- Lei Jin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 FengLin Road, Shanghai, 200032, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 FengLin Road, Shanghai, 200032, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 FengLin Road, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 FengLin Road, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, 180 FengLin Road, Shanghai, 200032, China.
| |
Collapse
|
41
|
Dimasi DP, Pitson SM, Bonder CS. Examining the Role of Sphingosine Kinase-2 in the Regulation of Endothelial Cell Barrier Integrity. Microcirculation 2016; 23:248-65. [DOI: 10.1111/micc.12271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Affiliation(s)
- David P. Dimasi
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| | - Claudine S. Bonder
- Centre for Cancer Biology; University of South Australia and SA Pathology; Adelaide South Australia Australia
- School of Medicine; University of Adelaide; Adelaide South Australia Australia
- School of Biological Sciences; University of Adelaide; Adelaide South Australia Australia
| |
Collapse
|
42
|
Fan A, Wang Q, Yuan Y, Cheng J, Chen L, Guo X, Li Q, Chen B, Huang X, Huang Q. Liver X receptor-α and miR-130a-3p regulate expression of sphingosine 1-phosphate receptor 2 in human umbilical vein endothelial cells. Am J Physiol Cell Physiol 2015; 310:C216-26. [PMID: 26669941 DOI: 10.1152/ajpcell.00102.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Recent studies have shown that activation of liver X receptors (LXRs) attenuates the development of atherosclerosis, not only by regulating lipid metabolism but also by suppressing inflammatory signaling. Sphingosine 1-phosphate receptor 2 (S1PR2), an important inflammatory gene product, plays a role in the development of various inflammatory diseases. It was proposed that S1PR2 might be regulated by LXR-α. In the present study, the effect of LXR-α on tumor necrosis factor-α (TNF-α)-induced S1PR2 expression in human umbilical vein endothelial cells (HUVECs) was investigated and the underlying mechanism was explored. The results demonstrated that TNF-α led to an increase in S1PR2 expression and triggered a downregulation of LXR-α expression in HUVECs as well. Downregulation of LXR-α with specific small interfering RNA (siRNA) remarkably enhanced the primary as well as TNF-α-induced expression of S1PR2 in HUVECs. Activation of LXR-α by agonist GW3965 inhibited both primary and TNF-α-induced S1PR2 expression. GW3965 also attenuated S1PR2-induced endothelial barrier dysfunction. The data further showed that TNF-α induced a significant decrease in miR-130a-3p expression. Overexpression of miR-130a-3p with mimic product reduced S1PR2 protein expression, and inhibition of miR-130a-3p by specific inhibitor resulted in an increase in S1PR2 protein expression. Furthermore, activation of LXRs with agonist enhanced the expression of miR-130a-3p, and knockdown of LXR-α by siRNA suppressed miR-130a-3p expression. These results suggest that LXR-α might downregulate S1PR2 expression via miR-130a-3p in quiescent HUVECs. Stimulation of TNF-α attenuates the activity of LXR-α and results in enhanced S1PR2 expression.
Collapse
Affiliation(s)
- Aihui Fan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China; Department of Physiology, Guangdong Medical College, Dongguan, People's Republic of China; and
| | - Qian Wang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Yongjun Yuan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Jilun Cheng
- Department of Pharmacology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Lixian Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaohua Guo
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Chen
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| | - Xuliang Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China;
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun 2015; 6:7893. [PMID: 26243335 PMCID: PMC4587559 DOI: 10.1038/ncomms8893] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 06/23/2015] [Indexed: 12/13/2022] Open
Abstract
The use and effectiveness of current stroke reperfusion therapies are limited by the complications of reperfusion injury, which include increased cerebrovascular permeability and haemorrhagic transformation. Sphingosine-1-phosphate (S1P) is emerging as a potent modulator of vascular integrity via its receptors (S1PR). By using genetic approaches and a S1PR2 antagonist (JTE013), here we show that S1PR2 plays a critical role in the induction of cerebrovascular permeability, development of intracerebral haemorrhage and neurovascular injury in experimental stroke. In addition, inhibition of S1PR2 results in decreased matrix metalloproteinase (MMP)-9 activity in vivo and lower gelatinase activity in cerebral microvessels. S1PR2 immunopositivity is detected only in the ischemic microvessels of wild-type mice and in the cerebrovascular endothelium of human brain autopsy samples. In vitro, S1PR2 potently regulates the responses of the brain endothelium to ischaemic and inflammatory injury. Therapeutic targeting of this novel pathway could have important translational relevance to stroke patients.
