1
|
Anilkumar S A, Dutta S, Aboo S, Ismail A. Vitamin D as a modulator of molecular pathways involved in CVDs: Evidence from preclinical studies. Life Sci 2024; 357:123062. [PMID: 39288869 DOI: 10.1016/j.lfs.2024.123062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Vitamin D deficiency (VDD) is a widespread global health issue, affecting nearly a billion individuals worldwide, and mounting evidence links it to an increased risk of cardiovascular diseases like hypertension, atherosclerosis, and heart failure. The discovery of vitamin D receptors and metabolizing enzymes in cardiac and vascular cells, coupled with experimental studies, underscores the complex relationship between vitamin D and cardiovascular health. This review aims to synthesize and critically evaluate the preclinical evidence elucidating the role of vitamin D in cardiovascular health. We examined diverse preclinical in vitro (cardiomyocyte cell line) models and in vivo models, including knockout mice, diet-induced deficiency, and disease-specific animal models (hypertension, hypertrophy and myocardial infarction). These studies reveal that vitamin D modulates vascular tone, and prevents fibrosis and hypertrophy through effects on major signal transduction pathways (NF-kB, Nrf2, PI3K/AKT/mTOR, Calcineurin/NFAT, TGF-β/Smad, AMPK) and influences epigenetic mechanisms governing inflammation, oxidative stress, and pathological remodeling. In vitro studies elucidate vitamin D's capacity to promote cardiomyocyte differentiation and inhibit pathological remodeling. In vivo studies further uncovered detrimental cardiac effects of VDD, while supplementation with vitamin D in cardiovascular disease (CVD) models demonstrated its protective effects by decreasing inflammation, attenuating hypertrophy, reduction in plaque formation, and improving cardiac function. Hence, this comprehensive review emphasizes the critical role of vitamin D in cardiovascular health and its potential as a preventive/therapeutic strategy in CVDs. However, further research is needed to translate these findings into clinical applications as there are discrepancies between preclinical and clinical studies.
Collapse
Affiliation(s)
- Athira Anilkumar S
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Soumam Dutta
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Shabna Aboo
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| | - Ayesha Ismail
- Department of Endocrinology, ICMR-National Institute of Nutrition, Hyderabad, India.
| |
Collapse
|
2
|
Enzel D, Kriventsov M, Sataieva T, Malygina V. Cellular and Molecular Genetic Mechanisms of Lung Fibrosis Development and the Role of Vitamin D: A Review. Int J Mol Sci 2024; 25:8946. [PMID: 39201632 PMCID: PMC11355055 DOI: 10.3390/ijms25168946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis remains a relevant problem of the healthcare system with an unfavorable prognosis for patients due to progressive fibrous remodeling of the pulmonary parenchyma. Starting with the damage of the epithelial lining of alveoli, pulmonary fibrosis is implemented through a cascade of complex mechanisms, the crucial of which is the TGF-β/SMAD-mediated pathway, involving various cell populations. Considering that a number of the available drugs (pirfenidone and nintedanib) have only limited effectiveness in slowing the progression of fibrosis, the search and justification of new approaches aimed at regulating the immune response, cellular aging processes, programmed cell death, and transdifferentiation of cell populations remains relevant. This literature review presents the key modern concepts concerning molecular genetics and cellular mechanisms of lung fibrosis development, based mainly on in vitro and in vivo studies in experimental models of bleomycin-induced pulmonary fibrosis, as well as the latest data on metabolic features, potential targets, and effects of vitamin D and its metabolites.
Collapse
Affiliation(s)
| | | | - Tatiana Sataieva
- Medical Institute Named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenina Boulevard 5/7, 295051 Simferopol, Russia; (D.E.); (M.K.); (V.M.)
| | | |
Collapse
|
3
|
Wang Y, Hu C, Li Y, Liu Q, Gao L, Zhang D, Cao L. Association between serum vitamin D and the risk of diabetic kidney disease in patients with type 2 diabetes. Front Med (Lausanne) 2024; 11:1445487. [PMID: 39185464 PMCID: PMC11342449 DOI: 10.3389/fmed.2024.1445487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Aims This investigation explored the potential correlation between serum vitamin D concentration and diabetic kidney disease (DKD) among patients with type 2 diabetes mellitus (T2DM). Methods This cross-sectional study assessed 4,570 patients with T2DM drawn from the National Health and Nutrition Examination Survey (NHANES) dataset. Restricted cubic splines were utilized to examine the dose-response relationship between serum vitamin D levels and the risk of DKD in patients with T2DM. Serum vitamin D concentrations were divided into quartiles for multivariable logistic regression analysis to evaluate the association between varying serum vitamin D levels and DKD risk in patients with T2DM. Additionally, sex-stratified analyses were conducted to determine consistency of the results. The influence of vitamin D concentrations on mortality risk was assessed using a Cox regression model. Results Of the patients with T2DM, 33% were diagnosed with DKD. Restricted cubic spline plots revealed a U-shaped relationship between vitamin D levels and DKD risk, with a protective effect noted in the mid-range, indicating optimal serum vitamin D concentrations between 59.6 nmol/L and 84.3 nmol/L. The multivariate Cox regression analysis suggested that higher VID levels were associated with a reduced mortality risk, particularly in male patients. Conclusion The regulation and monitoring of serum vitamin D levels within an optimal range may play a pivotal role in the prevention of DKD in patients with T2DM. Public health strategies should emphasize the regular monitoring of vitamin D levels, especially among populations at elevated risk, to mitigate the progression of DKD and decrease the associated mortality rates.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Chenggang Hu
- Emergency Department, The Affiliated TCM Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Lichao Gao
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Dongmei Zhang
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Ling Cao
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Elangovan H, Stokes RA, Keane J, Chahal S, Samer C, Agoncillo M, Yu J, Chen J, Downes M, Evans RM, Liddle C, Gunton JE. Vitamin D Receptor Regulates Liver Regeneration After Partial Hepatectomy in Male Mice. Endocrinology 2024; 165:bqae077. [PMID: 38963813 PMCID: PMC11250209 DOI: 10.1210/endocr/bqae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.
Collapse
Affiliation(s)
- Harendran Elangovan
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Rebecca A Stokes
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jeremy Keane
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Sarinder Chahal
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Caroline Samer
- Pharmacogenomics and Personalized Therapy Unit, Geneva University Hospitals, Geneva 1205, Switzerland
| | - Miguel Agoncillo
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Josephine Yu
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jennifer Chen
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037-1002, USA
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
| | - Jenny E Gunton
- The Centre for Diabetes, Obesity and Endocrinology Research (CDOER), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Srikuea R, Hirunsai M. TGF-β1 stimulation and VDR-dependent activation modulate calcitriol action on skeletal muscle fibroblasts and Smad signalling-associated fibrogenesis. Sci Rep 2023; 13:13811. [PMID: 37612333 PMCID: PMC10447566 DOI: 10.1038/s41598-023-40978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
Fibroblasts play a pivotal role in fibrogenesis after skeletal muscle injury. Excess fibrous formation can disrupt contractile functions and delay functional recovery. Although vitamin D receptor (VDR) is expressed explicitly in regenerating muscle compared with uninjured muscle, how calcitriol [1α,25(OH)2D3] directly regulates skeletal muscle primary fibroblast proliferation, the transition to myofibroblasts, and Smad signalling-associated fibrogenesis is currently unknown. Herein, the effects of calcitriol on cultured skeletal muscle primary fibroblasts of male C57BL/6 mice (aged 1 month old) were investigated. The percentage of BrdU+ nuclei in primary fibroblasts was significantly decreased after calcitriol treatment; however, the antiproliferative effect of calcitriol was diminished after TGF-β1 stimulation to induce fibroblast to myofibroblast transition. This suppressive effect was associated with significantly decreased VDR expression in TGF-β1-treated cells. In addition, Vdr siRNA transfection abolished the effects of calcitriol on the suppression of α-SMA expression and Smad2/3 signalling in myofibroblasts, supporting that its antifibrogenic effect requires VDR activation. Compared with calcitriol, the antifibrotic agent suramin could inhibit fibroblast/myofibroblast proliferation and suppress the expression of TCF-4, which regulates fibrogenic determination. Collectively, these findings suggest that profibrotic stimulation and VDR-dependent activation could modulate the effects of calcitriol on skeletal muscle fibroblast proliferation and fibrogenesis processes. Therefore, TGF-β1 and VDR expression levels are crucial determinants for the antifibrogenic effect of calcitriol on skeletal muscle after injury.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Ongkharak, Nakhon Nayok, 26120, Thailand
| |
Collapse
|
6
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
7
|
Gezen-Ak D, Alaylıoğlu M, Yurttaş Z, Çamoğlu T, Şengül B, İşler C, Kına ÜY, Keskin E, Atasoy İL, Kafardar AM, Uzan M, Annweiler C, Dursun E. Vitamin D receptor regulates transcription of mitochondrial DNA and directly interacts with mitochondrial DNA and TFAM. J Nutr Biochem 2023; 116:109322. [PMID: 36963731 DOI: 10.1016/j.jnutbio.2023.109322] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Vitamin D receptor (VDR) is an essential transcription factor (TF) synthesized in different cell types. We hypothesized that VDR might also act as a mitochondrial TF. We conducted the experiments in primary cortical neurons, PC12, HEK293T, SH-SY5Y cell lines, human peripheral blood mononuclear cells (PBMC) and human brain. We showed that vitamin D/VDR affects the expression of mitochondrial DNA (mtDNA) encoded oxidative phosphorylation (OXPHOS) subunits. We observed the co-localization of VDR with mitochondria and the mtDNA with confocal microscopy. mtDNA-chromatin-immunoprecipitation and electrophoretic mobility shift assays indicated that VDR was able to bind to the mtDNA D-loop site in several locations, with a consensus sequence 'MMHKCA'. We also reported the possible interaction between VDR and mitochondrial transcription factor A (TFAM) and their binding sites located in close proximity in mtDNA. Consequently, our results showed for the first time that VDR was able to bind and regulate mtDNA transcription and interact with TFAM even in the human brain. These results not only revealed a novel function of VDR, but also showed that VDR is indispensable for energy demanded cells.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zuhal Yurttaş
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tugay Çamoğlu
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Büşra Şengül
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cihan İşler
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurosurgery
| | - Ümit Yaşar Kına
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ebru Keskin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İrem Lütfiye Atasoy
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ali Metin Kafardar
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurosurgery
| | - Mustafa Uzan
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Neurosurgery
| | - Cedric Annweiler
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, Angers, France.; UPRES EA 4638, University of Angers, Angers, France.; Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratories, Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
8
|
Chen Y, Lin L, Yang C, Li T, Li Y, Wang J, Wu Y, Zhao Y, Su G. Ginsenoside AD-2 Ameliorating Lipopolysaccharide-Induced Activation in HSC-T6 Cells and Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice via Regulation of VD-VDR Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3459-3471. [PMID: 36644954 DOI: 10.1021/acs.jafc.2c06804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ginsenoside 25-hydroxy protopanaxadiol (AD-2) isolated from ginseng was proved to have anti-hepatic fibrosis (HF) effect in our previous study. But the mechanism is unknown. The present study investigated the anti-HF effects and mechanisms of AD-2 on the lipopolysaccharide (LPS)-induced activation in HSC-T6 cells and carbon tetrachloride (CCl4)-induced hepatic fibrosis (HF) in mice. Results showed that AD-2 significantly inhibited the LPS-induced activated HSC-T6 cells in vitro and markedly reduced the serum transaminase and hydroxyproline levels, pathological changes, and hepatic body ratio in CCl4-induced HF mice, indicating AD-2 ameliorated liver injury and reversed HF notably. Moreover, AD-2 decreased the expression of TGF-β1, α-SMA, and MMP2, and maintained TIMP1/MMP9 in balance with the level of vitamin D (VD) and the expression of VD nuclear receptor (VDR) and Sirt3 increased. In conclusion, the anti-HF mechanism of AD-2 is related to the inhibition of HSC activation, promotion of collagen degradation, and regulation of the VD/VDR axis.
