1
|
Alshaebi F, Safi M, Algabri YA, Al-Azab M, Aldanakh A, Alradhi M, Reem A, Zhang C. Interleukin-34 and immune checkpoint inhibitors: Unified weapons against cancer. Front Oncol 2023; 13:1099696. [PMID: 36798830 PMCID: PMC9927403 DOI: 10.3389/fonc.2023.1099696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Interleukin-34 (IL-34) is a cytokine that is involved in the regulation of immune cells, including macrophages, in the tumor microenvironment (TME). Macrophages are a type of immune cell that can be found in large numbers within the TME and have been shown to have a role in the suppression of immune responses in cancer. This mmune suppression can contribute to cancer development and tumors' ability to evade the immune system. Immune checkpoint inhibitors (ICIs) are a type of cancer treatment that target proteins on immune cells that act as "checkpoints," regulating the activity of the immune system. Examples of these proteins include programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). ICIs work by blocking the activity of these proteins, allowing the immune system to mount a stronger response against cancer cells. The combination of IL-34 inhibition with ICIs has been proposed as a potential treatment option for cancer due to the role of IL-34 in the TME and its potential involvement in resistance to ICIs. Inhibiting the activity of IL-34 or targeting its signaling pathways may help to overcome resistance to ICIs and improve the effectiveness of these therapies. This review summarizes the current state of knowledge concerning the involvement of IL-34-mediated regulation of TME and the promotion of ICI resistance. Besides, this work may shed light on whether targeting IL-34 might be exploited as a potential treatment option for cancer patients in the future. However, further research is needed to fully understand the mechanisms underlying the role of IL-34 in TME and to determine the safety and efficacy of this approach in cancer patients.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China
| | - Mohammed Safi
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| | - Yousif A. Algabri
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Mahmoud Al-Azab
- Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, China
| | - Abdullah Aldanakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Alradhi
- Department of Urology, The Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Alariqi Reem
- Faculty of Medicine and Health Sciences, Amran University, Amran, Yemen
| | - Caiqing Zhang
- Department of Respiratory, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong, China,*Correspondence: Mohammed Safi, ; Caiqing Zhang,
| |
Collapse
|
2
|
van Dyk H, Jacobs FJF, Kroon RE, Makhafola TJ, Brink A. Characterisation, structural investigations and biological activity of substituted salicylidene-based compounds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
3
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
4
|
Genetically-engineered "all-in-one" vaccine platform for cancer immunotherapy. Acta Pharm Sin B 2021; 11:3622-3635. [PMID: 34900541 PMCID: PMC8642616 DOI: 10.1016/j.apsb.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity. A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use. We discovered a novel cancer immunostimulant, trichosanthin (TCS), that is a clinically used protein drug in China, and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide, TCS, and a cell-penetrating peptide (CPP), termed an “all-in-one” vaccine, for transcutaneous cancer immunization. The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models. The vaccines were prepared via a facile recombinant method. The vaccines induced the maturation of DCs that subsequently primed CD8+ T cells. The TCS-based immunostimulation was associated with the STING pathway. The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens (i.e., legumain and TRP2 antigenic peptides) and tumor models (i.e., colon tumor and melanoma). These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving, and demonstrates the adjuvant application of TCS—an old drug for a new application.
Collapse
|
5
|
Mucci A, Antonarelli G, Caserta C, Vittoria FM, Desantis G, Pagani R, Greco B, Casucci M, Escobar G, Passerini L, Lachmann N, Sanvito F, Barcella M, Merelli I, Naldini L, Gentner B. Myeloid cell-based delivery of IFN-γ reprograms the leukemia microenvironment and induces anti-tumoral immune responses. EMBO Mol Med 2021; 13:e13598. [PMID: 34459560 PMCID: PMC8495462 DOI: 10.15252/emmm.202013598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
The immunosuppressive microenvironment surrounding tumor cells represents a key cause of treatment failure. Therefore, immunotherapies aimed at reprogramming the immune system have largely spread in the past years. We employed gene transfer into hematopoietic stem and progenitor cells to selectively express anti-tumoral cytokines in tumor-infiltrating monocytes/macrophages. We show that interferon-γ (IFN-γ) reduced tumor progression in mouse models of B-cell acute lymphoblastic leukemia (B-ALL) and colorectal carcinoma (MC38). Its activity depended on the immune system's capacity to respond to IFN-γ and drove the counter-selection of leukemia cells expressing surrogate antigens. Gene-based IFN-γ delivery induced antigen presentation in the myeloid compartment and on leukemia cells, leading to a wave of T cell recruitment and activation, with enhanced clonal expansion of cytotoxic CD8+ T lymphocytes. The activity of IFN-γ was further enhanced by either co-delivery of tumor necrosis factor-α (TNF-α) or by drugs blocking immunosuppressive escape pathways, with the potential to obtain durable responses.
Collapse
Affiliation(s)
- Adele Mucci
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Gabriele Antonarelli
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Francesco Maria Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giacomo Desantis
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Riccardo Pagani
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Beatrice Greco
- Innovative Immunotherapies UnitDivision of Immunology, Transplantation, and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Monica Casucci
- Innovative Immunotherapies UnitDivision of Immunology, Transplantation, and Infectious DiseasesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Giulia Escobar
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Nico Lachmann
- Department of Pediatric Pneumology, Allergology and NeonatologyHannover Medical SchoolHannoverGermany
| | | | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- National Research CouncilInstitute for Biomedical TechnologiesSegrateItaly
| | - Ivan Merelli
- National Research CouncilInstitute for Biomedical TechnologiesSegrateItaly
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Hematology and Bone Marrow Transplantation UnitIRCCS San Raffaele HospitalMilanItaly
| |
Collapse
|
6
|
Tan Y, Chen Q, Li X, Zeng Z, Xiong W, Li G, Li X, Yang J, Xiang B, Yi M. Pyroptosis: a new paradigm of cell death for fighting against cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:153. [PMID: 33941231 PMCID: PMC8091792 DOI: 10.1186/s13046-021-01959-x] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Unraveling the mystery of cell death is one of the most fundamental progresses of life sciences during the past decades. Regulated cell death (RCD) or programmed cell death (PCD) is not only essential in embryonic development, but also plays an important role in the occurrence and progression of diseases, especially cancers. Escaping of cell death is one of hallmarks of cancer. MAIN BODY Pyroptosis is an inflammatory cell death usually caused by microbial infection, accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). Gasdermin family proteins are the executors of pyroptosis. Cytotoxic N-terminal of gasdermins generated from caspases or granzymes proteases mediated cleavage of gasdermin proteins oligomerizes and forms pore across cell membrane, leading to release of IL-1β, IL-18. Pyroptosis exerts tumor suppression function and evokes anti-tumor immune responses. Therapeutic regimens, including chemotherapy, radiotherapy, targeted therapy and immune therapy, induce pyroptosis in cancer, which potentiate local and systemic anti-tumor immunity. On the other hand, pyroptosis of normal cells attributes to side effects of anti-cancer therapies. CONCLUSION In this review, we focus on the regulatory mechanisms of pyroptosis and the tumor suppressive function of pyroptosis. We discuss the attribution of pyroptosis in reprogramming tumor microenvironments and restoration of anti-tumor immunity and its potential application in cancer immune therapy.
Collapse
Affiliation(s)
- Yixin Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.,Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Quanzhu Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jianbo Yang
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Dermatology, Xiangya Hospital, The Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
7
|
Leite CA, Mota JM, de Lima KA, Wanderley CW, Nascimento LA, Ferreira MD, Silva CMS, Colon DF, Sakita JY, Kannen V, Viacava PR, Begnami MD, Lima-Junior RCP, Cordeiro de Lima VC, Alves-Filho JC, Cunha FQ, Ribeiro RA. Paradoxical interaction between cancer and long-term postsepsis disorder: impairment of de novo carcinogenesis versus favoring the growth of established tumors. J Immunother Cancer 2021; 8:jitc-2019-000129. [PMID: 32376720 PMCID: PMC7223471 DOI: 10.1136/jitc-2019-000129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Previous data have reported that the growth of established tumors may be facilitated by postsepsis disorder through changes in the microenvironment and immune dysfunction. However, the influence of postsepsis disorder in initial carcinogenesis remains elusive. Methods In the present work, the effect of postsepsis on inflammation-induced early carcinogenesis was evaluated in an experimental model of colitis-associated colorectal cancer (CAC). We also analyzed the frequency and role of intestinal T regulatory cells (Treg) in CAC carcinogenesis. Results The colitis grade and the tumor development rate were evaluated postmortem or in vivo through serial colonoscopies. Sepsis-surviving mice (SSM) presented with a lower colonic DNA damage, polyp incidence, reduced tumor load, and milder colitis than their sham-operated counterparts. Ablating Treg led to restoration of the ability to develop colitis and tumor polyps in the SSM, in a similar fashion to that in the sham-operated mice. On the other hand, the growth of subcutaneously inoculated MC38luc colorectal cancer cells or previously established chemical CAC tumors was increased in SSM. Conclusion Our results provide evidence that postsepsis disorder has a dual effect in cancer development, inhibiting inflammation-induced early carcinogenesis in a Treg-dependent manner, while increasing the growth of previously established tumors.
