1
|
Abdelrahman Z, Maxwell AP, McKnight AJ. Genetic and Epigenetic Associations with Post-Transplant Diabetes Mellitus. Genes (Basel) 2024; 15:503. [PMID: 38674437 PMCID: PMC11050138 DOI: 10.3390/genes15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Post-transplant diabetes mellitus (PTDM) is a common complication of solid organ transplantation. PTDM prevalence varies due to different diabetes definitions. Consensus guidelines for the diagnosis of PTDM have been published based on random blood glucose levels, glycated hemoglobin (HbA1c), and oral glucose tolerance test (OGTT). The task of diagnosing PTDM continues to pose challenges, given the potential for diabetes to manifest at different time points after transplantation, thus demanding constant clinical vigilance and repeated testing. Interpreting HbA1c levels can be challenging after renal transplantation. Pre-transplant risk factors for PTDM include obesity, sedentary lifestyle, family history of diabetes, ethnicity (e.g., African-Caribbean or South Asian ancestry), and genetic risk factors. Risk factors for PTDM include immunosuppressive drugs, weight gain, hepatitis C, and cytomegalovirus infection. There is also emerging evidence that genetic and epigenetic variation in the organ transplant recipient may influence the risk of developing PTDM. This review outlines many known risk factors for PTDM and details some of the pathways, genetic variants, and epigenetic features associated with PTDM. Improved understanding of established and emerging risk factors may help identify people at risk of developing PTDM and may reduce the risk of developing PTDM or improve the management of this complication of organ transplantation.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK; (Z.A.); (A.P.M.)
| |
Collapse
|
2
|
Szablewski L. Insulin Resistance: The Increased Risk of Cancers. Curr Oncol 2024; 31:998-1027. [PMID: 38392069 PMCID: PMC10888119 DOI: 10.3390/curroncol31020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
Insulin resistance, also known as impaired insulin sensitivity, is the result of a decreased reaction of insulin signaling to blood glucose levels. This state is observed when muscle cells, adipose tissue, and liver cells, improperly respond to a particular concentration of insulin. Insulin resistance and related increased plasma insulin levels (hyperinsulinemia) may cause metabolic impairments, which are pathological states observed in obesity and type 2 diabetes mellitus. Observations of cancer patients confirm that hyperinsulinemia is a major factor influencing obesity, type 2 diabetes, and cancer. Obesity and diabetes have been reported as risks of the initiation, progression, and metastasis of several cancers. However, both of the aforementioned pathologies may independently and additionally increase the cancer risk. The state of metabolic disorders observed in cancer patients is associated with poor outcomes of cancer treatment. For example, patients suffering from metabolic disorders have higher cancer recurrence rates and their overall survival is reduced. In these associations between insulin resistance and cancer risk, an overview of the various pathogenic mechanisms that play a role in the development of cancer is discussed.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5 Str., 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Sarriyah JF, Alghamdi AS, Al-Otaibi NM, Abdulrahman BB, Aljaed KM. Prevalence of Steroid-Induced Hyperglycemia in King Abdulaziz Specialist Hospital, Taif City, Saudi Arabia. Cureus 2024; 16:e54430. [PMID: 38510914 PMCID: PMC10951554 DOI: 10.7759/cureus.54430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hyperglycemia is a common side effect of high-dose steroid therapy in hospitalized patients. Objectives To assess the prevalence of hyperglycemia among hospitalized patients receiving steroid therapy. Methods A retrospective study was conducted among 245 patients. The inclusion criteria were patients undergoing steroid therapy and admitted to a single tertiary care hospital due to medical complications or exacerbation of the diseases they were suffering from. Data encompassing patient demographics, admission, discharge dates, comorbidities, medication histories, laboratory results (including blood glucose levels), and documented corticosteroid administrations were meticulously gathered from electronic health records (EHRs). A logistic regression model analysis was done to predict the risk factors of poor glycemic control among hospitalized patients. Results The prevalence of hyperglycemia among the patients who were on steroid therapy was 34.2%. About 70.7% of the patients who required insulin at the time of admission required >17 units, and the insulin requirement was significantly higher among patients who received dexamethasone compared to other steroids (p<0.05). Older age (>65 years) was found to be independently associated with poor glycemic control (p<0.05). Conclusion The study revealed that almost one-third of patients on steroid therapy had hyperglycemia. Monitoring of patients for hyperglycemia after beginning high-dose steroid therapy should be done.
Collapse
Affiliation(s)
- Jehan F Sarriyah
- Internal Medicine, King Abdulaziz Specialist Hospital, Taif, SAU
| | - Adel S Alghamdi
- Endocrinology, King Abdulaziz Specialist Hospital, Taif, SAU
| | | | | | - Kholoud M Aljaed
- Internal Medicine, King Abdulaziz Specialist Hospital, Taif, SAU
| |
Collapse
|
4
|
Qamar F, Sultana S, Sharma M. Animal models for induction of diabetes and its complications. J Diabetes Metab Disord 2023; 22:1021-1028. [PMID: 37975101 PMCID: PMC10638335 DOI: 10.1007/s40200-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/03/2023] [Indexed: 11/19/2023]
Abstract
Objectives Animal models are widely used to develop newer drugs for treatment of diabetes and its complications. We conducted a systematic review to find various animal models to induce diabetes and also the suitable methods in various diabetic complications. With an emphasis on the animal models of diabetes induction, this review provides a basic overview of diabetes and its various types. It focused on the use of rats and mice for chemical, spontaneous, surgical, genetic, viral, and hormonal induction approaches. Methods All observations and research conducted on Diabetes and its complications published up to 18 May 2023 in PubMed, Web of Science, Scopus and Conchrane Library databases were included. Main outcome measures were reporting the induction of diabetes in experimental animals, the various animal models for diabetic complications including diabetic nephropathy, diabetic retinopathy, diabetic neuropathy and diabetic osteopathy. The quality of reporting of included articles and risk of bias were assessed. Results We reached various articles and found that rats and mice are the most frequently used animals for inducing diabetes. Chemical induction is the most commonly used followed by spontaneous and surgical methods. With slight modification various breeds and species are developed to study and induce specific complications on eyes, kidneys, neurons and bones. Conclusions Our review suggested that rats and mice are the most suitable animals. Furthermore, chemical induction is the method frequently used by experimenters. Moreover, high quality studies are required to find the suitable methods for diabetic complications.
Collapse
Affiliation(s)
- Faiz Qamar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Shirin Sultana
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, Delhi, New Delhi, 110062 India
| |
Collapse
|
5
|
Chen LJ, Xin Y, Yuan MX, Ji CY, Peng YM, Yin Q. CircFOXN2 alleviates glucocorticoid- and tacrolimus-induced dyslipidemia by reducing FASN mRNA stability by binding to PTBP1 during liver transplantation. Am J Physiol Cell Physiol 2023; 325:C796-C806. [PMID: 37575056 DOI: 10.1152/ajpcell.00462.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
We aimed to examine impacts and functional mechanism of circular RNA forkhead box N2 (FOXN2) in tacrolimus (TAC)- and dexamethasone (Dex)-induced lipid metabolism disorders. RNA level and protein contents in TAC, Dex, or combined TAC- plus Dex-treated patients and Huh-7 cells were measured utilizing quantitative real-time (qRT)-PCR and western blotting assays measured the formation of lipid droplet. Total cholesterol (TC) and triglyceride (TG) levels were determined using corresponding commercial kits and Oil red O staining. RNA immunoprecipitation and RNA pull-down verified the binding relationship among circFOXN2, polypyrimidine tract binding protein 1 (PTBP1) and fatty acid synthase (FASN). Male C57BL/6 mice were used to establish a dyslipidemia mouse model to validate the discoveries at the cellular level. Dex treatment significantly promoted TAC-mediated increase of TC and TG in serum samples and Huh-7 cells. Moreover, circFOXN2 was reduced but FASN was elevated in TAC-treated Huh-7 cells, and these expression trends were markedly enhanced by Dex cotreatment. Overexpression of circFOXN2 could reverse the accumulation of TC and TG and the upregulation of FASN and sterol regulatory element binding transcription factor 2 (SREBP2) mediated by Dex and TAC cotreatment. Mechanistically, circFOXN2 reduced FASN mRNA stability by recruiting PTBP1. The protective roles of circFOXN2 overexpression on lipid metabolism disorders were weakened by FASN overexpression. In vivo finding also disclosed that circFOXN2 greatly alleviated the dysregulation of lipid metabolism triggered by TAC plus Dex. CircFOXN2 alleviated the dysregulation of lipid metabolism induced by the combination of TAC and Dex by modulating the PTBP1/FASN axis.NEW & NOTEWORTHY Collectively, our experiments revealed for the first time that circFOXN2 alleviated the Dex- and TAC-induced dysregulation of lipid metabolism by regulating the PTBP1/FASN axis. These findings suggested that circFOXN2 and FASN might be candidate targets for the treatment of Dex- and TAC-induced metabolic disorders.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yang Xin
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao-Xian Yuan
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Chun-Yi Ji
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Yu-Ming Peng
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| | - Qiang Yin
- Department of General Surgery, Hunan Children's Hospital, Changsha, People's Republic of China
| |
Collapse
|
6
|
D’Elia JA, Weinrauch LA. Hyperglycemia and Hyperlipidemia with Kidney or Liver Transplantation: A Review. BIOLOGY 2023; 12:1185. [PMID: 37759585 PMCID: PMC10525610 DOI: 10.3390/biology12091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Although solid organ transplantation in persons with diabetes mellitus is often associated with hyperglycemia, the risk of hyperlipidemia in all organ transplant recipients is often underestimated. The diagnosis of diabetes often predates transplantation; however, in a moderate percentage of allograft recipients, perioperative hyperglycemia occurs triggered by antirejection regimens. Post-transplant prescription of glucocorticoids, calcineurin inhibitors and mTOR inhibitors are associated with increased lipid concentrations. The existence of diabetes mellitus prior to or following a liver transplant is associated with shorter times of useful allograft function. A cycle involving Smad, TGF beta, m-TOR and toll-like receptors has been identified in the contribution of rejection and aging of allografts. Glucocorticoids (prednisone) and calcineurin inhibitors (cyclosporine and tacrolimus) induce hyperglycemia associated with insulin resistance. Azathioprine, mycophenolate and prednisone are associated with lipogenesis. mTOR inhibitors (rapamycin) are used to decrease doses of atherogenic agents used for immunosuppression. Post-transplant medication management must balance immune suppression and glucose and lipid control. Concerns regarding rejection often override those relative to systemic and organ vascular aging and survival. This review focuses attention on the underlying mechanism of relationships between glycemia/lipidemia control, transplant rejection and graft aging.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; jd'