Collapse
Affiliation(s)
- Yu Chen
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lizhen Lin
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunhong Yang
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Tao Li
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yuan Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Basic Medical Teaching and Research Department, Liaoning Vocational College of Medicine, Shenyang 110101, China
| | - Jian Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yanling Wu
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yuqing Zhao
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
9
|
Saito T, Mizobuchi M, Kato T, Ogata H, Koiwa F, Honda H. Fibroblast Growth Factor 23 Exacerbates Cardiac Fibrosis in Deoxycorticosterone Acetate-Salt Mice With Hypertension. J Transl Med 2023; 103:100003. [PMID: 36748187 DOI: 10.1016/j.labinv.2022.100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is associated with cardiovascular disease in patients with chronic kidney disease; however, the mechanisms underlying the effect of FGF23 on cardiac function remain to be investigated. Herein, we studied the effect of continuous intravenous (CIV) FGF23 loading in a deoxycorticosterone acetate (DOCA)-salt mouse model with mild chronic kidney disease and hypertension as well as heart failure with a preserved ejection fraction. Wild-type male mice were randomly allocated to 4 groups: normal control, vehicle-treated DOCA-salt mice, FGF23-treated DOCA-salt mice, and FGF23- and calcitriol-treated DOCA-salt mice. The DOCA-salt mice received the agents via the CIV route for 10 days using an infusion minipump. DOCA-salt mice that received FGF23 showed a marked increase in the serum FGF23 level, and echocardiography in these mice revealed heart failure with a preserved ejection fraction. These mice also showed exacerbation of myocardial fibrosis, concomitant with an inverse and significant correlation with Cyp27b1 expression. Calcitriol treatment attenuated FGF23-induced cardiac fibrosis and improved diastolic function via inhibition of transforming growth factor-β signaling. This effect was independent of the systemic and local levels of FGF23. These results suggest that CIV FGF23 loading exacerbates cardiac fibrosis and that locally abnormal vitamin D metabolism is involved in this mechanism. Calcitriol attenuates this exacerbation by mediating transforming growth factor-β signaling independently of the FGF23 levels.
Collapse
Affiliation(s)
- Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Tadashi Kato
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Ogata
- Department of Internal Medicine, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Fumihiko Koiwa
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Paricalcitol Improves the Angiopoietin/Tie-2 and VEGF/VEGFR2 Signaling Pathways in Adriamycin-Induced Nephropathy. Nutrients 2022; 14:nu14245316. [PMID: 36558475 PMCID: PMC9783872 DOI: 10.3390/nu14245316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Renal endothelial cell (EC) injury and microvascular dysfunction contribute to chronic kidney disease (CKD). In recent years, increasing evidence has suggested that EC undergoes an endothelial-to-mesenchymal transition (EndoMT), which might promote fibrosis. Adriamycin (ADR) induces glomerular endothelial dysfunction, which leads to progressive proteinuria in rodents. The activation of the vitamin D receptor (VDR) plays a crucial role in endothelial function modulation, cell differentiation, and suppression of the expression of fibrotic markers by regulating the production of nitric oxide (NO) by activating the endothelial NO synthase (eNOS) in the kidneys. This study aimed to evaluate the effect of paricalcitol treatment on renal endothelial toxicity in a model of CKD induced by ADR in rats and explore mechanisms involved in EC maintenance by eNOS/NO, angiopoietins (Angs)/endothelium cell-specific receptor tyrosine kinase (Tie-2, also known as TEK) and vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) axis. The results show that paricalcitol attenuated the renal damage ADR-induced with antiproteinuric effects, glomerular and tubular structure, and function protection. Furthermore, activation of the VDR promoted the maintenance of the function and structure of glomerular, cortical, and external medullary endothelial cells by regulating NO production. In addition, it suppressed the expression of the mesenchymal markers in renal tissue through attenuation of (transforming growth factor-beta) TGF-β1/Smad2/3-dependent and downregulated of Ang-2/Tie-2 axis. It regulated the VEGF/VEGFR2 pathway, which was ADR-deregulated. These effects were associated with lower AT1 expression and VDR recovery to renal tissue after paricalcitol treatment. Our results showed a protective role of paricalcitol in the renal microvasculature that could be used as a target for treating the beginning of CKD.
Collapse
|
11
|
Effects of Hypocalcemic Vitamin D Analogs in the Expression of DNA Damage Induced in Minilungs from hESCs: Implications for Lung Fibrosis. Int J Mol Sci 2022; 23:ijms23094921. [PMID: 35563311 PMCID: PMC9104735 DOI: 10.3390/ijms23094921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
In our previous work, we evaluated the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of bleomycin-induced lung fibrosis. Contrary to the expected, vitamin D supplementation increased the DNA damage expression and cellular senescence in alveolar epithelial type II cells and aggravated the overall lung pathology induced in mice by bleomycin. These effects were probably due to an alteration in the cellular DNA double-strand breaks’ repair capability. In the present work, we have evaluated the effects of two hypocalcemic vitamin D analogs (calcipotriol and paricalcitol) in the expression of DNA damage in the context of minilungs derived from human embryonic stem cells and in the cell line A549.
Collapse
|
12
|
The Role of Vitamin D in Diabetic Nephropathy: A Translational Approach. Int J Mol Sci 2022; 23:ijms23020807. [PMID: 35054991 PMCID: PMC8775873 DOI: 10.3390/ijms23020807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/29/2022] Open
Abstract
According to several animal and human studies, vitamin D appears to play a significant role in the development of diabetic nephropathy. However, the possible renoprotective effect of vitamin D and its influence on the reversal of already existing renal damage remains doubtful. At this moment, there are a few hypotheses concerning the underlying molecular and genetic mechanisms including the link between vitamin D and inflammation, oxidative stress, and extracellular matrix accumulation. The present review aims to investigate the potential role of vitamin D in the development of diabetic kidney disease from a translational approach.
Collapse
|
13
|
Romi MM, Arfian N, Setyaningsih WAW, Putri RGP, Juffrie M, Sari DCR. Calcitriol Treatment Attenuates Uric Acid-Induced Kidney Injury via Super Oxide Dismutase-1 (SOD-1) Upregulation and Fibrosis Reduction. IRANIAN BIOMEDICAL JOURNAL 2021; 25:417-25. [PMID: 34641645 PMCID: PMC8744697 DOI: 10.52547/ibj.25.6.417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022]
Abstract
Background Hyperuricemia induces nephropathy through the mediation of oxidative stress, tubular injury, inflammation, and fibrosis. The high uric acid level is associated with the reduction of vitamin D levels. However, the reno-protective effects of this vitamin in hyperuricemia condition remain unknown. This study aimed to elucidate calcitriol treatment in a uric acid-induced hyperuricemia mice model. Methods : Uric acid (125 mg/kg body weight [BW]) was administered intraperitoneally for 7 (UA7) and 14 (UA14) days. Calcitriol (0.5 g/kg BW) was intraperitoneally injected for the following seven days, after 14 days of uric acid induction (UA14VD7 group). The control group received NaCl 0.9%, by the same route. Serum creatinine was measured using calorimetric method, and uric acid levels were assessed using enzymatic calorimetric assay. Tubular injury and fibrosis were assessed using PAS and Sirius red staining. RT-PCR and real-time reverse transcription PCR were carried out for the analyses of SOD-1, Collagen-1, and TGF-1 mRNA expression in the kidney. Immunostaining of super oxide dismutase type 1 (SOD-1) was performed to detect its expression in the kidney. Results Uric acid and creatinine levels markedly increased in UA14 groups, followed by an exacerbation of tubular injury. RT-PCR revealed the upregulation of Collagen-1 and TGF-1, along with the downregulation of SOD-1. Calcitriol treatment attenuated the injury with reducing uric acid and creatinine levels, as well as tubular injury. This was associated with lower Collagen-1 and TGF-1 mRNA expression compared to the UA7 and UA14 groups. SOD-1 was upregulated in epithelial cells in the UA14VD7 group. Conclusion Calcitriol treatment after uric acid induction may attenuate kidney injury through upregulation of SOD-1 and downregulation of Collagen-1 and TGF-1 gene expression.
Collapse
Affiliation(s)
- Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Doctoral Program in Medical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Rachma Greta Perdana Putri
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Mohammad Juffrie
- Department of Pediatrics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Sun Q, Gao Y, Qiao L, Yuan Y, Liu Q. 25(OH)-Vitamin D alleviates neonatal infectious pneumonia via regulating TGFβ-mediated nuclear translocation mechanism of YAP/TAZ. Bioengineered 2021; 12:8931-8942. [PMID: 34643152 PMCID: PMC8806993 DOI: 10.1080/21655979.2021.1990000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neonatal infectious pneumonia (NIP) is a common infectious disease that develops in the neonatal period. The purpose of our study was to explore the potential roles of 25(OH)-Vitamin D (25-OH-VD) and its anti-inflammatory mechanism in NIP. The results showed that serum 25-OH-VD level was negatively correlated with the severity of NIP, whereas Spearman’s correlation analysis showed a significant positive correlation between the severity of NIP and the levels of pneumonia markers procalcitonin (PCT) and interleukin-6 (IL-6). The expression of vitamin D receptor (VDR) was down-regulated, while the transforming growth factor β (TGFβ), nuclear YAP, and TAZ were up-regulated in the peripheral blood mononuclear cells (PBMCs) of neonates with severe pneumonia. Neonates with 25-OH-VD deficiency were associated with an increased risk of NIP. In BEAS-2B cells, down-regulation of nuclear YAP and TAZ was found in the lipopolysaccharide (LPS) + VD group relative to the LPS-induced group. Additionally, positive rate of nuclear YAP, as detected by immunocytochemistry (ICC), and the nuclear translocation of nuclear YAP/TAZ by IFA in the LPS+VD group showed an intermediate level between that of the control and LPS-induced groups. Furthermore, the expressions of VDR and CYP27B1 were significantly increased in the LPS+VD group as compared to those in the LPS-induced group. The anti-inflammatory mechanism in NIP was achieved due to the 25-OH-VD mediating TGFβ/YAP/TAZ pathway, which suggested that using 25-OH-VD might be a potential strategy for NIP treatment.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pediatric, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yiwen Gao
- Department of Pediatric, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lina Qiao
- Department of Pediatric, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yi Yuan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Liu
- Department of Pediatric, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
15
|
Wang F, Hu R, Zhang J, Pei T, He Z, Ju L, Han Z, Wang M, Xiao W. High-dose vitamin D3 supplementation ameliorates renal fibrosis by vitamin D receptor activation and inhibiting TGF-β1/Smad3 signaling pathway in 5/6 nephrectomized rats. Eur J Pharmacol 2021; 907:174271. [PMID: 34147475 DOI: 10.1016/j.ejphar.2021.174271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Renal fibrosis is the pathological consequence of progressive chronic kidney disease. Although it has been reported that vitamin D3 exerts antifibrotic effects, the underlying mechanisms remain unclear. This study is aimed at investigating the effects and molecular mechanisms in high-dose vitamin D3 treatment on renal fibrosis. A model of chronic kidney disease was established by 5/6 nephrectomy in rats characterised by high levels of serum creatine, urea nitrogen, and urinary protein. Serum 25-dihydroxyvitamin D3, calcium and parathormone levels were measured to evaluate vitamin D levels. Hematoxylin and eosin, periodic acid Schiff and Mallory's Trichrome staining were used to evaluate histopathological changes in rats. Moreover, the expression of vimentin, collagen I, α-smooth muscle actin and E-cadherin were analyzed at molecular and histopathological levels. Our results showed that exposure to vitamin D3 decreased the levels of serum creatine, urea nitrogen and urine protein and restored the homeostasis of calcium and parathormone. Vitamin D3 also downregulated the expression of vimentin, collagen I and α-smooth muscle actin and attenuated renal fibrosis and epithelial to mesenchymal transition in the kidney. Importantly, vitamin D3 treatment increased the expression of the vitamin D receptor and inhibited Transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway in rats kidneys with chronic kidney disease. Mechanistically, the upregulation of TGF-β1 and phosphorylation of Smad3 induced by vitamin D3 was reversed by activation of the vitamin D receptor. Our findings indicated that vitamin D3 is a potential antifibrotic drug in chronic kidney disease via the vitmin D receptor and inhibiting TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Fujing Wang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Zhang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Pei
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuo'en He
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Liliang Ju
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxiao Han
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqing Wang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Doi Y, Tsujita M, Hamano T, Obi Y, Namba‐Hamano T, Tomosugi T, Futamura K, Okada M, Hiramitsu T, Goto N, Nishiyama A, Takeda A, Narumi S, Watarai Y, Isaka Y. The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study. Am J Transplant 2021; 21:3043-3054. [PMID: 33565715 PMCID: PMC8518814 DOI: 10.1111/ajt.16530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/25/2023]
Abstract
It is unknown whether cholecalciferol supplementation improves allograft outcomes in kidney transplant recipients (KTRs). We conducted a single-center randomized, double-blind, placebo-controlled trial of daily 4000 IU cholecalciferol supplementation in KTRs at 1-month posttransplant. The primary endpoint was the change in eGFR from baseline to 12-month posttransplant. Secondary endpoints included severity of interstitial fibrosis and tubular atrophy (IFTA) at 12-month posttransplant and changes in urinary biomarkers. Of 193 randomized patients, 180 participants completed the study. Changes in eGFR were 1.2 mL/min/1.73 m2 (95% CI; -0.7 to 3.1) in the cholecalciferol group and 1.8 mL/min/1.73 m2 (95% CI, -0.02 to 3.7) in the placebo group, with no significant between-group difference (-0.7 mL/min/1.73 m2 [95% CI; -3.3 to 2.0], p = 0.63). Subgroup analyses showed detrimental effects of cholecalciferol in patients with eGFR <45 mL/min/1.73 m2 (Pinteraction <0.05, between-group difference; -4.3 mL/min/1.73 m2 [95% CI; -7.3 to -1.3]). The degree of IFTA, changes in urine albumin-to-creatinine ratio, or adverse events including hypercalcemia and infections requiring hospitalization did not differ between groups. In conclusion, cholecalciferol supplementation did not affect eGFR change compared to placebo among incident KTRs. These findings do not support cholecalciferol supplementation for improving allograft function in incident KTRs. Clinical trial registry: This study was registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) as UMIN000020597 (please refer to the links below). UMIN-CTR: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000023776.
