1
|
Ullah MZ, Hussain Z, Shakir SA, Mahmood M, Ejaz SA, Aziz M, Fayyaz A, Iqbal J, Mumtaz A. Exploration of newly synthesized deferasirox derivatives as potential anti-cancer agents via in-vitro and in-silico approaches. Int J Biol Macromol 2024; 283:137971. [PMID: 39581395 DOI: 10.1016/j.ijbiomac.2024.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Carbonic anhydrase IX (CA IX), upregulated by hypoxia-inducible factor (HIF), plays a crucial role in regulation of intracellular and extracellular pH, which is essential for the growth and spread of tumors. The overexpression of CA IX in breast cancer is linked to a low post-radiation patient survival rate. Under normoxic conditions, CA IX expression is relatively low, but hypoxia-inducible factors (HIFs) upregulate its expression when oxygen levels drop. This adaptation supports the tumor's acidic microenvironment, aiding processes like metastasis, immune evasion, and resistance to therapies. Due to these functions, CA IX is considered a promising target for cancer therapy, with inhibitors in development aimed at disrupting its activity and thus hindering tumor growth and survival. Thus, various derivatives of already reported anticancer drug i.e., deferasirox were synthesized and their effect on CA IX enzyme were assessed. Additionally, the binding affinities of deferasirox derivatives with three distinct receptor proteins i.e., Tumor Protein P53 (TP53), Nuclear factor kappa B (NF-κB) and caspase 3 (pdb: 3DCY, 1NFI, 3DEI) were also observed. Their anticancer effect was evaluated by using non-invasive human breast cancer cells i.e., MCF-7 and glioblastoma cells (U87). Among all derivatives, the four thioureas derivatives showed more anticancer potential. The 4-(3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl)-N-((3,4-dimethoxyphenyl)carbamothioyl) benzamide (6) derivative exhibited maximum anticancer potential (0.33 ± 0.02 μM) with greater binding affinity at different protein receptors. The MTT results further confirmed the enzyme inhibition results of deferasirox derivatives. In conclusion, targeting hypoxia-induced CA IX expression in breast cancer through the use of deferasirox-derived thiourea derivatives presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syed Ahmad Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Mahnoor Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| |
Collapse
|
2
|
Pravoverov K, Fatima I, Barman S, Jühling F, Primeaux M, Baumert TF, Singh AB, Dhawan P. IL-22 regulates MASTL expression in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2024; 327:G123-G139. [PMID: 38771154 DOI: 10.1152/ajpgi.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as an oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic colorectal cancer and colitis-associated cancer (CAC). CAC is one of the most severe complications of chronic inflammatory bowel disease (IBD), but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL levels in patients with IBD and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from patients with late-stage ulcerative colitis compared with controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, which facilitates IL-22-mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Furthermore, CAIX associates with and stabilizes MASTL in response to IL-22 stimulation.NEW & NOTEWORTHY MASTL is upregulated in colorectal cancer; however, its role in colitis and colitis-associated cancer is poorly understood. This study is the first to draw a link between MASTL and IL-22, a proinflammatory/intestinal epithelial recovery-promoting cytokine that is also implicated in colon tumorigenesis. We propose that IL-22 increases MASTL protein stability by promoting its association with CAIX potentially via AKT signaling to promote cell survival and proliferation.
Collapse
Affiliation(s)
- Kristina Pravoverov
- Eppley Institute, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Iram Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Susmita Barman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Frank Jühling
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
| | - Mark Primeaux
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Thomas F Baumert
- Inserm U1110, Université de Strasbourg, Institute for Translational Medicine and Liver Disease (ITM), Strasbourg, France
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Strasbourg, France
- IHU Strasbourg and Gastroenterology-Hepatology Service, Strasbourg University Hospitals, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States
| |
Collapse
|
3
|
Singh P, Nerella SG, Swain B, Angeli A, Ullah Q, Supuran CT, Arifuddin M. Design, synthesis and in vitro evaluation of novel thiazole-coumarin hybrids as selective and potent human carbonic anhydrase IX and XII inhibitors. Int J Biol Macromol 2024; 268:131548. [PMID: 38642682 DOI: 10.1016/j.ijbiomac.2024.131548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The coumarin is one of the most promising classes of non-classical carbonic anhydrase (CA, EC 4.2.1.1) inhibitors. In continuation of our ongoing work on search of coumarin based selective carbonic anhydrase inhibitors, a new series of 6-aminocoumarin based 16 novel analogues of coumarin incorporating thiazole (4a-p) have been synthesized and studied for their hCA inhibitory activity against a panel of human carbonic anhydrases (hCAs). Most of these newly synthesized compounds exhibited interesting inhibition constants in the nanomolar range. Among the tested compounds, the compounds 4f having 4-methoxy substitution exhibited activity at 90.9 nM against hCA XII isoform. It is noteworthy to see that all compounds were specifically and selectively active against isoforms hCA IX and hCA XII, with Ki under 1000 nM range. It is anticipated that these newly synthesized coumarin-thiazole hybrids (4a-p) may emerge as potential leads candidates against hCA IX and hCA XII as selective inhibitors compared to hCA I and hCA II.
Collapse
Affiliation(s)
- Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sridhar Goud Nerella
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Baijayantimala Swain
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Qasim Ullah
- Physical Science Section, School of Sciences, Maulana Azad National Urdu University (MANUU), Hyderabad 500032, Telangana, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Mohammed Arifuddin
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India.
| |
Collapse
|
4
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
5
|
Zhu W, Li X, Zheng G, Bai C, Ji Z, Zhang H, Xing H, Zhang Y, Huo L. Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase IX targeting PET tracer in clear cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:3116-3125. [PMID: 37246998 DOI: 10.1007/s00259-023-06248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) highly expresses carbonic anhydrase IX (CAIX). The purpose of this study was to evaluate 68Ga-NY104, a small-molecule CAIX-targeting PET agent, in tumor models of ccRCC and patients diagnosed with confirmed, or suspicious, ccRCC. METHODS The in vivo and ex vivo biodistribution of 68Ga-NY104 was investigated in CAIX-positive OS-RC-2 xenograft-bearing models. The binding of the tracer was further validated using autoradiography for human ccRCC samples. In addition, three patients with confirmed or suspicious ccRCC were studied. RESULTS NY104 can be labeled with high radiochemical yield and purity. It quickly cleared through kidney with α-half-life of 0.15 h. Discernible uptake is noted in the heart, lung, liver, stomach, and kidney. The OS-RC-2 xenograft demonstrated intense uptake 5 min after injection and gradually increased until 3 h after injection with ID%/g of 29.29 ± 6.82. Significant binding was detected using autoradiography on sections of human ccRCC tumor. In the three patients studied, 68Ga-NY104 was well-tolerated and no adverse events were reported. Substantial accumulation was observed in both primary and metastatic lesions in patient 1 and 2 with SUVmax of 42.3. Uptake in the stomach, pancreas, intestine, and choroid plexus was noted. The lesion in third patient was correctly diagnosed as non-metastatic for negative 68Ga-NY104 uptake. CONCLUSION 68Ga-NY104 can efficiently and specifically bind to CAIX. Given the pilot nature of our study, future clinical studies are warranted to evaluate 68Ga-NY104 for detection of CAIX-positive lesions in patients with ccRCC. TRIAL REGISTRATION The clinical evaluation part of this study was retrospectively registered at ClinicalTrial.gov (NCT05728515) as NYPILOT on 6 Feb, 2023.
Collapse
Affiliation(s)
- Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xiaoyuan Li
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoyang Zheng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haiqiong Zhang
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Haiqun Xing
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Shamis SAK, Edwards J, McMillan DC. The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis. Diagn Pathol 2023; 18:46. [PMID: 37061698 PMCID: PMC10105416 DOI: 10.1186/s13000-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/14/2023] [Indexed: 04/17/2023] Open
Abstract
PURPOSE Hypoxia is a characteristic of many solid tumours and an adverse prognostic factor for cancer therapy. Hypoxia results in upregulation of carbonic anhydrase IX (CAIX) expression, a pH-regulating enzyme. Many human tissue studies have examined the prognostic value of CAIX expression in breast cancer but have yielded inconsistent results. Therefore, a systematic review and meta-analysis was undertaken to assess the prognostic value of CAIX expression for breast cancer patients. METHODS The electronic databases were systematically searched to identify relevant papers. The clinical outcomes included disease-free survival (DFS), recurrence-free survival (RFS) and overall survival (OS) in breast cancer patients. Review Manager version 5.4 was employed to analysis data from 23 eligible studies (containing 8390 patients). RESULTS High CAIX expression was associated with poorer RFS [HR = 1.42, 95% CI (1.32-1.51), p < 0.00001], DFS [HR = 1.64, 95% CI (1.34-2.00), p < 0.00001], and OS [HR = 1.48, 95% CI (1.22-1.80), p < 0.0001]. Heterogeneity was observed across the studies. There was an effect of the CAIX antibody employed, scoring methods, and tumour localisation on CAIX expression. CONCLUSION CAIX overexpression was significantly associated with poorer RFS, DFS, and OS in breast cancer patients. However, further work in high quantity tissue cohorts is required to define the optimal methodological approach.
Collapse
Affiliation(s)
- Suad A K Shamis
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK.