| |
Collapse
|
7
|
Groeger M, Matsuo K, Heidary Arash E, Pereira A, Le Guillou D, Pino C, Telles-Silva KA, Maher JJ, Hsiao EC, Willenbring H. Modeling and therapeutic targeting of inflammation-induced hepatic insulin resistance using human iPSC-derived hepatocytes and macrophages. Nat Commun 2023; 14:3902. [PMID: 37400454 PMCID: PMC10318012 DOI: 10.1038/s41467-023-39311-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatic insulin resistance is recognized as a driver of type 2 diabetes and fatty liver disease but specific therapies are lacking. Here we explore the potential of human induced pluripotent stem cells (iPSCs) for modeling hepatic insulin resistance in vitro, with a focus on resolving the controversy about the impact of inflammation in the absence of steatosis. For this, we establish the complex insulin signaling cascade and the multiple inter-dependent functions constituting hepatic glucose metabolism in iPSC-derived hepatocytes (iPSC-Heps). Co-culture of these insulin-sensitive iPSC-Heps with isogenic iPSC-derived pro-inflammatory macrophages induces glucose output by preventing insulin from inhibiting gluconeogenesis and glycogenolysis and activating glycolysis. Screening identifies TNFα and IL1β as the mediators of insulin resistance in iPSC-Heps. Neutralizing these cytokines together restores insulin sensitivity in iPSC-Heps more effectively than individual inhibition, reflecting specific effects on insulin signaling and glucose metabolism mediated by NF-κB or JNK. These results show that inflammation is sufficient to induce hepatic insulin resistance and establish a human iPSC-based in vitro model to mechanistically dissect and therapeutically target this metabolic disease driver.
Collapse
Affiliation(s)
- Marko Groeger
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Koji Matsuo
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Emad Heidary Arash
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ashley Pereira
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Dounia Le Guillou
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cindy Pino
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
- Genomics CoLab, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kayque A Telles-Silva
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Human Genome and Stem Cell Research Center, University of Sao Paulo, 05508-090, Sao Paulo, Brazil
| | - Jacquelyn J Maher
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Edward C Hsiao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Holger Willenbring
- Division of Transplant Surgery, Department of Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, 94143, USA.
- Liver Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
Rose M, Filiatreault A, Williams A, Guénette J, Thomson EM. Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicol Appl Pharmacol 2023; 469:116526. [PMID: 37088303 DOI: 10.1016/j.taap.2023.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Air pollution is associated with increased risk of metabolic diseases including type 2 diabetes, of which dysregulation of the insulin-signaling pathway is a feature. While studies suggest pollutant exposure alters insulin signaling in certain tissues, there is a lack of comparison across multiple tissues needed for a holistic assessment of metabolic effects, and underlying mechanisms remain unclear. Air pollution increases plasma levels of glucocorticoids, systemic regulators of metabolic function. The objectives of this study were to 1) determine effects of ozone on insulin-signaling genes in major metabolic tissues, and 2) elucidate the role of glucocorticoids. Male Fischer-344 rats were treated with metyrapone, a glucocorticoid synthesis inhibitor, and exposed to 0.8 ppm ozone or clean air for 4 h, with tissue collected immediately or 24 h post exposure. Ozone inhalation resulted in distinct mRNA profiles in the liver, brown adipose, white adipose and skeletal muscle tissues, including effects on insulin-signaling cascade genes (Pik3r1, Irs1, Irs2) and targets involved in glucose metabolism (Hk2, Pgk1, Slc2a1), cell survival (Bcl2l1), and genes associated with diabetes and obesity (Serpine1, Retn, Lep). lucocorticoid-dependent regulation was observed in the liver and brown and white adipose tissues, while effects in skeletal muscle were largely unaffected by metyrapone treatment. Gene expression changes were accompanied by altered phosphorylation states of insulin-signaling proteins (BAD, GSK, IR-β, IRS-1) in the liver. The results show that systemic effects of ozone inhalation include tissue-specific regulation of insulin-signaling pathway genes via both glucocorticoid-dependent and independent mechanisms, providing insight into mechanisms underlying adverse effects of pollutants.
Collapse
Affiliation(s)
- Mercedes Rose
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Alain Filiatreault
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
9
|
Zhang Z, Sun J, Guo M, Yuan X. Progress of new-onset diabetes after liver and kidney transplantation. Front Endocrinol (Lausanne) 2023; 14:1091843. [PMID: 36843576 PMCID: PMC9944581 DOI: 10.3389/fendo.2023.1091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Organ transplantation is currently the most effective treatment for end-stage organ failure. Post transplantation diabetes mellitus (PTDM) is a severe complication after organ transplantation that seriously affects the short-term and long-term survival of recipients. However, PTDM is often overlooked or poorly managed in its early stage. This article provides an overview of the incidence, and pathogenesis of and risk factors for PTDM, aiming to gain a deeper understanding of PTDM and improve the quality of life of recipients.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Urology, The People's Hospital of Linyi, Linyi, Shandong, China
| | - Jianyun Sun
- Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China
| | - Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Navy Medical University, Shanghai, China
| | - Xuemin Yuan
- Department of Gastroenterology, The People's Hospital of Linyi, Linyi, Shandong, China
| |
Collapse
|
10
|
Libman I, Haynes A, Lyons S, Pradeep P, Rwagasor E, Tung JYL, Jefferies CA, Oram RA, Dabelea D, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes 2022; 23:1160-1174. [PMID: 36537527 DOI: 10.1111/pedi.13454] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ingrid Libman
- Division of Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aveni Haynes
- Children's Diabetes Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Sarah Lyons
- Pediatric Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Praveen Pradeep
- Department of Endocrinology, All India Institute of Medical Sciences, New Delhi, India
| | - Edson Rwagasor
- Rwanda Biomedical Center, Rwanda Ministry of Health, Kigali, Rwanda
| | - Joanna Yuet-Ling Tung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Craig A Jefferies
- Starship Children's Health, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Dana Dabelea
- Department of Epidemiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Maria E Craig
- The Children's Hospital at Westmead, Sydney, New South Wales (NSW), Australia.,University of Sydney Children's Hospital Westmead Clinical School, Sydney, NEW, Australia.,Discipline of Paediatrics & Child Health, School of Clinical Medicine, University of NSW Medicine & Health, Sydney, NSW, Australia
| |
Collapse
|
11
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
12
|
Ponticelli C, Citterio F. Non-Immunologic Causes of Late Death-Censored Kidney Graft Failure: A Personalized Approach. J Pers Med 2022; 12:1271. [PMID: 36013220 PMCID: PMC9410103 DOI: 10.3390/jpm12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advances in surgical and immunosuppressive protocols, the long-term survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection, recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of late-kidney allograft failure. However, in addition to these complications, a number of other non-immunologic events may impair the function of transplanted kidneys and directly or indirectly lead to their failure. In this narrative review, we will list and discuss the most important nonimmune causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus, hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in many cases, two or more risk factors may negatively interact together.
Collapse
Affiliation(s)
| | - Franco Citterio
- Renal Transplant Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
13
|
Speelman T, Dale L, Louw A, Verhoog NJD. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells 2022; 11:2163. [PMID: 35883605 PMCID: PMC9321356 DOI: 10.3390/cells11142163] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Nicolette J. D. Verhoog
- Biochemistry Department, Stellenbosch University, Van der Byl Street, Stellenbosch 7200, South Africa; (T.S.); (L.D.); (A.L.)
| |
Collapse
|
14
|
Askani E, Rospleszcz S, Lorbeer R, Kulka C, von Krüchten R, Müller-Peltzer K, Hasic D, Kellner E, Reisert M, Rathmann W, Peters A, Schlett CL, Bamberg F, Storz C. Association of MRI-based adrenal gland volume and impaired glucose metabolism in a population-based cohort study. Diabetes Metab Res Rev 2022; 38:e3528. [PMID: 35303389 DOI: 10.1002/dmrr.3528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The aim of this study was to assess adrenal gland volume by using magnetic resonance imaging (MRI) and to study its role as an indirect marker of impaired glucose metabolism and hypothalamic-pituitary-adrenal (HPA) axis activation in a population-based cohort. METHODS Asymptomatic participants were enrolled in a nested case-control study and underwent a 3-T MRI, including T1w-VIBE-Dixon sequences. For the assessment of adrenal gland volume, adrenal glands were manually segmented in a blinded fashion. Impaired glucose metabolism was determined using fasting glucose and oral glucose tolerance test. Cardiometabolic risk factors were also obtained. Inter- and intrareader reliability as well as univariate and multivariate associations were derived. RESULTS Among 375 subjects included in the analysis (58.5% male, 56.1 ± 9.1 years), 25.3% participants had prediabetes and 13.6% had type 2 diabetes (T2DM). Total adrenal gland volume was 11.2 ± 4.2 ml and differed significantly between impaired glucose metabolism and healthy controls with largest total adrenal gland volume in T2DM (healthy controls: 10.0 ± 3.9 ml, prediabetes: 12.5 ± 3.8 ml, T2DM: 13.9 ± 4.6 ml; p < 0.001). In the multivariate analysis, association of T2DM and increased adrenal gland volume was independent of age, sex, hypertension, triglycerides and body mass index (BMI), but was attenuated in subjects with prediabetes after adjustment for BMI. CONCLUSIONS T2DM is significantly associated with increased adrenal gland volume by MRI in an asymptomatic cohort, independent of age, sex, dyslipidaemia, hypertension and BMI. Adrenal gland volume may represent an indirect marker of impaired glucose metabolism and HPA axis dysfunction.