Collapse
Affiliation(s)
- Caio Abner Leite
- A.C. Camargo Cancer Center, Sao Paulo, Brazil.,Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil.,Cancer Institute of Ceara, Fortaleza, Brazil
| | - Jose Mauricio Mota
- Instituto do Cancer do Estado de Sao Paulo, University of Sao Paulo, Sao Paulo, Brazil
| | - Kalil Alves de Lima
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | | | - Juliana Yumi Sakita
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vinicius Kannen
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Paula Ramos Viacava
- Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | | | | | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, Brazil .,Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ronaldo Albuquerque Ribeiro
- Cancer Institute of Ceara, Fortaleza, Brazil.,Federal University of Ceara, Faculty of Medicine, Fortaleza, Brazil
| |
Collapse
|
8
|
Wang N, Wang R, Zhang X, Li X, Liang Y, Ding Z. Spatially-resolved proteomics and transcriptomics: An emerging digital spatial profiling approach for tumor microenvironment. ACTA ACUST UNITED AC 2021. [DOI: 10.1051/vcm/2020002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Digital spatial profiling (DSP) is an emerging powerful technology for proteomics and transcriptomics analyses in a spatially resolved manner for formalin-fixed paraffin-embedded (FFPE) samples developed by nanoString Technologies. DSP applies several advanced technologies, including high-throughput readout technologies (digital optical barcodes by nCounter instruments or next generation sequencing (NGS)), programmable digital micromirror device (DMD) technology, and microfluidic sampling technologies into traditional immunohistochemistry (IHC) and RNA in situ hybridization (ISH) approaches, creating an innovative tool for discovery, translational research, and clinical uses. Since its launch in 2019, DSP has been rapidly adopted, especially in immuno-oncology and tumor microenvironment research areas, and has revealed valuable information that was inaccessible before. In this article, we report the successful setup and validation of the first DSP technology platform in China. Both DSP spatial protein and RNA profiling approaches were validated using FFPE colorectal cancer tissues. Regions of interest (ROIs) were selected in the areas enriched with tumor cells, stroma/immune cells, or normal epithelial cells, and multiplex spatial profiling of both proteins and RNAs were performed. DSP spatial profiling data were processed and normalized accordingly, validating the high quality and consistency of the data. Unsupervised hierarchical clustering as well as principal component analysis (PCA) grouped tumor, stroma/immune cells, and normal epithelial cells into distinct clusters, indicating that the DSP approach effectively captured the spatially resolved proteomics and transcriptomics profiles of different compartments within the tumor microenvironment. In summary, the results confirmed the expected sensitivity and robustness of the DSP approach in profiling both proteins and RNAs in a spatially resolved manner. As a novel technology in highly complex spatial analyses, DSP endows refined analytical power from the tumor microenvironment perspective with the potential of scaling up to more analyzable targets at relatively low cell input levels. We expect that the DSP technology will greatly advance a wide range of biomedical research, especially in immuno-oncology and tumor microenvironment research areas.
Collapse
|
9
|
Hama N, Kobayashi T, Han N, Kitagawa F, Kajihara N, Otsuka R, Wada H, Lee HK, Rhee H, Hasegawa Y, Yagita H, Baghdadi M, Seino KI. Interleukin-34 Limits the Therapeutic Effects of Immune Checkpoint Blockade. iScience 2020; 23:101584. [PMID: 33205010 PMCID: PMC7648133 DOI: 10.1016/j.isci.2020.101584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interleukin-34 (IL-34) is an alternative ligand to colony-stimulating factor-1 (CSF-1) for the CSF-1 receptor that acts as a key regulator of monocyte/macrophage lineage. In this study, we show that tumor-derived IL-34 mediates resistance to immune checkpoint blockade regardless of CSF-1 existence in various murine cancer models. Consistent with its immunosuppressive characteristics, the expression of IL-34 in tumors correlates with decreased frequencies of cellular (such as CD8+ and CD4+ T cells and M1-biased macrophages) and molecular (including various cytokines and chemokines) effectors at the tumor microenvironment. Then, a neutralizing antibody against IL-34 improved the therapeutic effects of the immune checkpoint blockade in combinatorial therapeutic models, including a patient-derived xenograft model. Collectively, we revealed that tumor-derived IL-34 inhibits the efficacy of immune checkpoint blockade and proposed the utility of IL-34 blockade as a new strategy for cancer therapy.
Collapse
Affiliation(s)
- Naoki Hama
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Nanumi Han
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Fumihito Kitagawa
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Nabeel Kajihara
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Ryo Otsuka
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Haruka Wada
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Hee-kyung Lee
- DNA Link, Inc., Biomedical Science Building 117, Seoul National University College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, South Korea
| | - Hwanseok Rhee
- DNA Link, Inc., Biomedical Science Building 117, Seoul National University College of Medicine, 103 Daehakro, Jongro-gu, Seoul 03080, South Korea
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Depertment of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Muhammad Baghdadi
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| | - Ken-ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-0815, Japan
| |
Collapse
|
10
|
Jeong SM, Kim YJ. Astaxanthin Treatment Induces Maturation and Functional Change of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Antioxidants (Basel) 2020; 9:antiox9040350. [PMID: 32340271 PMCID: PMC7222357 DOI: 10.3390/antiox9040350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells which accumulate in stress conditions such as infection and tumor. Astaxanthin (ATX) is a well-known antioxidant agent and has a little toxicity. It has been reported that ATX treatment induces antitumor effects via regulation of cell signaling pathways, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2) signaling. In the present study, we hypothesized that treatment with ATX might induce maturation of MDSCs and modulate their immunosuppressive activity. Both in vivo and in vitro treatment with ATX resulted in up-regulation of surface markers such as CD80, MHC class II, and CD11c on both polymorphonuclear (PMN)-MDSCs and mononuclear (Mo)-MDSCs. Expression levels of functional mediators involved in immune suppression were significantly reduced, whereas mRNA levels of Nrf2 target genes were increased in ATX-treated MDSCs. In addition, ATX was found to have antioxidant activity reducing reactive oxygen species level in MDSCs. Finally, ATX-treated MDSCs were immunogenic enough to induce cytotoxic T lymphocyte response and contributed to the inhibition of tumor growth. This demonstrates the role of ATX as a regulator of the immunosuppressive tumor environment through induction of differentiation and functional conversion of MDSCs.
Collapse
|
11
|
PKCζ mediated anti-proliferative effect of C2 ceramide on neutralization of the tumor microenvironment and melanoma regression. Cancer Immunol Immunother 2020; 69:611-627. [PMID: 31996991 DOI: 10.1007/s00262-020-02492-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy, which has advantages over chemotherapy due to lesser toxicity and higher specificity, is on the rise to treat cancer. Recently, pro-apoptotic glycolipid, ceramide has emerged as a key regulator in cancer immunotherapy. The present study elucidated the potential anti-melanoma efficacy of cell-permeable, exogenous C2 ceramide on cell death and amelioration of tumor microenvironment (TME). We, for the first time, demonstrated that C2 ceramide triggered apoptosis of melanoma cells by augmenting PKCζ along with pro-inflammatory cytokines and signaling factors. C2 ceramide showed a PKCζ-mediated tumor-suppressive role in melanoma without exhibiting hepatotoxicity and nephrotoxicity. Moreover, PKCζ was revealed as one of the key regulators of Akt and ceramide during C2 ceramide-mediated apoptosis. C2 ceramide was effective in repolarization of M2 macrophage phenotype and reduction of angiogenic factors such as VEGF, VEGFR1, VEGFR2, HIF1α. Interestingly, PKCζ knockdown attenuated C2 ceramide-mediated inhibition of melanoma progression. Restoration of the Th1 type TME by C2 ceramide enhanced cytotoxic T cell-mediated killing of melanoma cells. Altogether, the study unraveled that C2 ceramide-induced PKCζ was associated with favorable immune cell functioning in TME leading to melanoma regression. Thus, our findings explored a novel mechanistic insight into C2 ceramide as a promising immunotherapeutic agent in melanoma treatment.