Collapse
Affiliation(s)
- Yohei Doi
- Department of NephrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Tsujita
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan,Department of Kidney TransplantationMasuko Memorial HospitalNagoyaJapan
| | - Takayuki Hamano
- Department of NephrologyOsaka University Graduate School of MedicineSuitaJapan,Department of NephrologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoshitsugu Obi
- Division of NephrologyUniversity of Tennessee Health Science CenterMemphisTennessee
| | - Tomoko Namba‐Hamano
- Department of NephrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Toshihide Tomosugi
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Kenta Futamura
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Manabu Okada
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Takahisa Hiramitsu
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Norihiko Goto
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Akira Nishiyama
- Department of PharmacologyFaculty of MedicineKagawa UniversityKagawaJapan
| | - Asami Takeda
- Department of NephrologyNagoya Daini Red Cross HospitalNagoyaJapan
| | - Shunji Narumi
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Yoshihiko Watarai
- Department of Transplant Nephrology and SurgeryNagoya Daini Red Cross HospitalNagoyaJapan
| | - Yoshitaka Isaka
- Department of NephrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
17
|
Felicidade I, Bocchi M, Ramos MRZ, Carlos LDO, Wagner NRF, Campos ACL, Ribeiro LR, Mantovani MS, Watanabe MAE, Vitiello GAF. Transforming growth factor beta 1 (TGFβ1) plasmatic levels and haplotype structures in obesity: a role for TGFβ1 in steatosis development. Mol Biol Rep 2021; 48:6401-6411. [PMID: 34403036 DOI: 10.1007/s11033-021-06640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obesity is considered a chronic inflammatory disease and transforming growth factor beta 1 (TGFβ1) might exert important roles in disease pathogenesis regulating adipocyte differentiation and immune-inflammatory environment. However, the role of this cytokine as a biomarker in obesity is poorly addressed. Therefore, the present study aimed to evaluate the impact of TGFB1 polymorphisms and TGFβ1 plasmatic levels in obesity METHODS AND RESULTS: TGFB1 promoter region polymorphisms (rs1800468, G-800A and rs1800469, C-509 T) were evaluated in 75 obese patients and 45 eutrophic patients through PCR-RFLP and plasmatic TGFβ1 was quantified through ELISA from 37 of the obese patients, and correlations with clinical and biochemical parameters were tested. Despite no association was found between TGFB1 polymorphisms and obesity susceptibility, several correlations with clinical data were noted. Among others, AC haplotype negatively correlated with plasmatic TGFβ1, while plasmatic TGFβ1 negatively correlated with C-reactive protein and positively correlated with liver abnormalities on ultrasound and, specifically, with steatosis presence and degree. Conversely, GT haplotype, which associates with higher TGFβ1 production, was also positively correlated with the same parameters of liver abnormalities. Further, plasmatic vitamin D negatively correlated with TGFβ1, while positively correlated with AC haplotype. CONCLUSION Overall, the results indicate that TGFβ1 might exert important roles in obesity pathophysiology and correlate with biochemical and clinical parameters both at systemic protein as well as at genetic level. Importantly, the consistent positive correlation at both levels with steatosis might suggest this cytokine as a biomarker for this hepatic abnormality in obese patients.
Collapse
Affiliation(s)
- Ingrid Felicidade
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mayara Bocchi
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | | | | | | | | | - Lúcia Regina Ribeiro
- School of Medicine, Department of Pathology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University (UEL), Londrina, PR, Brazil.
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, PR445, Km 380 Celso Garcia Cid highway, Londrina, PR, 86057-970, Brazil.
| |
Collapse
|
18
|
Easty DJ, Farr CJ, Hennessy BT. New Roles for Vitamin D Superagonists: From COVID to Cancer. Front Endocrinol (Lausanne) 2021; 12:644298. [PMID: 33868174 PMCID: PMC8045760 DOI: 10.3389/fendo.2021.644298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is a potent steroid hormone that induces widespread changes in gene expression and controls key biological pathways. Here we review pathophysiology of vitamin D with particular reference to COVID-19 and pancreatic cancer. Utility as a therapeutic agent is limited by hypercalcemic effects and attempts to circumvent this problem have used vitamin D superagonists, with increased efficacy and reduced calcemic effect. A further caveat is that vitamin D mediates multiple diverse effects. Some of these (anti-fibrosis) are likely beneficial in patients with COVID-19 and pancreatic cancer, whereas others (reduced immunity), may be beneficial through attenuation of the cytokine storm in patients with advanced COVID-19, but detrimental in pancreatic cancer. Vitamin D superagonists represent an untapped resource for development of effective therapeutic agents. However, to be successful this approach will require agonists with high cell-tissue specificity.
Collapse
Affiliation(s)
- David J. Easty
- Department of Medical Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Bryan T. Hennessy
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Oncology, Our Lady of Lourdes Hospital, Drogheda, Ireland
| |
Collapse
|
19
|
Han H, Chung SI, Park HJ, Oh EY, Kim SR, Park KH, Lee JH, Park JW. Obesity-induced Vitamin D Deficiency Contributes to Lung Fibrosis and Airway Hyperresponsiveness. Am J Respir Cell Mol Biol 2021; 64:357-367. [PMID: 33296297 DOI: 10.1165/rcmb.2020-0086oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D (VitD) has pleiotropic effects. VitD deficiency is closely involved with obesity and may contribute to the development of lung fibrosis and aggravation of airway hyperresponsiveness (AHR). We evaluated the causal relationship between VitD deficiency and the lung pathologies associated with obesity. In vivo effects of VitD supplementation were analyzed using high-fat diet (HFD)-induced obese mice and TGF-β1 (transforming growth factor-β1) triple transgenic mice. Effects of VitD supplementation were also evaluated in both BEAS-2B and primary lung cells from the transgenic mice. Obese mice had decreased 25-OH VitD and VitD receptor expressions with increases of insulin resistance, renin and angiotensin-2 system (RAS) activity, and leptin. In addition, lung pathologies such as a modest increase in macrophages, enhanced TGF-β1, IL-1β, and IL-6 expression, lung fibrosis, and AHR were found. VitD supplementation to HFD-induced obese mice recovered these findings. TGF-β1-overexpressing transgenic mice enhanced macrophages in BAL fluid, lung expression of RAS, epithelial-mesenchymal transition markers, AHR, and lung fibrosis. VitD supplementation also attenuated these findings in addition to the attenuation of the expressions of TGF-β1, and phosphorylated Smad-2/3 in lung. Supplementing in vitro-stimulated BEAS-2B and primary lung cells with VitD inhibited TGF-β1 expression, supporting the suppressive effect of VitD for TGF-β1 expression. These results suggest that obesity leads to VitD deficiency and worsens insulin resistance while enhancing the expression of leptin, RAS, TGF-β1, and proinflammatory cytokines. These changes may contribute to the development of lung fibrosis and AHR. VitD supplementation rescues these changes and may have therapeutic potential for asthma with obesity.
Collapse
Affiliation(s)
| | | | - Hye Jung Park
- Department of Internal Medicine and Gangnam Severance Hospital, and
| | | | - Sung-Ryeol Kim
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hee Park
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hyun Lee
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Institute for Allergy
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Janjetovic Z, Postlethwaite A, Kang HS, Kim TK, Tuckey RC, Crossman DK, Qayyum S, Jetten AM, Slominski AT. Antifibrogenic Activities of CYP11A1-derived Vitamin D3-hydroxyderivatives Are Dependent on RORγ. Endocrinology 2021; 162:bqaa198. [PMID: 33107570 PMCID: PMC7717072 DOI: 10.1210/endocr/bqaa198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 01/07/2023]
Abstract
Previous studies showed that noncalcemic 20(OH)D3, a product of CYP11A1 action on vitamin D3, has antifibrotic activity in human dermal fibroblasts and in a bleomycin mouse model of scleroderma. In this study, we tested the role of retinoic acid-related orphan receptor γ (RORγ), which is expressed in skin, in the action of CYP11A1-derived secosteroids using murine fibroblasts isolated from the skin of wild-type (RORγ +/+), knockout (RORγ -/-), and heterozygote (RORγ +/-) mice. CYP11A1-derived 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3, and 1,20,23(OH)3D3 inhibited proliferation of RORγ +/+ fibroblasts in a dose-dependent manner with a similar potency to 1,25(OH)2D3. Surprisingly, this effect was reversed in RORγ +/- and RORγ -/- fibroblasts, with the most pronounced stimulatory effect seen in RORγ -/- fibroblasts. All analogs tested inhibited TGF-β1-induced collagen synthesis in RORγ +/+ fibroblasts and the expression of other fibrosis-related genes. This effect was curtailed or reversed in RORγ -/- fibroblasts. These results show that the antiproliferative and antifibrotic activities of the vitamin D hydroxy derivatives are dependent on a functional RORγ. The dramatic changes in the transcriptomes of fibroblasts of RORγ -/- versus wild-type mice following treatment with 20(OH)D3 or 1,20(OH)2D3 provide a molecular basis to explain, at least in part, the observed phenotypic differences.
