1
|
Oliver D, Chesney E, Cullen AE, Davies C, Englund A, Gifford G, Kerins S, Lalousis PA, Logeswaran Y, Merritt K, Zahid U, Crossley NA, McCutcheon RA, McGuire P, Fusar-Poli P. Exploring causal mechanisms of psychosis risk. Neurosci Biobehav Rev 2024; 162:105699. [PMID: 38710421 PMCID: PMC11250118 DOI: 10.1016/j.neubiorev.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/17/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Robust epidemiological evidence of risk and protective factors for psychosis is essential to inform preventive interventions. Previous evidence syntheses have classified these risk and protective factors according to their strength of association with psychosis. In this critical review we appraise the distinct and overlapping mechanisms of 25 key environmental risk factors for psychosis, and link these to mechanistic pathways that may contribute to neurochemical alterations hypothesised to underlie psychotic symptoms. We then discuss the implications of our findings for future research, specifically considering interactions between factors, exploring universal and subgroup-specific factors, improving understanding of temporality and risk dynamics, standardising operationalisation and measurement of risk and protective factors, and developing preventive interventions targeting risk and protective factors.
Collapse
Affiliation(s)
- Dominic Oliver
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK; Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Edward Chesney
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - Alexis E Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Karolinska Institutet, Sweden
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amir Englund
- Addictions Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 4 Windsor Walk, London SE5 8AF, UK
| | - George Gifford
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sarah Kerins
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Paris Alexandros Lalousis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Yanakan Logeswaran
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Kate Merritt
- Division of Psychiatry, Institute of Mental Health, UCL, London, UK
| | - Uzma Zahid
- Department of Psychology, King's College London, London, UK
| | - Nicolas A Crossley
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Robert A McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK; NIHR Oxford Health Biomedical Research Centre, Oxford, UK; OPEN Early Detection Service, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; OASIS Service, South London and Maudsley NHS Foundation Trust, London SE11 5DL, UK
| |
Collapse
|
2
|
Syed SA, Schnakenberg Martin AM, Cortes-Briones JA, Skosnik PD. The Relationship Between Cannabinoids and Neural Oscillations: How Cannabis Disrupts Sensation, Perception, and Cognition. Clin EEG Neurosci 2022:15500594221138280. [PMID: 36426543 DOI: 10.1177/15500594221138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Disruptions in neural oscillations are believed to be one critical mechanism by which cannabinoids, such as delta-9-tetrahyrdrocannabinol (THC; the primary psychoactive constituent of cannabis), perturbs brain function. Here we briefly review the role of synchronized neural activity, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) frequency range, in sensation, perception, and cognition. This is followed by a review of clinical studies utilizing electroencephalography (EEG) which have demonstrated that both chronic and acute cannabinoid exposure disrupts neural oscillations in humans. We also offer a hypothetical framework through which endocannabinoids modulate neural synchrony at the network level. This also includes speculation on how both chronic and acute cannabinoids disrupt functionally relevant neural oscillations by altering the fine tuning of oscillations and the inhibitory/excitatory balance of neural circuits. Finally, we highlight important clinical implications of such oscillatory disruptions, such as the potential relationship between cannabis use, altered neural synchrony, and disruptions in sensation, perception, and cognition, which are perturbed in disorders such as schizophrenia.
Collapse
Affiliation(s)
- Shariful A Syed
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Ashley M Schnakenberg Martin
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jose A Cortes-Briones
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Patrick D Skosnik
- Department of Psychiatry, 12228Yale University School of Medicine, New Haven, CT, USA.,VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
3
|
The Role of Gamma Oscillations in the Pathophysiology of Substance Use Disorders. J Pers Med 2020; 11:jpm11010017. [PMID: 33379187 PMCID: PMC7824040 DOI: 10.3390/jpm11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Substance use disorders (SUDs) are a major public health problem—with over 200 million people reporting drug use in 2016. Electroencephalography (EEG) is a powerful tool that can provide insights into the impact of SUDs on cognition. Specifically, modulated gamma activity may provide an index of the pathophysiology of SUDs. Thus, the purpose of this review was to investigate the impact of alcohol, tobacco, cannabis, cocaine, and amphetamine on gamma activity, among pre-clinical and clinical populations during acute and chronic exposure and withdrawal states. We searched multiple databases for key terms related to SUDs, EEG, and gamma and ensured rigorous methods by using a standardized review reporting tool. We included 30 studies in this review and found that all substances were associated with modulation of gamma activity, across states and in both preclinical and clinical populations. Gamma oscillations appeared to be differentially modulated in clinical versus preclinical populations and had the most complex relationship with alcohol, indicating that it may act differently than other substances. The findings of this review offer insights into the pathophysiology of SUDs, providing a potential window into novel treatments for SUDs via modulation of gamma activity.
Collapse
|
4
|
Park SC, Oh HS, Tripathi A, Kallivayalil RA, Avasthi A, Grover S, Tanra AJ, Kanba S, Kato TA, Inada T, Chee KY, Chong MY, Lin SK, Sim K, Xiang YT, Tan CH, Javed A, Sartorius N, Shinfuku N, Park YC. Cannabis use correlates with aggressive behavior and long-acting injectable antipsychotic treatment in Asian patients with schizophrenia. Nord J Psychiatry 2019; 73:323-330. [PMID: 31240984 DOI: 10.1080/08039488.2019.1632381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Although cannabis use has been linked with schizophrenia in a dose-response pattern, to our knowledge, the relationship between cannabis and schizophrenia has rarely been reported in Asian population. Aim: We compared the clinical characteristics and psychotropic prescription patterns between cannabis users and non-users among Asian patients with schizophrenia. Moreover, we aimed to identify the independent correlates of cannabis use in these subjects. Methods: We performed the analysis of the data from the Research on Asian Psychotropic Prescription Patterns for Antipsychotics (REAP-AP), a collaborative consortium survey used to collate the prescription patterns for antipsychotic and other psychotropic medications in patients with schizophrenia in Asia. We included 132 schizophrenia patients in the group of lifetime cannabis use and 1756 in the group that had never used cannabis. A binary logistic model was fitted to detect the clinical correlates of lifetime cannabis use. Results: Adjusting for the effects of age, sex, geographical region, income group, duration of untreated psychosis, and Charlson comordity index level, a binary logistic regression model revealed that lifetime cannabis use was independently associated with aggressive behavior [adjusted odds ratio (aOR) = 1.582, 95% confidence interval (CI) = 1.006-2.490, p = .047] and with long-acting injectable antipsychotic treatment (aOR = 1.796, 95% CI = 1.444-2.820, p = .001). Conclusion: Our findings indicate a close link between lifetime cannabis use and aggressive behavior. The use of long-acting, injectable antipsychotics preferentially treats the aggressive behavior cannabis users among patients with schizophrenia in Asia, especially, the South or Southeast Asia.
