1
|
Mazzaferro E, Mujica E, Zhang H, Emmanouilidou A, Jenseit A, Evcimen B, Metzendorf C, Dethlefsen O, Loos RJ, Vienberg SG, Larsson A, Allalou A, den Hoed M. Functionally characterizing obesity-susceptibility genes using CRISPR/Cas9, in vivo imaging and deep learning. Sci Rep 2025; 15:5408. [PMID: 39948378 PMCID: PMC11825957 DOI: 10.1038/s41598-025-89823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 02/07/2025] [Indexed: 02/16/2025] Open
Abstract
Hundreds of loci have been robustly associated with obesity-related traits, but functional characterization of candidate genes remains a bottleneck. Aiming to systematically characterize candidate genes for a role in accumulation of lipids in adipocytes and other cardiometabolic traits, we developed a pipeline using CRISPR/Cas9, non-invasive, semi-automated fluorescence imaging and deep learning-based image analysis in live zebrafish larvae. Results from a dietary intervention show that 5 days of overfeeding is sufficient to increase the odds of lipid accumulation in adipocytes by 10 days post-fertilization (dpf, n = 275). However, subsequent experiments show that across 12 to 16 established obesity genes, 10 dpf is too early to detect an effect of CRISPR/Cas9-induced mutations on lipid accumulation in adipocytes (n = 1014), and effects on food intake at 8 dpf (n = 1127) are inconsistent with earlier results from mammals. Despite this, we observe effects of CRISPR/Cas9-induced mutations on ectopic accumulation of lipids in the vasculature (sh2b1 and sim1b) and liver (bdnf); as well as on body size (pcsk1, pomca, irs1); whole-body LDLc and/or total cholesterol content (irs2b and sh2b1); and pancreatic beta cell traits and/or glucose content (pcsk1, pomca, and sim1a). Taken together, our results illustrate that CRISPR/Cas9- and image-based experiments in zebrafish larvae can highlight direct effects of obesity genes on cardiometabolic traits, unconfounded by their - not yet apparent - effect on excess adiposity.
Collapse
Affiliation(s)
- Eugenia Mazzaferro
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Endrina Mujica
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Hanqing Zhang
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Anastasia Emmanouilidou
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Anne Jenseit
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Bade Evcimen
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Christoph Metzendorf
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden
| | - Olga Dethlefsen
- Science for Life Laboratory, National Bioinformatics Infrastructure, Stockholm University, Stockholm, Sweden
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala , Sweden
| | - Amin Allalou
- Department of Information Technology, Division of Visual Information and Interaction, Uppsala University, Uppsala , Sweden
- BioImage Informatics Facility at SciLifeLab, Uppsala, Sweden
| | - Marcel den Hoed
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala , Sweden.
| |
Collapse
|
2
|
Dash S. Obesity and Cardiometabolic Disease: Insights From Genetic Studies. Can J Cardiol 2025:S0828-282X(25)00104-7. [PMID: 39920990 DOI: 10.1016/j.cjca.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Obesity is a highly prevalent chronic disease and major driver of both atherosclerotic heart disease and heart failure. Obesity is also a heritable neuronal disease with heritability estimates of up to 70%. In this work I review how common genetic variants, usually with small effect sizes, contribute to the risk for developing obesity and cardiometabolic disease in the majority of people and how this can be further modulated by environmental factors. In some individuals, rare genetic variants with large effect sizes can influence the risk of developing obesity, in some cases in a Mendelian manner. I also address how identification of these rare variants has led to fundamental biologic insights into how satiety and reward are biologic processes, has led to more personalized treatments, and has identified potential novel drug treatments. Biologic insights derived from genetic studies of obesity have also improved our understanding of the causal mediators between obesity and cardiovascular disease. A major limitation of studies to date is that they involved mostly people of European ancestry. Studying more diverse populations will improve our understanding of obesity and cardiometabolic disease. Lessons derived from genetic studies make a compelling case for increasing accessibility to therapies that have sustained efficacy in managing obesity and improving health. This increased knowledge must also inform public health initiatives that will reduce the prevalence of obesity in the coming decades.
Collapse
Affiliation(s)
- Satya Dash
- Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Saeed S, Bonnefond A, Froguel P. Obesity: exploring its connection to brain function through genetic and genomic perspectives. Mol Psychiatry 2025; 30:651-658. [PMID: 39237720 PMCID: PMC11746128 DOI: 10.1038/s41380-024-02737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Obesity represents an escalating global health burden with profound medical and economic impacts. The conventional perspective on obesity revolves around its classification as a "pure" metabolic disorder, marked by an imbalance between calorie consumption and energy expenditure. Present knowledge, however, recognizes the intricate interaction of rare or frequent genetic factors that favor the development of obesity, together with the emergence of neurodevelopmental and mental abnormalities, phenotypes that are modulated by environmental factors such as lifestyle. Thirty years of human genetic research has unveiled >20 genes, causing severe early-onset monogenic obesity and ~1000 loci associated with common polygenic obesity, most of those expressed in the brain, depicting obesity as a neurological and mental condition. Therefore, obesity's association with brain function should be better recognized. In this context, this review seeks to broaden the current perspective by elucidating the genetic determinants that contribute to both obesity and neurodevelopmental and mental dysfunctions. We conduct a detailed examination of recent genetic findings, correlating them with clinical and behavioral phenotypes associated with obesity. This includes how polygenic obesity, influenced by a myriad of genetic variants, impacts brain regions associated with addiction and reward, differentiating it from monogenic forms. The continuum between non-syndromic and syndromic monogenic obesity, with evidence from neurodevelopmental and cognitive assessments, is also addressed. Current therapeutic approaches that target these genetic mechanisms, yielding improved clinical outcomes and cognitive advantages, are discussed. To sum up, this review corroborates the genetic underpinnings of obesity, affirming its classification as a neurological disorder that may have broader implications for neurodevelopmental and mental conditions. It highlights the promising intersection of genetics, genomics, and neurobiology as a foundation for developing tailored medical approaches to treat obesity and its related neurological aspects.
Collapse
Affiliation(s)
- Sadia Saeed
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Amélie Bonnefond
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France
- University of Lille, Lille University Hospital, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Philippe Froguel
- INSERM UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Lille, France.
- University of Lille, Lille University Hospital, Lille, France.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
4
|
Semenova E, Guo A, Liang H, Hernandez CJ, John EB, Thaker VV. The expanding landscape of genetic causes of obesity. Pediatr Res 2024:10.1038/s41390-024-03780-6. [PMID: 39690244 DOI: 10.1038/s41390-024-03780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
Obesity and weight regulation disorders are determined by the combined effects of genetics and environment. Polygenic obesity results from the combination of common variants in several genes which predisposes the individual to obesity and its related complications. In contrast, monogenic obesity results from changes in single genes, especially those in leptin-melanocortin pathway, and presents with early onset severe obesity, with or without other syndromic features. Rare variants in melanocortin 4 receptor are the commonest form of monogenic obesity. In addition, structural variation in small or large segments of chromosomes may also present with syndromic forms of obesity. Prader-Willi Syndrome, caused by imprinting errors in chromosome 15q11-13, is the most prevalent genetic cause of severe hyperphagia and obesity. With the advances in technologies, the past decade has witnessed a revolution in the identification of novel genetic causes of obesity, primarily in genes related to the leptin melanocortin pathway. The availability of safe melanocortin analogs holds the potential for targeted therapies for some of these disorders. This review summarizes known and novel rare genetic forms of obesity, along with approaches for the clinical investigation of copy number and sequence variants. The goal is to provide a reference for practicing clinicians to encourage genetic testing in obesity. IMPACT: What does this article add to the existing literature? Genetic obesity is an expanding frontier with potential to change management. Here, we summarize current information on the genetic causes of obesity and provide guidance for genetic testing. Emerging treatments may provide targeted precise treatment and change management practices.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Alex Guo
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Harry Liang
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cindy J Hernandez
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Ella B John
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Vidhu V Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Dimitri P, Roth CL. Treatment of Hypothalamic Obesity With GLP-1 Analogs. J Endocr Soc 2024; 9:bvae200. [PMID: 39703362 PMCID: PMC11655849 DOI: 10.1210/jendso/bvae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Congenital and acquired damage to hypothalamic nuclei or neuronal circuits controlling satiety and energy expenditure results in hypothalamic obesity (HO). To date, successful weight loss and satiety has only been achieved in a limited number of affected patients across multiple drug trials. Glucagon-like peptide-1 (GLP-1) acts via central pathways that are independent from the hypothalamus to induce satiety. GLP-1 receptor agonists (GLP-1RAs) may provide an alternative approach to treating HO. Methods We performed a comprehensive search in Medline, Google Scholar, and clinical trials registries (ClinicalTrials.gov; clinicaltrialsregister.eur). This nonsystematic literature review was conducted to identify scientific papers published from January 2005 to February 2024 using the Pubmed and Embase databases. Key words used were GLP-1, GLP-1RA, hypothalamic obesity, suprasellar tumor, and craniopharyngioma. Results Our search identified 7 case studies, 5 case series, and 2 published clinical trials relating to the use of GLP-1RAs in HO. All case studies demonstrated weight loss and improved metabolic function. In contrast, results from case series were variable, with some showing no weight loss and others demonstrating moderate to significant weight loss and improved metabolic parameters. In the ECHO clinical trial, nearly half the subjects randomized to weekly exenatide showed reduced body mass index (BMI). Paradoxically, BMI reduction was greater in patients with more extensive hypothalamic injuries. Conclusion GLP-1RAs potentially offer a new approach to treating HO. There is a need to stratify patients who are more likely to respond. Further randomized controlled trials are required to determine their efficacy either in isolation or combined with other therapies.