Collapse
|
12
|
Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol 2019; 10:2965. [PMID: 31921205 PMCID: PMC6928196 DOI: 10.3389/fimmu.2019.02965] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is often perceived as a relatively recent advance. In reality, however, one should be looking for the beginnings of cancer immunotherapy under different names as far as in the Antiquity. The first scientific attempts to modulate patients' immune systems to cure cancer can be attributed to two German physicians, Fehleisen and Busch, who independently noticed significant tumor regression after erysipelas infection. The next significant advances came from William Bradley Coley who is known today as the Father of Immunotherapy. It was Coley who first attempted to harness the immune system for treating bone cancer in 1891. His achievements were largely unnoticed for over fifty years, and several seminal discoveries in the field of Immunology, such as the existence of T cells and their crucial role in immunity in 1967, stepped up the research toward cancer immunotherapy known today. The following paper tracks cancer immunotherapy from its known beginnings up until recent events, including the 2018 Nobel Prize award to James Allison and Tasuku Honjo for their meticulous work on checkpoint molecules as potential therapeutic targets. That work has led to the successful development of new checkpoint inhibitors, CAR T-cells and oncolytic viruses and the pace of such advances brings the highest hope for the future of cancer treatment.
Collapse
Affiliation(s)
- Paula Dobosz
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Yadav S, Pandey SK, Goel Y, Temre MK, Singh SM. Antimetabolic Agent 3-Bromopyruvate Exerts Myelopotentiating Action in a Murine Host Bearing a Progressively Growing Ascitic Thymoma. Immunol Invest 2019; 49:425-442. [PMID: 31264492 DOI: 10.1080/08820139.2019.1627368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor growth and its chemotherapeutic regimens manifest myelosuppression, which is one of the possible causes underlying the limited success of immunotherapeutic anticancer strategies. Hence, approaches are being designed to develop safer therapeutic regimens that may have minimal damaging action on the process of myelopoiesis. 3-Bromopyruvate (3-BP) is a highly potent antimetabolic agent displaying a broad spectrum antineoplastic activity. However, 3-BP has not been investigated for its effect on the process of myelopoiesis in a tumor-bearing host. Hence, in this investigation, we studied the myelopoietic effect of in vivo administration of 3-BP to a murine host bearing a progressively growing ascitic thymoma designated as Dalton's lymphoma (DL). 3-BP administration to the DL-bearing mice resulted in a myelopotentiating action, reflected by an elevated count of bone marrow cells (BMC) accompanied by augmented proliferative ability and a declined induction of apoptosis. The BMC of 3-BP-administered mice displayed enhanced responsiveness to macrophage colony-stimulating factor for colony-forming ability of myeloid lineage along with an enhanced differentiation of F4/80+ bone marrow-derived macrophages (BMDM). BMDM differentiated from the BMC of 3-BP-administered DL-bearing mice showed an augmented response to lipopolysaccharide and interferon-γ for activation, displaying an augmented tumor cytotoxicity, expression of cytokines, reactive oxygen species, nitric oxide, CD11c, TLR-4, and HSP70. These features are indicative of the differentiation of M1 subtype of macrophages. Thus, this study demonstrates the myelopotentiating action of 3-BP, indicating its hematopoietic safety and potential for reinforcing the differentiation of macrophages in a tumor-bearing host.
Collapse
Affiliation(s)
- Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Berghmans E, Van Raemdonck G, Schildermans K, Willems H, Boonen K, Maes E, Mertens I, Pauwels P, Baggerman G. MALDI Mass Spectrometry Imaging Linked with Top-Down Proteomics as a Tool to Study the Non-Small-Cell Lung Cancer Tumor Microenvironment. Methods Protoc 2019; 2:mps2020044. [PMID: 31164623 PMCID: PMC6632162 DOI: 10.3390/mps2020044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced non-small-cell lung cancer (NSCLC) is generally linked with a poor prognosis and is one of the leading causes of cancer-related deaths worldwide. Since only a minority of the patients respond well to chemotherapy and/or targeted therapies, immunotherapy might be a valid alternative in the lung cancer treatment field, as immunotherapy attempts to strengthen the body’s own immune response to recognize and eliminate malignant tumor cells. However, positive response patterns to immunotherapy remain unclear. In this study, we demonstrate how immune-related factors could be visualized from single NSCLC tissue sections (Biobank@UZA) while retaining their spatial information by using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), in order to unravel the molecular profile of NSCLC patients. In this way, different regions in lung cancerous tissues could be discriminated based on the molecular composition. In addition, we linked visualization (MALDI MSI) and identification (based on liquid chromatography higher resolution mass spectrometry) of the molecules of interest for the correct biological interpretation of the observed molecular differences within the area in which these molecules are detected. This is of major importance to fully understand the underlying molecular profile of the NSCLC tumor microenvironment.
Collapse
Affiliation(s)
- Eline Berghmans
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Geert Van Raemdonck
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Karin Schildermans
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Hanny Willems
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Evelyne Maes
- Food & Bio-Based Products, AgResearch Ltd., 8140 Christchurch, New Zealand.
| | - Inge Mertens
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| | - Patrick Pauwels
- Department of Pathology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium.
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
- Health Unit, VITO, Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
15
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
16
|
Wang Z, Song P, Li Y, Wang S, Fan J, Zhang X, Luan J, Chen W, Wang Y, Liu P, Ju D. Recombinant human arginase I elicited immunosuppression in activated macrophages through inhibiting autophagy. Appl Microbiol Biotechnol 2019; 103:4825-4838. [PMID: 31053913 DOI: 10.1007/s00253-019-09832-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/25/2022]
Abstract
Arginase I has been documented to impair T cell function and attenuate cellular immunity, however, there is little evidence to reveal the effect of arginase I on macrophage function. Recently, recombinant human arginase I (rhArg) has been developed for cancer therapy and is in clinical trial for hepatocellular carcinoma, whereas the potential immunosuppression induced by rhArg limited its therapeutic efficacy. To improve the clinical outcome of rhArg, addressing the immune suppression appears to be particularly important. In this study, we found that rhArg attenuated macrophage functions, including inhibiting macrophage cell proliferation, nitric oxide (NO) and reactive oxygen species (ROS) production, cytokine secretion, MHC-II surface expression, and phagocytosis, thereby inducing immunosuppression in lipopolysaccharides (LPS)/interferon-γ (IFN-γ)-activated macrophages. Notably, we observed that rhArg downregulated autophagy in activated macrophages. Moreover, application of trehalose (an autophagy inducer) significantly restored the impaired immune function in activated macrophages, suggesting the essential role of autophagy in rhArg-induced immunosuppression. To further illustrate the effect of autophagy in immunosuppression, we then observed the effect of 3-MA (an autophagy inhibitor) on the immune function of macrophages. As expected, inhibiting autophagy by 3-MA attenuated immune functions in activated macrophages. Collectively, this study elucidated that rhArg induced immunosuppression in activated macrophages via inhibiting autophagy, providing potential strategy to ameliorate the immune suppression which is of great significance to cancer therapy and facilitating the development of rhArg as a potential therapy for malignant carcinomas.
Collapse
Affiliation(s)
- Ziyu Wang
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Ping Song
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Department of Pharmacy, Ruijin Hospital Luwan Branch, Shanghai, China
| | - Yubin Li
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shaofei Wang
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiajun Fan
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - XuYao Zhang
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jingyun Luan
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wei Chen
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yichen Wang
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China.,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Peipei Liu
- Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China.,Department of Analytical Science, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai, 201199, China. .,Department of Microbiological and Biochemical Pharmacy & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
17
|
Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Curr Pharm Des 2019; 24:5268-5295. [DOI: 10.2174/1381612825666190122163832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022]
Abstract
Background:Reactive oxygen species sustain tumorigenesis and cancer progression through deregulated redox signalling which also sensitizes cancer cells to therapy. Photodynamic therapy (PDT) is a promising anti-cancer therapy based on a provoked singlet oxygen burst, exhibiting a better toxicological profile than chemo- and radiotherapy. Important gaps in the knowledge on underlining molecular mechanisms impede on its translation towards clinical applications.Aims and Methods:The main objective of this review is to critically analyse the knowledge lately gained on therapeutic targets related to redox and inflammatory networks underlining PDT and its outcome in terms of cell death and resistance to therapy. Emerging therapeutic targets and pharmaceutical tools will be documented based on the identified molecular background of PDT.Results:Cellular responses and molecular networks in cancer cells exposed to the PDT-triggered singlet oxygen burst and the associated stresses are analysed using a systems medicine approach, addressing both cell death and repair mechanisms. In the context of immunogenic cell death, therapeutic tools for boosting anti-tumor immunity will be outlined. Finally, the transcription factor NRF2, which is a major coordinator of cytoprotective responses, is presented as a promising pharmacologic target for developing co-therapies designed to increase PDT efficacy.Conclusion:There is an urgent need to perform in-depth molecular investigations in the field of PDT and to correlate them with clinical data through a systems medicine approach for highlighting the complex biological signature of PDT. This will definitely guide translation of PDT to clinic and the development of new therapeutic strategies aimed at improving PDT.