Collapse
Affiliation(s)
- Seon-Cheol Park
- a Department of Psychiatry, Inje Universtiy Haeundae Paik Hospital , Busan , Republic of Korea
| | - Hong Seok Oh
- b Department of Psychiatry, Konyang University Hospital , Daejeon , Republic of Korea
| | - Adarsh Tripathi
- c Department of Psychiatry, King George's Medical University , Chowk , India
| | | | - Ajit Avasthi
- e Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | - Sandeep Grover
- e Department of Psychiatry, Post Graduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | - Andi Jayalangkara Tanra
- f Faculty of Medicine, Department of Psychiatry, Hasanuddin University , Makassar , Indonesia
| | - Shigenobu Kanba
- g Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University , Fukuoka , Japan
| | - Takahiro A Kato
- g Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University , Fukuoka , Japan
| | - Toshiya Inada
- h Department of Psychiatry and Psychobiology, Nagoya University, Graduate School of Medicine , Nagoya , Japan
| | - Kok Yoon Chee
- i Tunku Abdul Rahman Institute of Neuroscience, Kuala Lumpur Hospital , Kuala Lumpur , Malaysia
| | - Mian-Yoon Chong
- j Chang Gung Memorial Hospital , Chiayi , Taiwan.,k Chang Gung University School of Medicine , Taoyuan City , Taiwan
| | - Shih-Ku Lin
- l Psychiatric Center, Taipei City Hospital , Taipei , Taiwan
| | - Kang Sim
- m West Region, Institute of Mental Health and Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yu-Tao Xiang
- n Faculty of Health Sciences, Unit of Psychiatry, Institute of Translational Medicine, University of Macau , Macau SAR , China
| | - Chay Hoon Tan
- o Department of Pharmacology, National University Hospital , Singapore , Singapore
| | - Afzal Javed
- p Pakistan Psychiatric Research Centre, Fountain House , Lahore , Pakistan
| | - Norman Sartorius
- q Association for the Improvement of Mental Health Programmes , Geneva , Switzerland
| | - Naotaka Shinfuku
- r Department of Social Welfare, School of Human Sciences, Seinan Gakuin University , Fukuoka , Japan
| | - Yong Chon Park
- s Department of Neuropsychiatry, Hanyang University Guri Hospital , Guri , Republic of Korea
| |
Collapse
|
5
|
Norris C, Szkudlarek HJ, Pereira B, Rushlow W, Laviolette SR. The Bivalent Rewarding and Aversive properties of Δ 9-tetrahydrocannabinol are Mediated Through Dissociable Opioid Receptor Substrates and Neuronal Modulation Mechanisms in Distinct Striatal Sub-Regions. Sci Rep 2019; 9:9760. [PMID: 31278333 PMCID: PMC6611878 DOI: 10.1038/s41598-019-46215-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/17/2019] [Indexed: 11/09/2022] Open
Abstract
The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), is capable of producing bivalent rewarding and aversive affective states through interactions with the mesolimbic system. However, the precise mechanisms underlying the dissociable effects of THC are not currently understood. In the present study, we identify anatomically dissociable effects of THC within the rat nucleus accumbens (NAc), using an integrative combination of behavioral pharmacology and in vivo neuronal electrophysiology. We report that the rewarding vs. aversive stimulus properties of THC are both anatomically and pharmacologically dissociable within distinct anterior vs. posterior sub-regions of the NAc. While the rewarding effects of THC were dependent upon local μ-opioid receptor signaling, the aversive effects of THC were processed via a κ-opioid receptor substrate. Behaviorally, THC in the posterior NASh induced deficits in social reward and cognition whereas THC in the anterior NAc, potentiated opioid-related reward salience. In vivo neuronal recordings demonstrated that THC decreased medium spiny neuron (MSN) activity in the anterior NAc and increased the power of gamma (γ) oscillations. In contrast, THC increased MSN activity states in the posterior NASh and decreased γ-oscillation power. These findings reveal critical new insights into the bi-directional neuronal and pharmacological mechanisms controlling the dissociable effects of THC in mesolimbic-mediated affective processing.
Collapse
Affiliation(s)
- Christopher Norris
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Brian Pereira
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Walter Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Dept. of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
6
|
Brooks GA, Brenner CA. Is there a common vulnerability in cannabis phenomenology and schizotypy? The role of the N170 ERP. Schizophr Res 2018; 197:444-450. [PMID: 29174334 DOI: 10.1016/j.schres.2017.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Cannabis use is a known risk factor for the development of psychosis, although the precise nature of this relationship is unclear. The phenomenological experiences associated with cannabis use vary dramatically, and for some resemble certain features of psychosis. We hypothesized that individuals who report particularly unusual experiences associated with cannabis use would demonstrate similar electrophysiological patterns to those who score high on schizotypal personality traits. The Cannabis Experiences Questionnaire (CEQ) and the Schizotypal Personality Questionnaire (SPQ) were used to measure these experiences and traits. A sample of 97 individuals were placed into one of three experimental or two control groups based on their questionnaire scores. These were the "High CEQ", "High SPQ", "High on Both", "Average Users" and "Control" (non-using) groups. Participants completed a visual face perception task. Electroencephalography was used to measure the neural response to the stimuli. The N170 event-related potential (ERP) was used to measure perceptual encoding of the stimulus. The experimental groups elicited significantly reduced N170 ERPs compared to the Control group. The Average User group did not significantly differ from the Control group, and approached significance with the High SPQ group. None of the high scoring groups significantly differed in N170 ERP response from each other. Replicating past research, the CEQ and SPQ scales moderately correlated with each other. The attenuated N170 ERP demonstrated by the high scoring experimental groups may reflect a manifestation of an underlying shared vulnerability.
Collapse
Affiliation(s)
- Gabriel A Brooks
- University of British Columbia, Department of Psychology, 2136 West Mall, V6T1Z4 Vancouver, Canada.
| | - Colleen A Brenner
- Loma Linda University, Department of Psychology, 11130 Anderson St., Loma Linda, California 92350, USA.
| |
Collapse
|
7
|
Reilly TJ, Nottage JF, Studerus E, Rutigliano G, Micheli AID, Fusar-Poli P, McGuire P. Gamma band oscillations in the early phase of psychosis: A systematic review. Neurosci Biobehav Rev 2018; 90:381-399. [PMID: 29656029 DOI: 10.1016/j.neubiorev.2018.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Abnormal gamma oscillations, measured by electroencephalography (EEG), have been associated with chronic psychotic disorders, but their prevalence in the early phase of psychosis is less clear. We sought to address this by systematically reviewing the relevant literature. We searched for EEG studies of gamma band oscillations in subjects at high risk for psychosis and in patients with first episode psychosis. The following measures of gamma oscillations were extracted: resting power, evoked power, induced power, connectivity and peak frequency. Forty-five studies with a total of 3099 participants were included. There were potential sources of bias in the study designs and potential artefacts. Although there were few consistent findings, several studies reported decreased evoked or induced power in both high risk subjects and first episode patients. Studies using larger samples with serial EEG measurements, and designs that minimise artefacts that occur at the gamma frequency may advance work in this area.