Collapse
Affiliation(s)
- Paul Dimitri
- The Department of Paediatric Endocrinology, Sheffield Children's NHS Foundation Trust, Sheffield, S10 2TH, UK
- University of Sheffield, Sheffield, S10 2TN, UK
| | - Christian L Roth
- Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Siddiqui J, Kinney CE, Han JC. The Genetics of Obesity. Pediatr Clin North Am 2024; 71:897-917. [PMID: 39343500 DOI: 10.1016/j.pcl.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Understanding the genetic causes of obesity permits anticipatory guidance and targeted treatments. Children with hyperphagia and severe early-onset obesity should receive genetic testing for rare monogenic and syndromic disorders caused by pathogenic variants involving a single gene or single chromosomal region. Gene panels covering the leptin pathway, the key regulator of energy balance, are becoming more widely available and at lower cost. Polygenic obesity is much more common and involves multiple genes throughout the genome, although the overlap in genes for rare and common disorders suggests a spectrum of severity and the potential of shared precision medicine approaches for treatment.
Collapse
Affiliation(s)
- Juwairriyyah Siddiqui
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Clint E Kinney
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Joan C Han
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Mount Sinai Hospital, Diabetes, Obesity, and Metabolism Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
7
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
8
|
Shin T, Song JHT, Kosicki M, Kenny C, Beck SG, Kelley L, Antony I, Qian X, Bonacina J, Papandile F, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in non-coding regions with evolutionary signatures contributes to autism spectrum disorder risk. CELL GENOMICS 2024; 4:100609. [PMID: 39019033 PMCID: PMC11406188 DOI: 10.1016/j.xgen.2024.100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Little is known about the role of non-coding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of non-coding regions: human accelerated regions (HARs), which show signatures of positive selection in humans; experimentally validated neural VISTA enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole-genome analysis of >16,600 samples and >4,900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly contribute, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in VEs near OTX1 and SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved non-coding regions in ASD risk and suggest potential mechanisms of how regulatory changes can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Janet H T Song
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha G Beck
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Evan M Bushinsky
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca E Andersen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Len A Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Allen Discovery Center for Human Brain Evolution, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Carvalho LML, Jorge AADL, Bertola DR, Krepischi ACV, Rosenberg C. A Comprehensive Review of Syndromic Forms of Obesity: Genetic Etiology, Clinical Features and Molecular Diagnosis. Curr Obes Rep 2024; 13:313-337. [PMID: 38277088 DOI: 10.1007/s13679-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.
Collapse
Affiliation(s)
- Laura Machado Lara Carvalho
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Alexander Augusto de Lima Jorge
- Genetic Endocrinology Unit, Cellular and Molecular Endocrinology Laboratory (LIM/25), Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Débora Romeo Bertola
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
- Genetics Unit of Instituto da Criança, Faculty of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Laboratory of Human Genetics - LGH, Institute of Biosciences, University of São Paulo (USP), Matão Street 277 - Room 350, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Son JE. Genetics, pharmacotherapy, and dietary interventions in childhood obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12861. [PMID: 38863827 PMCID: PMC11165095 DOI: 10.3389/jpps.2024.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Childhood obesity has emerged as a major global health issue, contributing to the increased prevalence of chronic conditions and adversely affecting the quality of life and future prospects of affected individuals, thereby presenting a substantial societal challenge. This complex condition, influenced by the interplay of genetic predispositions and environmental factors, is characterized by excessive energy intake due to uncontrolled appetite regulation and a Westernized diet. Managing obesity in childhood requires specific considerations compared with adulthood, given the vulnerability of the critical juvenile-adolescent period to toxicity and developmental defects. Consequently, common treatment options for adult obesity may not directly apply to younger populations. Therefore, research on childhood obesity has focused on genetic defects in regulating energy intake, alongside pharmacotherapy and dietary interventions as management approaches, with an emphasis on safety concerns. This review aims to summarize canonical knowledge and recent findings on genetic factors contributing to childhood obesity. Additionally, it assesses the efficacy and safety of existing pharmacotherapies and dietary interventions and suggests future research directions. By providing a comprehensive understanding of the complex dynamics of childhood obesity, this review aims to offer insights into more targeted and effective strategies for addressing this condition, including personalized healthcare solutions.
Collapse
Affiliation(s)
- Joe Eun Son
- School of Food Science and Biotechnology, Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
11
|
Gan HW, Cerbone M, Dattani MT. Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. Endocr Rev 2024; 45:309-342. [PMID: 38019584 PMCID: PMC11074800 DOI: 10.1210/endrev/bnad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Manuela Cerbone
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Mehul Tulsidas Dattani
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
- Genetics & Genomic Medicine Research & Teaching Department, University College London Great Ormond Street Institute for Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
12
|
Zhuang J, Shang Q, Rastinejad F, Wu D. Decoding Allosteric Control in Hypoxia-Inducible Factors. J Mol Biol 2024; 436:168352. [PMID: 37935255 DOI: 10.1016/j.jmb.2023.168352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mammalian family of basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factors possess the ability to sense and respond to diverse environmental and physiological cues. These proteins all share a common structural framework, comprising a bHLH domain, two PAS domains, and transcriptional activation or repression domain. To function effectively as transcription factors, members of the family must form dimers, bringing together bHLH segments to create a functional unit that allows for DNA response element binding. The significance of bHLH-PAS family is underscored by their involvement in many major human diseases, offering potential avenues for therapeutic intervention. Notably, the clear identification of ligand-binding cavities within their PAS domains enables the development of targeted small molecules. Two examples are Belzutifan, targeting hypoxia-inducible factor (HIF)-2α, and Tapinarof, targeting the aryl hydrocarbon receptor (AHR), both of which have gained regulatory approval recently. Here, we focus on the HIF subfamily. The crystal structures of all three HIF-α proteins have been elucidated, revealing their bHLH and tandem PAS domains are used to engage their dimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT, also called HIF-1β). A broad range of recent findings point to a shared allosteric modulation mechanism among these proteins, whereby small-molecules at the PAS-B domains exert direct influence over the HIF-α transcriptional functions. As our understanding of the architectural and allosteric mechanisms of bHLH-PAS proteins continues to advance, the possibility of discovering new therapeutic drugs becomes increasingly promising.
Collapse
Affiliation(s)
- Jingjing Zhuang
- Marine College, Shandong University, Weihai 264209, China; Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fraydoon Rastinejad
- Target Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
14
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence, a comprehensive review of their molecular mechanisms and diagnostic approach. Eur J Pediatr 2023; 182:4781-4793. [PMID: 37607976 DOI: 10.1007/s00431-023-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital, Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
15
|
Abstract
Obesity is a common complex trait that elevates the risk for various diseases, including type 2 diabetes and cardiovascular disease. A combination of environmental and genetic factors influences the pathogenesis of obesity. Advances in genomic technologies have driven the identification of multiple genetic loci associated with this disease, ranging from studying severe onset cases to investigating common multifactorial polygenic forms. Additionally, findings from epigenetic analyses of modifications to the genome that do not involve changes to the underlying DNA sequence have emerged as key signatures in the development of obesity. Such modifications can mediate the effects of environmental factors, including diet and lifestyle, on gene expression and clinical presentation. This review outlines what is known about the genetic and epigenetic contributors to obesity susceptibility, along with the albeit limited therapeutic options currently available. Furthermore, we delineate the potential mechanisms of actions through which epigenetic changes can mediate environmental influences and the related opportunities they present for future interventions in the management of obesity.
Collapse
Affiliation(s)
- Khanh Trang
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Struan F.A. Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Division of Diabetes and Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
16
|
Shin T, Song JH, Kosicki M, Kenny C, Beck SG, Kelley L, Qian X, Bonacina J, Papandile F, Antony I, Gonzalez D, Scotellaro J, Bushinsky EM, Andersen RE, Maury E, Pennacchio LA, Doan RN, Walsh CA. Rare variation in noncoding regions with evolutionary signatures contributes to autism spectrum disorder risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.19.23295780. [PMID: 37790480 PMCID: PMC10543033 DOI: 10.1101/2023.09.19.23295780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Little is known about the role of noncoding regions in the etiology of autism spectrum disorder (ASD). We examined three classes of noncoding regions: Human Accelerated Regions (HARs), which show signatures of positive selection in humans; experimentally validated neural Vista Enhancers (VEs); and conserved regions predicted to act as neural enhancers (CNEs). Targeted and whole genome analysis of >16,600 samples and >4900 ASD probands revealed that likely recessive, rare, inherited variants in HARs, VEs, and CNEs substantially contribute to ASD risk in probands whose parents share ancestry, which enriches for recessive contributions, but modestly, if at all, in simplex family structures. We identified multiple patient variants in HARs near IL1RAPL1 and in a VE near SIM1 and showed that they change enhancer activity. Our results implicate both human-evolved and evolutionarily conserved noncoding regions in ASD risk and suggest potential mechanisms of how changes in regulatory regions can modulate social behavior.