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - Joanne Edwards
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, UK
| |
Collapse
|
7
|
Liu Y, Kong XX, He JJ, Xu YB, Zhang JK, Zou LY, Ding KF, Xu D. OLA1 promotes colorectal cancer tumorigenesis by activation of HIF1α/CA9 axis. BMC Cancer 2022; 22:424. [PMID: 35440019 PMCID: PMC9020043 DOI: 10.1186/s12885-022-09508-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 12/19/2022] Open
Abstract
Background Obg-like ATPase 1 (OLA1) is a highly conserved GTPase, which was over expressed in a variety of malignant tumors, but its role in colorectal cancer (CRC) was poorly studied. Patients and methods Three public CRC gene databases were applied for OLA1 mRNA expression detection. The clinical data of 111 CRC patients were retrospectively collected from the Second Affiliated Hospital of Zhejiang University (SAHZU) for OLA1 protein expression and Kaplan-Meier Survival analysis. OLA1 stably knocked out CRC cell lines were conducted by CRISPR-Cas9 for experiments in vitro and in vivo. Results OLA1 was highly expressed in 84% CRC compared to matched surrounding tissues. Patients with OLA1 high expression had a significantly lower 5-year survival rate (47%) than those with OLA1 low expression (75%). OLA1 high expression was an independent factor of poor prognosis in CRC patients. OLA1-KO CRC cell lines showed lower ability of growth and tumorigenesis in vitro and in vivo. By mRNA sequence analysis, we found 113 differential express genes in OLA1-KO cell lines, of which 63 were hypoxic related. HIF1α was a key molecule in hypoxic regulation. Further molecular mechanisms showed HIF1α /CA9 mRNA and/or protein levels were heavily downregulated in OLA1-KO cell lines, which could explain the impaired tumorigenesis. According to previous studies, HIF1α was a downstream gene of GSK3β, we verified GSK3β was over-activated in OLA1-KO cell lines. Conclusion OLA1 was a new gene that was associated with carcinogenesis and poor outcomes in CRC by activation of HIF1α/CA9 axis, which may be interpreted by GSK3β. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09508-1.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xiang-Xing Kong
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jin-Jie He
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yan-Bo Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jian-Kun Zhang
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Lu-Yang Zou
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China
| | - Ke-Feng Ding
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| | - Dong Xu
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China. .,Cancer Center, Zhejiang University, Zhejiang, Hangzhou, China.
| |
Collapse
|
8
|
Ryniawec JM, Coope MR, Loertscher E, Bageerathan V, de Oliveira Pessoa D, Warfel NA, Cress AE, Padi M, Rogers GC. GLUT3/SLC2A3 Is an Endogenous Marker of Hypoxia in Prostate Cancer Cell Lines and Patient-Derived Xenograft Tumors. Diagnostics (Basel) 2022; 12:diagnostics12030676. [PMID: 35328229 PMCID: PMC8946944 DOI: 10.3390/diagnostics12030676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
The microenvironment of solid tumors is dynamic and frequently contains pockets of low oxygen levels (hypoxia) surrounded by oxygenated tissue. Indeed, a compromised vasculature is a hallmark of the tumor microenvironment, creating both spatial gradients and temporal variability in oxygen availability. Notably, hypoxia associates with increased metastasis and poor survival in patients. Therefore, to aid therapeutic decisions and better understand hypoxia’s role in cancer progression, it is critical to identify endogenous biomarkers of hypoxia to spatially phenotype oncogenic lesions in human tissue, whether precancerous, benign, or malignant. Here, we characterize the glucose transporter GLUT3/SLC2A3 as a biomarker of hypoxic prostate epithelial cells and prostate tumors. Transcriptomic analyses of non-tumorigenic, immortalized prostate epithelial cells revealed a highly significant increase in GLUT3 expression under hypoxia. Additionally, GLUT3 protein increased 2.4-fold in cultured hypoxic prostate cell lines and was upregulated within hypoxic regions of xenograft tumors, including two patient-derived xenografts (PDX). Finally, GLUT3 out-performs other established hypoxia markers; GLUT3 staining in PDX specimens detects 2.6–8.3 times more tumor area compared to a mixture of GLUT1 and CA9 antibodies. Therefore, given the heterogeneous nature of tumors, we propose adding GLUT3 to immunostaining panels when trying to detect hypoxic regions in prostate samples.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Matthew R. Coope
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Emily Loertscher
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Vignesh Bageerathan
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Diogo de Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| |
Collapse
|
9
|
Chai D, Qiu D, Shi X, Ding J, Jiang N, Zhang Z, Wang J, Yang J, Xiao P, Wang G, Zheng J. Dual-targeting vaccine of FGL1/CAIX exhibits potent anti-tumor activity by activating DC-mediated multi-functional CD8 T cell immunity. Mol Ther Oncolytics 2022; 24:1-13. [PMID: 34977338 PMCID: PMC8688948 DOI: 10.1016/j.omto.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 12/19/2022] Open
Abstract
Tumor DNA vaccine as an effective therapeutic approach can induce systemic immunity against malignant tumors, but its therapeutic effect is still not satisfactory in advanced renal cancer. Herein, a novel DNA vaccine containing dual antigens of fibrinogen-like protein 1 (FGL1) and carbonic anhydrase IX (CAIX) was developed and intramuscularly delivered by PLGA/PEI nanoparticles for renal cancer therapy. Compared with PLGA/PEI-pCAIX immunization, PLGA/PEI-pFGL1/pCAIX co-immunization significantly inhibited the subcutaneous tumor growth and promoted the differentiation and maturation of CD11c+ DCs and CD11c+CD11b+ DCs subset. Likewise, the increased capabilities of CD8 T cell proliferation, CTL responses, and multi-functional CD8+ T cell immune responses were observed in PLGA/PEI-pFGL1/pCAIX vaccine group. Interestingly, depletion of CD8+ T cells by using CD8 mAb resulted in a loss of anti-tumor function of PLGA/PEI-pFGL1/pCAIX vaccine, suggesting that the anti-tumor activity of the vaccine was dependent on CD8+ T cell immune responses. Furthermore, PLGA/PEI-pFGL1/pCAIX co-immunization also suppressed the lung metastasis of tumor mice by enhancing the multi-functional CD8+ T cell responses. Therefore, these results indicate that PLGA/PEI-pFGL1/pCAIX vaccine could provide an effective protective effect for renal cancer by enhanced DC-mediated multi-functional CD8+ T cell immune responses. This vaccine strategy offers a potential approach for solid or metastatic tumor treatment.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoqing Shi
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Corresponding author Gang Wang, PhD, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Corresponding author Junnian Zheng, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
10
|
Aspatwar A, Tolvanen MEE, Barker H, Syrjänen L, Valanne S, Purmonen S, Waheed A, Sly WS, Parkkila S. Carbonic Anhydrases in Metazoan Model Organisms: Molecules, Mechanisms, and Physiology. Physiol Rev 2022; 102:1327-1383. [PMID: 35166161 DOI: 10.1152/physrev.00018.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs but also contribute to a plethora of previously undescribed functions.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Leo Syrjänen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland
| | - Susanna Valanne
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Purmonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Abdul Waheed
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - William S Sly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Sheff JG, Kelly JF, Robotham A, Sulea T, Malenfant F, L'Abbé D, Duchesne M, Pelletier A, Lefebvre J, Acel A, Parat M, Gosselin M, Wu C, Fortin Y, Baardsnes J, Van Faassen H, Awrey S, Chafe SC, McDonald PC, Dedhar S, Lenferink AEG. Hydrogen-deuterium exchange mass spectrometry reveals three unique binding responses of mAbs directed to the catalytic domain of hCAIX. MAbs 2021; 13:1997072. [PMID: 34812124 PMCID: PMC8632303 DOI: 10.1080/19420862.2021.1997072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.
Collapse
Affiliation(s)
- Joey G Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jean Lefebvre
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Marie Parat
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| | - Henk Van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Awrey
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Anne E G Lenferink
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Lenferink AEG, McDonald PC, Cantin C, Grothé S, Gosselin M, Baardsnes J, Banville M, Lachance P, Robert A, Cepero-Donates Y, Radinovic S, Salois P, Parat M, Oamari H, Dulude A, Patel M, Lafrance M, Acel A, Bousquet-Gagnon N, L'Abbé D, Pelletier A, Malenfant F, Jaramillo M, O'Connor-Mccourt M, Wu C, Durocher Y, Duchesne M, Gadoury C, Marcil A, Fortin Y, Paul-Roc B, Acchione M, Chafe SC, Nemirovsky O, Lau J, Bénard F, Dedhar S. Isolation and characterization of monoclonal antibodies against human carbonic anhydrase-IX. MAbs 2021; 13:1999194. [PMID: 34806527 PMCID: PMC8632296 DOI: 10.1080/19420862.2021.1999194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.