Collapse
Affiliation(s)
- Thomas J Reilly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
| | - Judith F Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Erich Studerus
- Center for Gender Research and Early Detection, University of Basel Psychiatric Clinics, Basel, Switzerland
| | - Grazia Rutigliano
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea I De Micheli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
8
|
Skosnik PD, Hajós M, Cortes-Briones JA, Edwards CR, Pittman BP, Hoffmann WE, Sewell AR, D'Souza DC, Ranganathan M. Cannabinoid receptor-mediated disruption of sensory gating and neural oscillations: A translational study in rats and humans. Neuropharmacology 2018; 135:412-423. [PMID: 29604295 DOI: 10.1016/j.neuropharm.2018.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/27/2023]
Abstract
Cannabis use has been associated with altered sensory gating and neural oscillations. However, it is unclear which constituent in cannabis is responsible for these effects, or whether these are cannabinoid receptor 1 (CB1R) mediated. Therefore, the present study in humans and rats examined whether cannabinoid administration would disrupt sensory gating and evoked oscillations utilizing electroencephalography (EEG) and local field potentials (LFPs), respectively. Human subjects (n = 15) completed four test days during which they received intravenous delta-9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-THC + CBD, or placebo. Subjects engaged in a dual-click paradigm, and outcome measures included P50 gating ratio (S2/S1) and evoked power to S1 and S2. In order to examine CB1R specificity, rats (n = 6) were administered the CB1R agonist CP-55940, CP-55940+AM-251 (a CB1R antagonist), or vehicle using the same paradigm. LFPs were recorded from CA3 and entorhinal cortex. Both Δ9-THC (p < 0.007) and Δ9-THC + CBD (p < 0.004) disrupted P50 gating ratio compared to placebo, while CBD alone had no effect. Δ9-THC (p < 0.048) and Δ9-THC + CBD (p < 0.035) decreased S1 evoked theta power, and in the Δ9-THC condition, S1 theta negatively correlated with gating ratios (r = -0.629, p < 0.012 (p < 0.048 adjusted)). In rats, CP-55940 disrupted gating in both brain regions (p < 0.0001), and this was reversed by AM-251. Further, CP-55940 decreased evoked theta (p < 0.0077) and gamma (p < 0.011) power to S1, which was partially blocked by AM-251. These convergent human/animal data suggest that CB1R agonists disrupt sensory gating by altering neural oscillations in the theta-band. Moreover, this suggests that the endocannabinoid system mediates theta oscillations relevant to perception and cognition.
Collapse
Affiliation(s)
- Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jose A Cortes-Briones
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chad R Edwards
- Developmental Neuropsychological Services, P.C., South Bend, IN 46615, USA
| | - Brian P Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William E Hoffmann
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew R Sewell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Deepak C D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
9
|
Sherif MA, Cortes-Briones JA, Ranganathan M, Skosnik PD. Cannabinoid-glutamate interactions and neural oscillations: implications for psychosis. Eur J Neurosci 2018; 48:2890-2902. [PMID: 29247465 DOI: 10.1111/ejn.13800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed A. Sherif
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Jose A. Cortes-Briones
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Mohini Ranganathan
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| | - Patrick D. Skosnik
- Department of Psychiatry; Yale University School of Medicine; VA Connecticut Healthcare System Building 5, Suite C-214 950 Campbell Avenue West Haven CT 06516 USA
| |
Collapse
|
10
|
Ruggiero RN, Rossignoli MT, De Ross JB, Hallak JEC, Leite JP, Bueno-Junior LS. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research. Front Pharmacol 2017; 8:399. [PMID: 28680405 PMCID: PMC5478733 DOI: 10.3389/fphar.2017.00399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/06/2017] [Indexed: 01/14/2023] Open
Abstract
Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC) or ameliorate (e.g., cannabidiol, CBD) schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist) on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.
Collapse
Affiliation(s)
- Rafael N Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Matheus T Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jana B De Ross
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil.,National Institute for Science and Technology-Translational Medicine, National Council for Scientific and Technological Development (CNPq)Ribeirão Preto, Brazil
| | - Joao P Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| | - Lezio S Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
11
|
Skosnik PD, Cortes-Briones JA, Hajós M. It's All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis. Biol Psychiatry 2016; 79:568-77. [PMID: 26850792 DOI: 10.1016/j.biopsych.2015.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/04/2015] [Accepted: 12/03/2015] [Indexed: 02/08/2023]
Abstract
Evidence has accumulated over the past several decades suggesting that both exocannabinoids and endocannabinoids play a role in the pathophysiology of schizophrenia. The current article presents evidence suggesting that one of the mechanisms whereby cannabinoids induce psychosis is through the alteration in synchronized neural oscillations. Neural oscillations, particularly in the gamma (30-80 Hz) and theta (4-7 Hz) ranges, are disrupted in schizophrenia and are involved in various areas of perceptual and cognitive function. Regarding cannabinoids, preclinical evidence from slice and local field potential recordings has shown that central cannabinoid receptor (cannabinoid receptor type 1) agonists decrease the power of neural oscillations, particularly in the gamma and theta bands. Further, the administration of cannabinoids during critical stages of neural development has been shown to disrupt the brain's ability to generate synchronized neural oscillations in adulthood. In humans, studies examining the effects of chronic cannabis use (utilizing electroencephalography) have shown abnormalities in neural oscillations in a pattern similar to those observed in schizophrenia. Finally, recent studies in humans have also shown disruptions in neural oscillations after the acute administration of delta-9-tetrahydrocannabinol, the primary psychoactive constituent in cannabis. Taken together, these data suggest that both acute and chronic cannabinoids can disrupt the ability of the brain to generate synchronized oscillations at functionally relevant frequencies. Hence, this may represent one of the primary mechanisms whereby cannabinoids induce disruptions in attention, working memory, sensory-motor integration, and many other psychosis-related behavioral effects.
Collapse
Affiliation(s)
- Patrick D Skosnik
- Department of Psychiatry, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.
| | - Jose A Cortes-Briones
- Department of Psychiatry, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mihály Hajós
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Cortes-Briones J, Skosnik PD, Mathalon D, Cahill J, Pittman B, Williams A, Sewell RA, Ranganathan M, Roach B, Ford J, D'Souza DC. Δ9-THC Disrupts Gamma (γ)-Band Neural Oscillations in Humans. Neuropsychopharmacology 2015; 40:2124-34. [PMID: 25709097 PMCID: PMC4613601 DOI: 10.1038/npp.2015.53] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 11/09/2022]
Abstract
Gamma (γ)-band oscillations play a key role in perception, associative learning, and conscious awareness and have been shown to be disrupted by cannabinoids in animal studies. The goal of this study was to determine whether cannabinoids disrupt γ-oscillations in humans and whether these effects relate to their psychosis-relevant behavioral effects. The acute, dose-related effects of Δ-9-tetrahydrocannabinol (Δ(9)-THC) on the auditory steady-state response (ASSR) were studied in humans (n=20) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, 0.015, and 0.03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Electroencephalography (EEG) was recorded while subjects listened to auditory click trains presented at 20, 30, and 40 Hz. Psychosis-relevant effects were measured with the Positive and Negative Syndrome scale (PANSS). Δ(9)-THC (0.03 mg/kg) reduced intertrial coherence (ITC) in the 40 Hz condition compared with 0.015 mg/kg and placebo. No significant effects were detected for 30 and 20 Hz stimulation. Furthermore, there was a negative correlation between 40 Hz ITC and PANSS subscales and total scores under the influence of Δ(9)-THC. Δ(9)-THC (0.03 mg/kg) reduced evoked power during 40 Hz stimulation at a trend level. Recent users of cannabis showed blunted Δ(9)-THC effects on ITC and evoked power. We show for the first time in humans that cannabinoids disrupt γ-band neural oscillations. Furthermore, there is a relationship between disruption of γ-band neural oscillations and psychosis-relevant phenomena induced by cannabinoids. These findings add to a growing literature suggesting some overlap between the acute effects of cannabinoids and the behavioral and psychophysiological alterations observed in psychotic disorders.