Collapse
Affiliation(s)
- Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Janet H.T. Song
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Michael Kosicki
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Samantha G. Beck
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Lily Kelley
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Xuyu Qian
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julieta Bonacina
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Frances Papandile
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Irene Antony
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Dilenny Gonzalez
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Julia Scotellaro
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Evan M. Bushinsky
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Rebecca E. Andersen
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Eduardo Maury
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Len A. Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Boston Children’s Hospital; Department of Pediatrics, Harvard Medical School; Allen Discovery Center for Human Brain Evolution, Boston, MA, 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital; Departments of Pediatrics and Neurology, Harvard Medical School; Allen Discovery Center for Human Brain Evolution; Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Arestakesyan H, Blackmore K, Smith HC, Popratiloff A, Young CN. Large-field-of-view scanning electron microscopy of the paraventricular nucleus of the hypothalamus during diet-induced obesity. J Neurophysiol 2023; 130:345-352. [PMID: 37435651 PMCID: PMC10396219 DOI: 10.1152/jn.00208.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Dysregulation in the paraventricular nucleus of the hypothalamus (PVN) is associated with a variety of diseases including those related to obesity. Although most investigations have focused on molecular changes, structural alterations in PVN neurons can reveal underlying functional disruptions. Although electron microscopy (EM) can provide nanometer resolution of brain structures, an inherent limitation of traditional transmission EM is the single field of view nature of data collection. To overcome this, we used large-field-of-view high-resolution backscatter scanning electron microscopy (bSEM) of the PVN. By stitching high-resolution bSEM images, taken from normal chow and high-fat diet mice, we achieved interactive, zoomable maps that allow for low-magnification screening of the entire PVN and high-resolution analyses of ultrastructure at the level of the smallest cellular organelle. Using this approach, quantitative analysis across the PVN revealed marked electron-dense regions within neuronal nucleoplasm following high-fat diet feeding, with an increase in kurtosis, indicative of a shift away from a normal distribution. Furthermore, measures of skewness indicated a shift toward darker clustered electron-dense regions, potentially indicative of heterochromatin clusters. We further demonstrate the utility to map out healthy and altered neurons throughout the PVN and the ability to remotely perform bSEM imaging in situations that require social distancing, such as the COVID-19 pandemic. Collectively, these findings present an approach that allows for the precise placement of PVN cells within an overall structural and functional map of the PVN. Moreover, they suggest that obesity may disrupt PVN neuronal chromatin structure.NEW & NOTEWORTHY Paraventricular nucleus of the hypothalamus (PVN) alterations are linked to obesity-related conditions, but limited knowledge exists about neuroanatomical changes in this region. A large-field-of-view backscatter scanning electron microscopy (bSEM) method was used, which allowed the identification of up to 40 PVN neurons in individual samples. During obesity in mice, bSEM revealed changes in PVN neuronal nucleoplasm, possibly indicating chromatin clustering. This microscopy advancement offers valuable insights into neuroanatomy in both healthy and disease conditions.
Collapse
Affiliation(s)
- Hovhannes Arestakesyan
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Katherine Blackmore
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Hannah C Smith
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Anastas Popratiloff
- Nanofabrication and Imaging Center, George Washington University, Washington, District of Columbia, United States
| | - Colin N Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
18
|
Schönauer R, Jin W, Findeisen C, Valenzuela I, Devlin LA, Murrell J, Bedoukian EC, Pöschla L, Hantmann E, Riedhammer KM, Hoefele J, Platzer K, Biemann R, Campeau PM, Münch J, Heyne H, Hoffmann A, Ghosh A, Sun W, Dong H, Noé F, Wolfrum C, Woods E, Parker MJ, Neatu R, Le Guyader G, Bruel AL, Perrin L, Spiewak H, Missotte I, Fourgeaud M, Michaud V, Lacombe D, Paolucci SA, Buchan JG, Glissmeyer M, Popp B, Blüher M, Sayer JA, Halbritter J. Monoallelic intragenic POU3F2 variants lead to neurodevelopmental delay and hyperphagic obesity, confirming the gene's candidacy in 6q16.1 deletions. Am J Hum Genet 2023; 110:998-1007. [PMID: 37207645 PMCID: PMC10257002 DOI: 10.1016/j.ajhg.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.
Collapse
Affiliation(s)
- Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, Endocrinology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Wenjun Jin
- Division of Nephrology, Endocrinology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Christin Findeisen
- Division of Nephrology, Endocrinology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Laura Alice Devlin
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, NE1 3BZ Newcastle, UK
| | - Jill Murrell
- Division of Genomic Diagnostics at Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emma C Bedoukian
- Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda Pöschla
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elena Hantmann
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, School of Medicine, Munich, Germany; Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, School of Medicine, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, School of Medicine, Munich, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Philipp M Campeau
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Heyne
- Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany; Hasso Plattner Institute for Digital Health at Mount Sinai School of Medicine, New York City, NY, USA; Institute for Molecular Medicine Finland: FIMM, University of Helsinki, Helsinki, Finland
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Emily Woods
- Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | - Ruxandra Neatu
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, NE1 3BZ Newcastle, UK
| | - Gwenael Le Guyader
- Unité neurovasculaire et troubles cognitifs, University of Poitiers, Poitiers, France
| | - Ange-Line Bruel
- Equipe GAD, UMR1231 Inserm, Université de Bourgogne Franche Comté, Dijon, France
| | - Laurence Perrin
- UF de Génétique Clinique Département de Génétique, CHU Paris - Hôpital Robert Debré, Paris, France
| | - Helena Spiewak
- North East and Yorkshire Genomic Laboratory Hub, Central Laboratory, St. James's University Hospital, Leeds, UK
| | - Isabelle Missotte
- Service de Pédiatrie, Centre Hospitalier Territorial, Nouvelle Calédonie, France
| | - Melanie Fourgeaud
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, CHU de Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, CHU de Bordeaux, France; INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), Université de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndrome Malformatifs, CHU de Bordeaux, France; INSERM U1211, Maladies Rares: Génétique et Métabolisme (MRGM), Université de Bordeaux, Bordeaux, France
| | - Sarah A Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jillian G Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Bernt Popp
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Center of Functional Genomics, Berlin, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - John A Sayer
- Translational and Clinical Research Institute, Newcastle University, Central Parkway, NE1 3BZ Newcastle, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, NE7 7DN Newcastle, UK; NIHR Newcastle Biomedical Research Centre, NE4 5PL Newcastle, UK
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, Endocrinology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
19
|
A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neurosci Bull 2022; 39:645-658. [PMID: 36214963 PMCID: PMC10073374 DOI: 10.1007/s12264-022-00956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022] Open
Abstract
To understand how the nervous system develops from a small pool of progenitors during early embryonic development, it is fundamentally important to identify the diversity of neuronal subtypes, decode the origin of neuronal diversity, and uncover the principles governing neuronal specification across different regions. Recent single-cell analyses have systematically identified neuronal diversity at unprecedented scale and speed, leaving the deconstruction of spatiotemporal mechanisms for generating neuronal diversity an imperative and paramount challenge. In this review, we highlight three distinct strategies deployed by neural progenitors to produce diverse neuronal subtypes, including predetermined, stochastic, and cascade diversifying models, and elaborate how these strategies are implemented in distinct regions such as the neocortex, spinal cord, retina, and hypothalamus. Importantly, the identity of neural progenitors is defined by their spatial position and temporal patterning factors, and each type of progenitor cell gives rise to distinguishable cohorts of neuronal subtypes. Microenvironmental cues, spontaneous activity, and connectional pattern further reshape and diversify the fate of unspecialized neurons in particular regions. The illumination of how neuronal diversity is generated will pave the way for producing specific brain organoids to model human disease and desired neuronal subtypes for cell therapy, as well as understanding the organization of functional neural circuits and the evolution of the nervous system.
Collapse
|
20
|
Machida O, Shimojima KY, Shiihara T, Akamine S, Kira R, Hasegawa Y, Nishi E, Okamoto N, Nagata S, Yamamoto T. Interstitial deletions in the proximal regions of 6q: 12 original cases and a literature review. Intractable Rare Dis Res 2022; 11:143-148. [PMID: 36200032 PMCID: PMC9438003 DOI: 10.5582/irdr.2022.01065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/05/2022] Open
Abstract
Interstitial microdeletions in the proximal region of the long arm of chromosome 6 are rare. Herein we have reported 12 patients with developmental delays associated with interstitial microdeletions in 6q ranging from q12 to q22. The microdeletions were detected by chromosomal microarray testing. To confirm the clinical significance of these deletions, genotype-phenotype correlation analysis was performed using genetic and predicted loss-of-function data. SIM1 was recognized as the gene responsible for developmental delay, particularly in Prader-Willi syndrome-like phenotypes. Other genes possibly related to developmental delay were ZNF292, PHIP, KCNQ5, and NUS1. To further establish the correlation between the genotype and phenotype, more patient information is required.