Collapse
|
44
|
Kulinski JM, Muñoz-Cano R, Olivera A. Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. Eur J Pharmacol 2015; 778:56-67. [PMID: 25941085 DOI: 10.1016/j.ejphar.2015.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P), platelet activating factor (PAF) and eicosanoids are bioactive lipid mediators abundantly produced by antigen-stimulated mast cells that exert their function mostly through specific cell surface receptors. Although it has long been recognized that some of these bioactive lipids are potent regulators of allergic diseases, their exact contributions to disease pathology have been obscured by the complexity of their mode of action and the regulation of their metabolism. Indeed, the effects of such lipids are usually mediated by multiple receptor subtypes that may differ in their signaling mechanisms and functions. In addition, their actions may be elicited by cell surface receptor-independent mechanisms. Furthermore, these lipids may be converted into metabolites that exhibit different functionalities, adding another layer of complexity to their overall biological responses. In some instances, a second wave of lipid mediator synthesis by both mast cell and non-mast cell sources may occur late during inflammation, bringing about additional roles in the altered environment. New evidence also suggests that bioactive lipids in the local environment can fine-tune mast cell maturation and phenotype, and thus their responsiveness. A better understanding of the subtleties of the spatiotemporal regulation of these lipid mediators, their receptors and functions may aid in the pursuit of pharmacological applications for allergy treatments.
Collapse
Affiliation(s)
- Joseph M Kulinski
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Rosa Muñoz-Cano
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Kumar A, Saba JD. Regulation of Immune Cell Migration by Sphingosine-1-Phosphate. CELLULAR AND MOLECULAR BIOLOGY (OMICS) 2015; 61:121. [PMID: 30294722 PMCID: PMC6169313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingosine-1-phosphate [S1P] is a potent bioactive sphingolipid molecule. In response to a stimulus, S1P is produced intracellularly by the action of two sphingosine kinases, and then it is exported to the extracellular environment or acts as an intracellular second messenger. S1P binds to its cognate G-protein coupled receptors, which are known as S1P receptors. There are five S1P receptors that have been identified in vertebrates. By activating S1P receptors, S1P controls a variety of physiological and pathological processes including cell migration, angiogenesis, vascular maturation, inflammation, and invasion, metastasis, and chemoresistance in cancer. S1P has emerged as a critical regulator of leukocyte migration and plays a central role in lymphocyte egress from the thymus and secondary lymphoid organs. In the current review article, we summarize the current understanding of the emigration of lymphocytes and other leukocytes from bone marrow, thymus and secondary lymphoid organs to the circulation, as well as the clinical implications of modulating the activity of the major S1P receptor, S1PR1.
Collapse
Affiliation(s)
- A. Kumar
- Department of Biochemistry, All India Institute of Medical Sciences [AIIMS], Saket Nagar, Bhopal 462 020, India
| | - JD. Saba
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA
| |
Collapse
|
46
|
Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol 2014; 135:729-36.e5. [PMID: 25553642 DOI: 10.1016/j.jaci.2014.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Clinical observations suggest that anaphylaxis is more common in adult women compared with adult men, although the mechanistic basis for this sex bias is not well understood. OBJECTIVES We sought to document sex-dependent differences in a mouse model of anaphylaxis and explore the role of female sex hormones and the mechanisms responsible. METHODS Passive systemic anaphylaxis was induced in female and male mice by using histamine, as well as IgE or IgG receptor aggregation. Anaphylaxis was assessed by monitoring body temperature, release of mast cell mediators and/or hematocrit, and lung weight as a measure of vascular permeability. A combination of ovariectomy, estrogen receptor antagonism, and estrogen administration techniques were used to establish estrogen involvement. RESULTS Anaphylactic responses were more pronounced in female than male mice. The enhanced severity of anaphylaxis in female mice was eliminated after pretreatment with an estrogen receptor antagonist or ovariectomy but restored after administration of estradiol in ovariectomized mice, demonstrating that the sex-specific differences are due to the female steroid estradiol. Estrogen did not affect mast cell responsiveness or anaphylaxis onset. Instead, it increased tissue expression of endothelial nitric oxide synthase (eNOS). Blockage of NOS activity with the inhibitor L-NG-nitroarginine methyl ester or genetic eNOS deficiency abolished the sex-related differences. CONCLUSION Our study defines a contribution of estrogen through its regulation of eNOS expression and nitric oxide production to vascular hyperpermeability and intensified anaphylactic responses in female mice, providing additional mechanistic insights into risk factors and possible implications for clinical management in the further exploration of human anaphylaxis.
Collapse
Affiliation(s)
- Valerie Hox
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
47
|
The sphingosine-1-phosphate/sphingosine-1-phosphate receptor 2 axis regulates early airway T-cell infiltration in murine mast cell-dependent acute allergic responses. J Allergy Clin Immunol 2014; 135:1008-1018.e1. [PMID: 25512083 DOI: 10.1016/j.jaci.2014.10.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid produced by mast cells (MCs) on cross-linking of their high-affinity receptors for IgE by antigen that can amplify MC responses by binding to its S1P receptors. An acute MC-dependent allergic reaction can lead to systemic shock, but the early events of its development in lung tissues have not been investigated, and S1P functions in the onset of allergic processes remain to be examined. OBJECTIVE We used a highly specific neutralizing anti-S1P antibody (mAb) and the sphingosine-1-phosphate receptor 2 (S1PR2) antagonist JTE-013 to study the signaling contributions of S1P and S1PR2 to MC- and IgE-dependent airway allergic responses in mice within minutes after antigen challenge. METHODS Allergic reaction was triggered by a single intraperitoneal dose of antigen in sensitized mice pretreated intraperitoneally with anti-S1P, isotype control mAb, JTE-013, or vehicle before antigen challenge. RESULTS Kinetics experiments revealed early pulmonary infiltration of mostly T cells around blood vessels of sensitized mice 20 minutes after antigen exposure. Pretreatment with anti-S1P mAb inhibited in vitro MC activation, as well as in vivo development of airway infiltration and MC activation, reducing serum levels of histamine, cytokines, and the chemokines monocyte chemoattractant protein 1/CCL2, macrophage inflammatory protein 1α/CCL3, and RANTES/CCL5. S1PR2 antagonism or deficiency or MC deficiency recapitulated these results. Both in vitro and in vivo experiments demonstrated MC S1PR2 dependency for chemokine release and the necessity for signal transducer and activator of transcription 3 activation. CONCLUSION Activation of S1PR2 by S1P and downstream signal transducer and activator of transcription 3 signaling in MCs regulate early T-cell recruitment to antigen-challenged lungs through chemokine production.