Collapse
Affiliation(s)
- Anne E G Lenferink
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Paul C McDonald
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Christiane Cantin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Suzanne Grothé
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mylene Gosselin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Myriam Banville
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Paul Lachance
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Alma Robert
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yuneivy Cepero-Donates
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Stevo Radinovic
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Patrick Salois
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Marie Parat
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Hafida Oamari
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Annie Dulude
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mehul Patel
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Martin Lafrance
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Andrea Acel
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Nathalie Bousquet-Gagnon
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Denis L'Abbé
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Alex Pelletier
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Félix Malenfant
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maria Jaramillo
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maureen O'Connor-Mccourt
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Cunle Wu
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Mélanie Duchesne
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Yves Fortin
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Beatrice Paul-Roc
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Maurizio Acchione
- Human Health Therapeutics Research Center, National Research Council of Canada, Montréal, Canada
| | - Shawn C Chafe
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Oksana Nemirovsky
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Joseph Lau
- Department of Molecular Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Francois Bénard
- Department of Molecular Oncology, Bc Cancer Research Institute, Vancouver, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, Bc Cancer Research Institute, Vancouver, Canada
| |
Collapse
|
13
|
Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front Aging Neurosci 2021; 13:772278. [PMID: 34867298 PMCID: PMC8635164 DOI: 10.3389/fnagi.2021.772278] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The Neurovascular Unit (NVU) is an important multicellular structure of the central nervous system (CNS), which participates in the regulation of cerebral blood flow (CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two pathologies with extensive NVU dysfunction. The cell types of the NVU change in both structure and function following an ischemic insult and during the development of AD pathology. Stroke and AD share common risk factors such as cardiovascular disease, and also share similarities at a molecular level. In both diseases, disruption of metabolic support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading to cell death and neurodegeneration. Improved therapeutic strategies for both AD and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other diseases and are being recently investigated for their function in the development of cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal fluid, regulation of CBF, and other physiological functions. Humans express 15 CA isoforms with different distribution patterns. Recent studies provide evidence that CA inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors; however, specific CA isoforms are likely to modulate the NVU function. This review will summarize the literature regarding the use of pan-CA and specific CA inhibitors along with genetic manipulation of specific CA isoforms in stroke and AD models, to bring light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy of CA inhibition and reduce side effects. More studies to further determine specific CA isoforms functions and changes in disease states are essential to the development of novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
Collapse
Affiliation(s)
- Nicole Lemon
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elisa Canepa
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marc A. Ilies
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Silvia Fossati,
| |
Collapse
|
14
|
Nortunen M, Parkkila S, Saarnio J, Huhta H, Karttunen TJ. Carbonic Anhydrases II and IX in Non-ampullary Duodenal Adenomas and Adenocarcinoma. J Histochem Cytochem 2021; 69:677-690. [PMID: 34636283 DOI: 10.1369/00221554211050133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Non-ampullary duodenal adenocarcinoma (DAC) is a rare malignancy. Little information is available concerning the histopathological prognostic factors associated with DAC. Carbonic anhydrases (CAs) are metalloenzymes catalyzing the universal reaction of CO2 hydration. Isozymes CAII, CAIX, and CAXII are associated with prognosis in various cancers. Our aim was to analyze the immunohistochemical expressions of CAII, CAIX, and CAXII in normal duodenal epithelium, duodenal adenomas, and adenocarcinoma and their associations with clinicopathological variables and survival. Our retrospective study included all 27 DACs treated in Oulu University Hospital during years 2000-2020. For comparison, samples of 42 non-ampullary adenomas were collected. CAII expression was low in duodenal adenomas and adenocarcinoma. CAIX expression in adenomas and adenocarcinoma was comparable with the high expression of normal duodenal crypts. Expression patterns in carcinomas were largely not related to clinicopathological features. However, low expression of CAII associated with poorer differentiation of the tumor (p=0.049) and low expression of CAIX showed a trend for association with nodal spread, although statistical significance was not reached (p=0.091). CAII and CAIX lost their epithelial polarization and staining intensity in adenomas. CAXII expression was not detected in the studied samples. CAs were not associated with survival. The prognostic value of CAII and CAIX downregulation should be further investigated. Both isozymes may serve as biomarkers of epithelial dysplasia in the duodenum.
Collapse
Affiliation(s)
- Minna Nortunen
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University and Fimlab Ltd, Tampere University Hospital, Tampere, Finland (SP)
| | - Juha Saarnio
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Heikki Huhta
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland.,Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tuomo J Karttunen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|
15
|
Aldera AP, Govender D. Carbonic anhydrase IX: a regulator of pH and participant in carcinogenesis. J Clin Pathol 2021; 74:jclinpath-2020-207073. [PMID: 33619217 DOI: 10.1136/jclinpath-2020-207073] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 01/24/2021] [Indexed: 11/04/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane metalloenzyme which is upregulated in tumour cells under hypoxic conditions. CAIX expression is induced by the accumulation of hypoxia-inducible factor-1α and has several downstream effects, including acidification of the extracellular pH, loss of cellular adhesion and increased tumour cell migration. CAIX is upregulated in a variety of solid organ tumours and has prognostic implications. High CAIX protein expression is a marker of poor prognosis in breast, lung, ovarian and bladder carcinomas. Conversely, low expression is an indicator of poor prognosis in clear cell renal cell carcinoma (CCRCC). CAIX immunohistochemistry is useful diagnostically to identify metastatic CCRCC, and the recently recognised clear cell papillary renal cell carcinoma. There is much interest in targeting CAIX with monoclonal antibodies and small molecule inhibitors. There are several small molecule inhibitors under development which have shown promising results in clinical trials. In this paper, we provide an overview of the role of CAIX in tumourigenesis and outline its use as a prognostic, diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Alessandro Pietro Aldera
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- JDW Pathology Inc, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
- Anatomical Pathology, Pathcare Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Redman RS, Bandyopadhyay BC. Immunohistochemical localization of carbonic anhydrase IV in the human parotid gland. Biotech Histochem 2021; 96:565-569. [PMID: 33596759 DOI: 10.1080/10520295.2021.1887936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the hydration and dehydration of carbon dioxide. They are important for regulating ions, fluid and acid-base balance in many tissues. The location of CAs by cell type is important for understanding their roles in these functions. CAs II and VI have been demonstrated using immunohistochemistry (IHC) in the serous acinar cells of human salivary glands and ducts of rat salivary glands. CA IV has been localized by IHC to the ducts of rat salivary glands. CA IV also is present in human parotid glands as shown by real time-polymerase chain reaction (RT-PCR), but this method does not show the distribution of the CA isozymes by cell type. We investigated the cell-specific distribution of CA IV in the human parotid gland. Sections from five formalin fixed, paraffin embedded specimens of human parotid gland were subjected to IHC for CA IV using a commercial antibody. Moderate to strong reactions were found in the cell membranes and cytoplasm of the intercalated, striated and excretory ducts and capillaries, and reactions in the acini were limited to faint areas in some cells. These results indicate that CA IV participates in the regulation of bicarbonate/carbon dioxide fluxes in the ductal system of the human parotid gland.
Collapse
Affiliation(s)
- Robert S Redman
- Oral Pathology Research, Department of Veterans Affairs Medical Center, Washington, DC
| | - Bidhan C Bandyopadhyay
- Calcium Signaling Laboratory, Research Service, Department of Veterans Affairs Medical Center, Washington, DC, USA
| |
Collapse
|
17
|
Mboge MY, Coombs J, Singh S, Andring J, Wolff A, Tu C, Zhang Z, McKenna R, Frost SC. Inhibition of Carbonic Anhydrase Using SLC-149: Support for a Noncatalytic Function of CAIX in Breast Cancer. J Med Chem 2021; 64:1713-1724. [PMID: 33523653 PMCID: PMC9945910 DOI: 10.1021/acs.jmedchem.0c02077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrase IX (CAIX) is considered a target for therapeutic intervention in solid tumors. In this study, the efficacy of the inhibitor, 4-(3-(2,4-difluorophenyl)-oxoimidazolidin-1-yl)benzenesulfonamide (SLC-149), is evaluated on CAIX and a CAIX-mimic. We show that SLC-149 is a better inhibitor than acetazolamide against CAIX. Binding of SLC-149 thermally stabilizes CAIX-mimic at lower concentrations compared to that of CAII. Structural examinations of SLC-149 bound to CAIX-mimic and CAII explain binding preferences. In cell culture, SLC-149 is a more effective inhibitor of CAIX activity in a triple-negative breast cancer cell line than previously studied sulfonamide inhibitors. SLC-149 is also a better inhibitor of activity in cells expressing CAIX versus CAXII. However, SLC-149 has little effect on cytotoxicity, and high concentrations are required to inhibit cell growth, migration, and invasion. These data support the hypothesis that CAIX activity, shown to be important in regulating extracellular pH, does not underlie its ability to control cell growth.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Coombs
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Jacob Andring
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Alyssa Wolff
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zaihui Zhang
- SignalChem Lifesciences Corp 13120 Vanier Place, Richmond, British Columbia V6V 2J2
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, 1200 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
18
|
The hypoxia-sensor carbonic anhydrase IX affects macrophage metabolism, but is not a suitable biomarker for human cardiovascular disease. Sci Rep 2021; 11:425. [PMID: 33432108 PMCID: PMC7801702 DOI: 10.1038/s41598-020-79978-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 01/18/2023] Open
Abstract
Hypoxia is prevalent in atherosclerotic plaques, promoting plaque aggravation and subsequent cardiovascular disease (CVD). Transmembrane protein carbonic anhydrase IX (CAIX) is hypoxia-induced and can be shed into the circulation as soluble CAIX (sCAIX). As plaque macrophages are hypoxic, we hypothesized a role for CAIX in macrophage function, and as biomarker of hypoxic plaque burden and CVD. As tumor patients with probable CVD are treated with CAIX inhibitors, this study will shed light on their safety profile. CAIX co-localized with macrophages (CD68) and hypoxia (pimonidazole), and correlated with lipid core size and pro-inflammatory iNOS+ macrophages in unstable human carotid artery plaques. Although elevated pH and reduced lactate levels in culture medium of CAIX knock-out (CAIXko) macrophages confirmed its role as pH-regulator, only spare respiratory capacity of CAIXko macrophages was reduced. Proliferation, apoptosis, lipid uptake and expression of pro- and anti-inflammatory genes were not altered. Plasma sCAIX levels and plaque-resident CAIX were below the detection threshold in 50 and 90% of asymptomatic and symptomatic cases, respectively, while detectable levels did not associate with primary or secondary events, or intraplaque hemorrhage. Initial findings show that CAIX deficiency interferes with macrophage metabolism. Despite a correlation with inflammatory macrophages, plaque-resident and sCAIX expression levels are too low to serve as biomarkers of future CVD.