Collapse
Affiliation(s)
| | | | | | - Luis F.V. Ferreira
- CQFM-Centro de Fisica Molecular and IN-Institute for Nanosciences and Nanotechnologies and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Paul Vasos
- Research Centre of the University of Bucharest, Bucharest, Romania
| | - Selma H. Basaga
- Molecular Biology Genetics & Program, Faculty of Engineering & Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
18
|
The Adaptive Complexity of Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2018:5837235. [PMID: 30627563 PMCID: PMC6304530 DOI: 10.1155/2018/5837235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer treatment options are expanding to the benefit of significant segments of patients. However, their therapeutic power is not equally realized for all cancer patients due to drug toxicity and disease resistance. Overcoming these therapeutic challenges would require a better understanding of the adaptive survival mechanisms of cancer. In this respect, an integrated view of the disease as a complex adaptive system is proposed as a framework to explain the dynamic coupling between the various drivers underlying tumor growth and cancer resistance to therapy. In light of this system view of cancer, the immune system is in principal the most appropriate and naturally available therapeutic instrument that can thwart the adaptive survival mechanisms of cancer. In this respect, new cancer therapies should aim at restoring immunosurveillance by priming the induction of an effective immune response through a judicious targeting of immunosuppression, inflammation, and the tumor nutritional lifeline extended by the tumor microenvironment.
Collapse
|
19
|
Carbohydrate-based adjuvants activate tumor-specific Th1 and CD8+ T-cell responses and reduce the immunosuppressive activity of MDSCs. Cancer Lett 2019; 440-441:94-105. [DOI: 10.1016/j.canlet.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
|
20
|
van Gulijk M, Dammeijer F, Aerts JGJV, Vroman H. Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy. Front Immunol 2018; 9:2759. [PMID: 30568653 PMCID: PMC6289976 DOI: 10.3389/fimmu.2018.02759] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands.,Erasmus Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
21
|
Huber A, Dammeijer F, Aerts JGJV, Vroman H. Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets? Front Immunol 2018; 9:2804. [PMID: 30559743 PMCID: PMC6287551 DOI: 10.3389/fimmu.2018.02804] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy.
Collapse
Affiliation(s)
- Anne Huber
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joachim G. J. V. Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands
- Erasmus Cancer Institute, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
22
|
Soyingbe OS, Mongalo NI, Makhafola TJ. In vitro antibacterial and cytotoxic activity of leaf extracts of Centella asiatica (L.) Urb, Warburgia salutaris (Bertol. F.) Chiov and Curtisia dentata (Burm. F.) C.A.Sm - medicinal plants used in South Africa. Altern Ther Health Med 2018; 18:315. [PMID: 30497461 PMCID: PMC6267026 DOI: 10.1186/s12906-018-2378-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022]
Abstract
Background Compounds having both anticancer and antimicrobial activity have promising therapeutic potential due to their selective cytotoxicity and their potential to reduce the occurrence of bacterial and fungal infections in immune-compromised cancer patients. In our quest to find new antimicrobial agents with potent anticancer activity, the biological potential of leaves from the three medicinal plants Centella asiatica, Warburgia salutaris and Curtisia dentata as used by Zulu traditional healers for the treatment of cancer is investigated. Methods Extracts were assayed for antibacterial activity using the agar well diffusion and micro plate dilution assay. In addition, minimum bactericidal concentrations (MBC), lactate dehydrogenase (LDH) release assay and rhodamine 6G intake assay were used to ascertain the antibacterial activity. The cytotoxic effects of the plant extracts were determined using tetrazolium-based colorimetric (MTT) cell proliferation assay against MCF-7, human colorectal carcinoma cells (Caco-2), A549 and HeLa cancerous cell lines. Results The acetone extracts from Waburgia salutaris revealed noteworthy anti-proliferative effect yielding IC50 value of 34.15 μg/ml against MCF-7 cell line, while acetone extract from Curtisia dentata significantly (P ≤ 0.05) revealed promising IC50 values of 41.55, 45.13, 57.35 and 43.24 μg/ml against A549, HeLa, CaCo-2 and MCF-7 cell lines. The extracts further revealed a broad-spectrum antibacterial activity against bacterial strains used in the study. An acetone extract from W. salutaris revealed the highest zone of inhibition and the lowest minimum inhibitory concentration (MIC) of 21.0 mm and 0.16 mg/ml respectively against Staphylococcus aureus. Methanol extract from W. salutaris and ethyl acetate extract from C. dentata revealed 53% inhibition of R6G inside the cell against Staphylococcus aureus and Escherichia coli respectively in a cytosolic lactate dehydrogenase assay, suggesting that the mode of action of such extracts may be through efflux pump. Conclusions Overall, the extracts had good antibacterial activity and anti-proliferative effects against selected cancerous cell lines. Given the good antibacterial activity of the extracts the plants may act as an immune booster and prevent infection in immunosuppressed cancer patients. This is further supported by the plants’ anti-proliferative potential, bacteriostatic, bactericidal properties and also their ability to block bacterial efflux pump systems.
Collapse
|
23
|
Bayer P, Brown JS, Staňková K. A two-phenotype model of immune evasion by cancer cells. J Theor Biol 2018; 455:191-204. [DOI: 10.1016/j.jtbi.2018.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
|
24
|
Luo XH, Meng Q, Rao M, Liu Z, Paraschoudi G, Dodoo E, Maeurer M. The impact of inflationary cytomegalovirus-specific memory T cells on anti-tumour immune responses in patients with cancer. Immunology 2018; 155:294-308. [PMID: 30098205 DOI: 10.1111/imm.12991] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous, persistent beta herpesvirus. CMV infection contributes to the accumulation of functional antigen-specific CD8+ T-cell pools with an effector-memory phenotype and enrichment of these immune cells in peripheral organs. We review here this 'memory T-cell inflation' phenomenon and associated factors including age and sex. 'Collateral damage' due to CMV-directed immune reactivity may occur in later stages of life - arising from CMV-specific immune responses that were beneficial in earlier life. CMV may be considered an age-dependent immunomodulator and a double-edged sword in editing anti-tumour immune responses. Emerging evidence suggests that CMV is highly prevalent in patients with a variety of cancers, particularly glioblastoma. A better understanding of CMV-associated immune responses and its implications for immune senescence, especially in patients with cancer, may aid in the design of more clinically relevant and tailored, personalized treatment regimens. 'Memory T-cell inflation' could be applied in vaccine development strategies to enrich for immune reactivity where long-term immunological memory is needed, e.g. in long-term immune memory formation directed against transformed cells.
Collapse
Affiliation(s)
- Xiao-Hua Luo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Haematology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Qingda Meng
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhenjiang Liu
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Paraschoudi
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Maeurer
- Therapeutic Immunology Unit, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Yu S, Wang C, Yu J, Wang J, Lu Y, Zhang Y, Zhang X, Hu Q, Sun W, He C, Chen X, Gu Z. Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801527. [PMID: 29786888 DOI: 10.1002/adma.201801527] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Although cancer immunotherapy based on immune checkpoint inhibitors holds great promise toward many types of cancers, several challenges still remain, associated with low objective response of patient rate as well as systemic side effects. Here, a combination immunotherapy strategy is developed based on a thermogelling reactive oxygen species (ROS)-responsive polypeptide gel for sustained release of anti-programmed cell death-ligand 1 antibody and dextro-1-methyl tryptophan, inhibitor of indoleamine-2,3-dioxygenase with leveraging the ROS level in the tumor microenvironment. This bioresponsive gel depot can effectively reduce the local ROS level and facilitate release of immunotherapeutics, which leads to enhanced anti-melanoma efficacy in vivo.