Collapse
Affiliation(s)
- Jose Cortes-Briones
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D Skosnik
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Daniel Mathalon
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - John Cahill
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Ashley Williams
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - R Andrew Sewell
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Mohini Ranganathan
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA
| | - Brian Roach
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Judith Ford
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Mental Health Service Line, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Deepak Cyril D'Souza
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA,Psychiatry Service 116A, VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA, Tel: +1 203 932 5711 (2594), Fax: +1 203 937 4860, E-mail:
| |
Collapse
|
13
|
Garg S, Sharma R, Mittal S, Thapar S. Alterations in brain-stem auditory evoked potentials among drug addicts. A cross-sectional study. ACTA ACUST UNITED AC 2015; 20:253-8. [PMID: 26166594 PMCID: PMC4710344 DOI: 10.17712/nsj.2015.3.20150105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Objective: To compare the absolute latencies, the interpeak latencies, and amplitudes of different waveforms of brainstem auditory evoked potentials (BAEP) in different drug abusers and controls, and to identify early neurological damage in persons who abuse different drugs so that proper counseling and timely intervention can be undertaken. Methods: In this cross-sectional study, BAEP’s were assessed by a data acquisition and analysis system in 58 male drug abusers in the age group of 15-45 years as well as in 30 age matched healthy controls. The absolute peak latencies and the interpeak latencies of BAEP were analyzed by applying one way ANOVA and student t-test. The study was carried out at the GGS Medical College, Faridkot, Punjab, India between July 2012 and May 2013. Results: The difference in the absolute peak latencies and interpeak latencies of BAEP in the 2 groups was found to be statistically significant in both the ears (p<0.05). However, the difference in the amplitude ratio in both the ears was found to be statistically insignificant. Conclusion: Chronic intoxication by different drugs has been extensively associated with prolonged absolute peak latencies and interpeak latencies of BAEP in drug abusers reflecting an adverse effect of drug dependence on neural transmission in central auditory nerve pathways.
Collapse
Affiliation(s)
- Sonia Garg
- Department of Physiology, GGS Medical College, Faridkot, Punjab, India. E-mail:
| | | | | | | |
Collapse
|
14
|
Skosnik PD, Krishnan GP, D'Souza DC, Hetrick WP, O'Donnell BF. Disrupted gamma-band neural oscillations during coherent motion perception in heavy cannabis users. Neuropsychopharmacology 2014; 39:3087-99. [PMID: 24990428 PMCID: PMC4229582 DOI: 10.1038/npp.2014.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/09/2022]
Abstract
Previous work in animals and humans has shown that exogenous cannabinoids disrupt time-locked, evoked gamma oscillations (30-80 Hz). However, no studies to date have examined the effect of cannabis on non-time-locked, induced gamma oscillations during more complex Gestalt perception. The current study therefore utilized electroencephalography (EEG) to examine gamma oscillations during coherent motion perception in heavy cannabis users and controls. Chronic cannabis users (n = 24; 12 h abstinence before study; positive 11-nor-9-carboxy-delta-9-tetrahydrocannabinol urine levels) and cannabis-naive controls (n = 23) were evaluated. Stimuli consisted of random dot kinetograms (RDKs) that subjects passively viewed during three different conditions: coherent motion, incoherent motion, and static. Time × frequency analysis on EEG data was performed using Fourier-based mean trial power (MTP). Transient event-related potentials (ERPs) to stimulus onset (visual N100 and P200 components) were also evaluated. The results showed that the coherent motion condition produced a robust increase in neural activity in the gamma range (induced power from 40 to 59 Hz) as compared with the incoherent motion and static conditions. As predicted, the cannabis group showed significant reductions in induced gamma power in the coherent condition relative to healthy controls. No differences were observed between the groups in the N100 or P200 components, indicating intact primary sensory processing. Finally, cannabis users showed a trend toward increased scores on the Chapman Perceptual Aberration Scale (PAS) that was positively correlated with total years of active cannabis use. These data suggest that cannabis use may interfere with the generation of induced gamma-band neural oscillations that could in part mediate the perceptual-altering effects of exogenous cannabinoids.
Collapse
Affiliation(s)
- Patrick D Skosnik
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA, Tel: +1 812 320 2521, Fax: +1 203 937 4860, E-mail:
| | - Giri P Krishnan
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA, USA
| | - Deepak C D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
15
|
Cheng H, Skosnik PD, Pruce BJ, Brumbaugh MS, Vollmer JM, Fridberg DJ, O’Donnell BF, Hetrick WP, Newman SD. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users - a multi-voxel pattern analysis. J Psychopharmacol 2014; 28:1030-40. [PMID: 25237118 PMCID: PMC4427512 DOI: 10.1177/0269881114550354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic cannabis use can cause cognitive, perceptual and personality alterations, which are believed to be associated with regional brain changes and possible changes in connectivity between functional regions. This study aims to identify the changes from resting state functional magnetic resonance imaging scans. A two-level multi-voxel pattern analysis was proposed to classify male cannabis users from normal controls. The first level analysis works on a voxel basis and identifies clusters for the input of a second level analysis, which works on the functional connectivity between these regions. We found distinct clusters for male cannabis users in the middle frontal gyrus, precentral gyrus, superior frontal gyrus, posterior cingulate cortex, cerebellum and some other regions. Based on the functional connectivity of these clusters, a high overall accuracy rate of 84-88% in classification accuracy was achieved. High correlations were also found between the overall classification accuracy and Barrett Barrett Impulsiveness Scale factor scores of attention and motor. Our result suggests regional differences in the brains of male cannabis users that span from the cerebellum to the prefrontal cortex, which are associated with differences in functional connectivity.