Collapse
Affiliation(s)
- Esther Askani
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Roberto Lorbeer
- Department of Radiology, Ludwig-Maximilans-University Hospital, Munich, Germany
| | - Charlotte Kulka
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Ricarda von Krüchten
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Dunja Hasic
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Duesseldorf, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Peters
- Department of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Corinna Storz
- Department of Neuroradiology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Saleh SR, Manaa A, Sheta E, Ghareeb DA, Abd-Elmonem NM. The Synergetic Effect of Egyptian Portulaca oleracea L. (Purslane) and Cichorium intybus L. (Chicory) Extracts against Glucocorticoid-Induced Testicular Toxicity in Rats through Attenuation of Oxidative Reactions and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071272. [PMID: 35883763 PMCID: PMC9311541 DOI: 10.3390/antiox11071272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression.
Collapse
Affiliation(s)
- Samar R. Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
- Correspondence: or ; Tel.: +20-122-573-2849; Fax: +2-(03)-391-1794
| | - Ashraf Manaa
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Doaa A. Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Nihad M. Abd-Elmonem
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| |
Collapse
|
16
|
Higgs JA, Quinn AP, Seely KD, Richards Z, Mortensen SP, Crandall CS, Brooks AE. Pathophysiological Link between Insulin Resistance and Adrenal Incidentalomas. Int J Mol Sci 2022; 23:ijms23084340. [PMID: 35457158 PMCID: PMC9032410 DOI: 10.3390/ijms23084340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022] Open
Abstract
Adrenal incidentalomas are incidentally discovered adrenal masses greater than one centimeter in diameter. An association between insulin resistance and adrenal incidentalomas has been established. However, the pathophysiological link between these two conditions remains incompletely characterized. This review examines the literature on the interrelationship between insulin resistance and adrenal masses, their subtypes, and related pathophysiology. Some studies show that functional and non-functional adrenal masses elicit systemic insulin resistance, whereas others conclude the inverse. Insulin resistance, hyperinsulinemia, and the anabolic effects on adrenal gland tissue, which have insulin and insulin-like growth factor-1 receptors, offer possible pathophysiological links. Conversely, autonomous adrenal cortisol secretion generates visceral fat accumulation and insulin resistance. Further investigation into the mechanisms and timing of these two pathologies as they relate to one another is needed and could be valuable in the prevention, detection, and treatment of both conditions.
Collapse
Affiliation(s)
- Jordan A. Higgs
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Alyssa P. Quinn
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Kevin D. Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
- Correspondence:
| | - Zeke Richards
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Shad P. Mortensen
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Cody S. Crandall
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA; (J.A.H.); (A.P.Q.); (Z.R.); (S.P.M.); (C.S.C.)
| | - Amanda E. Brooks
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA;
| |
Collapse
|
17
|
Niewiadomska J, Gajek-Marecka A, Gajek J, Noszczyk-Nowak A. Biological Potential of Polyphenols in the Context of Metabolic Syndrome: An Analysis of Studies on Animal Models. BIOLOGY 2022; 11:biology11040559. [PMID: 35453758 PMCID: PMC9029039 DOI: 10.3390/biology11040559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
Metabolic syndrome (MetS) is a disease that has a complex etiology. It is defined as the co-occurrence of several pathophysiological disorders, including obesity, hyperglycemia, hypertension, and dyslipidemia. MetS is currently a severe problem in the public health care system. As its prevalence increases every year, it is now considered a global problem among adults and young populations. The treatment of choice comprises lifestyle changes based mainly on diet and physical activity. Therefore, researchers have been attempting to discover new substances that could help reduce or even reverse the symptoms when added to food. These attempts have resulted in numerous studies. Many of them have investigated the bioactive potential of polyphenols as a "possible remedy", stemming from their antioxidative and anti-inflammatory effects and properties normalizing carbohydrate and lipid metabolism. Polyphenols may be supportive in preventing or delaying the onset of MetS or its complications. Additionally, the consumption of food rich in polyphenols should be considered as a supplement for antidiabetic drugs. To ensure the relevance of the studies on polyphenols' properties, mechanisms of action, and potential human health benefits, researchers have used laboratory animals displaying pathophysiological changes specific to MetS. Polyphenols or their plant extracts were chosen according to the most advantageous mitigation of pathological changes in animal models best reflecting the components of MetS. The present paper comprises an overview of animal models of MetS, and promising polyphenolic compounds whose bioactive potential, effect on metabolic pathways, and supplementation-related benefits were analyzed based on in vivo animal models.
Collapse
Affiliation(s)
- Joanna Niewiadomska
- Doctoral School of Wroclaw, University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
- Correspondence:
| | | | - Jacek Gajek
- Department of Emergency Medical Service, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Agnieszka Noszczyk-Nowak
- Department of Internal and Diseases with Clinic for Horses, Dogs, and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
18
|
Florez H, Hernández-Rodríguez J, Carrasco JL, Filella X, Prieto-González S, Monegal A, Guañabens N, Peris P. Low serum osteocalcin levels are associated with diabetes mellitus in glucocorticoid treated patients. Osteoporos Int 2022; 33:745-750. [PMID: 34557953 DOI: 10.1007/s00198-021-06167-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
UNLABELLED Bone turnover markers are decreased in GC-treated subjects with DM. Decreased OC levels in GC-treated patients were associated with an increased risk of DM. These results suggest the involvement of OC in glucose homeostasis regulation in DM. INTRODUCTION Osteocalcin (OC) is involved in the regulation of glucose homeostasis. Glucocorticoid (GC) treatment is associated with impaired osteoblast function, decreased OC levels, and the development and/or worsening of pre-existing diabetes mellitus (DM). Whether decreased OC levels in GC-treated subjects contribute to DM is not well known. The aim of this study was to analyse whether OC levels in GC-treated patients are associated with the presence of DM. METHODS One hundred twenty-seven patients (aged 61.5 ± 17.9 years) on GC treatment were included. GC dose, treatment duration, presence of DM and bone formation (OC, bone ALP, PINP) and resorption markers (urinary NTX, serum CTX) were analysed. The cut-offs of each bone turnover marker (BTM) for the presence of DM were evaluated and optimised with the Youden index and included in the logistic regression analysis. RESULTS Among the patients, 17.3% presented DM. No differences were observed in GC dose or duration or the presence of fractures. Diabetics showed lower levels of OC (7.57 ± 1.01 vs. 11.56 ± 1; p < 0.001), PINP (21.48 ± 1.01 vs. 28.39 ± 1; p = 0.0048), NTX (24.91 ± 1.01 vs. 31.7 ± 1; p = 0.036) and CTX (0.2 ± 1.01 vs. 0.3 ± 1; p = 0.0016). The discriminating BTM cut-offs for DM presence were < 9.25 ng/mL for OC, < 24 ng/mL for PINP, < 27.5 nMol/mM for NTX and < 0.25 ng/mL for CTX. In a multivariate logistic regression model adjusted for GC dose, BMI, age and the above four BTMs, only OC remained independently associated with DM presence. Thus, in a model adjusted for GC dose, BMI and age, OC was significantly associated with DM (OR: 6.1; 95%CI 1.87-19.89; p = 0.001). CONCLUSION Decreased OC levels in GC-treated patients are associated with increased odds of DM, and only OC was independently associated with DM in a model including four BTMs.