Collapse
Affiliation(s)
- Shuangjiang Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Yue Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xudong Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
26
|
Shah A, Mankus CI, Vermilya AM, Soheilian F, Clogston JD, Dobrovolskaia MA. Feraheme® suppresses immune function of human T lymphocytes through mitochondrial damage and mitoROS production. Toxicol Appl Pharmacol 2018; 350:52-63. [PMID: 29715466 DOI: 10.1016/j.taap.2018.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
Despite attractive properties for both therapeutic and diagnostic applications, the clinical use of iron oxide nanoparticles (IONPs) is limited to iron replacement in severely anemic patient populations. While several studies have reported about the immunotoxicity of IONPs, the mechanisms of this toxicity are mostly unknown. We conducted a mechanistic investigation using an injectable form of IONP, Feraheme®. In the cultures of primary human T cells, Feraheme induced miotochondrial oxidative stress and resulted in changes in mitochondrial dynamics, architecture, and membrane potential. These molecular events were responsible for the decrease in cytokine production and proliferation of mitogen-activated T cells. The induction of mitoROS by T cells in response to Feraheme was insufficient to induce total redox imbalance at the cellular level. Consequently, we resolved this toxicity by the addition of the mitochondria-specific antioxidant MitoTEMPO. We further used these findings to develop an experimental framework consisting of critical assays that can be used to estimate IONP immunotoxicity. We explored this framework using several immortalized T-cell lines and found that none of them recapitulate the toxicity observed in the primary cells. Next, we compared the immunotoxicity of Feraheme to that of other FDA-approved iron-containing complex drug formulations and found that the mitochondrial damage and the resulting suppression of T-cell function are specific to Feraheme. The framework, therefore, can be used for comparing the immunotoxicity of Feraheme with that of its generic versions, while other iron-based complex drugs require case-specific mechanistic investigation.
Collapse
Affiliation(s)
- Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Cassandra I Mankus
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alison M Vermilya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
27
|
Mu L, Long Y, Yang C, Jin L, Tao H, Ge H, Chang YE, Karachi A, Kubilis PS, De Leon G, Qi J, Sayour EJ, Mitchell DA, Lin Z, Huang J. The IDH1 Mutation-Induced Oncometabolite, 2-Hydroxyglutarate, May Affect DNA Methylation and Expression of PD-L1 in Gliomas. Front Mol Neurosci 2018; 11:82. [PMID: 29643764 PMCID: PMC5882817 DOI: 10.3389/fnmol.2018.00082] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/01/2018] [Indexed: 01/25/2023] Open
Abstract
Background: Malignant gliomas are heterogeneous brain tumors with the potential for aggressive disease progression, as influenced by suppressive immunoediting. Given the success and enhanced potential of immune-checkpoint inhibitors in immunotherapy, we focused on the connections between genetic alterations affected by IDH1 mutations and immunological landscape changes and PDL-1 expression in gliomas. Methods: Paired surgically resected tumors from lower-grade gliomas (LGGs) and glioblastomas (GBM) were investigated, and a genetic analysis of patients' primary tumor samples culled from TCGA datasets was performed. Results: The results demonstrate that when compared with IDH1-mutant tumors, IDH1 wildtype tumors represent an immunosuppression landscape and elevated levels of PD-L1 expression. DNA hypo-methylation of the PD-L1 gene, as well as high gene and protein expressions, were observed in the wildtype tumors. We also found that quantitative levels of IDH1 mutant proteins were positively associated with recurrence-free survival (RFS). A key product of the IDH1 mutation (2-hydroxyglutarate) was found to transiently increase DNA methylation and suppress PD-L1 expression. Conclusions: IDH1 mutations impact the immune landscape of gliomas by affecting immune infiltrations and manipulating checkpoint ligand PD-L1 expression. Applications of immune checkpoint inhibitors may be beneficial for chemoradiation-insensitive IDH1-wildtype gliomas.
Collapse
Affiliation(s)
- Luyan Mu
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,The First Section of Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Long
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Linchun Jin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Haipeng Tao
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Haitao Ge
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifan E Chang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Aida Karachi
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Paul S Kubilis
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Gabriel De Leon
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
28
|
Liu F, Zeng G, Zhou S, He X, Sun N, Zhu X, Hu A. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bull Cancer 2018; 105:493-501. [PMID: 29576222 DOI: 10.1016/j.bulcan.2018.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/15/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The immunosuppression of tumor-infiltrating lymphocytes (TILs) is associated with rapid progression of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). T cell Ig- and mucin-domain-containing molecule-3 (Tim-3) and programmed cell death 1 (PD-1) are important inhibitory molecules expressed on the surface of T cells, but their roles in the function of TILs in HBV-HCC are poorly understood. We aimed to study the roles of these two markers in HBV-HCC. METHODS Ninety patients with pathologically confirmed HBV-associated HCC were enrolled in our study. Blood samples, paired fresh tumor tissues and adjacent tissues were collected, and isolating peripheral blood mononuclear cells, TILs and adjacent-infiltrating lymphocytes were isolated from these samples. The patients were followed-up to allow survival analysis. RESULTS Tim-3 or/and PD-1 was up-regulated expressed on CD4+ and CD8+ TILs in HBV-HCC patients and a higher proportion of TILs expressed PD-1 alone. Tim-3+ and PD-1+ TILs greatly decreased secretion of IFN-? and TNF-a. Expression of Tim-3 and PD-1 on TILs negatively correlated with disease-free survival of HCC patients. Direct blockade of Tim-3 and PD-1 in vitro significantly enhanced TILs proliferation and secretion of IFN-? and TNF-a. CONCLUSION Expression of Tim-3 and/or PD-1 on TILs impairs their function and correlates negatively with disease-free survival in HBV-HCC. Direct blockade of Tim-3 and PD-1 restores anti-tumor effects of TILs, which suggests a potential target for novel immunotherapy in HBV-HCC.
Collapse
Affiliation(s)
- Furong Liu
- Sun Yat-Sen university, The First Affiliated Hospital, department of surgical intensive care unit, 510080 Guangzhou, China
| | - Gucheng Zeng
- Sun Yat-Sen university, department of microbiology, Zhongshan School of Medicine, Guangzhou, China
| | - Shaotang Zhou
- Military Hospital of China, department of hepatobiliary surgery, 302, Beijing, China
| | - Xiaoshun He
- Sun Yat-Sen university, The First Affiliated Hospital, department of surgical intensive care unit, 510080 Guangzhou, China
| | - Nianfeng Sun
- Shandong university, Qilu Hospital, department of general surgery, Jinan, China
| | - Xiaofeng Zhu
- Sun Yat-Sen university, The First Affiliated Hospital, department of surgical intensive care unit, 510080 Guangzhou, China
| | - Anbin Hu
- Sun Yat-Sen university, The First Affiliated Hospital, department of surgical intensive care unit, 510080 Guangzhou, China.
| |
Collapse
|
29
|
Katayama Y, Tachibana M, Kurisu N, Oya Y, Terasawa Y, Goda H, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H, Sakurai F. Oncolytic Reovirus Inhibits Immunosuppressive Activity of Myeloid-Derived Suppressor Cells in a TLR3-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2018; 200:2987-2999. [PMID: 29555782 DOI: 10.4049/jimmunol.1700435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 02/21/2018] [Indexed: 12/24/2022]
Abstract
Oncolytic reovirus, which possesses 10 segments of dsRNA genome, mediates antitumor effects via not only virus replication in a tumor cell-specific manner, but also activation of antitumor immunity; however, the mechanism(s) of reovirus-induced activation of antitumor immunity have not been fully elucidated. Recent studies have demonstrated that overcoming an immunosuppressive environment in tumor-bearing hosts is important to achieve efficient activation of antitumor immunity. Among the various types of cells involved in immunosuppression, it has been revealed that myeloid-derived suppressor cells (MDSCs) are significantly increased in tumor-bearing hosts and play crucial roles in the immunosuppression in tumor-bearing hosts. In this study, we examined whether reovirus inhibits the immunosuppressive activity of MDSCs, resulting in efficient activation of immune cells after in vivo administration. The results showed that splenic MDSCs recovered from PBS-treated tumor-bearing mice significantly suppressed the Ag-specific proliferation of CD8+ T cells. In contrast, the suppressive activity of MDSCs on T cell proliferation was significantly reduced after reovirus administration. Reovirus also inhibited the immunosuppressive activity of MDSCs in IFN-β promoter stimulator-1 knockout (KO) mice and in wild-type mice. In contrast, the immunosuppressive activity of MDSCs in TLR-3 KO mice was not significantly altered by reovirus treatment. The activation levels of CD4+ and CD8+ T cells were significantly lower in TLR3 KO mice than in wild-type mice after reovirus administration. These results indicate that reovirus inhibits the immunosuppressive activity of MDSCs in a TLR3, but not IFN-β promoter stimulator-1, signaling-dependent manner.