Collapse
Affiliation(s)
- Zorica Janjetovic
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arnold Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Veteran Administration Medical Center, Memphis, Tennessee
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert C Tuckey
- School of Molecular Sciences, the University of Western Australia, Crawley, Western Australia, Australia
| | | | - Shariq Qayyum
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
- VA Medical Center, Birmingham, Alabama
| |
Collapse
|
21
|
Lontchi-Yimagou E, Kang S, Goyal A, Zhang K, You JY, Carey M, Jain S, Bhansali S, Kehlenbrink S, Guo P, Rosen ED, Kishore P, Hawkins M. Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: Studies in humans and mice. Mol Metab 2020; 42:101095. [PMID: 33045433 PMCID: PMC7585951 DOI: 10.1016/j.molmet.2020.101095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Adipose tissue inflammation and fibrosis appear to contribute to insulin resistance in obesity. Vitamin D receptor (Vdr) genes are expressed by adipocytes, macrophages, and fibroblasts, all of which could potentially play a role in adipose tissue inflammation and fibrosis. As vitamin D has been shown to have direct anti-inflammatory effects on adipocytes, we determined whether specific vitamin D receptor-mediated effects on adipocytes could impact adipose tissue inflammation and fibrosis and ultimately insulin resistance. Methods We examined the effects of repleting vitamin D in 25(OH)D-deficient, insulin resistant, overweight-to-obese human subjects (n = 19). A comprehensive assessment of whole-body insulin action was undertaken with stepped euglycemic (∼90 mg/dL) hyperinsulinemic clamp studies both before and after the administration of vitamin D or placebo. Adipose tissue fibrosis and inflammation were quantified by real-time rt-PCR and immunofluorescence in subcutaneous abdominal adipose tissue. To determine whether vitamin D's effects are mediated through adipocytes, we conducted hyperinsulinemic clamp studies (4 mU/kg/min) and adipose tissue analysis using an adipocyte-specific vitamin D receptor knockout (VDR-KO) mouse model (adiponectin-Cre + VDR+/fl) following high-fat diet feeding for 12 weeks. Results 25(OH)D repletion was associated with reductions in adipose tissue expression of pro-inflammatory and pro-fibrotic genes, decreased collagen immunofluorescence, and improved hepatic insulin sensitivity in humans. Worsening trends after six months on placebo suggest progressive metabolic effects of 25(OH)D deficiency. Ad-VDR-KO mice mirrored the vitamin D-deficient humans, displaying increased adipose tissue fibrosis and inflammation and hepatic insulin resistance. Conclusions These complementary human and rodent studies support a beneficial role of vitamin D repletion for improving hepatic insulin resistance and reducing adipose tissue inflammation and fibrosis in targeted individuals, likely via direct effects on adipocytes. These studies have far-reaching implications for understanding the role of adipocytes in mediating adipose tissue inflammation and fibrosis and ultimately impacting insulin sensitivity. Vitamin D repletion improved hepatic insulin sensitivity in obese insulin-resistant and vitamin D deficient human. Correcting vitamin D deficiency concomitantly reduced adipose tissue expression of pro-inflammatory and pro-fibrotic genes. Worsening trends in these metabolic parameters were observed following 6 months of uncorrected vitamin D deficiency. Adipocyte-specific depletion of VDR in mice induced adipose tissue inflammation and fibrosis and hepatic insulin resistance.
Collapse
Affiliation(s)
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California, Berkeley, CA 94720-3100, USA
| | | | - Kehao Zhang
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jee Y You
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michelle Carey
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Swati Jain
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Sylvia Kehlenbrink
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Guo
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Preeti Kishore
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
22
|
Gisbert-Ferrándiz L, Cosin-Roger J, Hernández C, Macias-Ceja DC, Ortiz-Masiá D, Salvador P, Wildenberg ME, Esplugues JV, Alós R, Navarro F, Calatayud S, Barrachina MD. The vitamin D receptor Taq I polymorphism is associated with reduced VDR and increased PDIA3 protein levels in human intestinal fibroblasts. J Steroid Biochem Mol Biol 2020; 202:105720. [PMID: 32565249 DOI: 10.1016/j.jsbmb.2020.105720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022]
Abstract
The synonymous single nucleotide polymorphism (SNP) rs731236, located in the vitamin D receptor (VDR) gene (Taq I) has been associated with both decreased levels of the protein in peripheral blood mononuclear cells and a fibrosis-related complication in Crohn´s disease (CD). Interactions between VDR and a protein-disulfide isomerase-associated 3 (PDIA3) in the regulation of extracellular matrix have been reported and we aim to analyze the relevance of the VDR genotypes and the effects of Vitamin D (VD) in the expression of VDR, PDIA3 and proliferation of intestinal fibroblasts. Human intestinal fibroblasts were isolated from the non-affected surgical resections of colorectal patients and classified according to the VDR genotype. In some cases, cells were transfected with specific PDIA3 siRNA. Basal and VD-stimulated expression of VDR, PDIA3 and Collagen 1A1 (COL1A1) as well as fibroblast migration/proliferation were analyzed. Our data show that intestinal fibroblasts homozygous for the C allele in the VDR gene exhibited lower VDR protein levels and higher proliferation than cells homozygous for the T allele. VD increased VDR and attenuated the accelerated proliferation of CC fibroblasts. The diminished VDR level detected in CC cells was associated with increased levels of both PDIA3 and COL1A1 expression and the transient silencing of PDIA3 significantly reduced COL1A1 expression. We conclude that intestinal fibroblasts homozygous for the C allele in the VDR gene exhibited: reduced VDR protein levels, increased proliferation and increased PDIA3/COL1A1 expression. Treatment with VD increased VDR and attenuated proliferation of these cells.
Collapse
Affiliation(s)
- Laura Gisbert-Ferrándiz
- Departamento De Farmacología and CIBER, Facultad De Medicina, Universidad De Valencia, Valencia, Spain
| | | | | | | | - Dolores Ortiz-Masiá
- Departamento De Medicina, Facultad De Medicina, Universidad De Valencia, Valencia, Spain
| | - Pedro Salvador
- Departamento De Farmacología and CIBER, Facultad De Medicina, Universidad De Valencia, Valencia, Spain
| | - M E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands, Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Juan V Esplugues
- Departamento De Farmacología and CIBER, Facultad De Medicina, Universidad De Valencia, Valencia, Spain; FISABIO, Valencia, Spain
| | | | | | - Sara Calatayud
- Departamento De Farmacología and CIBER, Facultad De Medicina, Universidad De Valencia, Valencia, Spain
| | - María D Barrachina
- Departamento De Farmacología and CIBER, Facultad De Medicina, Universidad De Valencia, Valencia, Spain.
| |
Collapse
|
23
|
Long-term vitamin D deficiency promotes renal fibrosis and functional impairment in middle-aged male mice. Br J Nutr 2020; 125:841-850. [PMID: 32812524 DOI: 10.1017/s0007114520003232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is common especially in the elderly population. Recently, we found that vitamin D deficiency caused prostatic hyperplasia. This study aimed to investigate whether vitamin D deficiency promotes renal fibrosis and functional impairment. All mice except controls were fed with vitamin D-deficient (VDD) diets, beginning from their early life. The absolute and relative kidney weights on postnatal week 20 were decreased in VDD diet-fed male pups but not in female pups. A mild pathological damage was observed in VDD diet-fed male pups but not in females. Further analysis showed that VDD-induced pathological damage was aggravated, accompanied by renal dysfunction in 40-week-old male pups. An obvious collagen deposition was observed in VDD diet-fed 40-week-old male pups. Moreover, renal α-smooth muscle actin (α-SMA), a marker of epithelial-mesenchymal transition (EMT), and Tgf-β mRNA were up-regulated. The in vitro experiment showed that 1,25-dihydroxyvitamin D3 alleviated transforming growth factor-β1 (TGF-β1)-mediated down-regulation of E-cadherin and inhibited TGF-β1-evoked up-regulation of N-cadherin, vimentin and α-SMA in renal epithelial HK-2 cells. Moreover, 1,25-dihydroxyvitamin D3 suppressed TGF-β1-evoked Smad2/3 phosphorylation in HK-2 cells. These results provide experimental evidence that long-term vitamin D deficiency promotes renal fibrosis and functional impairment, at least partially, through aggravating TGF-β/Smad2/3-mediated EMT in middle-aged male mice.
Collapse
|
24
|
SARI DWICAHYANIRATNA, PUTRI MAULIDAWIJAYA, LEKSONO TIARAPUTRI, CHAIRUNNISA NOGATI, REYNALDI GERRYNATHAN, SIMANJUNTAK BENHARDCHRISTOPHER, DEBORA JOSEPHINE, YUNUS JUNAEDY, ARFIAN NUR. Calcitriol Ameliorates Kidney Injury Through Reducing Podocytopathy, Tubular Injury, Inflammation and Fibrosis in 5/6 Subtotal Nephrectomy Model in Rats. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 65:E153-E163. [PMID: 32249272 PMCID: PMC7447091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/23/2019] [Indexed: 06/11/2023]
Abstract
Chronic kidney diseases (CKDs) lead to end-stage renal diseases (ESRD) which are characterized by glomerulosclerosis, tubular injury, anemia, inflammation, and interstitial fibrosis. Vitamin D is known to have renal protective effects. However, its effects relate to low and high doses of Vitamin D in CKD model is still unknown. CKD was performed using 5/6 subtotal nephrectomy procedure in male Sprague Dawley rats (3 months old, 200-300 grams, SN group; n=6), then rats were sacrificed on day 14 after operation. Sham operation was used for control (SO group; n=6). Calcitriol was administered in two doses : 0.01 µg/mL/100 gramsBW/day (SND1 group; n=6) and 0.05 µg/mL/100 gramsBW/day (SND2 group; n=6) intraperitoneally for 14 days. Glomerulosclerosis and tubular injury score were examined using PAS staining, meanwhile, interstitial fibrosis area fraction was assessed with Sirius Red staining. RT-PCR was performed for assessing nephrin, podocin, IL-6, CD68, Collagen-1, and TGF-β1 mRNA expressions. Immunostaining (IHC) was carried out to observe macrophage (CD68) and myofibroblast (α-SMA). SN demonstrated CKD condition with higher tubular injury, glomerulosclerosis, interstitial fibrosis, and inflammation compared to SO. Calcitriol-treated group (especially SND2) demonstrated significant lower tubular injury, glomerulosclerosis, and interstitial fibrosis compared to SN. SND2 group showed not only significantly lower CD68, IL-6, Collagen-1, and TGF-β1 mRNA expressions, but also higher mRNA expressions of nephrin and podocin. SND2 group also demonstrated reduction of macrophages infiltration and myofibroblasts expansion based on its histopathological appearance. Vitamin D may have a renoprotective effect on 5/6 subtotal nephrectomy model by attenuating podocytopathy, tubular injury, inflammation and interstitial fibrosis.