Collapse
|
19
|
Xu J, Zhu S, Xu L, Liu X, Ding W, Wang Q, Chen Y, Deng H. CA9 Silencing Promotes Mitochondrial Biogenesis, Increases Putrescine Toxicity and Decreases Cell Motility to Suppress ccRCC Progression. Int J Mol Sci 2020; 21:E5939. [PMID: 32824856 PMCID: PMC7460829 DOI: 10.3390/ijms21165939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 02/04/2023] Open
Abstract
Carbonic anhydrase IX (CA9), a pH-regulating transmembrane protein, is highly expressed in solid tumors, and particularly in clear cell renal cell carcinoma (ccRCC). The catalytic mechanisms of CA9 are well defined, but its roles in mediating cell migration/invasion and survival in ccRCC remain to be determined. Here, we confirmed that the mRNA expression of CA9 in ccRCC was significantly higher than that in para-carcinoma tissues from analysis of the datasets in The Cancer Genome Atlas. CA9 knockdown upregulated oxidative phosphorylation-associated proteins and increased mitochondrial biogenesis, resulting in the reversal of the Warburg phenotype and the inhibition of cell growth. Our study revealed that CA9 knockdown upregulated mitochondrial arginase 2 (ARG2), leading to the accumulation of putrescine, which suppressed ccRCC proliferation. Surfaceomics analysis revealed that CA9 knockdown downregulated proteins associated with extracellular matrix (ECM)-receptor interaction and cell adhesion, resulting in decreased cell migration. CA9 silencing also downregulated amino acid transporters, leading to reduced cellular amino acids. Collectively, our data show that CA9 knockdown suppresses proliferation via metabolic reprogramming and reduced cell migration, reaffirming that CA9 is a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Jiatong Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Lina Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Wenxi Ding
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Qingtao Wang
- Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China;
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; (J.X.); (S.Z.); (L.X.); (X.L.); (W.D.)
| |
Collapse
|
20
|
Lee SH, Griffiths JR. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH. Cancers (Basel) 2020; 12:cancers12061616. [PMID: 32570870 PMCID: PMC7352839 DOI: 10.3390/cancers12061616] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
- Correspondence:
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK;
| |
Collapse
|
21
|
Pharmacological Inhibition of CA-IX Impairs Tumor Cell Proliferation, Migration and Invasiveness. Int J Mol Sci 2020; 21:ijms21082983. [PMID: 32340282 PMCID: PMC7215745 DOI: 10.3390/ijms21082983] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Carbonic anhydrase IX (CA-IX) plays a pivotal role in regulation of pH in tumor milieu catalyzing carbonic acid formation by hydrating CO2. An acidification of tumor microenvironment contributes to tumor progression via multiple processes, including reduced cell-cell adhesion, increased migration and matrix invasion. We aimed to assess whether the pharmacological inhibition of CA-IX could impair tumor cell proliferation and invasion. Tumor epithelial cells from breast (MDA-MB-231) and lung (A549) cancer were used to evaluate the cytotoxic effect of sulfonamide CA-IX inhibitors. Two CA-IX enzyme blockers were tested, SLC-0111 (at present in phase Ib clinical trial) and AA-06-05. In these cells, the drugs inhibited cell proliferation, migration and invasion through shifting of the mesenchymal phenotype toward an epithelial one and by impairing matrix metalloprotease-2 (MMP-2) activity. The antitumor activity was elicited via apoptosis pathway activation. An upregulation of p53 was observed, which in turn regulated the activation of caspase-3. Inhibition of proteolytic activity was accompanied by upregulation of the endogenous tissue inhibitor TIMP-2. Collectively, these data confirm the potential use of CA-IX inhibitors, and in particular SLC-0111 and AA-06-05, as agents to be further developed, alone or in combination with other conventional anticancer drugs.
Collapse
|
22
|
John A, Vetrivel U, Sivashanmugam M, Natarajan SK. Microsecond Simulation of the Proteoglycan-like Region of Carbonic Anhydrase IX and Design of Chemical Inhibitors Targeting pH Homeostasis in Cancer Cells. ACS OMEGA 2020; 5:4270-4281. [PMID: 32149257 PMCID: PMC7057697 DOI: 10.1021/acsomega.9b04203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 05/09/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-bound enzyme associated with tumor hypoxia and found to be over expressed in various tumor conditions. Targeting CAIX catalytic activity is proven to be efficient modality in modulating pH homeostasis in cancer cells. Proteoglycan-like (PG) region is unique to CAIX and is proposed to serve as an antenna enhancing the export of protons in conjunction with facilitated efflux of lactate ions via monocarboxylate transporters. Moreover, the PG region is also reported to contribute to the assembly and maturation of focal adhesion links during cellular attachment and dispersion on solid supports. Thus, drug targeting of this region shall efficiently modulate pH homeostasis and cell adhesion in cancer cells. As the PG region is intrinsically disordered, the complete crystal structure is not elucidated. Hence, in this study, we intend to sample the conformational landscape of the PG region at microsecond scale simulation in order to sample the most probable conformations that shall be utilized for structure-based drug design. In addition, the sampled conformations were subjected to high-throughput virtual screening against NCI and Maybridge datasets to identify potential hits based on consensus scoring and validation by molecular dynamics simulation. Further, the identified hits were experimentally validated for efficacy by in vitro and direct enzymatic assays. The results reveal 5-(2-aminoethyl)-1,2,3-benzenetriol to be the most promising hit as it showed significant CAIX inhibition at all levels of in silico and experimental validation.
Collapse
Affiliation(s)
- Arun John
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
- School
of Chemical and Biotechnology, SASTRA Deemed
University, Thanjavur, Tamil Nadu, India
| | - Umashankar Vetrivel
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
- E-mail: . Phone: +91-44-28271616. Fax: +91-44-28254180
| | - Muthukumaran Sivashanmugam
- Centre
for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision
and Ophthalmology, Vision Research Foundation,
Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| | - Sulochana Konerirajapuram Natarajan
- R.S.
Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan
Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, Tamil Nadu, India
| |
Collapse
|
23
|
Becker HM. Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020; 122:157-167. [PMID: 31819195 PMCID: PMC7051959 DOI: 10.1038/s41416-019-0642-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Alterations in tumour metabolism and acid/base regulation result in the formation of a hostile environment, which fosters tumour growth and metastasis. Acid/base homoeostasis in cancer cells is governed by the concerted interplay between carbonic anhydrases (CAs) and various transport proteins, which either mediate proton extrusion or the shuttling of acid/base equivalents, such as bicarbonate and lactate, across the cell membrane. Accumulating evidence suggests that some of these transporters interact both directly and functionally with CAIX to form a protein complex coined the 'transport metabolon'. Transport metabolons formed between bicarbonate transporters and CAIX require CA catalytic activity and have a function in cancer cell migration and invasion. Another type of transport metabolon is formed by CAIX and monocarboxylate transporters. In this complex, CAIX functions as a proton antenna for the transporter, which drives the export of lactate and protons from the cell. Since CAIX is almost exclusively expressed in cancer cells, these transport metabolons might serve as promising targets to interfere with tumour pH regulation and energy metabolism. This review provides an overview of the current state of research on the function of CAIX in tumour acid/base transport and discusses how CAIX transport metabolons could be exploited in modern cancer therapy.