Collapse
Affiliation(s)
- H Florez
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| | - J Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - J L Carrasco
- Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - X Filella
- Biochemistry and Molecular Genetics Department, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - S Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - A Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - N Guañabens
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - P Peris
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, IDIBAPS, CIBERehd, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| |
Collapse
|
19
|
Rodrigues JS, Faria-Pereira A, Camões SP, Serras AS, Morais VA, Ruas JL, Miranda JP. Improving human mesenchymal stem cell-derived hepatic cell energy metabolism by manipulating glucose homeostasis and glucocorticoid signaling. Front Endocrinol (Lausanne) 2022; 13:1043543. [PMID: 36714559 PMCID: PMC9880320 DOI: 10.3389/fendo.2022.1043543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/24/2022] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The development of reliable hepatic in vitro models may provide insights into disease mechanisms, linking hepatocyte dysmetabolism and related pathologies. However, several of the existing models depend on using high concentrations of hepatocyte differentiation-promoting compounds, namely glucose, insulin, and dexamethasone, which is among the reasons that have hampered their use for modeling metabolism-related diseases. This work focused on modulating glucose homeostasis and glucocorticoid concentration to improve the suitability of a mesenchymal stem-cell (MSC)-derived hepatocyte-like cell (HLC) human model for studying hepatic insulin action and disease modeling. METHODS We have investigated the role of insulin, glucose and dexamethasone on mitochondrial function, insulin signaling and carbohydrate metabolism, namely AKT phosphorylation, glycogen storage ability, glycolysis and gluconeogenesis, as well as fatty acid oxidation and bile acid metabolism gene expression in HLCs. In addition, we evaluated cell morphological features, albumin and urea production, the presence of hepatic-specific markers, biotransformation ability and mitochondrial function. RESULTS Using glucose, insulin and dexamethasone levels close to physiological concentrations improved insulin responsiveness in HLCs, as demonstrated by AKT phosphorylation, upregulation of glycolysis and downregulation of Irs2 and gluconeogenesis and fatty acid oxidation pathways. Ammonia detoxification, EROD and UGT activities and sensitivity to paracetamol cytotoxicity were also enhanced under more physiologically relevant conditions. CONCLUSION HLCs kept under reduced concentrations of glucose, insulin and dexamethasone presented an improved hepatic phenotype and insulin sensitivity demonstrating superior potential as an in vitro platform for modeling energy metabolism-related disorders, namely for the investigation of the insulin signaling pathway.
Collapse
Affiliation(s)
- Joana Saraiva Rodrigues
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Faria-Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Póvoas Camões
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Serras
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Vanessa Alexandra Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Lira Ruas
- Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Joana Paiva Miranda
- Research Institute for Medicines (imed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Joana Paiva Miranda,
| |
Collapse
|
20
|
Deng Z, Lu D. Letter by Lu et al regarding article "Antenatal corticosteroid therapy: Historical and scientific basis to improve preterm birth management". Eur J Obstet Gynecol Reprod Biol 2021; 268:167. [PMID: 34732306 DOI: 10.1016/j.ejogrb.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Zhuo Deng
- The First Clinical College, Dalian Medical University, Dalian 116000, PR China; Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou 225001, PR China; The Department of Obstetrics and Gynecology, Subei People's Hospital, Yangzhou 225001, PR China.
| | - Dan Lu
- The First Clinical College, Dalian Medical University, Dalian 116000, PR China; Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou 225001, PR China; The Department of Obstetrics and Gynecology, Subei People's Hospital, Yangzhou 225001, PR China.
| |
Collapse
|
21
|
Fungal Depsides-Naturally Inspiring Molecules: Biosynthesis, Structural Characterization, and Biological Activities. Metabolites 2021; 11:metabo11100683. [PMID: 34677398 PMCID: PMC8540757 DOI: 10.3390/metabo11100683] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/05/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Fungi represent a huge reservoir of structurally diverse bio-metabolites. Although there has been a marked increase in the number of isolated fungal metabolites over the past years, many hidden metabolites still need to be discovered. Depsides are a group of polyketides consisting of two or more ester-linked hydroxybenzoic acid moieties. They possess valuable bioactive properties, such as anticancer, antidiabetic, antibacterial, antiviral, anti-inflammatory, antifungal, antifouling, and antioxidant qualities, as well as various human enzyme-inhibitory activities. This review provides an overview of the reported data on fungal depsides, including their sources, biosynthesis, physical and spectral data, and bioactivities in the period from 1975 to 2020. Overall, 110 metabolites and more than 122 references are confirmed. This is the first review of these multi-faceted metabolites from fungi.
Collapse
|
22
|
Endocrine Disorders in Autoimmune Rheumatological Diseases: A Focus on Thyroid Autoimmune Diseases and on the Effects of Chronic Glucocorticoid Treatment. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Autoimmune rheumatological diseases’ incidence and prevalence have risen over the last decades and they are becoming increasingly important worldwide. Thyroid autoimmune diseases share with them an imbalance in the immune system that lead to a pro-inflammatory environment. Usually this is the result of a multi-factorial process. In fact, it includes not only a possible genetic predisposition, but also environmental causes like microbiota dysbiosis, diet rich in processed foods, exposure to toxicants and infections. However, many aspects are currently under study. This paper aims to examine the factors that participate in the developing of rheumatological and thyroid autoimmune diseases. Moreover, as glucocorticoids still represent a leading treatment for systemic autoimmune rheumatological diseases, our secondary aim is to summarize the main effects of glucocorticoids treatment focusing on iatrogenic Cushing’s syndrome and glucocorticoids’ withdrawal syndrome.
Collapse
|
23
|
Landstra CP, de Koning EJP. COVID-19 and Diabetes: Understanding the Interrelationship and Risks for a Severe Course. Front Endocrinol (Lausanne) 2021; 12:649525. [PMID: 34220706 PMCID: PMC8247904 DOI: 10.3389/fendo.2021.649525] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 01/13/2023] Open
Abstract
The relationship between COVID-19 and diabetes mellitus is complicated and bidirectional. On the one hand, diabetes mellitus is considered one of the most important risk factors for a severe course of COVID-19. Several factors that are often present in diabetes mellitus are likely to contribute to this risk, such as older age, a proinflammatory and hypercoagulable state, hyperglycemia and underlying comorbidities (hypertension, cardiovascular disease, chronic kidney disease and obesity). On the other hand, a severe COVID-19 infection, and its treatment with steroids, can have a specific negative impact on diabetes itself, leading to worsening of hyperglycemia through increased insulin resistance and reduced β-cell secretory function. Worsening hyperglycemia can, in turn, adversely affect the course of COVID-19. Although more knowledge gradually surfaces as the pandemic progresses, challenges in understanding the interrelationship between COVID-19 and diabetes remain.
Collapse
Affiliation(s)
| | - Eelco J. P. de Koning
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Vojnović Milutinović D, Teofilović A, Veličković N, Brkljačić J, Jelača S, Djordjevic A, Macut D. Glucocorticoid signaling and lipid metabolism disturbances in the liver of rats treated with 5α-dihydrotestosterone in an animal model of polycystic ovary syndrome. Endocrine 2021; 72:562-572. [PMID: 33449293 DOI: 10.1007/s12020-020-02600-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/24/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is a complex reproductive disorder often associated with obesity, insulin resistance, and dyslipidemia. Hormonal changes in PCOS may also include altered glucocorticoid signaling. Our aim was to examine whether alterations in hepatic glucocorticoid signaling are associated with disturbances of glucose and lipid metabolism in animal model of PCOS. METHODS Female rats, 3 weeks old, were subcutaneously implanted with 5α-dihydrotestosterone (DHT) or placebo pellets for 90 days to induce PCOS. Expression of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) and A-ring reductases (5α and 5β), as well as intracellular distribution of glucocorticoid receptor (GR) and expression of its regulated genes were examined in the liver. Proteins of hepatic lipid and carbohydrate metabolism and markers of inflammation were also assessed. RESULTS DHT treatment induced increase in body and liver mass, as well as in triglycerides and free fatty acids levels in plasma. Elevation of 11βHSD1 and reduction of 5α-reductase expression was observed together with increased hepatic corticosterone concentration and nuclear GR activation. Induced expression of Krüppel-like factor 15 and decreased expression of genes for proinflammatory cytokines and de novo lipogenesis (DNL) were detected in the liver of DHT-treated rats, while DNL regulators and proinflammatory markers were not changed. However, increased mRNA levels of stearoyl-CoA desaturase and apolipoprotein B were observed in DHT animals. CONCLUSIONS DHT treatment stimulated hepatic glucocorticoid prereceptor metabolism through increased corticosterone availability which is associated with enhanced GR activation. This does not affect gluconeogenesis and DNL, but could be linked to stimulated triglyceride synthesis and hypertriglyceridemia.
Collapse
Affiliation(s)
- Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ana Teofilović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000, Belgrade, Serbia
| | - Djuro Macut
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Dr Subotića 13, 11000, Belgrade, Serbia.
| |
Collapse
|
25
|
Ponticelli C, Favi E, Ferraresso M. New-Onset Diabetes after Kidney Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:250. [PMID: 33800138 PMCID: PMC7998982 DOI: 10.3390/medicina57030250] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
New-onset diabetes mellitus after transplantation (NODAT) is a frequent complication in kidney allograft recipients. It may be caused by modifiable and non-modifiable factors. The non-modifiable factors are the same that may lead to the development of type 2 diabetes in the general population, whilst the modifiable factors include peri-operative stress, hepatitis C or cytomegalovirus infection, vitamin D deficiency, hypomagnesemia, and immunosuppressive medications such as glucocorticoids, calcineurin inhibitors (tacrolimus more than cyclosporine), and mTOR inhibitors. The most worrying complication of NODAT are major adverse cardiovascular events which represent a leading cause of morbidity and mortality in transplanted patients. However, NODAT may also result in progressive diabetic kidney disease and is frequently associated with microvascular complications, eventually determining blindness or amputation. Preventive measures for NODAT include a careful assessment of glucose tolerance before transplantation, loss of over-weight, lifestyle modification, reduced caloric intake, and physical exercise. Concomitant measures include aggressive control of systemic blood pressure and lipids levels to reduce the risk of cardiovascular events. Hypomagnesemia and low levels of vitamin D should be corrected. Immunosuppressive strategies limiting the use of diabetogenic drugs are encouraged. Many hypoglycemic drugs are available and may be used in combination with metformin in difficult cases. In patients requiring insulin treatment, the dose and type of insulin should be decided on an individual basis as insulin requirements depend on the patient's diet, amount of exercise, and renal function.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Evaldo Favi
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Mariano Ferraresso
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
26
|
Chávez-Reyes J, Escárcega-González CE, Chavira-Suárez E, León-Buitimea A, Vázquez-León P, Morones-Ramírez JR, Villalón CM, Quintanar-Stephano A, Marichal-Cancino BA. Susceptibility for Some Infectious Diseases in Patients With Diabetes: The Key Role of Glycemia. Front Public Health 2021; 9:559595. [PMID: 33665182 PMCID: PMC7921169 DOI: 10.3389/fpubh.2021.559595] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Uncontrolled diabetes results in several metabolic alterations including hyperglycemia. Indeed, several preclinical and clinical studies have suggested that this condition may induce susceptibility and the development of more aggressive infectious diseases, especially those caused by some bacteria (including Chlamydophila pneumoniae, Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses [such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the precise mechanisms that link glycemia to the exacerbated infections remain elusive, hyperglycemia is known to induce a wide array of changes in the immune system activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH, blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial proliferative metabolism. Consistent with this evidence, some bacterial infections are typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present review is particularly focused on: (i) the role of diabetes in the development of some bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing the possible mechanisms by which hyperglycemia may increase the susceptibility for developing infections; and (iii) further understanding the impact of hyperglycemia on the immune system.