Collapse
Affiliation(s)
- DWI CAHYANI RATNA SARI
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - MAULIDA WIJAYA PUTRI
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
- Postgraduate Student of Master Program in Biomedical Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - TIARA PUTRI LEKSONO
- Undergraduate Student Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - NOGATI CHAIRUNNISA
- Undergraduate Student Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - GERRY NATHAN REYNALDI
- Undergraduate Student Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | | | - JOSEPHINE DEBORA
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - JUNAEDY YUNUS
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - NUR ARFIAN
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| |
Collapse
|
25
|
ARFIAN NUR, BUDIHARJO SANTOSA, WIBISONO DIANPRASETYO, SETYANINGSIH WIWITANANDAWAHYU, ROMI MUHAMMADMANSYUR, SAPUTRI RAMADHEALAILAAFIFAANNURWILLYA, ROFIAH EDREANAKHUSNUR, RAHMANTI TRITA, AGUSTIN MAULIDINA, SARI DWICAHYANIRATNA. Vitamin D Ameliorates Kidney Ischemia Reperfusion Injury via Reduction of Inflammation and Myofibroblast Expansion. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 65:E138-E143. [PMID: 32201429 PMCID: PMC7447095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The incidence rate of Acute Kidney Injury (AKI) gets escalated each year. Kidney ischemia/reperfusion injury (IR injury) is the main cause of AKI after major cardiovascular surgery, trauma, or kidney transplantation. Reperfusion is considered essential for ischemic tissue. However, the evidence revealed that reperfusion itself has impact in cellular destruction. Vitamin D is not only known as calcium regulating hormone, but also as renoprotective agent. This study aimed to investigate the effect of vitamin D treatment on kidney IR injury in mice. Kidney IR injury was performed using 30 minutes of bilateral clamping of renal pedicles, then released in male Swiss Webster mice (3 months, 30-40 grams, n=20), which were divided into three groups: sham operation (SO) group, IR injury (IRI) group, and IR injury with 0.25 µg/ kg body weight of vitamin D treatment (IR7+VD). Mice were terminated at day 7 post operation, kidneys were harvested and used for paraffin making, immunostaining and RNA extraction. Tubular injury was quantified based on Periodic Acid-Schiff's (PAS) staining. Immunostaining was done for quantification of macrophage (CD68) and myofibroblast (α-SMA). Reverse Transcriptase PCR (RT-PCR) was done to examine Monocyte Chemoattractant Protein-1 (MCP-1) and Toll-like Receptor 4 (TLR4) mRNA expression. Kidney IR injury induced significant increase of tubular injury, which was associated with higher myofibroblast and macrophage number. Meanwhile, Vitamin D treatment significantly reduced tubular, myofibroblast and macrophage number. RTPCR revealed reduction of TLR4 and MCP-1 mRNA expressions after Vitamin D treatment (p<0.05 vs IR group). Vitamin D ameliorates kidney IR injury through reducing inflammation and myofibroblast formation.
Collapse
Affiliation(s)
- NUR ARFIAN
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - SANTOSA BUDIHARJO
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - DIAN PRASETYO WIBISONO
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - MUHAMMAD MANSYUR ROMI
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - EDREANA KHUSNUR ROFIAH
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - TRITA RAHMANTI
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - MAULIDINA AGUSTIN
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - DWI CAHYANI RATNA SARI
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
26
|
Nejm MB, Guimarães-Marques MJ, Oliveira LF, Damasceno L, Andersen ML, Tufik S, Fonseca F, Olszewer E, Leça R, de Almeida ACG, Scorza FA, Scorza CA. Assessment of vitamin D and inflammatory markers profile in cardiac tissue on Parkinson disease animal model. Pharmacol Rep 2020; 72:296-304. [PMID: 32124387 DOI: 10.1007/s43440-020-00074-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiovascular dysfunctions are common non-motor symptoms in patients with Parkinson's disease (PD) that can result in reduced quality of life and even death. Research in animal models designed to characterize the pathological association between PD and cardiovascular abnormalities is still in its infancy. This study assessed the early impact of the nigrostriatal dopaminergic damage on cardiological features in the unilateral 6-OHDA rat model of PD. METHODS Male Wistar rats received unilateral intrastriatal injections of 6-OHDA and sham rats were injected with saline. Animals were studied 15 days later. Immunohistochemistry was used for visualization of tyrosine hydroxylase (TH)-positive neurons in the nigrostriatal system. Electrocardiogram recordings of heart rate were performed in conscious rats. Heart levels of vitamin D, inflammatory cytokines and C-reactive protein were assessed through electrochemiluminescence immunoassay, quantitative reverse transcription PCR and turbidimetric method, respectively. RESULTS We found a post-injury reduction of TH-immunoreactivity of approximately 45% in the substantia nigra pars compacta and 20% in the striatum. Heart rate reduction was found in 6-OHDA-lesioned rats as compared with sham counterparts. Reduced levels of vitamin D and increased levels of inflammatory factors (C-reactive protein, IL-6, TNF-α and TGF-β) were detected in the heart tissue of PD rats in comparison with sham. CONCLUSION Our findings suggest a link between cardiac tissue changes and cardiac functional changes early after the central dopaminergic damage induced by 6-OHDA. Knowledge of the cardiac abnormalities in the 6-OHDA model is critical in identifying future therapeutic targets and disease-modifying approaches for PD non-motor features.
Collapse
Affiliation(s)
- Mariana Bocca Nejm
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil
| | - Marcia Jonathas Guimarães-Marques
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil
| | - Leandro Freitas Oliveira
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil
| | - Laís Damasceno
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André, SP, Brazil
- Departamento de Ciências Farmacêuticas da, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Efrain Olszewer
- Fundação de Apoio à Pesquisa e Estudo na Área de Saúde (FAPES), São Paulo, SP, Brazil
| | - Renato Leça
- Departamento de Cirurgia II, Faculdade de Medicina do ABC, Santo André, SP, Brazil
| | - Antonio Carlo G de Almeida
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei (UFSJ), São João Del Rei, MG, Brazil
| | - Fulvio Alexandre Scorza
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil
| | - Carla Alessandra Scorza
- Departamento de Neurologia/Neurociência, Universidade Federal de São Paulo-Escola Paulista de Medicina (UNIFESP/EPM), Av. Pedro de Toledo, 699, 1º andar, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Li SR, Tan ZX, Chen YH, Hu B, Zhang C, Wang H, Zhao H, Xu DX. Vitamin D deficiency exacerbates bleomycin-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated epithelial-mesenchymal transition. Respir Res 2019; 20:266. [PMID: 31775746 PMCID: PMC6882226 DOI: 10.1186/s12931-019-1232-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background Our earlier report indicated that active vitamin D3 inhibited epithelial-mesenchymal transition (EMT) in bleomycin (BLM)-induced pulmonary fibrosis. The objective of this study was to further investigate whether vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis. Methods This study consists of two independent experiments. Experiment 1, male mice were fed with vitamin D deficient (VDD) fodder. Experiment 2, Cyp27b1+/+, Cyp27b1+/− and Cyp27b1−/− mice were fed with standard diet. For pulmonary fibrosis, mice were intratracheally instilled with a single dose of BLM (1.5 mg/kg). Serum 25(OH) D level was measured. Pulmonary collagen deposition was assessed by Sirius red staining. EMT was measured and transforming growth factor-beta (TGF-β)/Smad3 signaling was evaluated in the lungs of BLM-treated mice. Results The relative weight of lungs was elevated in BLM-treated mice. Col1α1 and Col1α2, two collagen protein genes, were upregulated, and collagen deposition, as determined by Sirius red staining, was observed in the lungs of BLM-treated mice. E-cadherin, an epithelial marker, was downregulated. By contrast, vimentin and α-SMA, two EMT markers, were upregulated in the lungs of BLM-treated mice. Pulmonary TGF-β/Smad3 signaling was activated in BLM-induced lung fibrosis. Further analysis showed that feeding VDD diet, leading to vitamin D deficiency, aggravated elevation of BLM-induced relative lung weight. Moreover, feeding VDD diet aggravated BLM-induced TGF-β/Smad3 activation and subsequent EMT in the lungs. In addition, feeding VDD diet exacerbated BLM-induced pulmonary fibrosis. Additional experiment showed that Cyp27b1 gene knockout, leading to active vitamin D3 deficiency, exacerbated BLM-induced pulmonary fibrosis. Moreover, Cyp27b1 gene knockout aggravated pulmonary TGF-β/Smad2/3 activation and subsequent EMT in BLM-induced lung fibrosis. Conclusion Vitamin D deficiency exacerbates BLM-induced pulmonary fibrosis partially through aggravating TGF-β/Smad2/3-mediated EMT in the lungs.
Collapse
Affiliation(s)
- Se-Ruo Li
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Zhu-Xia Tan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
28
|
de Boer IH, Zelnick LR, Ruzinski J, Friedenberg G, Duszlak J, Bubes VY, Hoofnagle AN, Thadhani R, Glynn RJ, Buring JE, Sesso HD, Manson JE. Effect of Vitamin D and Omega-3 Fatty Acid Supplementation on Kidney Function in Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA 2019; 322:1899-1909. [PMID: 31703120 PMCID: PMC6865245 DOI: 10.1001/jama.2019.17380] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Chronic kidney disease (CKD) is a common complication of type 2 diabetes that can lead to end-stage kidney disease and is associated with high cardiovascular risk. Few treatments are available to prevent CKD in type 2 diabetes. OBJECTIVE To test whether supplementation with vitamin D3 or omega-3 fatty acids prevents development or progression of CKD in type 2 diabetes. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial with a 2 × 2 factorial design conducted among 1312 adults with type 2 diabetes recruited between November 2011 and March 2014 from all 50 US states as an ancillary study to the Vitamin D and Omega-3 Trial (VITAL), coordinated by a single center in Massachusetts. Follow-up was completed in December 2017. INTERVENTIONS Participants were randomized to receive vitamin D3 (2000 IU/d) and omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid; 1 g/d) (n = 370), vitamin D3 and placebo (n = 333), placebo and omega-3 fatty acids (n = 289), or 2 placebos (n = 320) for 5 years. MAIN OUTCOMES AND MEASURES The primary outcome was change in glomerular filtration rate estimated from serum creatinine and cystatin C (eGFR) from baseline to year 5. RESULTS Among 1312 participants randomized (mean age, 67.6 years; 46% women; 31% of racial or ethnic minority), 934 (71%) completed the study. Baseline mean eGFR was 85.8 (SD, 22.1) mL/min/1.73 m2. Mean change in eGFR from baseline to year 5 was -12.3 (95% CI, -13.4 to -11.2) mL/min/1.73 m2 with vitamin D3 vs -13.1 (95% CI, -14.2 to -11.9) mL/min/1.73 m2 with placebo (difference, 0.9 [95% CI, -0.7 to 2.5] mL/min/1.73 m2). Mean change in eGFR was -12.2 (95% CI, -13.3 to -11.1) mL/min/1.73 m2 with omega-3 fatty acids vs -13.1 (95% CI, -14.2 to -12.0) mL/min/1.73 m2 with placebo (difference, 0.9 [95% CI, -0.7 to 2.6] mL/min/1.73 m2). There was no significant interaction between the 2 interventions. Kidney stones occurred among 58 participants (n = 32 receiving vitamin D3 and n = 26 receiving placebo) and gastrointestinal bleeding among 45 (n = 28 receiving omega-3 fatty acids and n = 17 receiving placebo). CONCLUSIONS AND RELEVANCE Among adults with type 2 diabetes, supplementation with vitamin D3 or omega-3 fatty acids, compared with placebo, resulted in no significant difference in change in eGFR at 5 years. The findings do not support the use of vitamin D or omega-3 fatty acid supplementation for preserving kidney function in patients with type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01684722.