Collapse
Affiliation(s)
- Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
24
|
Garousi J, Huizing FJ, Vorobyeva A, Mitran B, Andersson KG, Leitao CD, Frejd FY, Löfblom J, Bussink J, Orlova A, Heskamp S, Tolmachev V. Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Sci Rep 2019; 9:14907. [PMID: 31624303 PMCID: PMC6797765 DOI: 10.1038/s41598-019-51445-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with 111In and characterized in vitro. Tumor-targeting properties of [111In]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [99mTc]Tc(CO)3-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [111In]In-DTPA-G250(Fab’)2, in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the 99mTc-labeled parental variant, [111In]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [111In]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [111In]In-G250(Fab’)2. In conclusion, [111In]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fokko J Huizing
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sandra Heskamp
- Department of Radiology and Nuclear medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Ma Z, Yuan D, Cheng X, Tuo B, Liu X, Li T. Function of ion transporters in maintaining acid-base homeostasis of the mammary gland and the pathophysiological role in breast cancer. Am J Physiol Regul Integr Comp Physiol 2019; 318:R98-R111. [PMID: 31553634 DOI: 10.1152/ajpregu.00202.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incidence of breast cancer is increasing year by year, and the pathogenesis is still unclear. Studies have shown that the high metabolism of solid tumors leads to an increase in hypoxia, glycolysis, production of lactic acid and carbonic acid, and extracellular acidification; a harsh microenvironment; and ultimately to tumor cell death. Approximately 50% of locally advanced breast cancers exhibit hypoxia and/or local hypoxia, and acid-base regulatory proteins play an important role in regulating milk secretion and maintaining mammary gland physiological function. Therefore, ion transporters have gradually become a hot topic in mammary gland and breast cancer research. This review focuses on the research progress of ion transporters in mammary glands and breast cancer. We hope to provide new targets for the treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
26
|
Chen Z, Ai L, Mboge MY, Tu C, McKenna R, Brown KD, Heldermon CD, Frost SC. Differential expression and function of CAIX and CAXII in breast cancer: A comparison between tumorgraft models and cells. PLoS One 2018; 13:e0199476. [PMID: 29965974 PMCID: PMC6028082 DOI: 10.1371/journal.pone.0199476] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/07/2018] [Indexed: 01/25/2023] Open
Abstract
Carbonic anhydrase IX (CAIX) and XII (CAXII) are transmembrane proteins that are associated with cancer progression. We have previously described the catalytic properties of CAIX in MDA-MB-231 breast cancer cells, a line of cells that were derived from a patient with triple negative breast cancer. We chose this line because CAIX expression in breast cancer is a marker of hypoxia and a prognosticator for reduced survival. However, CAXII expression is associated with better survival statistics than those patients with low CAXII expression. Yet CAIX and CAXII have similar catalytic activities. Here we compare the potential roles of CAIX and CAXII in the context of TNBC and estrogen receptor (ER)-positive breast cancer. In tumor graft models, we show that CAIX and CAXII exhibit distinct expression patterns and non-overlapping. We find the same pattern across a panel of TNBC and luminal breast cancer cell lines. This affords an opportunity to compare directly CAIX and CAXII function. Our data suggest that CAIX expression is associated with growth potentiation in the tumor graft model and in a TNBC line using knockdown strategies and blocking activity with an impermeant sulfonamide inhibitor, N-3500. CAXII was not associated with growth potentiation. The catalytic activities of both CAIX and CAXII were sensitive to inhibition by N-3500 and activated at low pH. However, pH titration of activity in membrane ghosts revealed significant differences in the catalytic efficiency and pKa values. These features provide evidence that CAIX is a more efficient enzyme than CAXII at low pH and that CAIX shifts the equilibrium between CO2 and bicarbonate in favor of CO2 production by consuming protons. This suggests that in the acidic microenvironment of tumors, CAIX plays a role in stabilizing pH at a value that favors cancer cell survival.
Collapse
Affiliation(s)
- Zhijuan Chen
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Lingbao Ai
- The Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mam Y Mboge
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Chingkuang Tu
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Robert McKenna
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Kevin D Brown
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| | - Coy D Heldermon
- The Department of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Susan C Frost
- The Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
27
|
Chen Y, Bian X, Aliru M, Deorukhkar AA, Ekpenyong O, Liang S, John J, Ma J, Gao X, Schwartz J, Singh P, Ye Y, Krishnan S, Xie H. Hypoxia-targeted gold nanorods for cancer photothermal therapy. Oncotarget 2018; 9:26556-26571. [PMID: 29899876 PMCID: PMC5995181 DOI: 10.18632/oncotarget.25492] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022] Open
Abstract
Tumor hypoxia is a well-recognized driver of resistance to traditional cancer therapies such as chemotherapy and radiation therapy. We describe development of a new nanoconstruct composed of gold nanorods (GNRs) conjugated to carbonic anhydrase IX (CAIX) antibody that specifically binds to CAIX, a biomarker of hypoxia, to facilitate targeting tumor hypoxic areas for focused photothermal ablation. Physicochemical characterization studies confirmed the size, shape, monodispersity, surface charge, and serum stability of the GNRs. Enzyme-linked immunosorbent assays and cellular binding and uptake studies confirmed successful conjugation of antibody to the GNRs and specificity for CAIX. Near-infrared irradiation of CAIX-overexpressing cells treated with GNR/anti-CAIX resulted in significantly higher cell death than cells treated with control GNRs. In vivo biodistribution studies using hyperspectral imaging and inductively coupled plasma mass spectrometry confirmed intravenous administration results not only in greater accumulation of GNR/anti-CAIX in tumors than control GNRs but also greater penetration into hypoxic areas of tumors. Near-infrared ablation of these tumors showed no tumor regression in the sham-treated group, regression but recurrence in the non-targeted-GNR group, and complete tumor regression in the targeted-GNR group. GNR/anti-CAIX nanoconstructs show promise as hypoxia targeting and photothermal ablation agents for cancer treatment.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Xiaomei Bian
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Maureen Aliru
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Amit A Deorukhkar
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Oscar Ekpenyong
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Su Liang
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Jyothy John
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Jing Ma
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Xiuqing Gao
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Jon Schwartz
- Nanospectra Biosciences, Inc., Houston, Texas, USA
| | - Pankaj Singh
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Yuanqing Ye
- Department of Epidemiology, Division of OVP, Cancer Prevention and Population Science, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Huan Xie
- Department of Pharmaceutical and Environmental Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
28
|
Marks IS, Gardeen SS, Kurdziel SJ, Nicolaou ST, Woods JE, Kularatne SA, Low PS. Development of a Small Molecule Tubulysin B Conjugate for Treatment of Carbonic Anhydrase IX Receptor Expressing Cancers. Mol Pharm 2018; 15:2289-2296. [PMID: 29715036 DOI: 10.1021/acs.molpharmaceut.8b00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-spanning zinc metalloenzyme that catalyzes the reversible consumption of CO2 and water to form H+ + HCO3-. Many human cancers upregulate CAIX to help control the pH in their hypoxic microenvironments. The consequent overexpression of CAIX on malignant cells and low expression on normal tissues render CAIX a particularly attractive target for small molecule inhibitors, antibody-drug conjugates, and ligand-targeted drugs. In this study, CAIX-targeted fluorescent reporter molecules were initially exploited to investigate CAIX-specific binding to multiple cancer cell lines, where they were shown to display potent and selective binding to CAIX positive cells. A small molecule CAIX-targeted tubulysin B conjugate was then synthesized and examined for its ability to kill CAIX-expressing tumor cells in vitro. Potent therapeutic conjugates were subsequently tested in vivo and demonstrated to eliminate solid human tumor xenografts in murine tumor models without exhibiting overt signs of toxicity. Because most solid tumors contain hypoxic regions where CAIX is overexpressed, development of a method to selectively deliver drugs to these hypoxic regions could aid in the therapy of otherwise difficult to treat tumors.
Collapse
|
29
|
Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer Drug Development of Carbonic Anhydrase Inhibitors beyond the Active Site. Molecules 2018; 23:E1045. [PMID: 29710858 PMCID: PMC6099549 DOI: 10.3390/molecules23051045] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/29/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the reversible hydration of carbon dioxide to produce bicarbonate and a proton. Multiple CA isoforms are implicated in a range of diseases, including cancer. In solid tumors, continuously dividing cells create hypoxic conditions that eventually lead to an acidic microenvironment. Hypoxic tumor cells have different mechanisms in place to regulate and adjust the surrounding microenvironment for survival. These mechanisms include expression of CA isoform IX (CA IX) and XII (CA XII). These enzymes help maintain a physiological intracellular pH while simultaneously contributing to an acidic extracellular pH, leading to tumor cell survival. Expression of CA IX and CA XII has also been shown to promote tumor cell invasion and metastasis. This review discusses the characteristics of CA IX and CA XII, their mechanism of action, and validates their prospective use as anticancer targets. We discuss the current status of small inhibitors that target these isoforms, both classical and non-classical, and their future design in order to obtain isoform-specificity for CA IX and CA XII. Biologics, such as monoclonal antibodies, monoclonal-radionuclide conjugated chimeric antibodies, and antibody-small molecule conjugates are also discussed.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
30
|
Chen Z, Ai L, Mboge MY, McKenna R, Frost CJ, Heldermon CD, Frost SC. UFH-001 cells: A novel triple negative, CAIX-positive, human breast cancer model system. Cancer Biol Ther 2018; 19:598-608. [PMID: 29561695 DOI: 10.1080/15384047.2018.1449612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cell lines are an important resource for research, and are often used as in vitro models of human diseases. In response to the mandate that all cells should be authenticated, we discovered that the MDA-MB-231 cells that were in use in our lab, did not validate based on the alleles of 9 different markers (STR Profile). We had been using this line as a model of triple negative breast cancer (TNBC) that has the ability to form tumors in immuno-compromised mice. Based on marker analysis, these cells most closely resembled the MCF10A line, which are a near diploid and normal mammary epithelial line. Yet, the original cells express carbonic anhydrase IX (CAIX) both constitutively and in response to hypoxia and are features that likely drive the aggressive nature of these cells. Thus, we sought to sub-purify CAIX-expressing cells using Fluorescence Activated Cell Sorting (FACS). These studies have revealed a new line of cells that we have name UFH-001, which have the TNBC phenotype, are positive for CAIX expression, both constitutively and in response to hypoxia, and behave aggressively in vivo. These cells may be useful for exploring mechanisms that underlie progression, migration, and metastasis of this phenotype. In addition, constitutive expression of CAIX allows its evaluation as a therapeutic target, both in vivo and in vitro.