Collapse
Affiliation(s)
- Yuki Katayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nozomi Kurisu
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukako Oya
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichi Terasawa
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Goda
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, World Premier International Research Center Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; and
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan; .,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Said N. Roles of SPARC in urothelial carcinogenesis, progression and metastasis. Oncotarget 2018; 7:67574-67585. [PMID: 27564266 PMCID: PMC5341897 DOI: 10.18632/oncotarget.11590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular glycoprotein that is implicated in myriad physiological and pathological conditions characterized by extensive remodeling and plasticity. The functions and disease association of SPARC in cancer is being increasingly appreciated as it plays multi-faceted contextual roles depending on the cancer type, cell of origin and the unique cancer milieu at both primary and metastatic sites. Herein we will review our current knowledge of the role of SPARC in the multistep cascades of urinary bladder carcinogenesis, progression and metastasis from preclinical models and clinical data and shine the light on its prognostic and therapeutic potentials.
Collapse
Affiliation(s)
- Neveen Said
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston Salem, NC, USA
| |
Collapse
|
31
|
Fotaki G, Jin C, Kerzeli IK, Ramachandran M, Martikainen MM, Karlsson-Parra A, Yu D, Essand M. Cancer vaccine based on a combination of an infection-enhanced adenoviral vector and pro-inflammatory allogeneic DCs leads to sustained antigen-specific immune responses in three melanoma models. Oncoimmunology 2017; 7:e1397250. [PMID: 29399398 PMCID: PMC5790347 DOI: 10.1080/2162402x.2017.1397250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 01/07/2023] Open
Abstract
Autologous patient-derived dendritic cells (DCs) modified ex vivo to present tumor-associated antigens (TAAs) are frequently used as cancer vaccines. However, apart from the stringent logistics in producing DCs on a patient basis, accumulating evidence indicate that ex vivo engineered DCs are poor in migration and in fact do not directly present TAA epitopes to naïve T cells in vivo. Instead, it is proposed that bystander host DCs take up material from vaccine-DCs, migrate and subsequently initiate antitumor T-cell responses. We used mouse models to examine the possibility of using pro-inflammatory allogeneic DCs (alloDCs) to activate host DCs and enable them to promote antigen-specific T-cell immunity. We found that alloDCs were able to initiate host DC activation and migration to draining lymph node leading to T-cell activation. The pro-inflammatory milieu created by alloDCs also led to recruitment of NK cells and neutrophils at the site of injection. Vaccination with alloDCs combined with Ad5M(gp100), an infection-enhanced adenovirus encoding the human melanoma-associated antigen gp100 resulted in generation of CD8+ T cells with a T-cell receptor (TCR) specific for the gp10025-33 epitope (gp100-TCR+). Ad5M(gp100)-alloDC vaccination in combination with transfer of gp100-specific pmel-1 T cells resulted in prolonged survival of B16-F10 melanoma-bearing mice and altered the composition of the tumor microenvironment (TME). We hereby propose that alloDCs together with TAA- or neoepitope-encoding Ad5M can become an “off-the-shelf” cancer vaccine, which can reverse the TME-induced immunosuppression and induce host cellular anti-tumor immune responses in patients without the need of a time-consuming preparation step of autologous DCs.
Collapse
Affiliation(s)
- Grammatiki Fotaki
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chuan Jin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Iliana Kyriaki Kerzeli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Minttu-Maria Martikainen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alex Karlsson-Parra
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Immunicum AB, Gothenburg Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
32
|
Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, Zhang L. Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201703969. [PMID: 29239517 PMCID: PMC5794340 DOI: 10.1002/adma.201703969] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/29/2017] [Indexed: 05/08/2023]
Abstract
Anticancer vaccines train the body's own immune system to recognize and eliminate malignant cells based on differential antigen expression. While conceptually attractive, clinical efficacy is lacking given several key challenges stemming from the similarities between cancerous and healthy tissue. Ideally, an effective vaccine formulation would deliver multiple tumor antigens in a fashion that potently stimulates endogenous immune responses against those antigens. Here, it is reported on the fabrication of a biomimetic, nanoparticulate anticancer vaccine that is capable of delivering autologously derived tumor antigen material together with a highly immunostimulatory adjuvant. The two major components, tumor antigens and adjuvant, are presented concurrently in a fashion that maximizes their ability to promote effective antigen presentation and activation of downstream immune processes. Ultimately, it is demonstrated that the formulation can elicit potent antitumor immune responses in vivo. When combined with additional immunotherapies such as checkpoint blockades, the nanovaccine demonstrates substantial therapeutic effect. Overall, the work represents the rational application of nanotechnology for immunoengineering and can provide a blueprint for the future development of personalized, autologous anticancer vaccines with broad applicability.
Collapse
|
33
|
RSK2 phosphorylates T-bet to attenuate colon cancer metastasis and growth. Proc Natl Acad Sci U S A 2017; 114:12791-12796. [PMID: 29133416 DOI: 10.1073/pnas.1710756114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metastasis is a major cause of cancer-related deaths. Approximately 80% of patients with colorectal cancer develop liver metastasis and 20% develop lung metastasis. We found that at different stages of colon cancer, IFNγ secretion from peripheral blood mononuclear cells was decreased compared with healthy controls. The ribosomal S6 kinase (RSK) family of kinases has multiple cellular functions, and we examined their roles in this observed IFNγ decrease. Flow cytometry analysis of wild-type (WT) and RSK2 knockout (KO) mice revealed significantly lower levels of IFNγ in the RSK2 KO mice compared with the WT mice. Since IFNγ is a component of immunity, which contributes to protection against metastatic carcinomas, we conducted a colon cancer liver metastasis experiment. We found significantly greater metastasis in RSK2 KO mice compared with WT mice. Transcription factor T-bet can directly activate Ifnγ gene transcription. In vitro kinase assay results showed that RSK2 phosphorylated T-bet at serines 498 and 502. We show that phosphorylation of T-bet by RSK2 is required for IFNγ expression, because knockdown of RSK2 expression or overexpression of mutant T-bet reduces IFNγ mRNA expression. To verify the function of the phosphorylation sites, we overexpressed a constitutively active mutant T-bet (S498E/S502E) in bone marrow. Mutant T-bet restored the IFNγ mRNA levels and dramatically reduced the metastasis rate in these mice. Overall, these results indicate that phosphorylation of T-bet is required for the inhibition of colon cancer metastasis and growth through a positive regulation of RSK2/T-bet/IFNγ signaling.