Collapse
Affiliation(s)
- Ian H. de Boer
- Division of Nephrology, Department of Medicine, University of Washington, Seattle
- Kidney Research Institute, University of Washington, Seattle
- Puget Sound VA Healthcare System, Seattle, Washington
| | - Leila R. Zelnick
- Division of Nephrology, Department of Medicine, University of Washington, Seattle
- Kidney Research Institute, University of Washington, Seattle
| | - John Ruzinski
- Kidney Research Institute, University of Washington, Seattle
| | - Georgina Friedenberg
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Julie Duszlak
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Vadim Y. Bubes
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Andrew N. Hoofnagle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle
- Department of Laboratory Medicine, University of Washington, Seattle
| | - Ravi Thadhani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert J. Glynn
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Julie E. Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Howard D. Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - JoAnn E. Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
29
|
Ma D, Peng L. Vitamin D and pulmonary fibrosis: a review of molecular mechanisms. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3171-3178. [PMID: 31934161 PMCID: PMC6949840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
Pulmonary fibrosis is a serious interstitial disease characterized by initial diffuse alveolar inflammation, fibroblast proliferation, ECM accumulation, and the destruction of normal pulmonary tissues, whose etiology remains unknown and therapeutic options remain limited. The prevalence of Vitamin D deficiency is increasing and has been linked to pulmonary fibrosis. In recent years, many studies focused on the mechanistic pathway of Vitamin D in the prevention of fibrosis. This review highlights the current evidence on the molecular mechanisms of Vitamin D in pulmonary fibrosis. We want to provide new clues to the clinical management of pulmonary fibrosis.
Collapse
Affiliation(s)
- Dandan Ma
- Department of Critical-Care Medicine, Affiliated Jining First People’s HospitalShandong, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250000, Shandong, China
| |
Collapse
|
30
|
Fei J, Fu L, Cao W, Hu B, Zhao H, Li JB. Low Vitamin D Status Is Associated with Epithelial-Mesenchymal Transition in Patients with Chronic Obstructive Pulmonary Disease. THE JOURNAL OF IMMUNOLOGY 2019; 203:1428-1435. [PMID: 31427443 DOI: 10.4049/jimmunol.1900229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023]
Abstract
Vitamin D deficiency is correlated with the increased morbidity of chronic obstructive pulmonary disease (COPD). However, the mechanisms underlying these effects have largely remained elusive. This study analyzed the correlations among COPD, vitamin D concentration, and epithelial-mesenchymal transition (EMT). Ninety-five patients with newly diagnosed COPD and 190 age- and sex-matched healthy subjects were recruited for this research. Serum 25(OH)D levels were detected, and pulmonary EMT biomarkers and TGF-β/Smad signaling were evaluated. Serum 25(OH)D level was remarkably decreased in COPD patients compared with that in control subjects. Furthermore, serum 25(OH)D concentration gradually decreased in COPD patients ranging from grade 1-2 to 4. However, reduced expression of the epithelial biomarker E-cadherin and increased expression of the mesenchymal biomarkers vimentin and α-SMA were found in COPD patients. Mechanistic analysis showed that pulmonary nuclear vitamin D receptor (VDR) was decreased in patients with COPD. In contrast, TGF-β/Smad signaling was obviously activated in COPD patients. Furthermore, the level of serum TGF-β in COPD patients increased in parallel with COPD severity. Serum 25(OH)D concentration was inversely associated with TGF-β levels in COPD patients. In vitro experiments showed that active vitamin D3 inhibits TGF-β-induced Smad2/3 phosphorylation in MRC-5 cells. Furthermore, vitamin D concentration was inversely correlated with TGF-β/Smad signaling and EMT in COPD patients, suggesting EMT as a vital mediator of COPD development in patients with low vitamin D concentrations.
Collapse
Affiliation(s)
- Jun Fei
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Department of Toxicology, Anhui Medical University, Hefei 230032, China; and
| | - Wei Cao
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Biao Hu
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Hui Zhao
- Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Jia-Bin Li
- First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; .,Anhui Center for Surveillance of Bacterial Resistance, Hefei 230032, China
| |
Collapse
|
31
|
Liu KH, Fu J, Zhou N, Yin W, Yang YY, Ouyang SX, Liang YM. 1,25-Dihydroxyvitamin D3 Prevents Epithelial-Mesenchymal Transition of HMrSV5 Human Peritoneal Mesothelial Cells by Inhibiting Histone Deacetylase 3 (HDAC3) and Increasing Vitamin D Receptor (VDR) Expression Through the Wnt/β-Catenin Signaling Pathway. Med Sci Monit 2019; 25:5892-5902. [PMID: 31391414 PMCID: PMC6698096 DOI: 10.12659/msm.916313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Peritoneal dialysis is the most common treatment for end-stage renal disease. However, peritoneal fibrosis resulting from long-term peritoneal dialysis restricts peritoneal ultrafiltration. Previous studies have shown a role for 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in preventing fibrosis, but the potential mechanisms remain unknown. This study aimed to investigate the role of 1,25(OH)2D3 in epithelial-mesenchymal transition (EMT) and the downstream signaling pathway in HMrSV5 human peritoneal mesothelial cells in vitro. Material/Methods An in vitro cell model of peritoneal fibrosis was established using the HMrSV5 human peritoneal mesothelial cell line. High glucose and lipopolysaccharide (LPS) culture conditions, with or without 1,25(OH)2D3, were used. Wnt agonist 1, a Wnt signaling pathway activator, was applied. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure the vitamin D receptor (VDR) and histone deacetylase 3 (HDAC3) gene and protein expression levels, β-catenin, and EMT-associated biomarkers. Results High glucose plus LPS culture medium inhibited cell proliferation, induced cell apoptosis and promoted EMT in HMrSV5 cells, which was reversed by 1,25(OH)2D3 by down-regulation of HDAC3 and upregulation of VDR. HDAC3 inhibited VDR gene expression. The expression of EMT-associated biomarkers was increased by Wnt agonist 1 and inhibited by 1,25(OH)2D3. Conclusions In HMrSV5 human peritoneal mesothelial cells, 1,25(OH)2D3 reversed EMT by inhibiting the expression of HDAC3 and upregulating VDR gene expression via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Kang-Han Liu
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Jia Fu
- Department of Oncology, Hunan Provincial Peoples' Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Nan Zhou
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Wei Yin
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yi-Ya Yang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Sha-Xi Ouyang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China (mainland)
| |
Collapse
|
32
|
Lv Y, Han X, Yao Q, Zhang K, Zheng L, Hong W, Xing X. 1α,25-dihydroxyvitamin D3 attenuates oxidative stress-induced damage in human trabecular meshwork cells by inhibiting TGFβ-SMAD3-VDR pathway. Biochem Biophys Res Commun 2019; 516:75-81. [DOI: 10.1016/j.bbrc.2019.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
|
33
|
Chang LC, Sun HL, Tsai CH, Kuo CW, Liu KL, Lii CK, Huang CS, Li CC. 1,25(OH) 2 D 3 attenuates indoxyl sulfate-induced epithelial-to-mesenchymal cell transition via inactivation of PI3K/Akt/β-catenin signaling in renal tubular epithelial cells. Nutrition 2019; 69:110554. [PMID: 31536856 DOI: 10.1016/j.nut.2019.110554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/30/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Indoxyl sulfate (IS), a uremic toxin, has been shown to promote the epithelial-to-mesenchymal transition (EMT) of human proximal tubular cells and to accelerate the progression of chronic kidney disease (CKD). Despite the well-known protective role of 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3] in EMT, the effect of 1,25(OH)2 D3 on IS-induced EMT in human proximal tubular epithelial cells and the underlying mechanism remain unclear. The aim of this study was to determine whether IS (0-1 mM) dose-dependently inhibited the protein expression of E-cadherin and increased the protein expression of alpha-smooth muscle actin, N-cadherin, and fibronectin. METHODS This study investigated the molecular mechanism by which 1,25(OH)2 D3 attenuates IS-induced EMT. HK-2 human renal tubular epithelial cells was used as the study model, and the MTT assay, Western Blotting, siRNA knockdown technique were used to explore the effects of 1,25(OH)2 D3 on EMT in the presence of IS. RESULTS Pretreatment with 1,25(OH)2 D3 inhibited the IS-induced EMT-associated protein expression in HK-2 cells. IS induced the phosphorylation of Akt (S473) and β-catenin (S552) and subsequently increased the nuclear accumulation of β-catenin. Pretreatment with 1,25(OH)2 D3 and LY294002 (phosphoinositide 3-kinase [PIK3] inhibitor) significantly inhibited the IS-induced phosphorylation of Akt and β-catenin, nuclear β-catenin accumulation, and EMT-associated protein expression. CONCLUSIONS Results from the present study revealed that the anti-EMT effect of 1,25(OH)2 D3 is likely through inhibition of the PI3K/Akt/β-catenin pathway, which leads to down-regulation of IS-driven EMT-associated protein expression in HK-2 human renal tubular epithelial cells.
Collapse
Affiliation(s)
- Li-Chien Chang
- Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan; Department of Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Han Tsai
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Wen Kuo
- Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan; Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Chun Li
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
34
|
Mo MQ, Pan L, Tan L, Jiang L, Pan YQ, Li FJ, Yang ZH, Liao YH. Association between VDR gene FokI polymorphism and renal function in patients with IgA nephropathy. PeerJ 2019; 7:e7092. [PMID: 31218132 PMCID: PMC6563792 DOI: 10.7717/peerj.7092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022] Open
Abstract
Background Studies have shown that the occurrence and development of IgA nephropathy (IgAN) are genetically susceptible, but the relationship between vitamin D receptor (VDR) gene polymorphisms and renal function in IgAN patients is unclear. Methods We investigated the relationship between VDR FokI (rs2228570) single nucleotide polymorphism (SNP) and renal function and related clinicopathologic parameters in IgAN patients. Clinical and pathological data of 282 IgAN patients treated at the First Affiliated Hospital of Guangxi Medical University were collected, and FokI genotypes were determined by PCR and direct sequencing. Patients were divided into the renal dysfunction group and normal renal function (control) group by estimated glomerular filtration rate (eGFR) and serum creatinine level. Results Frequencies of TT genotype and T allele in the renal dysfunction group were higher than those of the control group. Blood urea nitrogen, serum phosphorus (P), proportions of mesangial cell proliferation, interstitial fibrosis/tubular atrophy and crescents in T allele carriers were higher than those in non-T allele carriers, while eGFR and 25-Hydroxyvitamin D3 were lower in T allele carriers than non-T allele carriers. Multiple linear regression analysis showed that eGFR was affected by FokI genotypes in IgAN patients. Logistics regression analysis showed that middle and elderly age, elevated P, intact parathyroid hormone and TT genotype were independent risk factors for renal dysfunction in IgAN patients; the odds ratio of carrying the TT genotype was as high as 84.77 (P < 0.05 for all). Conclusions IgA nephropathy patients carrying the VDR FokI TT genotype have an increased risk of renal dysfunction. VDR FokI SNP is closely related to renal function, calcium-phosphate metabolism, and related pathological damage in IgAN patients.
Collapse
Affiliation(s)
- Man-Qiu Mo
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Pan
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Tan
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ling Jiang
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yong-Qing Pan
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu-Ji Li
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Hua Yang
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun-Hua Liao
- Department of Nephrology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
35
|
Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, Dietrich WF, Rucker PV, Chianelli D, Schmeits J, Bao D, Zoll J, Dubois C, Federe GC, Chen L, Joseph SB, Klickstein LB, Walker J, Molteni V, McNamara P, Meeusen S, Tully DC, Badman MK, Xu J, Laffitte B. Tropifexor-Mediated Abrogation of Steatohepatitis and Fibrosis Is Associated With the Antioxidative Gene Expression Profile in Rodents. Hepatol Commun 2019; 3:1085-1097. [PMID: 31388629 PMCID: PMC6672390 DOI: 10.1002/hep4.1368] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid‐derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH. The efficacy of tropifexor at <1 mg/kg doses was superior to that of OCA at 25 mg/kg in the liver in both NASH models. In a chemical and dietary model of NASH (Stelic animal model [STAM]), tropifexor reversed established fibrosis and reduced the nonalcoholic fatty liver disease activity score and hepatic triglycerides. In an insulin‐resistant obese NASH model (amylin liver NASH model [AMLN]), tropifexor markedly reduced steatohepatitis, fibrosis, and profibrogenic gene expression. Transcriptome analysis of livers from AMLN mice revealed 461 differentially expressed genes following tropifexor treatment that included a combination of signatures associated with reduction of oxidative stress, fibrogenesis, and inflammation. Conclusion: Based on preclinical validation in animal models, tropifexor is a promising investigational therapy that is currently under phase 2 development for NASH.