Collapse
Affiliation(s)
- Osamu Machida
- Department of Genetic Medicine, Division of Advanced Biomedical Sciences, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Shiihara
- Department of Pediatric Neurology, Gunma Children's Medical Center, Gunma, Japan
| | - Satoshi Akamine
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Genetic Medicine, Division of Advanced Biomedical Sciences, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
- Address correspondence to:Toshiyuki Yamamoto, Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo 162-8666, Japan. E-mail:
| |
Collapse
|
21
|
Farooqi IS. Monogenic Obesity Syndromes Provide Insights Into the Hypothalamic Regulation of Appetite and Associated Behaviors. Biol Psychiatry 2022; 91:856-859. [PMID: 35369984 DOI: 10.1016/j.biopsych.2022.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/11/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Neuronal circuits within the hypothalamus play a critical role in the homeostatic regulation of body weight. By disrupting the development or function of these circuits, human monogenic disorders cause hyperphagia (increased food intake), neuroendocrine abnormalities, impaired sympathetic nervous system activation, and obesity. Some genetic disorders also cause maladaptive behaviors such as anxiety, autism, emotional lability, and aggression, highlighting the role of the specific molecules expressed by these hypothalamic neurons in the regulation of innate behaviors that are essential to survival. These findings inform understanding of a wide range of clinical disorders and highlight the challenges associated with targeting these hypothalamic pathways for weight loss therapy.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
22
|
Kisspeptin and the Genetic Obesity Interactome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1339:111-117. [PMID: 35023097 DOI: 10.1007/978-3-030-78787-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Kisspeptin (encoded by the KISS1 gene in humans) is an excitatory neuromodulatory peptide implicated in multiple homeostatic systems, including anti-oxidation, glucose homeostasis, nutrition, locomotion, etc. Therefore, in the current obesity epidemic, kisspeptin is gaining increasing interest as a research objective. AIM To construct an updated interactome of genetic obesity, including the kisspeptin signal transduction pathway. METHODS Kisspeptin and obesity-related genes or gene products were extracted from the biomedical literature, and a network of functional associations was created. RESULTS The generated network contains 101 nodes corresponding to gene/gene products with known and/or predicted interactions. In this interactome, KISS1 and KISS1R are connected directly to the luteinizing hormone receptor (LHCGR), gonadotropin-releasing hormone receptor (GNRH1), and indirectly, through the latter, to proopiomelanocortin (POMC), glucagon, leptin (LEP), and/or pro-protein convertase subtilisin/kexin-type 1 (PCSK1), all of which are critically implicated in obesity disorders. CONCLUSIONS Our updated obesidome includes kisspeptin and its connections to the genetic obesity signalosome with 12 major hubs: glucagon (GCG), insulin (INS), arginine vasopressin (AVP), G protein subunit beta 1 (GNB1) and proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R), leptin (LEP), gonadotropin-releasing hormone 1 (GNRH1), adrenoceptor beta 2 and 3 (ADRB2-3), glucagon-like peptide 1 receptor (GLP1R), and melanocortin 3 receptor (MC3R) genes were identified as major "hubs" for genetic obesity, providing novel insight into the body's energy homeostasis.
Collapse
|
23
|
Juriaans AF, Kerkhof GF, Hokken-Koelega ACS. The Spectrum of the Prader-Willi-like Pheno- and Genotype: A Review of the Literature. Endocr Rev 2022; 43:1-18. [PMID: 34460908 DOI: 10.1210/endrev/bnab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic syndrome, caused by the loss of expression of the paternal chromosome 15q11-q13 region. Over the past years, many cases of patients with characteristics similar to PWS, but without a typical genetic aberration of the 15q11-q13 region, have been described. These patients are often labelled as Prader-Willi-like (PWL). PWL is an as-yet poorly defined syndrome, potentially affecting a significant number of children and adults. In the current clinical practice, patients labelled as PWL are mostly left without treatment options. Considering the similarities with PWS, children with PWL might benefit from the same care and treatment as children with PWS. This review gives more insight into the pheno- and genotype of PWL and includes 86 papers, containing 368 cases of patients with a PWL phenotype. We describe mutations and aberrations for consideration when suspicion of PWS remains after negative testing. The most common genetic diagnoses were Temple syndrome (formerly known as maternal uniparental disomy 14), Schaaf-Yang syndrome (truncating mutation in the MAGEL2 gene), 1p36 deletion, 2p deletion, 6q deletion, 6q duplication, 15q deletion, 15q duplication, 19p deletion, fragile X syndrome, and Xq duplication. We found that the most prevalent symptoms in the entire group were developmental delay/intellectual disability (76%), speech problems (64%), overweight/obesity (57%), hypotonia (56%), and psychobehavioral problems (53%). In addition, we propose a diagnostic approach to patients with a PWL phenotype for (pediatric) endocrinologists. PWL comprises a complex and diverse group of patients, which calls for multidisciplinary care with an individualized approach.
Collapse
Affiliation(s)
- Alicia F Juriaans
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands.,Dutch Growth Research Foundation, Rotterdam, The Netherlands
| | - Gerthe F Kerkhof
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands
| | - Anita C S Hokken-Koelega
- National Reference Center for Prader-Willi Syndrome and Prader-Willi-like, The Netherlands.,Department of Pediatrics, Subdivision of Endocrinology, Erasmus Medical Center, The Netherlands.,Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Singh L, Bhatti R. Cellular and molecular mechanisms involved in metabolic disorders. DRUG DELIVERY SYSTEMS FOR METABOLIC DISORDERS 2022:21-29. [DOI: 10.1016/b978-0-323-99616-7.00015-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Panera N, Mandato C, Crudele A, Bertrando S, Vajro P, Alisi A. Genetics, epigenetics and transgenerational transmission of obesity in children. Front Endocrinol (Lausanne) 2022; 13:1006008. [PMID: 36452324 PMCID: PMC9704419 DOI: 10.3389/fendo.2022.1006008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Sedentary lifestyle and consumption of high-calorie foods have caused a relentless increase of overweight and obesity prevalence at all ages. Its presently epidemic proportion is disquieting due to the tight relationship of obesity with metabolic syndrome and several other comorbidities which do call for urgent workarounds. The usual ineffectiveness of present therapies and failure of prevention campaigns triggered overtime a number of research studies which have unveiled some relevant aspects of obesity genetic and epigenetic inheritable profiles. These findings are revealing extremely precious mainly to serve as a likely extra arrow to allow the clinician's bow to achieve still hitherto unmet preventive goals. Evidence now exists that maternal obesity/overnutrition during pregnancy and lactation convincingly appears associated with several disorders in the offspring independently of the transmission of a purely genetic predisposition. Even the pre-conception direct exposure of either father or mother gametes to environmental factors can reprogram the epigenetic architecture of cells. Such phenomena lie behind the transfer of the obesity susceptibility to future generations through a mechanism of epigenetic inheritance. Moreover, a growing number of studies suggests that several environmental factors such as maternal malnutrition, hypoxia, and exposure to excess hormones and endocrine disruptors during pregnancy and the early postnatal period may play critical roles in programming childhood adipose tissue and obesity. A deeper understanding of how inherited genetics and epigenetics may generate an obesogenic environment at pediatric age might strengthen our knowledge about pathogenetic mechanisms and improve the clinical management of patients. Therefore, in this narrative review, we attempt to provide a general overview of the contribution of heritable genetic and epigenetic patterns to the obesity susceptibility in children, placing a particular emphasis on the mother-child dyad.
Collapse
Affiliation(s)
- Nadia Panera
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Mandato
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| | - Annalisa Crudele
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Bertrando
- Pediatrics Clinic, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Salerno, Italy
| | - Pietro Vajro
- Pediatrics Section, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Salermo, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- *Correspondence: Anna Alisi, ; Claudia Mandato,
| |
Collapse
|
26
|
Meadows JD, Breuer JA, Lavalle SN, Hirschenberger MR, Patel MM, Nguyen D, Kim A, Cassin J, Gorman MR, Welsh DK, Mellon PL, Hoffmann HM. Deletion of Six3 in post-proliferative neurons produces weakened SCN circadian output, improved metabolic function, and dwarfism in male mice. Mol Metab 2021; 57:101431. [PMID: 34974160 PMCID: PMC8810556 DOI: 10.1016/j.molmet.2021.101431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE The increasing prevalence of obesity makes it important to increase the understanding of the maturation and function of the neuronal integrators and regulators of metabolic function. METHODS Behavioral, molecular, and physiological analyses of transgenic mice with Sine oculis 3 (Six3) deleted in mature neurons using the Synapsincreallele. RESULTS Conditional deletion of the homeodomain transcription factor Six3 in mature neurons causes dwarfism and weakens circadian wheel-running activity rhythms but increases general activity at night, and improves metabolic function, without impacting pubertal onset or fertility in males. The reduced growth in 6-week-old Six3fl/fl:Synapsincre (Six3syn) males correlates with increased somatostatin (SS) expression in the hypothalamus and reduced growth hormone (GH) in the pituitary. In contrast, 12-week-old Six3syn males have increased GH release, despite an increased number of the inhibitory SS neurons in the periventricular nucleus. GH is important in glucose metabolism, muscle function, and bone health. Interestingly, Six3syn males have improved glucose tolerance at 7, 12, and 18 weeks of age, which, in adulthood, is associated with increased % lean mass and increased metabolic rates. Further, 12-week-old Six3syn males have reduced bone mineralization and a lower bone mineral density, indicating that reduced GH levels during early life cause a long-term reduction in bone mineralization. CONCLUSION Our study points to the novel role of Six3 in post-proliferative neurons to regulate metabolic function through SS neuron control of GH release.
Collapse
Affiliation(s)
- Jason D. Meadows
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Joseph A. Breuer
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shanna N. Lavalle
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael R. Hirschenberger
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Meera M. Patel
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Alyssa Kim
- Department of Plant Soil and Microbial Sciences, Michigan State University, and CANR Statistical Consulting Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Jessica Cassin
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Michael R. Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David K. Welsh
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA,Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Pamela L. Mellon
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M. Hoffmann
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Science and Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, 92093, USA,Department of Animal Science and the Reproductive and Developmental Sciences Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA,Corresponding author. Michigan State University Interdisciplinary Science and Technology Building #3010 766 Service Road, East Lansing, MI 48224, USA.
| |
Collapse
|
27
|
Son JE, Dou Z, Wanggou S, Chan J, Mo R, Li X, Huang X, Kim KH, Michaud JL, Hui CC. Ectopic expression of Irx3 and Irx5 in the paraventricular nucleus of the hypothalamus contributes to defects in Sim1 haploinsufficiency. SCIENCE ADVANCES 2021; 7:eabh4503. [PMID: 34705510 PMCID: PMC8550250 DOI: 10.1126/sciadv.abh4503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing neurons critical for feeding regulation. Sim1 haploinsufficiency results in hyperphagic obesity with disruption of PVH neurons, yet the molecular profiles of PVH neurons and the mechanism underlying the defects of Sim1 haploinsufficiency are not well understood. By single-cell RNA sequencing, we identified two major populations of Sim1+ PVH neurons, which are differentially affected by Sim1 haploinsufficiency. The Iroquois homeobox genes Irx3 and Irx5 have been implicated in the hypothalamic control of energy homeostasis. We found that Irx3 and Irx5 are ectopically expressed in the Sim1+ PVH cells of Sim1+/− mice. By reducing their dosage and PVH-specific deletion of Irx3, we demonstrate that misexpression of Irx3 and Irx5 contributes to the defects of Sim1+/− mice. Our results illustrate abnormal hypothalamic activities of Irx3 and Irx5 as a central mechanism disrupting PVH development and feeding regulation in Sim1 haploinsufficiency.