Collapse
|
34
|
Xu J, Xu B, Tao J, Yang Y, Hu Y, Huang Y. Microneedle-Assisted, DC-Targeted Codelivery of pTRP-2 and Adjuvant of Paclitaxel for Transcutaneous Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700666. [PMID: 28561892 DOI: 10.1002/smll.201700666] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/07/2017] [Indexed: 06/07/2023]
Abstract
This work aims at developing an immunotherapeutic strategy to deliver a cancer DNA vaccine targeting dendritic cells (DCs), to trigger their maturation and antitumor function, and reduce immune escape using a polymeric nanocomplex of paclitaxel (PTX)-encapsulated sulfobutylether-β-cyclodextrin (SBE)/mannosylated N,N,N-trimethylchitosan (mTMC)/DNA. To enhance DC-targeting and revoke immunosuppression is the major challenge for eliciting effective antitumor immunity. This codelivery system is characterized by using low-dose PTX as an adjuvant that is included inside SBE, and the PTX/SBE further serves as an anionic crosslinker to self-assemble with the cationic mTMC/DNA polyplexes. This system is used in combination with a microneedle for transcutaneous vaccination. Once penetrating into the epidermis, the mannosylated nanocomplexes would preferentially deliver the pTRP-2 DNA vaccine inside the DCs. Phenotypic maturation is demonstrated by the increased expression of costimulatory molecules of CD80 and CD86, and the elevated secretion of IL-12p70. The mixed leucocyte reactions reveal that the PTX/SBE-mTMC/DNA nanocomplexes enhance the proliferation of CD4+ and CD8+ T cells, and inhibit the generation of immune-suppressive FoxP3+ T cells. The system shows high antitumor efficacy in vivo. The PTX/SBE-mTMC/DNA nanocomplexes for DC-targeted codelivery of DNA vaccine and adjuvant PTX yield synergistic effects on the DC maturation and its presenting functions, thus increasing immune stimulation and reducing immune escape.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
- Department of Medicine Wenzhou, Wenzhou Medical University, Zhejiang, 325035, China
| | - Beihua Xu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Yunxu Yang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang, 315100, China
- Department of Medicine Wenzhou, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China
| |
Collapse
|
35
|
Vigneshwaran V, Thirusangu P, Vijay Avin BR, Krishna V, Pramod SN, Prabhakar BT. Immunomodulatory glc/man-directed Dolichos lablab lectin (DLL) evokes anti-tumour response in vivo by counteracting angiogenic gene expressions. Clin Exp Immunol 2017; 189:21-35. [PMID: 28268243 DOI: 10.1111/cei.12959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 12/31/2022] Open
Abstract
Neovascularization and jeopardized immunity has been critically emphasized for the establishment of malignant progression. Lectins are the diverse class of carbohydrate interacting proteins, having great potential as immunopotentiating and anti-cancer agents. The present investigation sought to demonstrate the anti-proliferative activity of Dolichos lablab lectin (DLL) encompassing immunomodulatory attributes. DLL specific to glucose and mannose carbohydrate moieties has been purified to homogeneity from the common dietary legume D. lablab. Results elucidated that DLL agglutinated blood cells non-specifically and displayed striking mitogenicity to human and murine lymphocytes in vitro with interleukin (IL)-2 production. The DLL-conditioned medium exerted cytotoxicity towards malignant cells and neoangiogenesis in vitro. Similarly, in-vivo anti-tumour investigation of DLL elucidated the regressed proliferation of ascitic and solid tumour cells, which was paralleled with blockade of tumour neovasculature. DLL-treated mice showed an up-regulated immunoregulatory cytokine IL-2 in contrast to severely declined levels in control mice. Mechanistic validation revealed that DLL has abrogated the microvessel formation by weakening the proangiogenic signals, specifically nuclear factor kappa B (NF-κB), hypoxia inducible factor 1α (HIF-1 α), matrix metalloproteinase (MMP)-2 and 9 and vascular endothelial growth factor (VEGF) in malignant cells leading to tumour regression. In summary, it is evident that the dietary lectin DLL potentially dampens the malignant establishment by mitigating neoangiogenesis and immune shutdown. For the first time, to our knowledge, this study illustrates the critical role of DLL as an immunostimulatory and anti-angiogenic molecule in cancer therapeutics.
Collapse
Affiliation(s)
- V Vigneshwaran
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - P Thirusangu
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - B R Vijay Avin
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - V Krishna
- Postgraduate Department of Studies and Research in Biotechnology and Bioinformatics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka, India
| | - S N Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - B T Prabhakar
- Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| |
Collapse
|
36
|
Schad F, Axtner J, Kröz M, Matthes H, Steele ML. Safety of Combined Treatment With Monoclonal Antibodies and Viscum album L Preparations. Integr Cancer Ther 2016; 17:41-51. [PMID: 29444603 PMCID: PMC5950938 DOI: 10.1177/1534735416681641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Combination strategies involving chemotherapy and monoclonal antibodies (mAb) are
commonly used in attempts to produce better clinical outcomes. This practice has
led to new and ongoing toxicities that may lead to reductions in dose or
noncompliance, limiting the effectiveness of treatment. Viscum
album L (VA) preparations are widely used in Europe as additive
therapy and have been associated with reduced chemotherapy-related adverse
reactions and increased health-related quality of life. Concomitant VA therapy
might also reduce toxicity related to mAb. This retrospective study investigated
the safety of combined treatment with VA and mAb in cancer patients. A total of
43 patients had combined therapy (474 exposures); 12 had VA without mAb (129
exposures), and 8 had mAb without VA (68 exposures). Most patients (89.3%)
received concomitant chemotherapy or supportive therapies. A total of 34
patients (60.7%) experienced 142 adverse events (AEs). Leucopenia (14.1% of all
events), acneiform rash (8.5%), and stomatitis (6.3%) occurred most frequently.
Longitudinal logistic regression analysis suggested a nearly 5 times higher odds
of experiencing an AE following treatment with mAb compared with mAb plus VA
(95% CI = 1.53-16.14). Our results, together with theoretical consideration of
potential botanical-drug interactions, suggest that combined treatment with VA
and mAb is safe.
Collapse
Affiliation(s)
- Friedemann Schad
- 1 Research Institute Havelhoehe, Berlin, Germany.,2 Hospital Havelhoehe, Berlin, Germany
| | - Jan Axtner
- 1 Research Institute Havelhoehe, Berlin, Germany
| | - Matthias Kröz
- 1 Research Institute Havelhoehe, Berlin, Germany.,2 Hospital Havelhoehe, Berlin, Germany.,3 Charité University Medical Center, Berlin, Germany.,4 University of Witten/Herdecke, Herdecke, Germany
| | - Harald Matthes
- 1 Research Institute Havelhoehe, Berlin, Germany.,2 Hospital Havelhoehe, Berlin, Germany
| | | |
Collapse
|
37
|
Akram N, Imran M, Noreen M, Ahmed F, Atif M, Fatima Z, Bilal Waqar A. Oncogenic Role of Tumor Viruses in Humans. Viral Immunol 2016; 30:20-27. [PMID: 27830995 DOI: 10.1089/vim.2016.0109] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses are the intracellular pathogens that reproduce only in the living cell and manipulate the cellular machinery to produce more viruses. Viral replications can affect cellular genes of the host in multiple cancerous ways. Approximately, 20% of all human oncogenesis is caused by cancer-causing viruses known as oncoviruses. Viral infection causes chronic inflammation leading to cell death, uncontrollable proliferation, and modulated expression of some of the regulatory proteins. Oncogenesis is a multistep phenomenon in which normal host cells are transformed into cancerous cells on the basis of host genetic variability. Oncogenic viruses encode genes that cause viral replication and transformation of the host cells to produce viral proteins and protein complexes. The phenomenon from basic viral infection to tumorigenesis is lengthy due to the involvement of factors like immunity complications, cellular mutations, and exposure to other cancerous agents. The viruses that are involved in human cancer development are Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), Human papilloma virus (HPV), Kaposi's sarcoma herpes virus (KSHV), and Human T lymphotrophic virus 1 (HTLV-1). This review article summarizes advanced knowledge related to human oncogenic viruses and the molecular mechanisms that lead to tumorigenesis in humans.
Collapse
Affiliation(s)
- Nimrah Akram
- 1 Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS) , Lahore, Pakistan
| | - Muhammad Imran
- 1 Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS) , Lahore, Pakistan
| | - Mamoona Noreen
- 2 Department of Zoology, The Women University Multan , Multan, Pakistan
| | - Fayyaz Ahmed
- 1 Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS) , Lahore, Pakistan
| | - Muhammad Atif
- 1 Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS) , Lahore, Pakistan
| | - Zareen Fatima
- 3 Department of Radiological Sciences and Medical Imaging (DRSMI) , FHAS, ICBS, Lahore, Pakistan
| | - Ahmed Bilal Waqar
- 1 Department of Medical Laboratory Sciences (DMLS), Faculty of Health and Allied Sciences (FHAS), Imperial College of Business Studies (ICBS) , Lahore, Pakistan
| |
Collapse
|
38
|
Jolly LA, Massoll N, Franco AT. Immune Suppression Mediated by Myeloid and Lymphoid Derived Immune Cells in the Tumor Microenvironment Facilitates Progression of Thyroid Cancers Driven by Hras G12V and Pten Loss. ACTA ACUST UNITED AC 2016; 7. [PMID: 27942419 DOI: 10.4172/2155-9899.1000451] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid cancer is the most common endocrine malignancy and is predicted to be the 4th most commonly diagnosed cancer by 2030. Approximately one-half of follicular thyroid carcinomas (FTC) contain genetic alterations in RAS family members. Furthermore, Cowden's disease, which is characterized by loss of PTEN, predisposes for the development of FTC in humans. We have shown that thyroid specific expression of HrasG12V at endogenous levels and Pten inactivation (HrasG12V/Pten-/-/TPO-cre mice) leads to the development of FTCs that closely recapitulate human disease, with complete penetrance at one year. In patients, FTCs metastasize via the bloodstream to distant sites, frequently the lungs, bones and brain. The first objective of the study was to determine if these mice developed de novo metastasis to relevant sites. Indeed, spontaneous metastasis to the lungs was observed in 56% of HrasG12V/Pten-/-/TPO-cre mice. We next sought to identify the cellular components within the tumor microenvironment (TME) of FTC that contribute to tumor progression and metastasis via FACS analysis. Surprisingly, a large amount of immune infiltrate was observed. HrasG12V/Pten-/-/TPO-Cre thyroid tumors were comprised of 68.5 ± 11.79% CD45+ cells, in stark contrast to wild-type (WT) thyroids which were comprised of 17.6% CD45+ cells. Further, 53.1 ± 10.9% of the CD45+ cells from HrasG12V/Pten-/-/TPO-Cre thyroid tumors were of myeloid-lineage (CD11b+), consisting of macrophages (F4/80+Gr-1-) and myeloid-derived suppressor cells (F4/80-Gr-1+). Further, HrasG12V/Pten-/-/TPO-cre tumors contained Arginase-1 positive cells as determined by immunohistochemical analysis, supporting an immunosuppressive TME in HrasG12V/Pten-/-/TPO-Cre thyroid tumors. We next evaluated whether or not cytotoxic (CD8+) or helper T cells (CD4+) were recruited to HrasG12V/Pten-/-/TPO-Cre tumors. The majority of T cells in these tumors were double positive for CD4 and CD25, markers of immune suppressive regulatory T cells (Treg). Additionally, we identified Foxp3 positive cells by immunohistochemical analysis of tumor sections, indicating a functional suppressive Treg phenotype in vivo. HrasG12V/Pten-/-/TPO-Cre tumor cell lines displayed increased secretion of SDF-1, I-TAC, CCL9/10, and MCP5, cytokines that have been reported to play a direct role in the chemotaxis of immune cells and thus could contribute to the increased recruitment of myeloid and lymphoid derived cells in HrasG12V/Pten-/-/TPO-Cre tumors. These studies are the first to identify and implicate the interaction between tumor cells and immune cells in Ras-driven thyroid cancer progression, which we hope will lead to the development of more effective therapeutic approaches for aggressive forms of thyroid cancer that target the TME.