Collapse
Affiliation(s)
- Jesús Chávez-Reyes
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos E Escárcega-González
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Priscila Vázquez-León
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - José R Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | - Andrés Quintanar-Stephano
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
27
|
Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. J Neuromuscul Dis 2021; 8:39-52. [PMID: 33104035 PMCID: PMC7902991 DOI: 10.3233/jnd-200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid steroids are widely used as immunomodulatory agents in acute and chronic conditions. Glucocorticoid steroids such as prednisone and deflazacort are recommended for treating Duchenne Muscular Dystrophy where their use prolongs ambulation and life expectancy. Despite this benefit, glucocorticoid use in Duchenne Muscular Dystrophy is also associated with significant adverse consequences including adrenal suppression, growth impairment, poor bone health and metabolic syndrome. For other forms of muscular dystrophy like the limb girdle dystrophies, glucocorticoids are not typically used. Here we review the experimental evidence supporting multiple mechanisms of glucocorticoid action in dystrophic muscle including their role in dampening inflammation and myofiber injury. We also discuss alternative dosing strategies as well as novel steroid agents that are in development and testing, with the goal to reduce adverse consequences of prolonged glucocorticoid exposure while maximizing beneficial outcomes.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julie A Fischer
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Mosili P, Mkhize BC, Ngubane P, Sibiya N, Khathi A. The dysregulation of the hypothalamic-pituitary-adrenal axis in diet-induced prediabetic male Sprague Dawley rats. Nutr Metab (Lond) 2020; 17:104. [PMID: 33308255 PMCID: PMC7731754 DOI: 10.1186/s12986-020-00532-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Altered function of the hypothalamic-pituitary-adrenal (HPA) axis in type 2 diabetic patients, a condition preceded by pre-diabetes, has been shown to increase the risk of depression as well as cause downstream effects resulting in upregulation of gluconeogenesis and dyslipidemia. In addition, stress, either psychological from managing diabetes or lifestyle related, further activates the HPA axis causing an exaggerated stress response. This study investigated the activity of the HPA axis in selected markers of glucose handling, and the stress response relative to components of the HPA axis in a diet-induced pre-diabetic rat model. METHODS Sprague Dawley Rats were randomly divided into non-pre-diabetic group (NPD) and pre-diabetic group (PD) (n = 6, per group) over a 20-week induction period and a further 12-week experimental period to get 32 weeks. At the end of the 20 and 32-week periods, glucose handling using the Homeostasis Model Assessment indices, adrenocorticotropic (ACTH) and corticosterone (CORT) concentrations were measured. Stress was induced and the forced swim test were performed in the 12-week experimental week. At the end of 32 weeks glucocorticoid and mineralocorticoid hippocampal receptors were also measured. RESULTS Impaired glucose handling in the PD group as well as increase in corticosterone was observed at the end of both 20 and 32-week periods by comparison to NPD groups. No changes were observed in ACTH concentration at week 20 while, at week 32, a decrease in plasma ACTH concentration was observed in the PD group by comparison to the NPD group. The stressed-induced animals were stressed using the forced swim test: the behaviour observed showed an increase in immobility time in the PD stressed group by comparison to the NPD group. This was followed by the observation of a decrease in ACTH and CORT concentration in the PD stressed group by comparison to the NPD stressed group. Mineralocorticoid and glucocorticoid receptors gene expression were elevated in the stressed PD group relative to the stressed NPD group. CONCLUSION These observations, together, suggest that diet-induced pre-diabetes is associated with impaired HPA axis activity and deteriorating response to stress.
Collapse
Affiliation(s)
- Palesa Mosili
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2-401, Westville, 4000, South Africa.
| | - Bongeka Cassandra Mkhize
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2-401, Westville, 4000, South Africa
| | - Phikelelani Ngubane
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2-401, Westville, 4000, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Grahamstown, 6140, South Africa
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Room E2-401, Westville, 4000, South Africa
| |
Collapse
|
29
|
Vulvovaginal Candidosis: Current Concepts, Challenges and Perspectives. J Fungi (Basel) 2020; 6:jof6040267. [PMID: 33171784 PMCID: PMC7712750 DOI: 10.3390/jof6040267] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Vulvovaginal candidosis (VVC) is a frequently occurring infection of the lower female genital tract, mostly affecting immuno-competent women at childbearing age. Candida albicans is the most prevalent pathogenic yeast—apart from other non-albicans species—related to this fungal infection. Different virulence factors of C. albicans have been identified, which increase the risk of developing VVC. To initiate treatment and positively influence the disease course, fast and reliable diagnosis is crucial. In this narrative review, we cover the existing state of understanding of the epidemiology, pathogenesis and diagnosis of VVC. However, treatment recommendations should follow current guidelines.
Collapse
|
30
|
Supplementation with Combined Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 Across Development Reveals Sex Differences in Physiological and Behavioural Effects of Western Diet in Long-Evans Rats. Microorganisms 2020; 8:microorganisms8101527. [PMID: 33027912 PMCID: PMC7601208 DOI: 10.3390/microorganisms8101527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome affects various physiological and psychological processes in animals and humans, and environmental influences profoundly impact its composition. Disorders such as anxiety, obesity, and inflammation have been associated with certain microbiome compositions, which may be modulated in early life. In 62 Long–Evans rats, we characterised the effects of lifelong Bifidobacterium longum R0175 and Lactobacillus helveticus R0052 administration—along with Western diet exposure—on later anxiety, metabolic consequences, and inflammation. We found that the probiotic formulation altered specific anxiety-like behaviours in adulthood. We further show distinct sex differences in metabolic measures. In females, probiotic treatment increased calorie intake and leptin levels without affecting body weight. In males, the probiotic seemed to mitigate the effects of Western diet on adult weight gain and calorie intake, without altering leptin levels. The greatest inflammatory response was seen in male, Western-diet-exposed, and probiotic-treated rats, which may be related to levels of specific steroid hormones in these groups. These results suggest that early-life probiotic supplementation and diet exposure can have particular implications on adult health in a sex-dependent manner, and highlight the need for further studies to examine the health outcomes of probiotic treatment in both sexes.
Collapse
|
31
|
de Guia RM. Stress, glucocorticoid signaling pathway, and metabolic disorders. Diabetes Metab Syndr 2020; 14:1273-1280. [PMID: 32755820 DOI: 10.1016/j.dsx.2020.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Glucocorticoids and the GR serve as an essential molecular mediator of stress and different physiologic processes. This review summarizes main findings from studies on the role of the GC/GR signaling in the modulation of genes for nutrient processing by the different organs involved in metabolic diseases. METHODS Descriptive review of relevant papers known to the author was conducted. RESULTS Several high-throughput screenings in the past 15 years have identified potential GR DNA-binding regions in different cell types with genes that are annotated to be important for the control of metabolism. Transcriptional regulation of these GC-responsive genes provides links between the hypothalamic-pituitary-adrenal axis (HPA) and systemic energy homeostasis in both physiological and pathophysiological states. Future studies must reconsider the use of agonist, the utilization of animal models of stress and metabolic disorders, and validation in humans. CONCLUSION This review recapitulates the significant role of the GC/GR signaling in molecular metabolic control and metabolic disorders. Potential future research focus and optimizations have also been identified.