Collapse
Affiliation(s)
- Zhijuan Chen
- a Department of Biochemistry and Molecular Biology , Gainesville , FL
| | - Lingbao Ai
- b Department of Medicine , University of Florida , Gainesville , FL
| | - Mam Y Mboge
- a Department of Biochemistry and Molecular Biology , Gainesville , FL
| | - Robert McKenna
- a Department of Biochemistry and Molecular Biology , Gainesville , FL
| | | | - Coy D Heldermon
- b Department of Medicine , University of Florida , Gainesville , FL
| | - Susan C Frost
- a Department of Biochemistry and Molecular Biology , Gainesville , FL
| |
Collapse
|
31
|
Supuran CT, Alterio V, Di Fiore A, D' Ambrosio K, Carta F, Monti SM, De Simone G. Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Med Res Rev 2018; 38:1799-1836. [PMID: 29635752 DOI: 10.1002/med.21497] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 03/02/2018] [Indexed: 12/12/2022]
Abstract
Human carbonic anhydrase (CA) IX is a tumor-associated protein, since it is scarcely present in normal tissues, but highly overexpressed in a large number of solid tumors, where it actively contributes to survival and metastatic spread of tumor cells. Due to these features, the characterization of its biochemical, structural, and functional features for drug design purposes has been extensively carried out, with consequent development of several highly selective small molecule inhibitors and monoclonal antibodies to be used for different purposes. Aim of this review is to provide a comprehensive state-of-the-art of studies performed on this enzyme, regarding structural, functional, and biomedical aspects, as well as the development of molecules with diagnostic and therapeutic applications for cancer treatment. A brief description of additional pharmacologic applications for CA IX inhibition in other diseases, such as arthritis and ischemia, is also provided.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | - Anna Di Fiore
- Istituto di Biostrutture e Bioimmagini-CNR, Naples, Italy
| | | | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy
| | | | | |
Collapse
|
32
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
33
|
Alsady M, de Groot T, Kortenoeven MLA, Carmone C, Neijman K, Bekkenkamp-Grovenstein M, Engelke U, Wevers R, Baumgarten R, Korstanje R, Deen PMT. Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells. Am J Physiol Renal Physiol 2017; 314:F230-F239. [PMID: 29070571 DOI: 10.1152/ajprenal.00297.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands.,The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | | - Claudia Carmone
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kim Neijman
- Department of Physiology, Radboud University Medical Center , Nijmegen , The Netherlands
| | | | - Udo Engelke
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ron Wevers
- Department of Laboratory Medicine, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Ruben Baumgarten
- Society of Experimental Laboratory Medicine , Amersfoort , The Netherlands
| | - Ron Korstanje
- The Jackson Laboratory, Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory , Bar Harbor, Maine
| | | |
Collapse
|
34
|
Lau J, Lin KS, Bénard F. Past, Present, and Future: Development of Theranostic Agents Targeting Carbonic Anhydrase IX. Am J Cancer Res 2017; 7:4322-4339. [PMID: 29158829 PMCID: PMC5695016 DOI: 10.7150/thno.21848] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Theranostics is the integration of diagnostic information with pharmaceuticals to increase effectiveness and safety of cancer treatments. Nuclear medicine provides a non-invasive means to visualize drug target expression across primary and metastatic sites, and assess pharmacokinetics and efficacy of companion therapeutic agents. This is significant given the increasing recognition of the importance of clonal heterogeneity in treatment response and resistance. Carbonic anhydrase IX (CA-IX) has been advocated as an attractive diagnostic and therapeutic biomarker for targeting hypoxia in solid malignancies. CA-IX confers cancer cell survival under low oxygen tension, and is associated with increased propensity for metastasis. As such, CA-IX is overexpressed in a broad spectrum of cancers. Different classes of antigen recognition molecules targeting CA-IX including monoclonal antibodies, peptides, small molecule inhibitors, and antibody mimetics have been radiolabeled for imaging and therapeutic applications. cG250, a chimeric monoclonal antibody, has been labeled with an assortment of radionuclides (124I, 111In, 89Zr, 131I, 90Y, and 177Lu) and is the most extensively investigated CA-IX radiopharmaceutical. In recent years, there have been tremendous advancements made by the research community in developing alternatives to cG250. Although still in preclinical settings, several small molecule inhibitors and antibody mimetics hold great promise in improving the management of aggressive and resistant cancers.
Collapse
|
35
|
Mboge MY, Mahon BP, Lamas N, Socorro L, Carta F, Supuran CT, Frost SC, McKenna R. Structure activity study of carbonic anhydrase IX: Selective inhibition with ureido-substituted benzenesulfonamides. Eur J Med Chem 2017; 132:184-191. [PMID: 28363153 PMCID: PMC5946058 DOI: 10.1016/j.ejmech.2017.03.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/27/2022]
Abstract
Ureido-substituted benzenesulfonamides (USBs) show great promise as selective and potent inhibitors for human carbonic anhydrase hCA IX and XII, with one such compound (SLC-0111/U-F) currently in clinical trials (clinical trials.gov, NCT02215850). In this study, the crystal structures of both hCA II (off-target) and an hCA IX-mimic (target) in complex with selected USBs (U-CH3, U-F, and U-NO2), at resolutions of 1.9 Å or better, are presented, and demonstrate differences in the binding modes within the two isoforms. The presence of residue Phe 131 in hCA II causes steric hindrance (U-CH3, 1765 nM; U-F, 960 nM; U-NO2, 15 nM) whereas in hCA IX (U-CH3, 7 nM; U-F, 45 nM; U-NO2, 1 nM) and hCA XII (U-CH3, 6 nM; U-F, 4 nM; U-NO2, 6 nM), 131 is a Val and Ala, respectively, allows for more favorable binding. Our results provide insight into the mechanism of USB selective inhibition and useful information for structural design and drug development, including synthesis of hybrid USB compounds with improved physiochemical properties.
Collapse
Affiliation(s)
- Mam Y Mboge
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Nicole Lamas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Lillien Socorro
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Fabrizio Carta
- University of Florence, NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Department, Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
36
|
Guan SS, Cheng CC, Ho AS, Wang CC, Luo TY, Liao TZ, Chang J, Wu CT, Liu SH. Sulfonamide derivative targeting carbonic anhydrase IX as a nuclear imaging probe for colorectal cancer detection in vivo. Oncotarget 2016; 6:36139-55. [PMID: 26447758 PMCID: PMC4742167 DOI: 10.18632/oncotarget.5684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/21/2015] [Indexed: 01/08/2023] Open
Abstract
Hypoxic microenvironment is a common situation in solid tumors. Carbonic anhydrase IX (CA9) is one of the reliable cellular biomarkers of hypoxia. The role of CA9 in colorectal cancer (CRC) remains to be clarified. CA9 inhibitor such as sulfonamides is known to block CA9 activation and reduce tumor growth consequently. Here, we aimed to investigate the CA9 expression in serum and tumor from different stages of CRC patients and utilize sulfonamide derivative with indium-111 labeling as a probe for CRC nuclear imaging detection in vivo. The serum CA9 was correlated with the tumor CA9 levels in different stages of CRC patients. Hypoxia increased cell viability and CA9 expression in colorectal cancer HCT-15 cells. Sulfonamide derivative 5-(2-aminoethyl)thiophene-2-sulfonamide (ATS) could bind with CA9 in vitro under hypoxia. Moreover, tumor tissues in HCT-15-induced xenograft mice possessed higher hypoxic fluorescence signal as compared with other organs. We also found that the radioisotope signal of indium-111 labeled ATS, which was utilized for CRC detection in HCT-15-induced xenograft mice, was markedly enhanced in tumors as compared with non-ATS control. Taken together, these findings suggest that CA9 is a potential hypoxic CRC biomarker and measurement of serum CA9 can be as a potential tool for diagnosing CA9 expressions in CRC clinical practice. The radioisotope-labeled sulfonamide derivative (ATS) may be useful to apply in CRC patients for nuclear medicine imaging.