Collapse
Affiliation(s)
- H Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - PD Skosnik
- Department of Psychiatry, The Yale University School of Medicine, New Haven, CT, USA
| | - BJ Pruce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - MS Brumbaugh
- Department of Psychiatry, The Yale University School of Medicine, New Haven, CT, USA
| | - JM Vollmer
- Department of Psychiatry, The Yale University School of Medicine, New Haven, CT, USA
| | - DJ Fridberg
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - BF O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - WP Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - SD Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
16
|
Striatal D(2)/D(3) receptor availability is inversely correlated with cannabis consumption in chronic marijuana users. Drug Alcohol Depend 2013; 128:52-7. [PMID: 22909787 PMCID: PMC3532956 DOI: 10.1016/j.drugalcdep.2012.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/21/2012] [Accepted: 07/29/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although the incidence of cannabis abuse/dependence in Americans is rising, the neurobiology of cannabis addiction is not well understood. Imaging studies have demonstrated deficits in striatal D(2)/D(3) receptor availability in several substance-dependent populations. However, this has not been studied in currently using chronic cannabis users. OBJECTIVE The purpose of this study was to compare striatal D(2)/D(3) receptor availability between currently using chronic cannabis users and healthy controls. METHODS Eighteen right-handed males age 18-34 were studied. Ten subjects were chronic cannabis users; eight were demographically matched controls. Subjects underwent a [(11)C]raclopride (RAC) PET scan. Striatal RAC binding potential (BP(ND)) was calculated on a voxel-wise basis. Prior to scanning, urine samples were obtained from cannabis users for quantification of urine Δ-9-tetrahydrocannabinol (THC) and THC metabolites (11-nor-Δ-9-THC-9-carboxylic acid; THC-COOH and 11-hydroxy-THC;OH-THC). RESULTS There were no differences in D(2)/D(3) receptor availability between cannabis users and controls. Voxel-wise analyses revealed that RAC BP(ND) values were negatively associated with both urine levels of cannabis metabolites and self-report of recent cannabis consumption. CONCLUSIONS In this sample, current cannabis use was not associated with deficits in striatal D(2)/D(3) receptor availability. There was an inverse relationship between chronic cannabis use and striatal RAC BP(ND). Additional studies are needed to identify the neurochemical consequences of chronic cannabis use on the dopamine system.
Collapse
|
17
|
Kiang M, Christensen BK, Streiner DL, Roy C, Patriciu I, Zipursky RB. Association of abnormal semantic processing with delusion-like ideation in frequent cannabis users: an electrophysiological study. Psychopharmacology (Berl) 2013; 225:95-104. [PMID: 22782461 PMCID: PMC5045303 DOI: 10.1007/s00213-012-2800-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/27/2012] [Indexed: 01/23/2023]
Abstract
RATIONALE Frequent cannabis use is a risk marker for schizophrenia and delusions, but the neurocognitive mechanisms of this relationship remain unclear. OBJECTIVES We sought evidence that cannabis users have deficits in processing relationships between meaningful stimuli, similar to abnormalities reported in schizophrenia, and that these deficits are associated with delusion-like ideation. We used the N400 event-related brain potential (ERP) waveform as a neurophysiological probe of activation of concepts in semantic memory. We hypothesized that cannabis users would exhibit larger (more negative) than normal N400 amplitudes in response to stimuli meaningfully related to a preceding prime-reflecting deficient activation of concepts related to the prime. We further hypothesized that the magnitude of this abnormality would correlate with severity of delusion-like ideation. METHODS We recorded ERPs in 24 frequent cannabis users and 24 non-using comparison participants who viewed prime words followed by targets which were either words related or unrelated to the prime or pronounceable nonwords. The participants' task was to indicate whether the target was a word. Delusion-like ideation was measured via the Schizotypal Personality Questionnaire. RESULTS Contrary to our hypothesis, cannabis users exhibited smaller than normal N400s to both related and unrelated targets. These abnormalities correlated with delusion-like ideation in cannabis users only. CONCLUSIONS The results are consistent with a generalized abnormality of activation within semantic memory neural networks in cannabis users. Further research is needed to investigate whether such an abnormality plays a role in the development of delusion-like ideation in cannabis users.
Collapse
Affiliation(s)
- Michael Kiang
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Animal and cellular work has shown that central cannabinoid-1 receptors modulate neural oscillations in the gamma range (40 Hz), which may be important for normal perceptual and cognitive processes. In order to assess the effect of cannabinoids on broadband-frequency neural oscillations in humans, the current study examined the effect of chronic cannabis use on auditory steady-state responses (ASSRs) utilizing electroencephalography (EEG). Passive ASSRs were assessed using varying rates of binaural stimulation (auditory click-trains; 10-50 Hz in increments of 5 Hz; 80 dB SPL) in carefully screened cannabis users and controls. Chronic cannabis users (n=22; 12 h abstinence before study; positive 11-nor-9-carboxy-delta-9-tetrahydrocannabinol urine levels) and cannabis naïve controls (n=24) were evaluated. Time X frequency analyses on EEG data were performed using Fourier-based mean trial power (MTP) and phase-locking (inter-trial coherence; ITC). Transient ERPs to stimulus onset (auditory N100 components) were also evaluated. As predicted, a decrease in spectral power (MTP) at 40 Hz was observed in the cannabis group (p<0.018). No effects on phase-locking (ITC) or the N100 were observed. Further, within the cannabis group, lower 40 Hz power correlated with an earlier age of onset of cannabis use (p<0.04). These data suggest that chronic exposure to exogenous cannabinoids can alter the ability to generate neural oscillations, particularly in the gamma range. This is consistent with preclinical animal and cellular data, which may have implications for understanding the short- and long-term psychopharmacological effects of cannabis.
Collapse
|
19
|
Dose-related modulation of event-related potentials to novel and target stimuli by intravenous Δ⁹-THC in humans. Neuropsychopharmacology 2012; 37:1632-46. [PMID: 22334121 PMCID: PMC3358754 DOI: 10.1038/npp.2012.8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cannabinoids induce a host of perceptual alterations and cognitive deficits in humans. However, the neural correlates of these deficits have remained elusive. The current study examined the acute, dose-related effects of delta-9-tetrahydrocannabinol (Δ⁹-THC) on psychophysiological indices of information processing in humans. Healthy subjects (n=26) completed three test days during which they received intravenous Δ⁹-THC (placebo, 0.015 and 0.03 mg/kg) in a within-subject, double-blind, randomized, cross-over, and counterbalanced design. Psychophysiological data (electroencephalography) were collected before and after drug administration while subjects engaged in an event-related potential (ERP) task known to be a valid index of attention and cognition (a three-stimulus auditory 'oddball' P300 task). Δ⁹-THC dose-dependently reduced the amplitude of both the target P300b and the novelty P300a. Δ⁹-THC did not have any effect on the latency of either the P300a or P300b, or on early sensory-evoked ERP components preceding the P300 (the N100). Concomitantly, Δ⁹-THC induced psychotomimetic effects, perceptual alterations, and subjective 'high' in a dose-dependent manner. Δ⁹-THC -induced reductions in P3b amplitude correlated with Δ⁹-THC-induced perceptual alterations. Lastly, exploratory analyses examining cannabis use status showed that whereas recent cannabis users had blunted behavioral effects to Δ(9)-THC, there were no dose-related effects of Δ⁹-THC on P300a/b amplitude between cannabis-free and recent cannabis users. Overall, these data suggest that at doses that produce behavioral and subjective effects consistent with the known properties of cannabis, Δ⁹-THC reduced P300a and P300b amplitudes without altering the latency of these ERPs. Cannabinoid agonists may therefore disrupt cortical processes responsible for context updating and the automatic orientation of attention, while leaving processing speed and earlier sensory ERP components intact. Collectively, the findings suggest that CB1R systems modulate top-down and bottom-up processing.