Collapse
Affiliation(s)
- Roldan M de Guia
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Keio Global Research Institute (KGRI) and Department of Pharmacology, Keio University School of Medicine, Tokyo, Japan; Czech Centre for Phenogenomics (CCP), Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic.
| |
Collapse
|
32
|
Avinash H, Sudha V, Laxminarayan B, Nandakrishna B, Shastry BA, Asha K, Hande M, Shalini A. The role of osteocalcin in mechanism of Steroid induced diabetes mellitus. Int J Diabetes Dev Ctries 2020. [DOI: 10.1007/s13410-019-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Shi W, Wang D, Yuan X, Liu Y, Guo X, Li J, Song J. Glucocorticoid receptor-IRS-1 axis controls EMT and the metastasis of breast cancers. J Mol Cell Biol 2020; 11:1042-1055. [PMID: 30726932 PMCID: PMC6934157 DOI: 10.1093/jmcb/mjz001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 02/02/2019] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid receptor (GR) is involved in the transcriptional regulation of genes that are important for various biological functions, including tumor growth and metastatic progression. However, the cellular and biological effects of GR remain poorly understood. Here, we investigated the role of GR and its underlying mechanism in mediating breast cancer cell survival and metastasis. We observed that the GR levels were increased in drug-resistant breast cancer cells and in metastatic breast cancer samples. GR promoted tumor cell invasion and lung metastasis in vivo. The GR expression levels were negatively correlated with the survival rates of breast cancer patients. Both ectopic expression and knockdown of GR revealed that GR is a strong inducer of epithelial-to-mesenchymal transition (EMT), which is consistent with its effects on cell survival and metastasis. GR suppressed the expression of insulin receptor substrate 1 (IRS-1) by acting as an IRS-1 transcriptional repressor. In addition, GR has an opposite effect on the expression levels of IRS-2, indicating that GR is able to differentially regulate the IRS-1 and IRS-2 expression. The cellular and biological effects elicited by GR were consistent with the reduced levels of IRS-1 observed in cancer cells, and GR-mediated IRS-1 suppression activated the ERK2 MAP kinase pathway, which is required for GR-mediated EMT. Taken together, our results indicate that GR–IRS-1 signaling axis plays an essential role in regulating the survival, invasion, and metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Weiwei Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinwang Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojie Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianguo Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Kotańska M, Mika K, Sałaciak K, Wheeler L, Sapa J, Kieć-Kononowicz K, Pytka K. Pitolisant protects mice chronically treated with corticosterone from some behavioral but not metabolic changes in corticosterone-induced depression model. Pharmacol Biochem Behav 2020; 196:172974. [PMID: 32565240 DOI: 10.1016/j.pbb.2020.172974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE Histamine H3 receptor ligands may have antidepressant and anxiolytic effects. They can also compensate for metabolic disorders, which affect glucose or triglyceride levels. In previous studies, we have shown that pitolisant, a histamine H3 receptor antagonist/inverse agonist and σ1 receptor agonist, prevented the development of certain metabolic and depressive-like disorders in mice that have been treated chronically with olanzapine. METHODS As a continuation of our previous experiments, this study aimed to investigate the antidepressant- and anxiolytic-like activity of pitolisant in mice using the corticosterone-induced depression model. The forced swim and the elevated plus maze tests were used as behavioral endpoints. We also studied the effect pitolisant had on the level of acetoacetic acid in the urine as well as the glucose tolerance and body weight of the mice that had been administered corticosterone. RESULTS Pitolisant (10 mg/kg b.w.) did not prevent depressive-like behavior in mice during the chronic corticosterone administration but did counteract anxiety-like behavior, whilst fluoxetine (10 mg/kg) was shown to protect the mice from both of these behaviors. None of the treatments that were used in the study showed an effect on the locomotor activity of the mice. Pitolisant did not prevent an increase in acetoacetic acid levels in the urine, nor did it improve glucose tolerance in the tested mice. CONCLUSION Although literature data indicates that there is significant potential for finding an antidepressant and anti-diabetic drug among the histamine H3 and σ1 receptor ligands, in our study, pitolisant was shown to only slightly compensate for corticosterone-induced abnormalities. However, further research will be required to study pitolisant's anxiolytic-like activity.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland.
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Lee Wheeler
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
35
|
Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-Induced Fatty Liver Disease. Diabetes Metab Syndr Obes 2020; 13:1133-1145. [PMID: 32368109 PMCID: PMC7171875 DOI: 10.2147/dmso.s247379] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Glucocorticoids (GCs) are commonly used at high doses and for prolonged periods (weeks to months) in the treatment of a variety of diseases. Among the many side effects are increased insulin resistance with disturbances in glucose/insulin homeostasis and increased deposition of lipids (mostly triglycerides) in the liver. Here, we review the metabolic pathways of lipid deposition and removal from the liver that become altered by excess glucocorticoids. Pathways of lipid deposition stimulated by excess glucocorticoids include 1) increase in appetite and high caloric intake; 2) increased blood glucose levels due to GC-induced stimulation of gluconeogenesis; 3) stimulation of de novo lipogenesis that is augmented by the high glucose and insulin levels and by GC itself; and 4) increased release of free fatty acids from adipose stores and stimulation of their uptake by the liver. Pathways that decrease hepatic lipids affected by glucocorticoids include a modest stimulation of very-low-density lipoprotein synthesis and secretion into the circulation and inhibition of β-oxidation of fatty acids. Role of 11β-hydroxysteroid dehydrogenases-1 and -2 and the reversible conversion of cortisol to cortisone on intracellular levels of cortisol is examined. In addition, GC control of osteocalcin expression and the effect of this bone-derived hormone in increasing insulin sensitivity are discussed. Finally, research focused on gaining a better understanding of the dose and duration of treatment with glucocorticoids, which leads to increased triglyceride deposition in the liver, and the reversibility of the condition is highlighted.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aman Rajpal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
36
|
Badmus OO, Olatunji LA. Dexamethasone causes defective glucose-6-phosphate dehydrogenase dependent antioxidant barrier through endoglin in pregnant and nonpregnant rats. Can J Physiol Pharmacol 2020; 98:667-677. [PMID: 32259461 DOI: 10.1139/cjpp-2018-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid therapy has been associated with adverse cardiometabolic effects during pregnancy. Inflammation-mediated cardiac dysfunction, an independent risk factor for morbidity and mortality, has been linked to defective glucose-6-phosphate dehydrogenase (G6PD) dependent antioxidant defenses and increased endoglin expression. We therefore sought to investigate the effects of dexamethasone (DEX) on cardiac endoglin and G6PD-dependent antioxidant defense. Twenty-four rats were randomly assigned to nonpregnant (PRE(-)), DEX-exposed nonpregnant (PRE(-) + DEX), pregnant (PRE(+)), and DEX-exposed pregnant (PRE(+) + DEX) rats, respectively (n = 6 per group). PRE(-) and PRE(+) rats received vehicle (per oral (po)), while PRE(-) + DEX and PRE(+) + DEX groups were administered DEX (0.2 mg/kg po) between gestational days 14 and 19, respectively. Results showed that DEX caused increased cardiac pro-inflammatory markers (adenosine deaminase (ADA) activity, endoglin, vascular cell adhesion molecule-1 (VCAM-1), tissue injury markers (LDH, GGT, AST, ALT, and ALP), metabolic disturbances (elevated fasting plasma glucose, free fatty acid (FFA), lactate, cardiac FFA, and lactate) and depressed G6PD-dependent antioxidant defenses (G6PD activity, reduced glutathione/oxidized glutathione ratio, and nitric oxide) in pregnant and nonpregnant rats. The present study demonstrates that DEX led to increased cardiac endoglin and VCAM-1 that is accompanied by defective G6PD-dependent antioxidant defenses but not cardiac lipid accumulation in both pregnant and nonpregnant rats.
Collapse
Affiliation(s)
- Olufunto O Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.,Department of Public Health, Kwara State University, Malete, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
37
|
Sharma VK, Singh TG. Chronic Stress and Diabetes Mellitus: Interwoven Pathologies. Curr Diabetes Rev 2020; 16:546-556. [PMID: 31713487 DOI: 10.2174/1573399815666191111152248] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/25/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Stress threatens the homeostasis and mobilizes a plethora of adaptive physiological and behavioral changes via the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. The HPA axis influences the pituitary gland, hypothalamus and adrenal gland via a complex set of positive and negative feedback system. The feedback system operates in a well regulated neuroendocrine manner to reestablish the threatened body equilibrium. The HPA axis secreted major product is a glucocorticoid (cortisol) which is kept within a physiologically optimal range and serves to accomplish the various physiological functions crucial for survival. In chronically stressed individuals dishabituation of HPA axis is followed by increased release of glucocorticoids and catecholamines. Higher secretion of glucocorticoids influences glucose metabolism by promoting gluconeogenesis in the liver, suppressing glucose uptake (adipocytes and skeletal muscles), promoting lipolysis in adipocytes, suppressing insulin secretion, inflicting insulin resistance and inflammation. These biological changes alter neuroendocrine mechanisms and lead to maladaptive congregation of events that form the underlying cause of development of Type 2 diabetes (T2D). The currently reviewed evidences advocate that targeting stress mediated hypersecretion of glucocorticoids may be a viable approach for the treatment of T2D and to reinstate glucose homeostasis.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Department of Pharmacology, Government College of Pharmacy, Rohru, Distt. Shimla-171207, Himachal Pradesh, India
| | | |
Collapse
|
38
|
Du X, Eksterowicz J, Zhou H, Rew Y, Zhu L, Yan X, Medina JC, Huang T, Chen X, Sutimantanapi D, Jahchan N, Kong W, Sun J, Zavorotinskaya T, Ye Q, Fantin VR, Sun D. Discovery of a Potent Steroidal Glucocorticoid Receptor Antagonist with Enhanced Selectivity against the Progesterone and Androgen Receptors (OP-3633). J Med Chem 2019; 62:6751-6764. [PMID: 31274313 DOI: 10.1021/acs.jmedchem.9b00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-based modification of mifepristone (1) led to the discovery of novel mifepristone derivatives with improved selectivity profile. Addition of a methyl group at the C10 position of the steroid has a significant impact on progesterone receptor (PR) and androgen receptor (AR) activity. Within this series, OP-3633 (15) emerged as a glucocorticoid receptor (GR) antagonist with increased selectivity against PR and AR, improved cytochrome P450 inhibition profile, and significantly improved pharmacokinetic properties compared to 1. Furthermore, 15 demonstrated substantial inhibition of GR transcriptional activity in the GR positive HCC1806 triple negative breast cancer xenograft model. Overall, compound 15 is a promising GR antagonist candidate to clinically evaluate the impact of GR inhibition in reversal or prevention of therapy resistance.