Collapse
Affiliation(s)
- Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan.,Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Chia Cheng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chia-Chi Wang
- Division of Hepatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsai-Yueh Luo
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Tse-Zung Liao
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Garousi J, Honarvar H, Andersson KG, Mitran B, Orlova A, Buijs J, Löfblom J, Frejd FY, Tolmachev V. Comparative Evaluation of Affibody Molecules for Radionuclide Imaging of in Vivo Expression of Carbonic Anhydrase IX. Mol Pharm 2016; 13:3676-3687. [PMID: 27529191 DOI: 10.1021/acs.molpharmaceut.6b00502] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Overexpression of the enzyme carbonic anhydrase IX (CAIX) is documented for chronically hypoxic malignant tumors as well as for normoxic renal cell carcinoma. Radionuclide molecular imaging of CAIX would be useful for detection of hypoxic areas in malignant tumors, for patients' stratification for CAIX-targeted therapies, and for discrimination of primary malignant and benign renal tumors. Earlier, we have reported feasibility of in vivo radionuclide based imaging of CAIX expressing tumors using Affibody molecules, small affinity proteins based on a nonimmunoglobulin scaffold. In this study, we compared imaging properties of several anti-CAIX Affibody molecules having identical scaffold parts and competing for the same epitope on CAIX, but having different binding paratopes. Four variants were labeled using residualizing 99mTc and nonresidualizing 125I labels. All radiolabeled variants demonstrated high-affinity detection of CAIX-expressing cell line SK-RC-52 in vitro and specific accumulation in SK-RC-52 xenografts in vivo. 125I-labeled conjugates demonstrated much lower radioactivity uptake in kidneys but higher radioactivity concentration in blood compared with 99mTc-labeled counterparts. Although all variants cleared rapidly from blood and nonspecific compartments, there was noticeable difference in their biodistribution. The best variant for imaging of expression of CAIX in disseminated cancer was 99mTc-(HE)3-ZCAIX:2 providing tumor uptake of 16.3 ± 0.9% ID/g and tumor-to-blood ratio of 44 ± 7 at 4 h after injection. For primary renal cell carcinoma, the most promising imaging candidate was 125I-ZCAIX:4 providing tumor-kidney ratio of 2.1 ± 0.5. In conclusion, several clones of scaffold proteins should be evaluated to select the best variant for development of an imaging probe with optimal sensitivity for the intended application.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75285 Uppsala, Sweden
| | - Hadis Honarvar
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75285 Uppsala, Sweden
| | - Ken G Andersson
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology , SE-106 91 Stockholm, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-751 83 Uppsala, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University , SE-751 83 Uppsala, Sweden
| | - Jos Buijs
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75285 Uppsala, Sweden.,Ridgeview Instruments AB , SE-74020 Vänge, Sweden
| | - John Löfblom
- Division of Protein Technology, School of Biotechnology, KTH-Royal Institute of Technology , SE-106 91 Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75285 Uppsala, Sweden.,Affibody AB , SE-171 63 Stockholm, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University , SE-75285 Uppsala, Sweden
| |
Collapse
|
38
|
Prakash A, Idrees D, Haque MA, Islam A, Ahmad F, Hassan MI. GdmCl-induced unfolding studies of human carbonic anhydrase IX: a combined spectroscopic and MD simulation approach. J Biomol Struct Dyn 2016; 35:1295-1306. [PMID: 27092977 DOI: 10.1080/07391102.2016.1179596] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, associated with tumor, acidification which leads to the cancer, and is considered as a potential biomarker for hypoxia-induced cancers. The overexpression of CAIX is linked with hypoxia condition which is mediated by the transcription of hypoxia-induced factor (HIF-1). To understand the biophysical properties of CAIX, we have carried out a reversible isothermal denaturation of CAIX-induced by GdmCl at pH 8.0 and 25°C. Three different spectroscopic probes, the far-UV CD at 222 nm ([θ]222), Trp fluorescence emission at 342 nm (F342) and difference molar absorption coefficient at 287 nm (Δε287) were used to estimate stability parameters, [Formula: see text] (Gibbs free energy change in the absence of GdmCl; Cm (midpoint of the denaturation curve), i.e. molar GdmCl concentration ([GdmCl]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[GdmCl])). GdmCl induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of all optical properties suggests that unfolding/refolding of CAIX is a two-state process. We further performed molecular dynamics simulation of CAIX for 40 ns to see the dynamics of protein structure in different GdmCl concentrations. An excellent agreement was observed between in silico and in vitro studies.
Collapse
Affiliation(s)
- Amresh Prakash
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Danish Idrees
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Anzarul Haque
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Asimul Islam
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Faizan Ahmad
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- a Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia , Jamia Nagar, New Delhi 110025 , India
| |
Collapse
|
39
|
Krall N, Pretto F, Mattarella M, Müller C, Neri D. A 99mTc-Labeled Ligand of Carbonic Anhydrase IX Selectively Targets Renal Cell Carcinoma In Vivo. J Nucl Med 2016; 57:943-9. [DOI: 10.2967/jnumed.115.170514] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/04/2016] [Indexed: 01/12/2023] Open
|
40
|
Brown-Glaberman U, Marron M, Chalasani P, Livingston R, Iannone M, Specht J, Stopeck AT. Circulating Carbonic Anhydrase IX and Antiangiogenic Therapy in Breast Cancer. DISEASE MARKERS 2016; 2016:9810383. [PMID: 26941473 PMCID: PMC4749816 DOI: 10.1155/2016/9810383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Carbonic anhydrase IX (CAIX) is a hypoxia regulated metalloenzyme integral to maintaining cellular pH. Increased CAIX expression is associated with poor prognosis in breast cancer. To explore CAIX as a biomarker for breast cancer therapies, we measured plasma CAIX levels in healthy control subjects and in breast cancer patients. METHODS In control subjects we evaluated plasma CAIX stability via commercially available ELISA. We then similarly quantified plasma CAIX levels in (1) locally advanced breast cancer (LABC) patients treated with neoadjuvant paclitaxel + sunitinib (T + S) followed by doxorubicin and cyclophosphamide (AC); (2) metastatic breast cancer (MBC) patients treated with systemic chemotherapy. RESULTS Plasma CAIX levels were stable at room temperature for at least 48 hours in control subjects. Mean baseline plasma CAIX levels were lower in controls compared to patients with LABC or MBC. In LABC, CAIX levels rose significantly in response to administration of antiangiogenic therapy (T + S) (p = 0.02) but not AC (p = 0.37). In patients with MBC treated without an antiangiogenic agent CAIX levels did not change with therapy. CONCLUSIONS Our results suggest that CAIX may be an easily obtained, stable measure of tumor associated hypoxia as well as a useful pharmacodynamic biomarker for antiangiogenic therapy.
Collapse
Affiliation(s)
| | - Marilyn Marron
- University of Arizona Cancer Center, Tucson, AZ 85719, USA
| | | | | | - Maria Iannone
- University of Arizona Cancer Center, Tucson, AZ 85719, USA
| | - Jennifer Specht
- Fred Hutchinson University of Washington Cancer Consortium, Seattle, WA 98019, USA
| | - Alison T. Stopeck
- Stony Brook Cancer Center, SUNY Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
41
|
Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 2016; 310:G70-80. [PMID: 26542396 PMCID: PMC4719062 DOI: 10.1152/ajpgi.00236.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.
Collapse
Affiliation(s)
- Nancy M. Walker
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Jinghua Liu
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Sydney R. Stein
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - Casey D. Stefanski
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Ashlee M. Strubberg
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Lane L. Clarke
- 1Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and ,2Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
42
|
Aoun F, Kourie HR, Artigas C, Roumeguère T. Next revolution in molecular theranostics: personalized medicine for urologic cancers. Future Oncol 2015; 11:2205-19. [DOI: 10.2217/fon.15.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extensive lists of molecular biomarkers are currently evaluated as potential targets for directed cancer therapies. We reviewed three potential candidate biomarkers to play a role in the near future as molecular theranostics for urologic malignancies. Carbonic anhydrase type IX is a surrogate marker of hypoxia highly expressed in cancer cells. Their expression and clinical significance in kidney and urothelial bladder cancer are discussed as well as the main therapeutic approaches that are currently under evaluation. For prostate cancer, available evidence on the use of prostate-specific membrane antigen and neuropeptide receptors radiolabeled analog and the undergoing clinical studies are also analyzed and discussed at different stages of prostate cancer.
Collapse
Affiliation(s)
- Fouad Aoun
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Hampig Raphael Kourie
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Carlos Artigas
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Thierry Roumeguère
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
| |
Collapse
|
43
|
Lau J, Liu Z, Lin KS, Pan J, Zhang Z, Vullo D, Supuran CT, Perrin DM, Bénard F. Trimeric Radiofluorinated Sulfonamide Derivatives to Achieve In Vivo Selectivity for Carbonic Anhydrase IX–Targeted PET Imaging. J Nucl Med 2015. [DOI: 10.2967/jnumed.114.153288] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Fraga A, Ribeiro R, Príncipe P, Lopes C, Medeiros R. Hypoxia and Prostate Cancer Aggressiveness: A Tale With Many Endings. Clin Genitourin Cancer 2015; 13:295-301. [PMID: 26007708 DOI: 10.1016/j.clgc.2015.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/13/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
Angiogenesis, increased glycolysis, and cellular adaptation to hypoxic microenvironment are characteristic of solid tumors, including prostate cancer. These representative features are the cornerstone of cancer biology, which are well correlated with invasion, metastasis, and lethality, as well as likely with the success of prostate cancer treatment (eg, tumor hypoxia has been associated with resistance to chemotherapy and radiotherapy). It is well established that prostate cancer cells also metabolically depend on enhanced glucose transport and glycolysis for expansion, whereas growth is contingent with neovascularization to permit diffusion of oxygen and glucose. While hypoxia inducible factor 1 alpha (HIF-1α) remains the central player, the succeeding activated molecules and pathways track distinct branches, all positively correlated with the degree of intratumoral hypoxia. Among these, the vascular endothelial growth factor axis as well as the lysyl oxidase and carbonic anhydrase IX activities are notable in prostate cancer and merit further study. Here, we demonstrate their linkage with HIF-1α as a tentative explanatory mechanism of prostate cancer aggressiveness. Hypoxia drives a tale where HIF-1α-dependent effects lead to many influences in distinct key cancer biology features, rendering targeted therapies toward targets at the endings less efficient. The most appropriate approach will be to inhibit the upstream common driver (HIF-1α) activity. Additional translational and clinical research initiatives in prostate cancer are required to prove its usefulness.