Collapse
|
48
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
49
|
Nayak S, Doerfler PA, Porvasnik SL, Cloutier DD, Khanna R, Valenzano KJ, Herzog RW, Byrne BJ. Immune responses and hypercoagulation in ERT for Pompe disease are mutation and rhGAA dose dependent. PLoS One 2014; 9:e98336. [PMID: 24897114 PMCID: PMC4045583 DOI: 10.1371/journal.pone.0098336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2014] [Indexed: 01/01/2023] Open
Abstract
Enzyme replacement therapy (ERT) with recombinant human acid-α-glucosidase (rhGAA) is the only FDA approved therapy for Pompe disease. Without ERT, severely affected individuals (early onset) succumb to the disease within 2 years of life. A spectrum of disease severity and progression exists depending upon the type of mutation in the GAA gene (GAA), which in turn determines the amount of defective protein produced and its enzymatic activity. A large percent of the early onset patients are also cross reactive immunological material negative (CRIM-) and develop high titer immune responses to ERT with rhGAA. New insights from our studies in pre-clinical murine models reveal that the type of Gaa mutation has a profound effect on the immune responses mounted against ERT and the associated toxicities, including activation of clotting factors and disseminated intravascular coagulation (DIC). Additionally, the mouse strain affects outcomes, suggesting the influence of additional genetic components or modifiers. High doses of rhGAA (20 mg/kg) are currently required to achieve therapeutic benefit. Our studies indicate that lower enzyme doses reduce the antibody responses to rhGAA, reduce the incidence of immune toxicity and avoid ERT-associated anaphylaxis. Therefore, development of rhGAA with increased efficacy is warranted to limit immunotoxicities.
Collapse
Affiliation(s)
- Sushrusha Nayak
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
- Department of Medicine, Center for Infection Medicine, Karolinska Institute, Stockholm, Sweden
- * E-mail: (SN); (BJB)
| | - Phillip A. Doerfler
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Stacy L. Porvasnik
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Denise D. Cloutier
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
| | - Richie Khanna
- Amicus Therapeutics Inc., Cranbury, New Jersey, United States of America
| | - Ken J. Valenzano
- Amicus Therapeutics Inc., Cranbury, New Jersey, United States of America
| | - Roland W. Herzog
- Department of Pediatrics, Cellular and Molecular Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (SN); (BJB)
| |
Collapse
|
50
|
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol 2014; 12:e1001763. [PMID: 24453941 PMCID: PMC3891622 DOI: 10.1371/journal.pbio.1001763] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/02/2013] [Indexed: 01/11/2023] Open
Abstract
This study identifies a GPCR, S1PR2, as a receptor for the Nogo-A-Δ20 domain of the membrane protein Nogo-A, which inhibits neuronal growth and synaptic plasticity. Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. Recent studies have demonstrated an important role of Nogo-A signaling in the repression of structural and synaptic plasticity in mature neuronal networks of the central nervous system. These insights extended our understanding of Nogo-A's inhibitory function far beyond its well-studied role as axonal-growth inhibitor. Repression is mediated via two different Nogo-A extracellular domains: Nogo-66 and Nogo-A-Δ20. Here, we identify the G-protein coupled receptor S1PR2 as a high-affinity receptor for Nogo-A-Δ20 and demonstrate that S1PR2 binds this domain with sites different from the recently proposed S1P binding pocket. Interfering with S1PR2 activity, either pharmacologically or genetically, prevented Nogo-A-Δ20-mediated inhibitory effects. Similar results were obtained when we blocked G13, LARG, and RhoA, components of the downstream signaling pathway. These findings revealed a strong increase in hippocampal and cortical synaptic plasticity when acutely interfering with Nogo-A/S1PR2 signaling, similar to previous results obtained by blocking Nogo-A. We thus provide a novel biological concept of multi-ligand GPCR signaling in which this sphingolipid-activated GPCR is also bound and activated by the high molecular weight membrane protein Nogo-A.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Bjoern Tews
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael E. Arzt
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Franz J. Obermair
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Vincent Pernet
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Andrea Delekate
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Ajmal Zemmar
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Peter Spies
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Dana Dodd
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Daniel Gygax
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|