Collapse
|
20
|
Steinmetz AB, Edwards CR, Vollmer JM, Erickson MA, O’Donnell BF, Hetrick WP, Skosnik PD. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans. Psychopharmacology (Berl) 2012; 221:133-41. [PMID: 22134474 PMCID: PMC3517929 DOI: 10.1007/s00213-011-2556-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
RATIONALE Previous work in humans has shown that chronic cannabis users exhibit disruptions in classical eyeblink conditioning (EBC), a form of associative learning that is known to be dependent on the cerebellum. Based upon previous work in animals, it was hypothesized that these learning deficits were related to cannabinoid receptor (CB1R) downregulation. However, it remains unclear whether there is a recovery of cerebellum-dependent learning after the cessation of cannabis use. METHODS Therefore, former cannabis users (n=10), current cannabis users (n=10), and cannabis-naïve controls (n=10), all free of DSM-IV Axis-I or -II disorders, were evaluated. A standard delay EBC procedure was utilized in which paired presentations of a conditioned stimulus (CS; e.g., tone) and a co-terminating unconditioned stimulus (US; e.g., ocular airpuff) were administered, thus eliciting a conditioned eyeblink response (CR). The primary dependent measures were percentage of CRs and CR latency across conditioning blocks. RESULTS Similar to prior studies, current cannabis users exhibited marked impairments in both the acquisition and timing of CRs compared to controls. Although former cannabis users showed intact CR acquisition compared to controls, they exhibited significantly impaired (shorter) CR latencies. In both cannabis groups, UR amplitude did not differ from controls, indicating normal US processing. CONCLUSIONS These data suggest that a recovery of function has occurred for the learning of the CS-US association, while the accurate timing of the CR shows lasting impairments. Taken together, these results suggest that heavy cannabis use can disrupt timing-related synaptic plasticity within the cerebellum, even after the cessation of cannabis use.
Collapse
Affiliation(s)
- Adam B. Steinmetz
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | - Chad R. Edwards
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Jennifer M. Vollmer
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite 901, New Haven, CT 06511, USA
| | - Molly A. Erickson
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Patrick D. Skosnik
- Department of Psychiatry, Yale University School of Medicine, 300 George St., Suite 901, New Haven, CT 06511, USA. VA Connecticut Healthcare System, Building 1, 950 Campbell Avenue, West Haven, CT 06516, USA
| |
Collapse
|
21
|
|
22
|
Kim DJ, Skosnik PD, Cheng H, Pruce BJ, Brumbaugh MS, Vollmer JM, Hetrick WP, O'Donnell BF, Sporns O, Puce A, Newman SD. Structural network topology revealed by white matter tractography in cannabis users: a graph theoretical analysis. Brain Connect 2012; 1:473-83. [PMID: 22432904 DOI: 10.1089/brain.2011.0053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoid receptors modulate synaptic plasticity in the brain and may therefore impact cortical connectivity not only during development but also in response to substance abuse in later life. Such alterations may not be evident in volumetric measures utilized in brain imaging, but could affect the local and global organization of brain networks. To test this hypothesis, we used a novel computational approach to estimate network measures of structural brain connectivity derived from diffusion tensor imaging (DTI) and white matter tractography. Twelve adult cannabis (CB) users and 13 healthy subjects were evaluated using a graph theoretic analysis of both global and local brain network properties. Structural brain networks in both CB subjects and controls exhibited robust small-world network attributes in both groups. However, CB subjects showed significantly decreased global network efficiency and significantly increased clustering coefficients (degree to which nodes tend to cluster around individual nodes). CB subjects also exhibited altered patterns of local network organization in the cingulate region. Among all subjects, schizotypal and impulsive personality characteristics correlated with global efficiency but not with the clustering coefficient. Our data indicate that structural brain networks in CB subjects are less efficiently integrated and exhibit altered regional connectivity. These differences in network properties may reflect physiological processes secondary to substance abuse-induced synaptic plasticity, or differences in brain organization that increase vulnerability to substance use.
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fridberg DJ, Vollmer JM, O'Donnell BF, Skosnik PD. Cannabis users differ from non-users on measures of personality and schizotypy. Psychiatry Res 2011; 186:46-52. [PMID: 20813412 PMCID: PMC3036782 DOI: 10.1016/j.psychres.2010.07.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 05/11/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Accumulating evidence indicates that cannabis use may be a risk factor for schizophrenia (SZ), and chronic cannabis users score higher than non-users on measures of schizotypal personality traits. The purpose of the present study was to investigate the relations between normal personality, schizotypy, and cannabis use. Sixty-two chronic cannabis users and 45 cannabis-naïve controls completed a measure of normal personality, the NEO-Five Factor Inventory (NEO-FFI), and two measures of schizotypy, the schizotypal personality questionnaire (SPQ) and perceptual aberration scale (PAS). Substance use was assessed using the SCID I alcohol/drug module and a locally developed drug use questionnaire. On the NEO-FFI, users scored higher than controls on openness, but lower on agreeableness and conscientiousness, and endorsed greater schizotypy on the SPQ and PAS. Higher neuroticism predicted greater schizotypy in both groups, and, higher Extraversion predicted lower negative-syndrome schizotypy among users. Finally, duration of cannabis use was positively correlated with scores on the SPQ and PAS among users, suggesting a relation between overall cannabis use chronicity and schizotypy. These data show that cannabis users differ from non-users on dimensions of normal personality and schizotypy, and provide further evidence that cannabis use is associated with increased levels of psychosis-related personality traits.
Collapse
Affiliation(s)
- Daniel J. Fridberg
- Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jennifer M. Vollmer
- Dept. of Psychiatry, Yale University School of Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brian F. O'Donnell
- Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Patrick D. Skosnik
- Dept. of Psychiatry, Yale University School of Medicine, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
24
|
Battisti RA, Roodenrys S, Johnstone SJ, Pesa N, Hermens DF, Solowij N. Chronic cannabis users show altered neurophysiological functioning on Stroop task conflict resolution. Psychopharmacology (Berl) 2010; 212:613-24. [PMID: 20721538 DOI: 10.1007/s00213-010-1988-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/02/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE Chronic cannabis use has been related to deficits in cognition (particularly memory) and the normal functioning of brain structures sensitive to cannabinoids. There is increasing evidence that conflict monitoring and resolution processes (i.e. the ability to detect and respond to change) may be affected. OBJECTIVES This study examined the ability to inhibit an automatic reading response in order to activate a more difficult naming response (i.e. conflict resolution) in a variant of the discrete trial Stroop colour-naming task. METHODS Event-related brain potentials to neutral, congruent and incongruent trials were compared between 21 cannabis users (mean 16.4 years of near daily use) in the unintoxicated state and 19 non-using controls. RESULTS Cannabis users showed increased errors on colour-incongruent trials (e.g. "RED" printed in blue ink) but no performance differences from controls on colour congruent (e.g. "RED" printed in red ink) or neutral trials (e.g. "*****" printed in green ink). Poorer incongruent trial performance was predicted by an earlier age of onset of regular cannabis use. Users showed altered expression of a late sustained potential related to conflict resolution, evident by opposite patterns of activity between trial types at midline and central sites, and altered relationships between neurophysiological and behavioural outcome measures not evident in the control group. CONCLUSIONS These findings indicate that chronic use of cannabis may impair the brain's ability to respond optimally in the presence of events that require conflict resolution and hold implications for the ability to refrain from substance misuse and/or maintain substance abstention behaviours.