Collapse
Affiliation(s)
- Joe Eun Son
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Zhengchao Dou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jade Chan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rong Mo
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kyoung-Han Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
- Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Chi-chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
28
|
De Rosa MC, Glover HJ, Stratigopoulos G, LeDuc CA, Su Q, Shen Y, Sleeman MW, Chung WK, Leibel RL, Altarejos JY, Doege CA. Gene expression atlas of energy balance brain regions. JCI Insight 2021; 6:e149137. [PMID: 34283813 PMCID: PMC8409984 DOI: 10.1172/jci.insight.149137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Energy balance is controlled by interconnected brain regions in the hypothalamus, brainstem, cortex, and limbic system. Gene expression signatures of these regions can help elucidate the pathophysiology underlying obesity. RNA sequencing was conducted on P56 C57BL/6NTac male mice and E14.5 C57BL/6NTac embryo punch biopsies in 16 obesity-relevant brain regions. The expression of 190 known obesity-associated genes (monogenic, rare, and low-frequency coding variants; GWAS; syndromic) was analyzed in each anatomical region. Genes associated with these genetic categories of obesity had localized expression patterns across brain regions. Known monogenic obesity causal genes were highly enriched in the arcuate nucleus of the hypothalamus and developing hypothalamus. The obesity-associated genes clustered into distinct “modules” of similar expression profile, and these were distinct from expression modules formed by similar analysis with genes known to be associated with other disease phenotypes (type 1 and type 2 diabetes, autism, breast cancer) in the same energy balance–relevant brain regions.
Collapse
Affiliation(s)
- Maria Caterina De Rosa
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - Hannah J Glover
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and
| | - George Stratigopoulos
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons
| | - Charles A LeDuc
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Qi Su
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Yufeng Shen
- Department of Systems Biology.,Department of Biomedical Informatics
| | - Mark W Sleeman
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Wendy K Chung
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Department of Medicine.,Herbert Irving Comprehensive Cancer Center.,Institute of Human Nutrition
| | - Rudolph L Leibel
- Department of Pediatrics and Molecular Genetics.,Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Institute of Human Nutrition
| | | | - Claudia A Doege
- Naomi Berrie Diabetes Center, College of Physicians and Surgeons.,Columbia Stem Cell Initiative, and.,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
29
|
Cognitive impairments in patients with overweight and obesity. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. In modern society, the growth of the overweight and obese population increase every year. This confirms the status assigned to the problem under consideration as a non-infectious epidemic of the 21st century. At the same time, the amount of scientific information about the influence of excess weight on various aspects of human life is actively increasing. This undoubtedly requires a systematic generalization of the available data.Aims. The presented literature review is devoted to the analysis of modern scientific research on the specificity of cognitive impairment in overweight and obese people.Materials and methods. Information search was carried out using Internet resources (PubMed, Web of Science, eLibrary.ru, frontiersin.org, sciencedirect. com, ncbi.nlm.nih.gov), literature sources were analyzed for the period from 2001 to 2020 for the following keywords: obesity, overweight, cognitive functions, cognitions, cognitive impairments.Results. As a result of the literature review, the main directions of research on the relationship between cognitive impairment and overweight, as well as the relationship between cognitive dysfunction and obesity, were identified. The specificity of diametrically opposed opinions within the framework of each consecrated trend is presented. According to the results of the analysis of the identified areas, in the scientific community the most common point of view is the presence of a connection between obesity and cognitive impairment. In this connection, the authors identified the main cognitive impairments associated with excess weight and their mediating mechanisms. And also the age specificity of the problem under study is indicated.Conclusions. Despite the fact that the problem of the relationship between obesity, overweight and cognitive functions is comprehensively studied, there is a shortage of data on the state of thinking, attention, praxis, gnosis, and speech in overweight people.
Collapse
|
30
|
Тимашева ЯР, Балхиярова ЖР, Кочетова ОВ. [Current state of the obesity research: genetic aspects, the role of microbiome, and susceptibility to COVID-19]. PROBLEMY ENDOKRINOLOGII 2021; 67:20-35. [PMID: 34533011 PMCID: PMC9753850 DOI: 10.14341/probl12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Obesity affects over 700 million people worldwide and its prevalence keeps growing steadily. The problem is particularly relevant due to the increased risk of COVID-19 complications and mortality in obese patients. Obesity prevalence increase is often associated with the influence of environmental and behavioural factors, leading to stigmatization of people with obesity due to beliefs that their problems are caused by poor lifestyle choices. However, hereditary predisposition to obesity has been established, likely polygenic in nature. Morbid obesity can result from rare mutations having a significant effect on energy metabolism and fat deposition, but the majority of patients does not present with monogenic forms. Microbiome low diversity significantly correlates with metabolic disorders (inflammation, insulin resistance), and the success of weight loss (bariatric) surgery. However, data on the long-term consequences of bariatric surgery and changes in the microbiome composition and genetic diversity before and after surgery are currently lacking. In this review, we summarize the results of studies of the genetic characteristics of obesity patients, molecular mechanisms of obesity, contributing to the unfavourable course of coronavirus infection, and the evolution of their microbiome during bariatric surgery, elucidating the mechanisms of disease development and creating opportunities to identify potential new treatment targets and design effective personalized approaches for the diagnosis, management, and prevention of obesity.
Collapse
Affiliation(s)
- Я. Р. Тимашева
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет
| | - Ж. Р. Балхиярова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук;
Башкирский государственный медицинский университет;
Университет Суррея
| | - О. В. Кочетова
- Институт биохимии и генетики Уфимского федерального исследовательского центра Российской академии наук
| |
Collapse
|
31
|
Rossi JJ, Rosenfeld JA, Chan KM, Streff H, Nankivell V, Peet DJ, Whitelaw ML, Bersten DC. Molecular characterisation of rare loss-of-function NPAS3 and NPAS4 variants identified in individuals with neurodevelopmental disorders. Sci Rep 2021; 11:6602. [PMID: 33758288 PMCID: PMC7987981 DOI: 10.1038/s41598-021-86041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Aberrations in the excitatory/inhibitory balance within the brain have been associated with both intellectual disability (ID) and schizophrenia (SZ). The bHLH-PAS transcription factors NPAS3 and NPAS4 have been implicated in controlling the excitatory/inhibitory balance, and targeted disruption of either gene in mice results in a phenotype resembling ID and SZ. However, there are few human variants in NPAS3 and none in NPAS4 that have been associated with schizophrenia or neurodevelopmental disorders. From a clinical exome sequencing database we identified three NPAS3 variants and four NPAS4 variants that could potentially disrupt protein function in individuals with either developmental delay or ID. The transcriptional activity of the variants when partnered with either ARNT or ARNT2 was assessed by reporter gene activity and it was found that variants which truncated the NPAS3/4 protein resulted in a complete loss of transcriptional activity. The ability of loss-of-function variants to heterodimerise with neuronally enriched partner protein ARNT2 was then determined by co-immunoprecipitation experiments. It was determined that the mechanism for the observed loss of function was the inability of the truncated NPAS3/4 protein to heterodimerise with ARNT2. This further establishes NPAS3 and NPAS4 as candidate neurodevelopmental disorder genes.
Collapse
Affiliation(s)
- Joseph J Rossi
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Clinical Genomics, Baylor Genetics Laboratory, Houston, TX, 77030, USA
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Victoria Nankivell
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Daniel J Peet
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - Murray L Whitelaw
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - David C Bersten
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
32
|
The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development. Int J Mol Sci 2021; 22:ijms22062868. [PMID: 33799876 PMCID: PMC8001110 DOI: 10.3390/ijms22062868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
The basic helix–loop–helix/Per-ARNT-SIM (bHLH-PAS) proteins are a family of transcription factors regulating expression of a wide range of genes involved in different functions, ranging from differentiation and development control by oxygen and toxins sensing to circadian clock setting. In addition to the well-preserved DNA-binding bHLH and PAS domains, bHLH-PAS proteins contain long intrinsically disordered C-terminal regions, responsible for regulation of their activity. Our aim was to analyze the potential connection between disordered regions of the bHLH-PAS transcription factors, post-transcriptional modifications and liquid-liquid phase separation, in the context of disease-associated missense mutations. Highly flexible disordered regions, enriched in short motives which are more ordered, are responsible for a wide spectrum of interactions with transcriptional co-regulators. Based on our in silico analysis and taking into account the fact that the functions of transcription factors can be modulated by posttranslational modifications and spontaneous phase separation, we assume that the locations of missense mutations inducing disease states are clearly related to sequences directly undergoing these processes or to sequences responsible for their regulation.