Collapse
Affiliation(s)
- Eloy D Hernandez
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Young Kim
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Reginald A Valdez
- Novartis Institutes for BioMedical Research Cambridge MA.,Comparative Biology and Safety Sciences Amgen, Inc. Cambridge MA
| | | | - Paul V Rucker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - James Schmeits
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Dingjiu Bao
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Jocelyn Zoll
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Claire Dubois
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| | - Glenn C Federe
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Sean B Joseph
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,California Institute for Biomedical Research La Jolla CA
| | | | - John Walker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - David C Tully
- Novartis Institutes for BioMedical Research Emeryville CA
| | | | - Jie Xu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| |
Collapse
|
36
|
Tzilas V, Bouros E, Barbayianni I, Karampitsakos T, Kourtidou S, Ntassiou M, Ninou I, Aidinis V, Bouros D, Tzouvelekis A. Vitamin D prevents experimental lung fibrosis and predicts survival in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther 2019; 55:17-24. [DOI: 10.1016/j.pupt.2019.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
|
37
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
38
|
Pretreatment with Cholecalciferol Alleviates Renal Cellular Stress Response during Ischemia/Reperfusion-Induced Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1897316. [PMID: 31019650 PMCID: PMC6452543 DOI: 10.1155/2019/1897316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
Background Cellular stress is involved in ischemia/reperfusion- (I/R-) induced acute kidney injury (AKI). This study is aimed at investigating the effects of pretreatment with cholecalciferol on renal oxidative stress and endoplasmic reticulum (ER) stress during I/R-induced AKI. Methods I/R-induced AKI was established by cross-clamping renal pedicles for 90 minutes and then reperfusion. In the Chol + I/R group, mice were orally administered with three doses of cholecalciferol (25 μg/kg) at 1, 24, and 48 h before ischemia. Renal cellular stress and kidney injury were measured at different time points after reperfusion. Results I/R-induced AKI was alleviated in mice pretreated with cholecalciferol. In addition, I/R-induced renal cell apoptosis, as determined by TUNEL, was suppressed by cholecalciferol. Additional experiment showed that I/R-induced upregulation of renal GRP78 and CHOP was inhibited by cholecalciferol. I/R-induced renal IRE1α and eIF2α phosphorylation was attenuated by cholecalciferol. Moreover, I/R-induced renal GSH depletion, lipid peroxidation, and protein nitration were blocked in mice pretreated with cholecalciferol. I/R-induced upregulation of renal NADPH oxidases, such as p47phox, gp91phox, and nox4, was inhibited by cholecalciferol. I/R-induced upregulation of heme oxygenase- (HO-) 1, gshpx and gshrd, was attenuated in mice pretreated with cholecalciferol. Conclusions Pretreatment with cholecalciferol protects against I/R-induced AKI partially through suppressing renal cellular stress response.
Collapse
|
39
|
Ricca C, Aillon A, Viano M, Bergandi L, Aldieri E, Silvagno F. Vitamin D inhibits the epithelial-mesenchymal transition by a negative feedback regulation of TGF-β activity. J Steroid Biochem Mol Biol 2019; 187:97-105. [PMID: 30465855 DOI: 10.1016/j.jsbmb.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/19/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D and TGF-β exert opposite effects on epithelial-mesenchymal EMT transition. Here we report a novel mechanism of action of TGF-β that promotes the counteracting activity of vitamin D; in two models of human epithelial-mesenchymal EMT transition we demonstrated for the first time that TGF-β strongly induced the expression of vitamin D receptor (VDR) and that 1,25(OH)2D3 was able to contrast the TGF-β-driven EMT transition by transcriptional modulation. In human bronchial epithelial cells the effects of TGF-β on EMT transition markers (E-Cadherin expression and cell motility) were reversed by pre-treatment and co-treatment with 1,25(OH)2D3, but not when the hormone was given later. Silencing experiments demonstrated that the inhibition of TGF-β activity was VDR-dependent. 1,25(OH)2D3 abrogated the mitochondrial stimulation triggered by TGF-β. In fact we showed that 1,25(OH)2D3 repressed the transcriptional induction of respiratory complex, limited the enhanced mitochondrial membrane potential and restrained the increased levels of mitochondrial ATP; 1,25(OH)2D3 also decreased the production of reactive oxygen species promoted by TGF-β. Overall, our study suggests that the overexpression and activity of VDR may be a regulatory response to TGF-β signaling that could be exploited in clinical protocols, unraveling the therapeutic potentiality of 1,25(OH)2D3 in the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Chiara Ricca
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Alessia Aillon
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Marta Viano
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Loredana Bergandi
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Elisabetta Aldieri
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| | - Francesca Silvagno
- Department of Oncology, University of Torino, Via Santena 5 bis, 10126 Torino, Italy.
| |
Collapse
|
40
|
Guijarro T, Magro-Lopez E, Manso J, Garcia-Martinez R, Fernandez-Aceñero MJ, Liste I, Zambrano A. Detrimental pro-senescence effects of vitamin D on lung fibrosis. Mol Med 2018; 24:64. [PMID: 30567504 PMCID: PMC6299997 DOI: 10.1186/s10020-018-0064-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background The multiple biological effects of vitamin D and its novel activities on inflammation and redox homeostasis have raised high expectations on its use as a therapeutic agent for multiple fibrogenic conditions. We have assessed the therapeutic effects of 1α,25-Dihydroxyvitamin D3, the biologically active form of vitamin D, in the context of lung fibrosis. Methods We have used representative cellular models for alveolar type II cells and human myofibroblasts. The extension of DNA damage and cellular senescence have been assessed by immunofluorescence, western-blot and senescence-associated β-galactosidase activity. We have also set up a murine model for lung fibrosis by intraperitoneal injections of bleomycin. Results Vitamin D induces cellular senescence in bleomycin-treated alveolar epithelial type II cells and aggravates the lung pathology induced by bleomycin. These effects are probably due to an alteration of the cellular DNA double-strand breaks repair in bleomycin-treated cells. Conclusions The detrimental effects of vitamin D in the presence of a DNA damaging agent might preclude its use as an antifibrogenic agent for pulmonary fibrosis characterized by DNA damage occurrence and cellular senescence.
Collapse
Affiliation(s)
- Trinidad Guijarro
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Esmeralda Magro-Lopez
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Joana Manso
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | | | | | - Isabel Liste
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain
| | - Alberto Zambrano
- Functional Unit for Research into Chronic Diseases, Institute of Health Carlos III, Ctra. Majadahonda-Pozuelo Km 2, 28220, Madrid, Spain.
| |
Collapse
|
41
|
Bi J, Watanabe H, Fujimura R, Nishida K, Nakamura R, Oshiro S, Imafuku T, Komori H, Miyahisa M, Tanaka M, Matsushita K, Maruyama T. A downstream molecule of 1,25-dihydroxyvitamin D3, alpha-1-acid glycoprotein, protects against mouse model of renal fibrosis. Sci Rep 2018; 8:17329. [PMID: 30478350 PMCID: PMC6255841 DOI: 10.1038/s41598-018-35339-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022] Open
Abstract
Renal fibrosis, the characteristic feature of progressive chronic kidney disease, is associated with unremitting renal inflammation. Although it is reported that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D, elicits an anti-renal fibrotic effect, its molecular mechanism is still unknown. In this study, renal fibrosis and inflammation observed in the kidney of unilateral ureteral obstruction (UUO) mice were reduced by the treatment of 1,25(OH)2D3. The plasma protein level of alpha-1-acid glycoprotein (AGP), a downstream molecule of 1,25(OH)2D3, was increased following administration of 1,25(OH)2D3. Additionally, increased mRNA expression of ORM1, an AGP gene, was observed in HepG2 cells and THP-1-derived macrophages that treated with 1,25(OH)2D3. To investigate the involvement of AGP, exogenous AGP was administered to UUO mice, resulting in attenuated renal fibrosis and inflammation. We also found the mRNA expression of CD163, a monocyte/macrophage marker with anti-inflammatory potential, was increased in THP-1-derived macrophages under stimulus from 1,25(OH)2D3 or AGP. Moreover, AGP prevented lipopolysaccharide-induced macrophage activation. Thus, AGP could be a key molecule in the protective effect of 1,25(OH)2D3 against renal fibrosis. Taken together, AGP may replace vitamin D to function as an important immune regulator, offering a novel therapeutic strategy for renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ryota Nakamura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shun Oshiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hisakazu Komori
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, 1-1 Shirafuji 5 Chome, Minami-ku, Kumamoto, 861-4112, Japan
| | - Kazutaka Matsushita
- Department of Nephrology, Akebono Clinic, 1-1 Shirafuji 5 Chome, Minami-ku, Kumamoto, 861-4112, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
42
|
de Bragança AC, Canale D, Gonçalves JG, Shimizu MHM, Seguro AC, Volpini RA. Vitamin D Deficiency Aggravates the Renal Features of Moderate Chronic Kidney Disease in 5/6 Nephrectomized Rats. Front Med (Lausanne) 2018; 5:282. [PMID: 30370270 PMCID: PMC6194324 DOI: 10.3389/fmed.2018.00282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
The pathogenesis of chronic kidney disease (CKD) involves a very complex interaction between hemodynamic and inflammatory processes, leading to glomerular/vascular sclerosis, and fibrosis formation with subsequent evolution to end-stage of renal disease. Despite efforts to minimize the progression of CKD, its incidence and prevalence continue to increase. Besides cardiovascular diseases and infections, several studies demonstrate that vitamin D status could be considered as a non-traditional risk factor for the progression of CKD. Therefore, we investigated the effects of vitamin D deficiency (VDD) in the course of moderate CKD in 5/6 nephrectomized rats (Nx). Adult male Wistar rats underwent Sham surgery or Nx and were subdivided into the following four groups: Sham, receiving standard diet (Sham); Sham VDD, receiving vitamin D-free diet (VDD); Nx, receiving standard diet (Nx); and VDD+Nx, receiving vitamin D-free diet (VDD+Nx). Sham or Nx surgeries were performed 30 days after standard or vitamin D-free diets administration. After validation of vitamin D depletion, we considered only Nx and VDD+Nx groups for the following studies. Sixty days after surgeries, VDD+Nx rats exhibited hypertension, a greater decline in renal function and plasma FGF-23 levels, renal hypertrophy, as well as higher plasma levels of PTH and aldosterone. In addition, those animals presented more significant chronic tubulointerstitial changes (cortical interstitial expansion/inflammation/fibrosis), higher expression of collagen IV, fibronectin and α-smooth muscle actin, and lower expressions of JG12 and M2 macrophages. Also, VDD+Nx rats had greater infiltration of inflammatory cells (M1 macrophages and T-cells). Such changes were accompanied by higher expression of TGF-β1 and angiotensinogen and decreased expression of VDR and Klotho protein. Our observations indicate that vitamin D deficiency impairs the renal function and worsens the renovascular and morphological changes, aggravating the features of moderate CKD in 5/6 nephrectomized rats.