Collapse
Affiliation(s)
- Robert A Battisti
- School of Psychology, University of Wollongong, Wollongong, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Woo TUW, Spencer K, McCarley RM. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry 2010; 18:173-89. [PMID: 20415633 PMCID: PMC2860612 DOI: 10.3109/10673221003747609] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fascinating convergence of evidence in recent years has implicated the disturbances of neural synchrony in the gamma frequency band (30-100 Hz) as a major pathophysiologic feature of schizophrenia. Evidence suggests that reduced glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors that are localized to inhibitory interneurons, perhaps especially the fast-spiking cells that contain the calcium-binding protein parvalbumin (PV), may contribute to gamma band synchrony deficits. These deficits may underlie the brain's failure to integrate information and hence the manifestations of many symptoms and deficits of schizophrenia. Furthermore, because gamma oscillations are thought to provide the temporal structure that is necessary for synaptic plasticity, gamma oscillation deficits may disturb the developmental synaptic reorganization process that is occurring during the period of late adolescence and early adulthood. This disturbance may contribute to the onset of schizophrenia and the functional deterioration that is characteristic of the early stage of the illness. Finally, reduced NMDA neurotransmission on inhibitory interneurons, including the PV-containing cells, may inflict excitotoxic or oxidative injury to downstream pyramidal neurons, leading to further loss of synapses and dendritic branchings. Hence, a key element in the conceptualization of rational early-intervention and prevention strategies for schizophrenia may involve correcting the abnormal NMDA neurotransmission on inhibitory interneurons-possibly that on the PV-containing neurons, in particular-thereby normalizing gamma oscillation deficits and attenuating downstream neuronal pathology.
Collapse
Affiliation(s)
- Tsung-Ung W. Woo
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Kevin Spencer
- Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Robert M. McCarley
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Edwards CR, Skosnik PD, Steinmetz AB, O'Donnell BF, Hetrick WP. Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations. Behav Neurosci 2009; 123:894-904. [PMID: 19634950 DOI: 10.1037/a0016328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Central cannabinoid receptors mediate neural oscillations and are localized to networks implicated in auditory P50 sensory gating, including the hippocampus and neocortex. The current study examined whether neural oscillations evoked by the paired clicks (S1, S2) are associated with abnormal P50 gating reported in cannabis users. Seventeen heavy cannabis users and 16 cannabis naïve controls participated. Analyses included P50 amplitudes, and time-frequency analyses (event-related spectral perturbations, ERSPs; intertrial coherence, ITC). Consistent with prior studies, cannabis users exhibited reduced P50 gating. The ERSP analysis yielded attenuated high frequency activity in the beta range (13-29 Hz) post-S1 and in the gamma range (30-50 Hz) post-S2 in the cannabis group, compared with the control group. Greater levels of cannabis use were positively associated with high P50 ratios and negatively with post-S2 ERSP gamma power. Findings suggest that heavy cannabis use is associated with aberrant beta and gamma activity in the dual-click procedure, which corroborates recent work demonstrating disruption of beta/gamma by cannabinoid receptor (CB1) agonists in a rat analogue of this task and highlights the translational potential of the dual-click procedure [corrected]
Collapse
Affiliation(s)
- Chad R Edwards
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 21455, USA.
| | | | | | | | | |
Collapse
|
27
|
Compton MT, Chien VH, Bollini AM. Associations between past alcohol, cannabis, and cocaine use and current schizotypy among first-degree relatives of patients with schizophrenia and non-psychiatric controls. Psychiatr Q 2009; 80:143-54. [PMID: 19396546 DOI: 10.1007/s11126-009-9102-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Associations between past use of alcohol, cannabis, and cocaine and various domains of schizotypy were examined in first-degree relatives of patients with schizophrenia and non-psychiatric controls. Substance use was operationalized in three ways: (1) having ever used the substance, (2) age at first use, and (3) past frequency/amount of use during three time periods in late adolescence/early adulthood. Schizotypy was assessed using the Schizotypal Personality Questionnaire (SPQ). Participants who had ever used cannabis had significantly higher cognitive-perceptual, interpersonal, and total schizotypy scores compared to those who had not. Younger age of alcohol use onset was associated with more schizotypy in adulthood, and younger age of first cannabis use was related to more interpersonal schizotypy. More frequent/heavier use of alcohol in the 25-29 age-range, and cannabis in early adulthood, were associated with more schizotypy. The use of addictive substances, particularly cannabis, is related to schizotypy in complex ways.
Collapse
Affiliation(s)
- Michael T Compton
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, 30303, GA, USA
| | | | | |
Collapse
|
28
|
Two discrete components of the 20 Hz steady-state response are distinguished through the modulation of activation level. Clin Neurophysiol 2009; 120:904-9. [PMID: 19345612 DOI: 10.1016/j.clinph.2009.02.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/12/2009] [Accepted: 02/28/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the modulation of amplitude and phase precision of the auditory steady-state response (SSR) to 20 Hz stimulation in two conditions varying in the level of activation. METHODS Click stimuli (20 Hz) were applied while subjects were sitting upright silently reading a book of interest (high activation level) and while subjects were sitting in a reclined position with eyes closed and the lights turned off (low activation level). Sixty-one channel EEG data was wavelet transformed, the amplitude and phase precision measures extracted and decomposed by the multi-subject non-negative multi-way factorization (NMWF). RESULTS The NMWF decomposition of amplitude and phase precision measures resulted in the observation of two distinct components: a component at the frequency of stimulation--20 Hz SSR and a component emerging at 40 Hz--20 Hz SSR-related 40 Hz activity. Modulation by the activation level was observed only for 20 Hz SSR-related 40 Hz activity as increased amplitude and phase precision during low activation level. No such effects were observed for 20 Hz SSR. CONCLUSION The discrete components of the 20 Hz SSR are distinguished through modulation of activation level, 20 Hz SSR-related 40 Hz being higher in low activation state. SIGNIFICANCE The biological modulation of 20 Hz SSR-related 40 Hz activity by the level of activation points to a physiological nature of this activity beyond a mere periodic effect in relation to the 20 Hz activity.