Collapse
|
33
|
Abstract
Neural circuits in the hypothalamus play a key role in the regulation of human energy homeostasis. A critical circuit involves leptin-responsive neurons in the hypothalamic arcuate nucleus (the infundibular nucleus in humans) expressing the appetite-suppressing neuropeptide proopiomelanocortin (POMC) and the appetite-stimulating Agouti-related peptide. In the fed state, the POMC-derived melanocortin peptide α-melanocyte-stimulating hormone stimulates melanocortin-4 receptors (MC4Rs) expressed on second-order neurons in the paraventricular nucleus of the hypothalamus (PVN). Agonism of MC4R leads to reduced food intake and increased energy expenditure. Disruption of this hypothalamic circuit by inherited mutations in the genes encoding leptin, the leptin receptor, POMC, and MC4R can lead to severe obesity in humans. The characterization of these and closely related genetic obesity syndromes has informed our understanding of the neural pathways by which leptin regulates energy balance, neuroendocrine function, and the autonomic nervous system. A broader understanding of these neural and molecular mechanisms has paved the way for effective mechanism-based therapies for patients whose severe obesity is driven by disruption of these pathways.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
34
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
35
|
Baron M, Froguel P, Bonnefond A. [Something new in the genetics of monogenic obesity and its insights into pathophysiology]. Med Sci (Paris) 2020; 36:859-865. [PMID: 33026327 DOI: 10.1051/medsci/2020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Obesity is a complex, multifactorial disorder. About 5% of obese patients actually present with a monogenic form of obesity where only one mutation is sufficient to cause the disease. So far, the genes that have been found to be mutated in these monogenic forms play a key role in the leptin/melanocortin pathway which is mainly active in the hypothalamus and which regulates food intake and energy expenditure. Our laboratory has recently reported a novel monogenic form of obesity due to MRAP2 deficiency where, contrary to previously described monogenic forms of obesity, the carriers presented with hyperglycemia and hypertension in addition to obesity, suggesting that MRAP2 might play a pleiotropic role in metabolic tissues, in addition to its role in brain control of food intake and energy expenditure.
Collapse
Affiliation(s)
- Morgane Baron
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France - Department of Metabolism, Imperial College London, Londres, W12 0NN, Royaume-Uni
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Université de Lille, CHU de Lille, 1 place de Verdun, 59045, France - Department of Metabolism, Imperial College London, Londres, W12 0NN, Royaume-Uni
| |
Collapse
|
36
|
Gonsalves R, Aleck K, Newbern D, Shaibi G, Kapadia C, Oatman O. Severe early onset obesity and hypopituitarism in a child with a novel SIM1 gene mutation. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM200042. [PMID: 33434169 PMCID: PMC7576654 DOI: 10.1530/edm-20-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/11/2020] [Indexed: 11/08/2022] Open
Abstract
SUMMARY Single-minded homolog 1 (SIM1) is a transcription factor that plays a role in the development of both the hypothalamus and pituitary. SIM1 gene mutations are known to cause obesity in humans, and chromosomal deletions encompassing SIM1 and other genes necessary for pituitary development can cause a Prader-Willi-like syndrome with obesity and hypopituitarism. There have been no reported cases of hypopituitarism linked to a single SIM1 mutation. A 21-month-old male presented to endocrinology clinic with excessive weight gain and severe obesity. History was also notable for excessive drinking and urination. Endocrine workup revealed central hypothyroidism, partial diabetes insipidus, and central adrenal insufficiency. Genetic evaluation revealed a novel mutation in the SIM1 gene. No other genetic abnormalities to account for his obesity and hypopituitarism were identified. While we cannot definitively state this mutation is pathogenic, it is notable that SIM1 plays a role in the development of all three of the patient's affected hormone axes. He is now 6 years old and remains on treatment for his pituitary hormone deficiencies and continues to exhibit excessive weight gain despite lifestyle interventions. LEARNING POINTS Mutations in SIM1 are a well-recognized cause of monogenic human obesity, and there have been case reports of Prader-Willi-like syndrome and hypopituitarism in patients with chromosomal deletions that contain the SIM1 gene. SIM1 is expressed during the development of the hypothalamus, specifically in neuroendocrine lineages that give rise to the hormones oxytocin, arginine vasopressin, thyrotropin-releasing hormone, corticotropin-releasing hormone, and somatostatin. Pituitary testing should be considered in patients with severe obesity and a known genetic abnormality affecting the SIM1 gene, particularly in the pediatric population.
Collapse
Affiliation(s)
- Rob Gonsalves
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Kirk Aleck
- Division of Genetics, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Dorothee Newbern
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Gabriel Shaibi
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Chirag Kapadia
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Oliver Oatman
- Division of Endocrinology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| |
Collapse
|
37
|
|
38
|
Coban MA, Blackburn PR, Whitelaw ML, van Haelst MM, Atwal PS, Caulfield TR. Structural Models for the Dynamic Effects of Loss-of-Function Variants in the Human SIM1 Protein Transcriptional Activation Domain. Biomolecules 2020; 10:biom10091314. [PMID: 32932609 PMCID: PMC7563489 DOI: 10.3390/biom10091314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 02/02/2023] Open
Abstract
Single-minded homologue 1 (SIM1) is a transcription factor with numerous different physiological and developmental functions. SIM1 is a member of the class I basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factor family, that includes several other conserved proteins, including the hypoxia-inducible factors, aryl hydrocarbon receptor, neuronal PAS proteins, and the CLOCK circadian regulator. Recent studies of HIF-a-ARNT and CLOCK-BMAL1 protein complexes have revealed the organization of their bHLH, PASA, and PASB domains and provided insight into how these heterodimeric protein complexes form; however, experimental structures for SIM1 have been lacking. Here, we describe the first full-length atomic structural model for human SIM1 with its binding partner ARNT in a heterodimeric complex and analyze several pathogenic variants utilizing state-of-the-art simulations and algorithms. Using local and global positional deviation metrics, deductions to the structural basis for the individual mutants are addressed in terms of the deleterious structural reorganizations that could alter protein function. We propose new experiments to probe these hypotheses and examine an interesting SIM1 dynamic behavior. The conformational dynamics demonstrates conformational changes on local and global regions that represent a mechanism for dysfunction in variants presented. In addition, we used our ab initio hybrid model for further prediction of variant hotspots that can be engineered to test for counter variant (restoration of wild-type function) or basic research probe.
Collapse
Affiliation(s)
- Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Patrick R. Blackburn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Murray L. Whitelaw
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide SA 5000, Australia;
| | - Mieke M. van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Paldeep S. Atwal
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
- Atwal Clinic, Jacksonville, FL 32224, USA
| | - Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA, MN, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Correspondence: ; Tel.: +1-904-953-6072; Fax: +1-904-953-7370
| |
Collapse
|
39
|
Santos JFD, Acosta AX, Scheibler GG, Pitanga PML, Alves ES, Meira JGC, Zanardo ÉA, Kulikowski LD, Lima RLLFD, Carvalho AFLD. Case of 15q26-qter deletion associated with a Prader-Willi phenotype. Eur J Med Genet 2020; 63:103955. [PMID: 32473228 DOI: 10.1016/j.ejmg.2020.103955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/28/2022]
Abstract
Prader-Willi syndrome (PWS) is one of the common neurogenetic disorders associated with intellectual disability. PWS involves a complex inheritance pattern and is caused by an absence of gene expression on the paternally inherited 15q11.2-q13 region, either due to deletion, maternal uniparental disomy or imprinting defect. The syndrome is characterized principally by severe neonatal hypotonia, a weak suck in infancy that is later followed by hyperphagia and obesity, developmental delay, intellectual disability and short stature. In the case of the chromosome 15q26-qter deletion syndrome or Drayer's syndrome, very few reports have been published. Its characteristics include intrauterine growth restriction, postnatal growth failure, varying degrees of intellectual disability, developmental delay, typical facial appearance and diaphragmatic hernia. The present paper describes a female patient in whom clinical findings were suggestive of PWS and deletion in the 15q26-qter region. Both karyotyping and methylation-specific polymerase chain reaction were shown to be normal. Nevertheless, fluorescence in situ hybridization showed a 15qter deletion that was later mapped by single nucleotide polymorphism (SNP)-array. The deleted genomic region involves the insulin-like growth factor-1 receptor (IGF1R) gene, which is related to short stature, developmental delay and intellectual disability. This case had various clinical characteristics in common with the cases of 15q26-qter deletionand characteristics compatible with PWS.