Collapse
Affiliation(s)
- Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Nicole Massoll
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aime T Franco
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
39
|
Houot R, Gaulard P, Schreiber R, Mellman I, Lambotte O, Coulie PG, Fest T, Korman A, Levy R, Shipp M, Tarte K, Kohrt H, Marabelle A, Ansell S, Watier H, van Elsas A, Balakumaran A, Arce Vargas F, Quezada SA, Salles G, Olive D. Immunomodulatory antibodies for the treatment of lymphoma: Report on the CALYM Workshop. Oncoimmunology 2016; 5:e1186323. [PMID: 27622041 DOI: 10.1080/2162402x.2016.1186323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 01/21/2023] Open
Abstract
In November 2015, the CALYM Carnot Institute held a 2-d workshop to discuss the current and future development of immunomodulatory antibodies for the treatment of lymphoma. Highlights from the workshop are presented in this article.
Collapse
Affiliation(s)
- Roch Houot
- Department of Hematology, CHU de Rennes , Rennes, France
| | - Philippe Gaulard
- Department of Pathology, Inserm U955, Université Paris-Est, CHU Henri Mondor , Créteil, France
| | - Robert Schreiber
- Department of Pathology and Immunology, Washington University , St. Louis, MO, USA
| | | | - Olivier Lambotte
- Department of Clinical Immunology and Internal Medicine, Hospital Kremlin Bicêtre, Université Paris-Sud , Orsay, France
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain , Brussels, Belgium
| | | | | | - Ronald Levy
- Stanford School of Medicine , Stanford, CA, USA
| | | | | | - Holbrook Kohrt
- Department of Medicine, Stanford School of Medicine , Stanford, CA, USA
| | | | - Stephen Ansell
- Division of Hematology , Mayo Clinic, Rochester, MN, USA
| | - Hervé Watier
- CHRU de Tours, Université François-Rabelais and CNRS, UMR7292 , Tours, France
| | | | | | | | | | - Gilles Salles
- Department of Hematology, Université Claude Bernard, Hospices Civils de Lyon , INSERM 1052 , Lyon, France
| | - Daniel Olive
- Inserm UMR 1068, Institut Paoli Calmettes, Aix Marseille Université , Marseille, France
| |
Collapse
|
40
|
Hussain M, Shah Z, Abbas N, Javeed A, Mukhtar MM, Zhang J. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy. Med Hypotheses 2016; 86:56-9. [DOI: 10.1016/j.mehy.2015.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
41
|
A whole-cell tumor vaccine modified to express fibroblast activation protein induces antitumor immunity against both tumor cells and cancer-associated fibroblasts. Sci Rep 2015; 5:14421. [PMID: 26394925 PMCID: PMC4585784 DOI: 10.1038/srep14421] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/19/2015] [Indexed: 02/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are common components of the tumor-suppressive microenvironment, and are a major determinant of the poor outcome of therapeutic vaccination. In this study, we modified tumor cells to express the fibroblast activation protein (FAP), which is highly expressed by CAFs, to potentially improve whole-cell tumor vaccines by targeting both tumor cells and CAFs. Tumor cells were transfected with murine FAP plasmids bearing the cationic lipid DOTAP. Its antitumor effects were investigated in three established tumor models. Vaccination with tumor cells expressing FAP eliminated solid tumors and tumors resulting from hematogenous dissemination. This antitumor immune response was mediated by CD8+ T cells. Additionally, we found that CAFs were significantly reduced within the tumors. Furthermore, this vaccine enhanced the infiltration of CD8+ T lymphocytes, and suppressed the accumulation of immunosuppressive cells in the tumor microenvironment. Our results indicated that the FAP-modified whole-cell tumor vaccine induced strong antitumor immunity against both tumor cells and CAFs and reversed the immunosuppressive effects of tumors by decreasing the recruitment of immunosuppressive cells and enhancing the recruitment of effector T cells. This conclusion may have important implications for the clinical use of genetically modified tumor cells as cancer vaccines.
Collapse
|
42
|
Reppas AI, Alfonso JCL, Hatzikirou H. In silico tumor control induced via alternating immunostimulating and immunosuppressive phases. Virulence 2015; 7:174-86. [PMID: 26305801 DOI: 10.1080/21505594.2015.1076614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Despite recent advances in the field of Oncoimmunology, the success potential of immunomodulatory therapies against cancer remains to be elucidated. One of the reasons is the lack of understanding on the complex interplay between tumor growth dynamics and the associated immune system responses. Toward this goal, we consider a mathematical model of vascularized tumor growth and the corresponding effector cell recruitment dynamics. Bifurcation analysis allows for the exploration of model's dynamic behavior and the determination of these parameter regimes that result in immune-mediated tumor control. In this work, we focus on a particular tumor evasion regime that involves tumor and effector cell concentration oscillations of slowly increasing and decreasing amplitude, respectively. Considering a temporal multiscale analysis, we derive an analytically tractable mapping of model solutions onto a weakly negatively damped harmonic oscillator. Based on our analysis, we propose a theory-driven intervention strategy involving immunostimulating and immunosuppressive phases to induce long-term tumor control.
Collapse
Affiliation(s)
- A I Reppas
- a Center for Advancing Electronics; Technische Universität Dresden ; Dresden , Germany
| | - J C L Alfonso
- a Center for Advancing Electronics; Technische Universität Dresden ; Dresden , Germany
| | - H Hatzikirou
- a Center for Advancing Electronics; Technische Universität Dresden ; Dresden , Germany
| |
Collapse
|
43
|
Cell origins and significance of IL-17 in malignant pleural effusion. Clin Transl Oncol 2014; 16:807-13. [PMID: 24399072 DOI: 10.1007/s12094-013-1152-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/19/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE T cells are dominant in the immune regulation of malignant pleural effusion (MPE). However, it is unclear about the role of IL-17+ T cells, particularly for IL-17+CD8+ Tc17 cells in antitumor immunity. This retrospective study is aimed at evaluating the prognostic significance of IL-17+ T cells in patients with MPE. METHODS The frequency of IL-17+CD4+ Th17 and IL-17+CD8+ Tc17 cells in peripheral blood (PB), pleural fluids (PF), and tumor tissues in 24 patients undergoing thoracoscopy was determined by flow cytometry, immunohistochemistry, and ELISA. The association among the different measures was analyzed by Spearman's correlation tests. RESULTS The percentages of PF Th17 and Tc17 cells were significantly higher than those in the PB of MPE patients and healthy controls (p < 0.01). Analysis of Th17 and Tc17 cells in the tumor tissues indicated that the percentages of Th17 and Tc17 cells in the invading tumor edge were significantly higher than those in the non-tumor tissues and intra-tumor regions (p < 0.05). More importantly, the percentages of IL-17+ T cells were associated with prolonged survival of patients with MPE. CONCLUSIONS Both Th17 and Tc17 cells were involved in the tumor immunity against MPE. Increased frequency of Tc17 cells may serve as a biomarker for the prognosis of patients with MPE.
Collapse
|