Collapse
Affiliation(s)
- Ana Carolina de Bragança
- Laboratorio de Investigacao Medica 12 (LIM12), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniele Canale
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Janaína Garcia Gonçalves
- Laboratorio de Investigacao Medica 12 (LIM12), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Antonio Carlos Seguro
- Laboratorio de Investigacao Medica 12 (LIM12), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rildo Aparecido Volpini
- Laboratorio de Investigacao Medica 12 (LIM12), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
de Boer IH, Zelnick LR, Lin J, Schaumberg D, Wang L, Ruzinski J, Friedenberg G, Duszlak J, Bubes VY, Hoofnagle AN, Thadhani R, Glynn RJ, Buring JE, Sesso HD, Manson JE. Vitamin D and omega-3 trial to prevent and treat diabetic kidney disease: Rationale, design, and baseline characteristics. Contemp Clin Trials 2018; 74:11-17. [PMID: 30282055 DOI: 10.1016/j.cct.2018.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022]
Abstract
Diabetic kidney disease (DKD), defined as reduced glomerular filtration rate (GFR), elevated urine albumin excretion, or both that is clinically attributable to diabetes, is a common and morbid diabetes complication. Animal-experimental data, observational human studies, and short-term clinical trials suggest that vitamin D and omega-3 fatty acid supplements may be safe and inexpensive interventions to reduce the incidence and progression of DKD. The Vitamin D and Omega-3 Trial to Prevent and Treat DKD (VITAL-DKD) was designed as an ancillary study to the VITAL trial of 25,871 US adults. In a 2 × 2 factorial design, VITAL participants were randomly assigned to vitamin D3 (cholecalciferol, 2000 IU daily) or placebo and to marine omega-3 fatty acids (eicospentaenoic acid and docosahexaenoic acid, 1 g/d) or placebo. VITAL-DKD enrolled a subset of 1326 VITAL participants with type 2 diabetes at baseline to test the effects of vitamin D and omega-3 fatty acids on changes in estimated GFR and urine albumin excretion. Over five years of follow-up, VITAL-DKD collected blood and urine samples to quantify changes in estimated GFR (the primary study outcome) and urine albumin excretion. At baseline, mean age of VITAL-DKD participants was 67.6 years, 46% were women, 30% were of racial or ethnic minority, and the prevalence of DKD (estimated GFR <60 mL/min/1.73m2 or urine albumin-creatinine ratio ≥ 30 mg/g) was 17%. In this type 2 diabetes population, VITAL-DKD will test the hypotheses that vitamin D and omega-3 fatty acids help prevent the development and progression of DKD.
Collapse
Affiliation(s)
- Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, United States.
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Julie Lin
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Debra Schaumberg
- Real World Evidence, Evidera, PPD, Waltham MA, Department of Epidemiology, Harvard TH Chan School of Public Health, Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Boston, MA, United States
| | - Lu Wang
- Department of Global Epidemiology, Janssen Research & Development LLC, Titusville, NJ, United States
| | - John Ruzinski
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | | | - Julie Duszlak
- Division of Preventive Medicine, Brigham and Women's Hospital, MA, USA
| | - Vadim Y Bubes
- Division of Preventive Medicine, Brigham and Women's Hospital, MA, USA
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine and Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Ravi Thadhani
- Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Robert J Glynn
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
44
|
Le TY, Ogawa M, Kizana E, Gunton JE, Chong JJ. Vitamin D Improves Cardiac Function After Myocardial Infarction Through Modulation of Resident Cardiac Progenitor Cells. Heart Lung Circ 2018; 27:967-975. [DOI: 10.1016/j.hlc.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/04/2017] [Accepted: 01/04/2018] [Indexed: 01/02/2023]
|
45
|
Panchapakesan U, Pollock C. Drug repurposing in kidney disease. Kidney Int 2018; 94:40-48. [PMID: 29628139 DOI: 10.1016/j.kint.2017.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine).
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia
| |
Collapse
|
46
|
Hamano T. Vitamin D and renal outcome: the fourth outcome of CKD-MBD? Oshima Award Address 2015. Clin Exp Nephrol 2018; 22:249-256. [PMID: 29270765 PMCID: PMC5838134 DOI: 10.1007/s10157-017-1517-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/11/2017] [Indexed: 12/29/2022]
Abstract
Bone fracture, cardiovascular events, and mortality are three outcomes of chronic kidney disease-mineral and bone disorder (CKD-MBD), and the umbrella concept originally described for dialysis patients. The reported association of serum phosphorus or fibroblast growth factor 23 (FGF23) levels with renal outcome suggests that the fourth relevant outcome of CKD-MBD in predialysis patients is renal outcome. We found that proteinuria of 2+ or greater with a dipstick test was associated with low vitamin D status due to urinary loss of 25-hydroxyvitamin D (25D). Moreover, active vitamin D or its analogues decrease proteinuria. Given our finding that maxacalcitol does not repress renin, the reduction of proteinuria by this agent is likely due to direct upregulation of the nephrin and podocin in podocytes. Moreover, this agent downregulates the mesenchymal marker desmin in podocytes and blocks transforming growth factor-beta autoinduction, leading to attenuation of renal fibrosis in a unilateral ureteral obstructive (UUO) model. These facts are reminiscent of the suppression of epithelial-mesenchymal transition (EMT) by vitamin D. EMT blockage may explain our finding that vitamin D prescription in renal transplant recipients is associated with a lower incidence of cancer. We also reported that low vitamin D status and high FGF23 levels predict a worse renal outcome. However, administration of massive doses of 25D exacerbates renal fibrosis in UUO kidneys in 1alpha-hydroxylase knockout mice. Moreover, FGF23 inhibits 1alpha-hydroxylase in proximal tubules and monocytes. Taken together, local 1,25(OH)2D in the kidney tissue but not 25D seems to protect the kidney.
Collapse
Affiliation(s)
- Takayuki Hamano
- Department of Comprehensive Kidney Disease Research (CKDR), Osaka University Graduate School of Medicine, D11, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
47
|
Cruzado JM, Lauzurica R, Pascual J, Marcen R, Moreso F, Gutierrez-Dalmau A, Andrés A, Hernández D, Torres A, Beneyto MI, Melilli E, Manonelles A, Arias M, Praga M. Paricalcitol Versus Calcifediol for Treating Hyperparathyroidism in Kidney Transplant Recipients. Kidney Int Rep 2018; 3:122-132. [PMID: 29340322 PMCID: PMC5762965 DOI: 10.1016/j.ekir.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Secondary hyperparathyroidism (SHPT) and vitamin D deficiency are common at kidney transplantation and are associated with some early and late complications. This study was designed to evaluate whether paricalcitol was more effective than nutritional vitamin D for controlling SHPT in de novo kidney allograft recipients. METHODS This was a 6-month, investigator-initiated, multicenter, open-label, randomized clinical trial. Patients with pretransplantation iPTH between 250 and 600 pg/ml and calcium <10 mg/dl were randomized to paricalcitol (PAR) or calcifediol (CAL). The intention-to-treat population (PAR: n = 46; CAL: n = 47) was used for the analysis. The primary endpoint was the percentage of patients with serum iPTH >110 pg/ml at 6 months. Secondary endpoints were bone mineral metabolism, renal function, and allograft protocol biopsies. RESULTS The primary outcome occurred in 19.6% of patients in the PAR group and 36.2% of patients in the CAL group (P = 0.07). However, there was a higher percentage of patients with iPTH <70 pg/ml in the PAR group than in the CAL group (63.4% vs. 37.2%; P = 0.03). No differences were observed in bone turnover biomarkers and bone mineral density. The estimated glomerular filtration rate was significantly higher in the CAL group than in the PAR group without differences in albuminuria. In protocol biopsies, interstitial fibrosis and tubular atrophy tended to be higher in the PAR group than in the CAL group (48% vs. 23.8%; P = 0.09). Both medications were well tolerated. CONCLUSION Both PAR and CAL reduced iPTH, but PAR was associated with a higher proportion of patients with iPTH <70 pg/ml. These results do not support the use of PAR to treat posttransplantation hyperparathyroidism.
Collapse
Affiliation(s)
- Josep M. Cruzado
- Nephrology Department, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Ricardo Lauzurica
- Department of Nephrology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Barcelona, Spain
| | - Roberto Marcen
- Department of Nephrology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Francesc Moreso
- Hospital Universitari Vall d'Hebron, Nephrology, Barcelona, Spain
| | | | - Amado Andrés
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| | | | - Armando Torres
- Department of Nephrology, Hospital Universitario de Canarias, Tenerife, Spain
| | | | - Edoardo Melilli
- Nephrology Department, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Manonelles
- Nephrology Department, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Arias
- Nephrology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Manuel Praga
- Department of Nephrology, Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
48
|
MicroRNA-351 promotes schistosomiasis-induced hepatic fibrosis by targeting the vitamin D receptor. Proc Natl Acad Sci U S A 2017; 115:180-185. [PMID: 29255036 DOI: 10.1073/pnas.1715965115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs) underlies a spectrum of human diseases including organ fibrosis, and hepatic stellate cells (HSCs) are the main effectors of hepatic fibrosis. Here, we showed that the expression of host miR-351 in HSCs was markedly reduced during the early stage of Schistosoma infection. However, this expression was significantly increased during the later stage of infection (after 52 d of infection). The elevated levels of miR-351 promoted hepatic fibrosis by targeting the vitamin D receptor (VDR), which is an antagonist of SMAD signaling. Importantly, efficient and sustained inhibition of miR-351 in liver tissues using the highly hepatotropic recombinant adeno-associated virus serotype 8 (rAAV8), alleviated the hepatic fibrosis, partially protecting the host from lethal schistosomiasis. In addition, we found that miR-351 is negatively regulated by IFN-γ in HSCs during infection. At the early stage of infection, the elevated levels of IFN-γ inhibited the expression of miR-351 in HSCs through activation of signal transducer and activator of transcription 1 and induction of IFN regulatory factor 2, which binds the promotor of pre-miR-351 Our study provides insights into the mechanisms by which miR-351 regulates schistosomiasis hepatic fibrosis and highlights the potential of rAAV8-mediated miR-351 inhibition as a therapeutic intervention for fibrotic diseases.
Collapse
|
49
|
Lv W, Booz GW, Wang Y, Fan F, Roman RJ. Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 2017; 820:65-76. [PMID: 29229532 DOI: 10.1016/j.ejphar.2017.12.016] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
Chronic kidney disease (CKD) is a major public health issue. At the histological level, renal fibrosis is the final common pathway of progressive kidney disease irrespective of the initial injury. Considerable evidence now indicates that renal inflammation plays a central role in the initiation and progression of CKD. Some of the inflammatory signaling molecules involved in CKD include: monocyte chemoattractant protein-1 (MCP-1), bradykinin B1 receptor (B1R), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNFα), transforming growth factor β (TGF-β), and platelet-derived growth factor (PDGF). Multiple antifibrotic factors, such as interleukin-10 (IL-10), interferon-γ (IFN-γ), bone morphogenetic protein-7 (BMP-7), hepatocyte growth factor (HGF) are also downregulated in CKD. Therefore, restoration of the proper balance between pro- and antifibrotic signaling pathways could serve as a guiding principle for the design of new antifibrotic strategies that simultaneously target many pathways. The purpose of this review is to summarize the existing body of knowledge regarding activation of cytokine pathways and infiltration of inflammatory cells as a starting point for developing novel antifibrotic therapies to prevent progression of CKD.
Collapse
Affiliation(s)
- Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yangang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao 26003, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
50
|
Abstract
Vitamin D is critical in mineral homeostasis and skeletal health and plays a regulatory role in nonskeletal tissues. Vitamin D deficiency is associated with chronic inflammatory diseases, including diabetes and obesity, both strong risk factors for cardiovascular diseases (CVDs). CVDs, including coronary artery disease, myocardial infarction, hypertrophy, cardiomyopathy, cardiac fibrosis, heart failure, aneurysm, peripheral arterial disease, hypertension, and atherosclerosis, are major causes of morbidity and mortality. The association of these diseases with vitamin D deficiency and improvement with vitamin D supplementation suggest its therapeutic benefit. The authors review the findings on the association of vitamin D deficiency and CVDs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|