Collapse
Affiliation(s)
- Xiaohui Du
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - John Eksterowicz
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Haiying Zhou
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Yosup Rew
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Liusheng Zhu
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Xuelei Yan
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Julio C Medina
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Tom Huang
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Xi Chen
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Dena Sutimantanapi
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Nadine Jahchan
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Wayne Kong
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Jessica Sun
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Tatiana Zavorotinskaya
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Qiuping Ye
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Valeria R Fantin
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| | - Daqing Sun
- ORIC Pharmaceuticals , 240 E. Grand Avenue, Fl2 , South San Francisco , California 94080 , United States
| |
Collapse
|
39
|
Schmidt JR, Vogel S, Moeller S, Kalkhof S, Schubert K, von Bergen M, Hempel U. Sulfated hyaluronic acid and dexamethasone possess a synergistic potential in the differentiation of osteoblasts from human bone marrow stromal cells. J Cell Biochem 2019; 120:8706-8722. [PMID: 30485523 DOI: 10.1002/jcb.28158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry-based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.
Collapse
Affiliation(s)
- Johannes R Schmidt
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Stefan Kalkhof
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Kristin Schubert
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Martin von Bergen
- Department for Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
40
|
Zylla D, Gilmore G, Eklund J, Richter S, Carlson A. Impact of diabetes and hyperglycemia on health care utilization, infection risk, and survival in patients with cancer receiving glucocorticoids with chemotherapy. J Diabetes Complications 2019; 33:335-339. [PMID: 30717892 DOI: 10.1016/j.jdiacomp.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/13/2018] [Accepted: 12/22/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Glucocorticoids are commonly used in chemotherapy regimens and may lead to hyperglycemia and increased infection rates. METHODS We performed a retrospective analysis on 1781 patients who received intravenous chemotherapy with glucocorticoids between 2010 and 2015. Data was obtained using electronic medical record, billing modules, and tumor registry. We compared new infections and survival between patients with and without diabetes, after adjusting for demographic and cancer-related variables. RESULTS In the first 12 months following chemotherapy, patients with diabetes (n = 330) had higher rates of hospital admissions (70.9% vs 57.4%), more infection-related admissions (37.0% vs 29.2%), and increased rates of new infections (61.2% vs 49.2%) when compared to patients without diabetes (n = 1451). One-year survival was worse among patients with diabetes (67.3% vs 78.3%), and in patients with at least one elevated glucose following chemotherapy (60.8% vs 78.5). After adjusting for cancer stage, age, and gender, diabetes history increased the odds of dying within one year after diagnosis by 86% (OR 1.86, 95% CI (1.37-2.52)) and of new infections by 68% (OR 1.68, 95% CI (1.26-2.24)). CONCLUSIONS Among patients with cancer receiving intravenous chemotherapy with glucocorticoids we demonstrate those with diabetes have more hospital admissions, increased rates of infections, and worse survival.
Collapse
Affiliation(s)
- Dylan Zylla
- Park Nicollet Oncology Research, Frauenshuh Cancer Center, HealthPartners, Minneapolis, MN, USA; HealthPartners Institute, HealthPartners, Minneapolis, MN, USA.
| | - Grace Gilmore
- Park Nicollet Oncology Research, Frauenshuh Cancer Center, HealthPartners, Minneapolis, MN, USA
| | - Justin Eklund
- Park Nicollet Oncology Research, Frauenshuh Cancer Center, HealthPartners, Minneapolis, MN, USA; HealthPartners Institute, HealthPartners, Minneapolis, MN, USA
| | - Sara Richter
- Professional Data Analysts, Inc., Minneapolis, MN, USA
| | - Anders Carlson
- International Diabetes Center, Park Nicollet, Minneapolis, MN, USA
| |
Collapse
|
41
|
Grancini V, Resi V, Palmieri E, Pugliese G, Orsi E. Management of diabetes mellitus in patients undergoing liver transplantation. Pharmacol Res 2019; 141:556-573. [PMID: 30690071 DOI: 10.1016/j.phrs.2019.01.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is a common feature in cirrhotic individuals both before and after liver transplantation and negatively affects prognosis. Certain aetiological agents of chronic liver disease and loss of liver function per se favour the occurrence of pre-transplant diabetes in susceptible individuals, whereas immunosuppressant treatment, changes in lifestyle habits, and donor- and procedure-related factors contribute to diabetes development/persistence after transplantation. Challenges in the management of pre-transplant diabetes include the profound nutritional alterations characterizing cirrhotic individuals and the limitations to the use of drugs with liver metabolism. Special issues in the management of post-transplant diabetes include the diabetogenic potential of immunosuppressant drugs and the increased cardiovascular risk characterizing solid organ transplant survivors. Overall, the pharmacological management of cirrhotic patients undergoing liver transplantation is complicated by the lack of specific guidelines reflecting the paucity of data on the impact of glycaemic control and the safety and efficacy of anti-hyperglycaemic agents in these individuals.
Collapse
Affiliation(s)
- Valeria Grancini
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Veronica Resi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eva Palmieri
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, and Diabetes Unit, Sant'Andrea University Hospital, Rome, Italy
| | - Emanuela Orsi
- Diabetes Service, Endocrinology and Metabolic Diseases Unit, IRCCS "Cà Granda - Ospedale Maggiore Policlinico" Foundation, and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| |
Collapse
|
42
|
Mayer-Davis EJ, Kahkoska AR, Jefferies C, Dabelea D, Balde N, Gong CX, Aschner P, Craig ME. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabetes 2018; 19 Suppl 27:7-19. [PMID: 30226024 PMCID: PMC7521365 DOI: 10.1111/pedi.12773] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elizabeth J. Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anna R. Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig Jefferies
- Starship Children’s Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado
| | - Naby Balde
- Department of Endocrinology, University Hospital, Conakry, Guinea
| | - Chun X. Gong
- Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | | | - Maria E. Craig
- The Children’s Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia,School of Women’s and Children’s Health, University of NSW, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Badmus OO, Michael OS, Rabiu S, Olatunji LA. Gestational glucocorticoid exposure disrupts glucose homeostasis that is accompanied by increased endoglin and DPP-4 activity instead of GSK-3 in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:66-75. [PMID: 29677638 DOI: 10.1016/j.etap.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 05/27/2023]
Abstract
Gestational glucocorticoid (GC) treatment has been associated with cardiometabolic disorder (CMD) in offspring's in later life. Elevated dipeptidyl peptidase-4 (DPP-4) activity, endoglin and glycogen synthase kinase-3 (GSK-3) has also been implicated in the development of insulin resistance (IR) and/or vascular inflammation. We aimed to investigate the impact of GC exposure on glucose metabolism and the circulating levels of inflammatory biomarkers, DPP-4 activity and GSK-3 in pregnant rats. Pregnant Wistar rats received either vehicle or dexamethasone (DEX; 0.2 mg/kg; po) between gestational days 14 and 19. Gestational GC exposure resulted in impaired glucose homeostasis that is accompanied with elevated circulating levels of inflammatory biomarkers (endoglin, uric acid, and platelet/lymphocyte ratio), oxidative stress (malondialdehyde), blood viscosity, reduced NO level and increased DPP-4 activity. However, these effects were associated with atherogenic dyslipidemia and reduced GSK-3.We conclude that plasma endoglin, a marker of vascular inflammation, and plasma DPP-4 activity are increased in pregnant rats treated with GC during late gestation. Therefore, glucose deregulation associated with gestational GC exposure is through endoglin-/DPP-4-dependent but GSK-3-independent pathway.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Public Health, Kwara State University, Malete, Nigeria
| | - Olugbenga S Michael
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Physiology, Cardiometabolic Research Unit, College of Health and Medical sciences, Bowen University, Iwo, Nigeria
| | - Saheed Rabiu
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence A Olatunji
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
44
|
Hermann R, Derendorf H, von Richter O, Rostami-Hodjegan A. Core Entrustable Professional Activities in Clinical Pharmacology: Pearls for Clinical Practice. J Clin Pharmacol 2018. [DOI: 10.1002/jcph.1088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance; Gelnhausen Germany
- Faculty of the International Marbach DDI Workshop Organisation
| | - Hartmut Derendorf
- Department of Pharmaceutics; College of Pharmacy; University of Florida; Gainesville FL USA
- Faculty of the International Marbach DDI Workshop Organisation
| | - Oliver von Richter
- Clinical Pharmacology; Sandoz Biopharmaceuticals; Holzkirchen Germany
- Faculty of the International Marbach DDI Workshop Organisation
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR); University of Manchester; UK
- Faculty of the International Marbach DDI Workshop Organisation
| |
Collapse
|
45
|
Malkawi AK, Alzoubi KH, Jacob M, Matic G, Ali A, Al Faraj A, Almuhanna F, Dasouki M, Abdel Rahman AM. Metabolomics Based Profiling of Dexamethasone Side Effects in Rats. Front Pharmacol 2018; 9:46. [PMID: 29503615 PMCID: PMC5820529 DOI: 10.3389/fphar.2018.00046] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
Abstract
Dexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its in vivo non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats. The Dex-treated rats suffered from a ∼20% reduction in weight gain, hyperglycemia (145 mg/dL), changes in serum lipids, and reduction in total serum alkaline phosphatase (ALP) (∼600 IU/L). Also, compared to controls, Dex-treated rats showed a distinctive metabolomics profile. In particular, serum amino acids metabolism showed six-fold reduction in phenylalanine, lysine, and arginine levels and upregulation of tyrosine and hydroxyproline reflecting perturbations in gluconeogenesis and protein catabolism which together lead to weight loss and abnormal bone metabolism. Sorbitol level was markedly elevated secondary to hyperglycemia and reflecting activation of the polyol metabolism pathway causing a decrease in the availability of reducing molecules (glutathione, NADPH, NAD+). Overexpression of succinylacetone (4,6-dioxoheptanoic acid) suggests a novel inhibitory effect of Dex on hepatic fumarylacetoacetate hydrolase. The acylcarnitines, mainly the very long chain species (C12, C14:1, C18:1) were significantly increased after Dex treatment which reflects degradation of the adipose tissue. In conclusion, long-term Dex therapy in rats is associated with a distinctive metabolic profile which correlates with its side effects. Therefore, metabolomics based profiling may predict Dex treatment-related side effects and may offer possible novel therapeutic interventions.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Goran Matic
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Asmaa Ali
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Achraf Al Faraj
- Department of Radiologic Sciences, Faculty of Health Sciences, American University of Science and Technology, Beirut, Lebanon
| | - Falah Almuhanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
46
|
Kacso A, Goia-Socol M, Hazi G, Tomoaia G, Kacso IM, Georgescu CE. EFFECT OF EXPERIMENTAL DYSGLYCEMIA ON UNDER-CARBOXYLATED OSTEOCALCIN PRODUCTION IN HUMAN PRIMARY OSTEOBLAST-LIKE CELL CULTURES. ACTA ENDOCRINOLOGICA-BUCHAREST 2018; 14:11-15. [PMID: 31149230 DOI: 10.4183/aeb.2018.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Context The undercarboxylated form of osteocalcin (ucOC) and osteoprotegerin (OPG) are bone-derived molecules involved in the endocrine crosstalk governing the bone, the adipose tissue and the pancreas. In addition, glucocorticoids are major determinants of both insulin resistance and osteoporosis. Objective We aimed to investigate the response of ucOC and OPG to dysglycemia and/or dexamethasone (DXM) in primary human osteoblastic cell (HOC) cultures. Design and methods Third-passage sub-confluent primary HOC cultures were treated with glucose: 2.8 mmol/L, 5.6 mmol/L, 11.1 mmol/L and 28 mmol/L, respectively. Alternatively, HOC cultures were subjected to DXM 1 μmol/L. In more complex experiments, HOC cultures were pre-treated with glucose (5.6 mmol/L) with/without insulin (1 pmol/L) followed by DXM (1 μmol/L). 24-hours post-treatment, culture medium ucOC and OPG were measured by ELISA. Results ucOC production differed significantly (p<0.05) between cell groups, decreasing in a dose-dependent manner as glucose concentration in the medium increased. Insulin prevented this effect. OPG levels appeared not to be significantly influenced by the hyperglycemic culture medium and were not related to ucOC concentration (p>0.05). Addition of DXM resulted in significantly lower ucOC concentrations compared to vehicle-treated cells (p<0.05). However, the effect of insulin co-treatment on ucOC was not counteracted by DXM (p<0.05). Conclusions An obvious alteration of OC production/metabolism was observed as glucose levels changed in the bone microenvironment, to potentially be involved in diabetes-related osteopenia. DXM suppressed ucOC levels however not in insulin-rich environment.
Collapse
Affiliation(s)
- A Kacso
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Department of Endocrinology, Cluj-Napoca, Romania
| | - M Goia-Socol
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Department of Endocrinology, Cluj-Napoca, Romania
| | - G Hazi
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Hormonology Laboratory, Cluj-Napoca, Romania
| | - G Tomoaia
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Department of Ortopedics and Traumatology, Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Orthopedics and Traumatology Clinic, Cluj-Napoca, Romania
| | - I M Kacso
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Department of Nephrology, Cluj County Emergency Hospital - Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Nephrology Clinic, Cluj-Napoca, Romania
| | - C E Georgescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Department of Endocrinology, Cluj-Napoca, Romania.,"Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Endocrinology Clinic, Cluj-Napoca, Romania
| |
Collapse
|
47
|
Marino JS, Ruban C, Blanchette CM. The Association of COPD Exacerbations with New Onset Type 2 Diabetes among Medicare Patients. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2017; 5:183-193. [PMID: 35620780 PMCID: PMC9090466 DOI: 10.36469/9810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: Chronic obstructive pulmonary disease (COPD) is highly prevalent in the elderly population and typically reduces overall quality of life. Exacerbations of COPD are commonly treated with corticosteroids, a class of drug known to cause insulin resistance. The objective of this study was to assess the rate of exacerbations requiring emergency room visits, hospitalizations or any medical encounter (a combination of emergency room and hospitalizations) between COPD patients who did and did not develop type 2 diabetes. Research Design and Methods: A case-control study of COPD patients from the 2011-2012 Medicare 5% sample Limited Data Set (LDS) was conducted. Beneficiaries with at least 1 year of continuous enrollment and evidence of > 2 COPD-related claims (>1 primary diagnosis) were included in the study. Cases were defined as a beneficiary with a new claim for type 2 diabetes, whereas controls lacked evidence of type 2 diabetes (beneficiaries with evidence of non-incident type 2 diabetes were excluded). Results: Of 27 456 COPD beneficiaries, 1274 developed incident type 2 diabetes (4.6%). After matching, 2536 beneficiaries were assigned as cases (n = 1268) and controls (n = 1268). Cases in the emergency room (1.97 claims per person) (p = <0.001) and hospitalizations (2.02 claims per person) (p = <0.001) had a higher rate of exacerbations. Conclusion: Our findings suggest that patients that were hospitalized and visited the emergency room for COPD exacerbations had a greater likelihood of type 2 diabetes. Type 2 diabetes may be associated with exposure to corticosteroids as a result of the treatment for exacerbations. Future work should investigate the risk for type 2 diabetes in COPD patients treated with corticosteroids.
Collapse
Affiliation(s)
- Joseph S Marino
- Health Informatics and Outcomes Research Academy, Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina, Charlotte, NC, USA
| | - Cynthiya Ruban
- Health Informatics and Outcomes Research Academy, Department of Public Health Sciences, University of North Carolina, Charlotte, NC, USA
| | - Christopher M Blanchette
- Health Informatics and Outcomes Research Academy, Department of Public Health Sciences, University of North Carolina, Charlotte, NC, USA
| |
Collapse
|
48
|
Martínez-Quintana E, Rodríguez-González F, Medina-Gil JM, Garay-Sánchez P, Tugores A. Actividad de CYP2C19 y factores de riesgo cardiovascular en pacientes con síndrome coronario agudo. Med Clin (Barc) 2017; 149:235-239. [DOI: 10.1016/j.medcli.2017.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 11/28/2022]
|
49
|
Chakkera HA, Sharif A, Kaplan B. Negative Cardiovascular Consequences of Small Molecule Immunosuppressants. Clin Pharmacol Ther 2017; 102:269-276. [PMID: 28512771 DOI: 10.1002/cpt.738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/04/2023]
Abstract
Immunosuppressants are critical after transplantation and prescribed as immune-modulators for autoimmune disorders and glomerulonephritides. Immunosuppressants include large (e.g., thymoglobulin, alemtuzumab, and rituximab) and small molecules (e.g., corticosteroids, calcineurin inhibitors, antimetabolites, and mammalian target of rapamycin (mTOR) inhibitors). The majority of the small molecules worsen traditional cardiovascular risks. This review describes cardiovascular risks of small molecule immunosuppressants: corticosteroids, calcineurin inhibitors (tacrolimus and cyclosporine), and mTOR inhibitors (rapamycin), by categorizing these risks into two categories: ischemic heart disease and nonischemic cardiac effects.
Collapse
Affiliation(s)
- H A Chakkera
- Division of Transplantation, Mayo Clinic, Phoenix, Arizona, USA
| | - A Sharif
- Division of Nephrology and Transplantation, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - B Kaplan
- Division of Transplantation, Mayo Clinic, Phoenix, Arizona, USA
| |
Collapse
|
50
|
Pérez LM, de Lucas B, Lunyak VV, Gálvez BG. Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Rep 2017; 12:51-56. [PMID: 28580301 PMCID: PMC5447652 DOI: 10.1016/j.ymgmr.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue is a significant source of mesenchymal stem cells for regenerative therapies; however, caution should be taken as their environmental niche can affect their functional properties. We have previously demonstrated the negative impact of obesity on the function of adipose-derived stem cells (ASCs). Here we have evaluated other possible properties and targets that are altered by obesity such as the recently described long non-coding molecule Gas5, which is involved in glucocorticoid resistance. Using ASCs isolated from obese (oASCs) and control subjects (cASCs), we have analyzed additional metabolic and inflammatory conditions that could be related with their impaired therapeutic potential and consequently their possible usefulness in the clinic. Altered genetic and metabolic targets by obesity in adipose stem cells population Gas5 involved in glucocorticoid resistance such as altered target Additional metabolic and inflammation conditions on obese adipose stem cells
Collapse
Affiliation(s)
- Laura M Pérez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Beatriz de Lucas
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | | | - Beatriz G Gálvez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|