Collapse
Affiliation(s)
- Jéssica Fernandes Dos Santos
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Angelina Xavier Acosta
- Department of Medical Genetics, Edgard Santos Teaching Hospital Academic, Federal University of Bahia, Salvador, Bahia, Brazil; Pediatrics Department, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Gabriela Gayer Scheibler
- Department of Medical Genetics, Edgard Santos Teaching Hospital Academic, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Paula Monique Leite Pitanga
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Esmeralda Santos Alves
- Laboratory of Human Genetics and Mutagenesis, Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil; Department of Medical Genetics, Edgard Santos Teaching Hospital Academic, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Joanna Goes Castro Meira
- Department of Medical Genetics, Edgard Santos Teaching Hospital Academic, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Évelin Aline Zanardo
- Pathology Department, Cytogenomics Laboratory - LIM 03, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
40
|
Xiao C, Liu N, Province H, Piñol RA, Gavrilova O, Reitman ML. BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice. Mol Metab 2020; 36:100969. [PMID: 32229422 PMCID: PMC7113433 DOI: 10.1016/j.molmet.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Bombesin-like receptor 3 (BRS3) is an orphan receptor and Brs3 knockout mice develop obesity with increased food intake and reduced resting metabolic rate and body temperature. The neuronal populations contributing to these effects were examined. METHODS We studied energy metabolism in mice with Cre-mediated recombination causing 1) loss of BRS3 selectively in SIM1- or MC4R-expressing neurons or 2) selective re-expression of BRS3 from a null background in these neurons. RESULTS The deletion of BRS3 in MC4R neurons increased body weight/adiposity, metabolic efficiency, and food intake, and reduced insulin sensitivity. BRS3 re-expression in these neurons caused partial or no reversal of these traits. However, these observations were confounded by an obesity phenotype caused by the Mc4r-Cre allele, independent of its recombinase activity. The deletion of BRS3 in SIM1 neurons increased body weight/adiposity and food intake, but not to the levels of the global null. The re-expression of BRS3 in SIM1 neurons reduced body weight/adiposity and food intake, but not to wild type levels. The deletion of BRS3 in either MC4R- or SIM1-expressing neurons affected body temperature, with re-expression in either population reversing the null phenotype. MK-5046, a BRS3 agonist, increases light phase body temperature in wild type, but not Brs3 null, mice and BRS3 re-expression in either population restored response to MK-5046. CONCLUSIONS BRS3 in both MC4R- and SIM1-expressing neurons contributes to regulation of body weight/adiposity, insulin sensitivity, food intake, and body temperature.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Haley Province
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Blackburn PR, Sullivan AE, Gerassimou AG, Kleinendorst L, Bersten DC, Cooiman M, Harris KG, Wierenga KJ, Klee EW, van Gerpen JA, Ross OA, van Haelst MM, Whitelaw ML, Caulfield TR, Atwal PS. Functional Analysis of the SIM1 Variant p.G715V in 2 Patients With Obesity. J Clin Endocrinol Metab 2020; 105:5623030. [PMID: 31872862 DOI: 10.1210/clinem/dgz192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 01/17/2023]
Abstract
CONTEXT Single-minded homologue 1 (SIM1) is a transcription factor with several physiological and developmental functions. Haploinsufficiency of SIM1 is associated with early-onset obesity with or without Prader-Willi-like (PWL) features and may exhibit incomplete penetrance. CASE DESCRIPTION Next-generation sequencing was performed for 2 male patients with obesity, including 1 man presenting with intellectual disability (ID), body mass index (BMI) of 47.4, and impulse-control disorder, and the other man with early obesity (BMI of 36); sequencing revealed a missense variant in SIM1 (c.2144G>T; p.G715V) in both individuals. Previous studies have identified several disease-associated variants that fall near the p.G715V variant within the C-terminal domain of SIM1. We examined p.G715V variant stability and activity in a doxycycline-inducible stable cell line transfected with an artificial reporter construct and either ARNT or ARNT2 as a partner protein. CONCLUSIONS Functional testing of the p.G715V variant revealed a significant reduction in SIM1-mediated transcriptional activity. We also generated the first ab initio hybrid protein model for full-length SIM1 to show the predicted spatial relationship between p.G715V and other previously described variants in this region and identified a putative mutation hotspot within the C-terminus. Significant clinical heterogeneity has been observed in patients with SIM1 variants, particularly with regards to the PWL phenotype. In the patient with ID, a second variant of uncertain significance in CHD2 was identified that may contribute to his ID and behavioral disturbances, emphasizing the role of additional genetic modifiers.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Adrienne E Sullivan
- Department of Molecular and Cellular Biology, University of Adelaide, South Australia, Australia
| | - Alexis G Gerassimou
- Department of Molecular and Cellular Biology, University of Adelaide, South Australia, Australia
| | - Lotte Kleinendorst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - David C Bersten
- Department of Molecular and Cellular Biology, University of Adelaide, South Australia, Australia
| | - Mellody Cooiman
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Klaas J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | | | - Owen A Ross
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Mieke M van Haelst
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, the Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Murray L Whitelaw
- Department of Molecular and Cellular Biology, University of Adelaide, South Australia, Australia
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
- Department of Neurosurgery, Mayo Clinic, Jacksonville, Florida
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, Florida
| | - Paldeep S Atwal
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
42
|
Akıncı A, Türkkahraman D, Tekedereli İ, Özer L, Evren B, Şahin İ, Kalkan T, Çürek Y, Çamtosun E, Döğer E, Bideci A, Güven A, Eren E, Sangün Ö, Çayır A, Bilir P, Törel Ergür A, Ercan O. Novel Mutations in Obesity-related Genes in Turkish Children with Non-syndromic Early Onset Severe Obesity: A Multicentre Study. J Clin Res Pediatr Endocrinol 2019; 11:341-349. [PMID: 30991789 PMCID: PMC6878344 DOI: 10.4274/jcrpe.galenos.2019.2019.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Non syndromic monogenic obesity is a rare cause of early onset severe obesity in the childhood period. This form may not be distinguishable from other forms of severe obesity without genetic analysis, particularly if patients do not exibit any physical abnormalities or developmental delay. The aim of this study was to screen 41 different obesity-related genes in children with non-syndromic early onset severe obesity. METHODS Children with severe (body mass index-standard deviation score >3) and early onset (<7 years) obesity were screened by next-generation sequencing based, targeted DNA custom panel for 41 known-obesity-related genes and the results were confirmed by Sanger technique. RESULTS Six novel variants were identified in five candidate genes in seven out of 105 children with severe obesity; two in SIM1 (p.W306C and p.Q36X), one in POMC (p.Y160H), one in PCSK1 (p.W130G fs Ter8), two in MC4R (p.D126E) and one in LEPR (p.Q4H). Additionally, two previously known variations in MC4R were identified in four patients (p.R165W in three, and p.V166I in one). CONCLUSION We identified six novel and four previously described variants in six obesity-related genes in 11 out of 105 childrens with early onset severe obesity. The prevalence of monogenic obesity was 10.4% in our cohort.
Collapse
Affiliation(s)
- Ayşehan Akıncı
- nönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey,* Address for Correspondence: İnönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey Phone: +90 532 643 53 50 E-mail:
| | - Doğa Türkkahraman
- Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, Antalya, Turkey
| | - İbrahim Tekedereli
- İnönü University Faculty of Medicine, Department of Molecular Genetics, Malatya, Turkey
| | - Leyla Özer
- Yüksek İhtisas University Faculty of Medicine, Department of Molecular Genetics, Ankara, Turkey
| | - Bahri Evren
- İnönü University Faculty of Medicine, Department of Endocrinology and Diabetes, Malatya, Turkey
| | - İbrahim Şahin
- İnönü University Faculty of Medicine, Department of Endocrinology and Diabetes, Malatya, Turkey
| | - Tarkan Kalkan
- Antalya Training and Research Hospital, Clinic of Molecular Genetics, Antalya, Turkey
| | - Yusuf Çürek
- Antalya Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, Antalya, Turkey
| | - Emine Çamtosun
- nönü University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Malatya, Turkey
| | - Esra Döğer
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Aysun Bideci
- Gazi University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ayla Güven
- Göztepe Training and Research Hospital, Clinic of Pediatric Endocrinology and Diabetes, İstanbul, Turkey
| | - Erdal Eren
- Uludağ University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Bursa, Turkey
| | - Özlem Sangün
- Başkent University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Adana, Turkey
| | - Atilla Çayır
- Erzurum Training and Reseach Hospital, Clinic of Pediatric Endocrinology and Diabetes, Erzurum, Turkey
| | - Pelin Bilir
- Ankara University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Ayça Törel Ergür
- Ufuk University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ankara, Turkey
| | - Oya Ercan
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Departments of Pediatric Endocrinology and Diabetes, and Adolescent, İstanbul, Turkey
| |
Collapse
|
43
|
Cooiman M, Kleinendorst L, Aarts E, Janssen I, van Amstel HP, Blakemore A, Hazebroek E, Meijers-Heijboer H, van der Zwaag B, Berends F, van Haelst M. Genetic Obesity and Bariatric Surgery Outcome in 1014 Patients with Morbid Obesity. Obes Surg 2019; 30:470-477. [DOI: 10.1007/s11695-019-04184-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Abstract
Obesity and excess weight are a pandemic phenomenon in the modern world. Childhood and adolescent obesity often ends up in obesity in adults. The costs of obesity and its consequences are staggering for any society, crippling for countries in development. Childhood obesity is also widespread in Macedonia. Metabolic syndrome, dyslipidemia and carbohydrate intolerance are found in significant numbers. Parents and grandparents are often obese. Some of the children are either dysmorphic, or slightly retarded. We have already described patients with Prader-Willi syndrome, Bardet-Biedl syndrome or WAGR syndrome. A genetic screening for mutations in monogenic obesity in children with early, rapid-onset or severe obesity, severe hyperphagia, hypogonadism, intestinal dysfunction, hypopigmentation of hair and skin, postprandial hypoglycaemia, diabetes insipidus, abnormal leptin level and coexistence of lean and obese siblings in the family discovers many genetic forms of obesity. There are about 30 monogenic forms of obesity. In addition, obesity is different in ethnic groups, and the types of monogenic obesity differ. In brief, an increasing number of genes and genetic mechanisms in children continue to be discovered. This sheds new light on the molecular mechanisms of obesity and potentially gives a target for new forms of treatment.