Collapse
|
29
|
Abstract
Research on electroencephalographic (EEG) correlates of substance use has a long history. The present paper provides a review of recent studies--2001 to the present--with a focus on EEG findings in human participants characterized by a history of chronic substance use, abuse or dependence. In some areas (e.g., alcohol and cocaine dependence), the field has attempted to build upon earlier work by incorporating different methodologies or pursuing research questions of a transdisciplinary nature. New areas of inquiry, such as the investigation of EEG differences among users of ecstasy (MDMA) and methamphetamine, have emerged, primarily as a result of an alarming rise in popularity of these drugs.
Collapse
Affiliation(s)
- Natalie A Ceballos
- Department of Psychology, Texas State University, San Marcos, Texas, USA
| | | | | |
Collapse
|
30
|
Hajós M, Hoffmann WE, Kocsis B. Activation of cannabinoid-1 receptors disrupts sensory gating and neuronal oscillation: relevance to schizophrenia. Biol Psychiatry 2008; 63:1075-83. [PMID: 18261715 DOI: 10.1016/j.biopsych.2007.12.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Impaired auditory gating and abnormal neuronal synchrony are indicators of dysfunctional information processing in schizophrenia patients and possible underlying mechanisms of their impaired sensory and cognitive functions. Because cannabinoid receptors and endocannabinoids have been linked to psychiatric disorders, including schizophrenia, the aim of this study was to evaluate the effects of cannabinoid-1 (CB1) receptor activation on sensory gating and neuronal oscillations in rats. METHODS Auditory sensory gating has been recorded from the hippocampus and entorhinal cortex (EC) in anesthetized rats. Neuronal network oscillations were recorded from the hippocampus, medial septum, EC, and medial prefrontal cortex in anesthetized and freely moving rats. Effects of systemic administration of CB1 receptor agonist CP-55940 were evaluated on these parameters. RESULTS CP-55940 significantly disrupted auditory gating both in the hippocampus and EC in anesthetized rats. Theta field potential oscillations were disrupted in the hippocampus and EC, with simultaneous interruption of theta-band oscillations of septal neurons. Administration of the CB1 receptor antagonist AM-251 reversed both the agonist-induced gating deficit and the diminished oscillations. In freely moving rats, CP-55940 significantly reduced theta and gamma power in the hippocampus, whereas in the EC, only gamma power was attenuated. However, novelty-induced theta and gamma activities were significantly diminished by CP-55940 in both the hippocampus and EC. CONCLUSIONS Our data indicate that activation of CB1 receptors interferes with neuronal network oscillations and impairs sensory gating function in the limbic circuitry, further supporting the connection between cannabis abuse and increased susceptibility of developing schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Mihály Hajós
- Department of Neuroscience, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | |
Collapse
|
31
|
Skosnik PD, Edwards CR, O'Donnell BF, Steffen A, Steinmetz JE, Hetrick WP. Cannabis use disrupts eyeblink conditioning: evidence for cannabinoid modulation of cerebellar-dependent learning. Neuropsychopharmacology 2008; 33:1432-40. [PMID: 17637608 PMCID: PMC2871697 DOI: 10.1038/sj.npp.1301506] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While the cerebellum contains the highest density of cannabinoid receptor (CB1) in the brain, no studies have assessed the effect of exogenous cannabinoids on cerebellar-dependent learning in humans. The current study, therefore, examined the effect of chronic cannabis use on classical eyeblink conditioning (EBC), a cerebellar-mediated task which has been shown to be disrupted in CB1 knockout mice. Chronic cannabis users (24 h abstinence before study; positive THC urine drug test) free of DSM-IV Axis-I or -II disorders, were evaluated. A delay EBC task was utilized, in which a conditioned stimulus (CS; 400 ms tone) co-terminated with a corneal air puff unconditioned stimulus (US; 50 ms), thus eliciting a conditioned blink response (CR). The cannabis group exhibited markedly fewer, and more poorly timed CRs as compared to drug-naive controls. There were no differences between the groups in either the unconditioned response (UR) or an EEG measure of selective attention to the CS (N100 auditory ERP), indicating that the disruption observed in the cannabis group was specific to CR acquisition. These results suggest that cannabis use is associated with functional deficits in the cerebellar circuitry underlying EBC, a finding which corroborates the recent work in CB1 knockout mice.
Collapse
Affiliation(s)
- Patrick D Skosnik
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajós M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 2008; 7:68-83. [PMID: 18064038 PMCID: PMC2753449 DOI: 10.1038/nrd2463] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia represents a pervasive deficit in brain function, leading to hallucinations and delusions, social withdrawal and a decline in cognitive performance. As the underlying genetic and neuronal abnormalities in schizophrenia are largely unknown, it is challenging to measure the severity of its symptoms objectively, or to design and evaluate psychotherapeutic interventions. Recent advances in neurophysiological techniques provide new opportunities to measure abnormal brain functions in patients with schizophrenia and to compare these with drug-induced alterations. Moreover, many of these neurophysiological processes are phylogenetically conserved and can be modelled in preclinical studies, offering unique opportunities for use as translational biomarkers in schizophrenia drug discovery.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan Kline Institute for Schizophrenia Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA
| | | | | | | | | |
Collapse
|
33
|
Van Laere K. In vivo imaging of the endocannabinoid system: a novel window to a central modulatory mechanism in humans. Eur J Nucl Med Mol Imaging 2007; 34:1719-26. [PMID: 17643242 DOI: 10.1007/s00259-007-0505-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Linszen D, van Amelsvoort T. Cannabis and psychosis: an update on course and biological plausible mechanisms. Curr Opin Psychiatry 2007; 20:116-20. [PMID: 17278907 DOI: 10.1097/yco.0b013e32803577fb] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Cannabis use is the most commonly abused illicit substance. Its relation with psychosis remains a topic of debate. Epidemiological studies suggest that cannabis is a component cause accounting for approximately 10% of cases. An increasing number of studies have been published on neurobiological effects of cannabis and vulnerability of psychosis. RECENT FINDINGS Acute cannabis administration can induce memory impairments, sometimes persisting months following abstinence. There is no evidence that residual effects on cognition remain after years of abstinence. The scarce literature on neuro-imaging mainly done in nonpsychotic populations, show little evidence that cannabis has effects on brain anatomy. Acute effects of cannabis include increases of cerebral blood flow, whereas long-term effects of cannabis include attenuation of cerebral blood flow. In animals Delta9-tetrahydrocannabinol enhances dopaminergic neurotransmission in brain regions known to be implicated in psychosis. Studies in humans show that genetic vulnerability may add to increased risk of developing psychosis and cognitive impairments following cannabis consumption. Delta9-tetrahydrocannabinol induces psychotic like states and memory impairments in healthy volunteers. SUMMARY Simultaneously with increasing understanding of neurobiological cannabis effects, there is a lack of studies in people with psychosis. There are plausible mechanisms that might explain the psychotogenic effects of cannabis.
Collapse
Affiliation(s)
- Don Linszen
- Department of Psychiatry, Academic Medical Centre University of Amsterdam, The Netherlands.
| | | |
Collapse
|