Collapse
Affiliation(s)
- Avelino Fraga
- Urology Department, Porto Hospital Centre, St António Hospital, Porto, Portugal; ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal; Center for Urological Research, Porto Hospital Centre, Porto, Portugal.
| | - Ricardo Ribeiro
- Center for Urological Research, Porto Hospital Centre, Porto, Portugal; Molecular Oncology Group, CI, Portuguese Institute of Oncology, Porto, Portugal; Genetics Laboratory, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Research Department, Portuguese League Against Cancer, North Centre, Porto, Portugal
| | - Paulo Príncipe
- Urology Department, Porto Hospital Centre, St António Hospital, Porto, Portugal; Center for Urological Research, Porto Hospital Centre, Porto, Portugal
| | - Carlos Lopes
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Rui Medeiros
- Center for Urological Research, Porto Hospital Centre, Porto, Portugal; Molecular Oncology Group, CI, Portuguese Institute of Oncology, Porto, Portugal; Research Department, Portuguese League Against Cancer, North Centre, Porto, Portugal
| |
Collapse
|
45
|
An exploratory biomarker study in metastatic tumors from colorectal cancer patients treated with bevacizumab. Int J Biol Markers 2015; 30:e73-80. [PMID: 24980447 DOI: 10.5301/jbm.5000097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/26/2023]
Abstract
AIMS Inhibition of angiogenesis is an effective treatment option for metastatic colorectal cancer. Predictive biomarkers to select patients who are most likely to benefit from this therapeutic strategy are lacking. We conducted a pilot, retrospective biomarker study in a cohort of metastatic colorectal cancer patients treated with bevacizumab. The objectives of this study were to evaluate the prognostic value of biomarker expression in metastases and to compare their expression in paired tumor specimens. MATERIALS AND METHODS Eligible patients were treated with a bevacizumab-containing therapy; from these patients, tumor tissue from metastases was available. PTEN, PI3K p110a, c-MET, and CAIX were analyzed by immunohistochemistry. RESULTS Forty-two patients received bevacizumab, 13 (31%) with first-line and 29 (69%) with second-line chemotherapy. Expression of CAIX, PI3K p110a, and c-MET in metastases did not predict objective response. PTEN loss was associated with response to treatment (p=0.02) and this association remained significant after adjusting for prognostic variables (p=0.006). However, no association with survival outcomes was found. In 32 patients (76%) with available paired specimens, we observed an equal expression between primary tumors and corresponding metastases in 75% of cases for CAIX in epithelial tumor cells, 56% for CAIX in stromal cells, 63% for PTEN, and 87% for c-MET. CONCLUSION PTEN loss in metastases appears to be associated with response to bevacizumab-based therapy. However, larger studies are necessary to confirm the potential role of the PI3K/AKT/mTOR pathway in modulating the therapeutic effect of bevacizumab. Tumor heterogeneity should be taken into consideration when analyzing tumor tissues for biomarker studies.
Collapse
|
46
|
Mahon BP, Pinard MA, McKenna R. Targeting carbonic anhydrase IX activity and expression. Molecules 2015; 20:2323-48. [PMID: 25647573 PMCID: PMC6272707 DOI: 10.3390/molecules20022323] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022] Open
Abstract
Metastatic tumors are often hypoxic exhibiting a decrease in extracellular pH (~6.5) due to a metabolic transition described by the Warburg Effect. This shift in tumor cell metabolism alters the tumor milieu inducing tumor cell proliferation, angiogenesis, cell motility, invasiveness, and often resistance to common anti-cancer treatments; hence hindering treatment of aggressive cancers. As a result, tumors exhibiting this phenotype are directly associated with poor prognosis and decreased survival rates in cancer patients. A key component to this tumor microenvironment is carbonic anhydrase IX (CA IX). Knockdown of CA IX expression or inhibition of its activity has been shown to reduce primary tumor growth, tumor proliferation, and also decrease tumor resistance to conventional anti-cancer therapies. As such several approaches have been taken to target CA IX in tumors via small-molecule, anti-body, and RNAi delivery systems. Here we will review recent developments that have exploited these approaches and provide our thoughts for future directions of CA IX targeting for the treatment of cancer.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Mboge MY, McKenna R, Frost SC. Advances in Anti-Cancer Drug Development Targeting Carbonic Anhydrase IX and XII. TOPICS IN ANTI-CANCER RESEARCH 2015; 5:3-42. [PMID: 30272043 PMCID: PMC6162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microenvironment within a solid tumor is heterogeneous with regions being both acidic and hypoxic. As a result of this, cancer cells upregulate genes that allow survival in such environments. Some of these genes are pH regulatory factors, including carbonic anhydrase IX (CA IX) and in some cases XII (CA XII). CA IX helps to maintain normal cytoplasmic pH (pHi) while simultaneously contributing to the extracellular pH (pHe). CA XII is also thought to be responsible for stabilizing pHe at physiological conditions. Extracellular acidification of the tumor microenvironment promotes local invasion and metastasis while decreasing the effectiveness of adjuvant therapies, thus contributing to poor cancer clinical outcomes. In this review, we describe the properties of CA IX and CA XII that substantiate their potential use as anticancer targets. We also discuss the current status of CA isoform-selective inhibitor development and patents of CA IX/XII targeted inhibitors that show potential for treating aggressive tumors. Some of the recently published patents discussed include sulfonamide-based small molecule inhibitors including derivatives of boron cluster compounds; metal complexes of poly(carboxyl)amine-containing ligands; nitroi-midazole-, ureidosulfonamide-, and coumarin-based compounds; as well as G250 and A610 monoclonal antibodies for cancer treatment.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| | | | - Susan C. Frost
- Corresponding authors Mam Y. Mboge and Susan C. Frost: University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, Box 100245, Gainesville, FL 32610, USA; Tel +1 352 294-8386, Fax +1 352 392-2953, ,
| |
Collapse
|
48
|
Ilardi G, Zambrano N, Merolla F, Siano M, Varricchio S, Vecchione M, De Rosa G, Mascolo M, Staibano S. Histopathological determinants of tumor resistance: a special look to the immunohistochemical expression of carbonic anhydrase IX in human cancers. Curr Med Chem 2014; 21:1569-82. [PMID: 23992304 PMCID: PMC3979091 DOI: 10.2174/09298673113209990227] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/20/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
Intrinsic and acquired drug resistance of tumor cells still causes the failure of treatment regimens in advanced
human cancers. It may be driven by intrinsic tumor cells features, or may also arise from micro environmental influences.
Hypoxia is a microenvironment feature associated with the aggressiveness and metastasizing ability of human solid cancers.
Hypoxic cancer cells overexpress Carbonic Anhydrase IX (CA IX). CA IX ensures a favorable tumor intracellular
pH, while contributing to stromal acidosis, which facilitates tumor invasion and metastasis. The overexpression of CA IX
is considered an epiphenomenon of the presence of hypoxic, aggressive tumor cells. Recently, a relationship between CA
IX overexpression and the cancer stem cells (CSCs) population has been hypothesized. CSCs are strictly regulated by tumor
hypoxia and drive a major non-mutational mechanism of cancer drug-resistance. We reviewed the current data concerning
the role of CA IX overexpression in human malignancies, extending such information to the expression of the
stem cells markers CD44 and nestin in solid cancers, to explore their relationship with the biological behavior of tumors.
CA IX is heavily expressed in advanced tumors. A positive trend of correlation between CA IX overexpression, tumor
stage/grade and poor outcome emerged. Moreover, stromal CA IX expression was associated with adverse events occurrence,
maybe signaling the direct action of CA IX in directing the mesenchymal changes that favor tumor invasion; in addition,
membranous/cytoplasmic co-overexpression of CA IX and stem cells markers were found in several aggressive
tumors. This suggests that CA IX targeting could indirectly deplete CSCs and counteract resistance of solid cancers in the
clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - S Staibano
- Department of Advanced Biomedical Sciences, Pathology Section, School of Medicine and Surgery, University of Naples "Federico II", address: via S. Pansini, n.5, 80131, Naples, Italy.
| |
Collapse
|
49
|
The potential of liposomes with carbonic anhydrase IX to deliver anticancer ingredients to cancer cells in vivo. Int J Mol Sci 2014; 16:230-55. [PMID: 25547490 PMCID: PMC4307245 DOI: 10.3390/ijms16010230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/16/2014] [Indexed: 12/19/2022] Open
Abstract
Drug delivery nanocarriers, especially targeted drug delivery by liposomes are emerging as a class of therapeutics for cancer. Early research results suggest that liposomal therapeutics enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumors and active cellular uptake. Here, we highlight the features of immunoliposomes that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While a large number of studies has been published, the emphasis here is placed on the carbonic anhydrase IX (CA-IX) and the conjugated liposomes that are likely to open a new chapter on drug delivery system by using immunoliposomes to deliver anticancer ingredients to cancer cells in vivo.
Collapse
|
50
|
Regression of established renal cell carcinoma in nude mice using lentivirus-transduced human T cells expressing a human anti-CAIX chimeric antigen receptor. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14003. [PMID: 27119093 PMCID: PMC4782938 DOI: 10.1038/mto.2014.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/24/2014] [Indexed: 12/24/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC) but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs) that utilize a carbonic anhydrase (CA) domain mapped, human single chain antibody (scFv G36) as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells) expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX(+) RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL)-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX(+) RCC.
Collapse
|