Collapse
|
45
|
Serra-Juhé C, Martos-Moreno GÁ, Bou de Pieri F, Flores R, Chowen JA, Pérez-Jurado LA, Argente J. Heterozygous rare genetic variants in non-syndromic early-onset obesity. Int J Obes (Lond) 2019; 44:830-841. [PMID: 30926952 PMCID: PMC7101277 DOI: 10.1038/s41366-019-0357-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Obesity is a very heterogeneous disorder at both the clinical and molecular levels and with high heritability. Several monogenic forms and genes with strong effects have been identified for non-syndromic severe obesity. Novel therapeutic interventions are in development for some genetic forms, emphasizing the importance of determining genetic contributions. OBJECTIVE We aimed to define the contribution of rare single-nucleotide genetic variants (RSVs) in candidate genes to non-syndromic severe early-onset obesity (EOO; body mass index (BMI) >+3 standard deviation score, <3 years). METHODS Using a pooled DNA-sequencing approach, we screened for RSVs in 15 obesity candidate genes in a series of 463 EOO patients and 480 controls. We also analysed exome data from 293 EOO patients from the "Viva la Familia" (VLF) study as a replication dataset. RESULTS Likely or known pathogenic RSVs were identified in 23 patients (5.0%), with 7 of the 15 genes (BDNF, FTO, MC3R, MC4R, NEGR1, PPARG and SIM1) harbouring RSVs only in cases (3.67%) and none in controls. All were heterozygous changes, either de novo (one in BDNF) or inherited from obese parents (seven maternal, three paternal), and no individual carried more than one variant. Results were replicated in the VLF study, where 4.10% of probands carried RSVs in the overrepresented genes. RSVs in five genes were either absent (LEP) or more common in controls than in cases (ADRB3, LEPR, PCSK1 and PCSK2) in both obese datasets. CONCLUSIONS Heterozygous RSVs in several candidate genes of the melanocortin pathway are found in ~5.0% patients with EOO. These results support the clinical utility of genetic testing to identify patients who might benefit from targeted therapeutic intervention.
Collapse
Affiliation(s)
- Clara Serra-Juhé
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Francesc Bou de Pieri
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Raquel Flores
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Julie A Chowen
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Hospital del Mar Research Institute (IMIM), C/Doctor Aiguader, 8, 08003, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain.,Women's and Children's Hospital, South Australia Medical and Health Research Institute (SAMHRI) and University of Adelaide, 72 King William Road, North Adelaide, SA, 5006, Australia
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Department of Pediatrics, Avenida Menéndez Pelayo, 65, 28009, Madrid, Spain. .,CIBER de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, C/Sinesio Delgado, 4, 28029, Madrid, Spain. .,IMDEA Food Institute, CEIUAM + CSI, Crta. de Cantoblanco, 8, 28049, Madrid, Spain.
| |
Collapse
|
46
|
Rohde K, Keller M, la Cour Poulsen L, Blüher M, Kovacs P, Böttcher Y. Genetics and epigenetics in obesity. Metabolism 2019; 92:37-50. [PMID: 30399374 DOI: 10.1016/j.metabol.2018.10.007] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Obesity is among the most threatening health burdens worldwide and its prevalence has markedly increased over the last decades. Obesity maybe considered a heritable trait. Identifications of rare cases of monogenic obesity unveiled that hypothalamic circuits and the brain-adipose axis play an important role in the regulation of energy homeostasis, appetite, hunger and satiety. For example, mutations in the leptin gene cause obesity through almost unsuppressed overeating. Common (multifactorial) obesity, most likely resulting from a concerted interplay of genetic, epigenetic and environmental factors, is clearly linked to genetic predisposition by multiple risk variants, which, however only account for a minor part of the general BMI variability. Although GWAS opened new avenues in elucidating the complex genetics behind common obesity, understanding the biological mechanisms relative to the specific risk contributing to obesity remains poorly understood. Non-genetic factors such as eating behavior or physical activity strongly modulate the individual risk for developing obesity. These factors may interact with genetic predisposition for obesity through epigenetic mechanisms. Thus, here, we review the current knowledge about monogenic and common (multifactorial) obesity highlighting the important recent advances in our knowledge on how epigenetic regulation is involved in the etiology of obesity.
Collapse
Affiliation(s)
- Kerstin Rohde
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway.
| | - Maria Keller
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Lars la Cour Poulsen
- Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig 04103, Germany.
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany.
| | - Yvonne Böttcher
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig 04103, Germany; University of Oslo, Institute of Clinical Medicine, Oslo 0316, Norway; Akershus University Hospital, Department of Clinical Molecular Biology, Medical Division, Lørenskog 1478, Norway.
| |
Collapse
|
47
|
He F, Berg A, Imamura Kawasawa Y, Bixler EO, Fernandez-Mendoza J, Whitsel EA, Liao D. Association between DNA methylation in obesity-related genes and body mass index percentile in adolescents. Sci Rep 2019; 9:2079. [PMID: 30765773 PMCID: PMC6375997 DOI: 10.1038/s41598-019-38587-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022] Open
Abstract
Childhood obesity remains an epidemic in the U.S. and worldwide. However, little is understood regarding the epigenetic basis of obesity in adolescents. To investigate the cross-sectional association between DNA methylation level in obesity-related genes and body mass index (BMI) percentile, data from 263 adolescents in the population-based Penn State Child Cohort follow-up exam was analysed. Using DNA extracted from peripheral leukocytes, epigenome-wide single nucleotide resolution of DNA methylation in cytosine-phosphate-guanine (CpG) sites and surrounding regions was obtained. We used multivariable-adjusted linear regression models to assess the association between site-specific methylation level and age- and sex-specific BMI percentile. Hypergeometric and permutation tests were used to determine if obesity-related genes were significantly enriched among all intragenic sites that achieved a p < 0.05 throughout the epigenome. Among the 5,669 sites related to BMI percentile with p < 0.05, 28 were identified within obesity-related genes. Obesity-related genes were significantly enriched among 103,466 intragenic sites (Phypergeometric = 0.006; Ppermutation = 0.006). Moreover, increased methylation on one site within SIM1 was significantly related to higher BMI percentile (P = 4.2E-05). If externally validated, our data would suggest that DNA methylation in obesity-related genes may relate to obesity risk in adolescents.
Collapse
Affiliation(s)
- Fan He
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Arthur Berg
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Yuka Imamura Kawasawa
- Institute for Personalized Medicine, Departments of Biochemistry and Molecular Biology and Pharmacology, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA
| | - Edward O Bixler
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry, the Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health; Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Duanping Liao
- Department of Public Health Sciences, the Pennsylvania State University College of Medicine, Hershey, 17033, Pennsylvania, USA.
| |
Collapse
|
48
|
Tam V, Turcotte M, Meyre D. Established and emerging strategies to crack the genetic code of obesity. Obes Rev 2019; 20:212-240. [PMID: 30353704 DOI: 10.1111/obr.12770] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the genetic elucidation of obesity over the past two decades, driven largely by technological, methodological and organizational innovations. Current strategies for identifying obesity-predisposing loci/genes, including cytogenetics, linkage analysis, homozygosity mapping, admixture mapping, candidate gene studies, genome-wide association studies, custom genotyping arrays, whole-exome sequencing and targeted exome sequencing, have achieved differing levels of success, and the identified loci in aggregate explain only a modest fraction of the estimated heritability of obesity. This review outlines the successes and limitations of these approaches and proposes novel strategies, including the use of exceptionally large sample sizes, the study of diverse ethnic groups and deep phenotypes and the application of innovative methods and study designs, to identify the remaining obesity-predisposing genes. The use of both established and emerging strategies has the potential to crack the genetic code of obesity in the not-too-distant future. The resulting knowledge is likely to yield improvements in obesity prediction, prevention and care.
Collapse
Affiliation(s)
- V Tam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - M Turcotte
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
49
|
Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 2018; 363:science.aau0629. [PMID: 30545847 DOI: 10.1126/science.aau0629] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022]
Abstract
A wide range of human diseases result from haploinsufficiency, where the function of one of the two gene copies is lost. Here, we targeted the remaining functional copy of a haploinsufficient gene using CRISPR-mediated activation (CRISPRa) in Sim1 and Mc4r heterozygous mouse models to rescue their obesity phenotype. Transgenic-based CRISPRa targeting of the Sim1 promoter or its distant hypothalamic enhancer up-regulated its expression from the endogenous functional allele in a tissue-specific manner, rescuing the obesity phenotype in Sim1 heterozygous mice. To evaluate the therapeutic potential of CRISPRa, we injected CRISPRa-recombinant adeno-associated virus into the hypothalamus, which led to reversal of the obesity phenotype in Sim1 and Mc4r haploinsufficient mice. Our results suggest that endogenous gene up-regulation could be a potential strategy to treat altered gene dosage diseases.
Collapse
Affiliation(s)
- Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sawitree Rattanasopha
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA.,Doctor of Philosophy Program in Medical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Serena Tamura
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lenka Maliskova
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yi Wang
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adelaide Bernard
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aaron Hardin
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Walter L Eckalbar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Christian Vaisse
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
50
|
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases. Endocrinology 2018; 159:3458-3472. [PMID: 30052854 DOI: 10.1210/en.2018-00453] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVH), located in the ventral diencephalon adjacent to the third ventricle, is a highly conserved brain region present in species from zebrafish to humans. The PVH is composed of three main types of neurons, magnocellular, parvocellular, and long-projecting neurons, which play imperative roles in the regulation of energy balance and various endocrinological activities. In this review, we focus mainly on recent findings about the early development of the hypothalamus and the PVH, the functions of the PVH in the modulation of energy homeostasis and in the hypothalamus-pituitary system, and human diseases associated with the PVH, such as obesity, short stature, hypertension, and diabetes insipidus. Thus, the investigations of the PVH will benefit not only understanding of the development of the central nervous system but also the etiology of and therapy for human diseases.
Collapse
Affiliation(s)
- Cheng Qin
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jiaheng Li
- Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi, China
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| |
Collapse
|