1
|
Villalba JJ, Ramsey RD, Athanasiadou S. Review: Herbivory and the power of phytochemical diversity on animal health. Animal 2024:101287. [PMID: 39271413 DOI: 10.1016/j.animal.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plant secondary compounds (PSCs) were thought to be waste products of plant metabolism when first identified in the mid-1800 s. Since then, many different roles have been recognized for these chemicals. With regard to their function as defense, PSCs can negatively impact different cellular and metabolic processes in the herbivore, causing illness and reductions in feed intake. This penalty on fitness also applies to other trophic levels, like the microorganisms and parasites that infect herbivores and thus, PSCs at certain doses may function as medicines. In turn, herbivores evolved learning mechanisms to cope with the constant variability in their environment and physiological needs. Under this context, foraging can be viewed as the quest for substances in the external environment that provide homeostatic utility to the animal. For instance, herbivores increase preference for PSC-containing feeds that negatively impact infectious agents (i.e., therapeutic self-medication). Given that some classes of PSCs like polyphenols present antioxidant, antiinflammatory, immunomodulatory and prebiotic properties, chronic and sustained consumption of these chemicals results in robust animals that are tolerant to disease (i.e., prophylactic self-medication). Foraging plasticity in terms of the quality and quantity of nutrients ingested in the absence and during sickness may also influence immunocompetence, resistance and resilience to infection, and thus can be interpreted as another form of medication. Finally, self-medicative behaviors can be transmitted through social learning. We suggest that foraging studies will benefit from exploring self-medicative behaviors in chemically diverse plant communities, in particular when considering the vast diversity of PSC structures (more than 200 000) observed in nature. We then lay out a framework for enhancing the medicinal effects of PSCs on grazing herbivores. We propose landscape interventions through the establishment of resource patches or "islands" with a diversity of PSC-containing forages (e.g., legumes, herbs, shrubs) in monotonous rangelands or pasturelands, viewed as a "sea" of low-diversity vegetation devoid of functional biochemicals. Strategies aimed at enhancing the diversity of plant communities lead to heterogeneity in chemical, structural and functional landscape traits that offer options to foragers, and thus allow for balanced diets that maintain and restore health. Beyond animal health, such heterogeneity promotes a broad array of ecosystem services that significantly improve landscape resilience to environmental disturbances.
Collapse
Affiliation(s)
- J J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA.
| | - R D Ramsey
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin Institute, EH25 9RG Midlothian, UK
| |
Collapse
|
2
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
3
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
4
|
Zeb F, Naqeeb H, Osaili T, Faris ME, Ismail LC, Obaid RS, Naja F, Radwan H, Hasan H, Hashim M, AlBlooshi S, Alam I. Molecular crosstalk between polyphenols and gut microbiota in cancer prevention. Nutr Res 2024; 124:21-42. [PMID: 38364552 DOI: 10.1016/j.nutres.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
A growing body of evidence suggests that cancer remains a significant global health challenge, necessitating the development of novel therapeutic approaches. In recent years, the molecular crosstalk between polyphenols and gut microbiota has emerged as a promising pathway for cancer prevention. Polyphenols, abundant in many plant-based foods, possess diverse bioactive properties, including antioxidant, anti-inflammatory, and anticancer activities. The gut microbiota, a complex microbial community residing in the gastrointestinal tract, plays a crucial role in a host's health and disease risks. This review highlights cancer suppressive and oncogenic mechanisms of gut microbiota, the intricate interplay between gut microbiota modulation and polyphenol biotransformation, and the potential therapeutic implications of this interplay in cancer prevention. Furthermore, this review explores the molecular mechanisms underpinning the synergistic effects of polyphenols and the gut microbiota, such as modulation of signaling pathways and immune response and epigenetic modifications in animal and human studies. The current review also summarizes the challenges and future directions in this field, including the development of personalized approaches that consider interindividual variations in gut microbiota composition and function. Understanding the molecular crosstalk could offer new perspectives for the development of personalized cancer therapies targeting the polyphenol-gut axis. Future clinical trials are needed to validate the potential role of polyphenols and gut microbiota as innovative therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanam Cancer Hospital and Research Center Peshawar, Pakistan; Department of Human Nutrition and Dietetics, Women University Mardan, Pakistan
| | - Tareq Osaili
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - MoezAllslam Ezzat Faris
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Leila Cheikh Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Nuffield, Oxford, United Kingdom
| | - Reyad Shakir Obaid
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Farah Naja
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates; Nutrition and Food Sciences Department, American University of Beirut, Beirut, Lebanon
| | - Hadia Radwan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Hayder Hasan
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Mona Hashim
- Research Institute for Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Sharifa AlBlooshi
- College of Natural and Health Sciences, Zayed University, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Pakistan
| |
Collapse
|
5
|
Sammari H, Jedidi S, Selmi H, Jridi M, Ayari A, Sebai H. Phytochemical Properties of Crataegus azarolus Berries Decoction Extract and Evaluation of its Protective Activity Against Acetic Acid-Induced Ulcerative Colitis in Rats. Dose Response 2024; 22:15593258241226890. [PMID: 38223297 PMCID: PMC10785741 DOI: 10.1177/15593258241226890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
The present study aims to evaluate the protective effect of Crataegus azarolus berries decoction extract (CAB-DE) against acetic acid-induced ulcerative colitis as well as the mechanisms implicated in such protection. Adult male Wistar rats were separated into seven groups: Control (H2O), acetic acid (AA), AA + various doses of CAB-DE (100, 200, and 400 mg/kg, b.w.,p.o.), and AA + sulfasalazine (100 mg/kg, b.w.,p.o.) or gallic acid (50 mg/kg, b.w.,p.o.) during 10 days. All rats were kept fasting overnight and ulcerative colitis was induced by rectal infusion of AA (300 mg kg-1, b.w.) (3%, v/v, 5 mL kg-1 b.w), for 30 s. The colon was rapidly excised and macroscopically examined to measure ulcerated surfaces and the ulcer index. In vitro, we found that CAB-DE exhibited a high antioxidant activity against DPPH radical (IC50 = 164.17 ± 4.78 μg/mL). In vivo, pretreatment with CAB-DE significantly protected the colonic mucosa against AA-induced damage by stimulating mucus secretion, reducing ulcer index as well as histopathological changes. Also, CAB-DE limited the oxidative status induced by AA in the colonic mucosa, as assessed by MDA and H2O2 increased levels and the depletion of both enzymatic activities and non-enzymatic levels. In addition, AA intoxication increased iron and calcium levels in colonic mucosa and plasma, while CAB-DE pretreatment regulated all intracellular mediators deregulation and significantly reduced inflammatory markers such as CRP (1.175 ± .04 ─ .734 ± .06 μg/dl) and ALP (161.53 ± 5.02 ─ 98.60 ± 4.21 UI/L) levels. We suggest that CAB-DE protected against AA-induced ulcerative colitis due in part to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Houcem Sammari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Saber Jedidi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Houcine Selmi
- Université de Jendouba, Institut Sylvo-Pastoral de Tabarka, Tabarka, Tunisie
| | - Mourad Jridi
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Ala Ayari
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
| | - Hichem Sebai
- Institut Supérieur de Biotechnologie de Beja, Université de Jendouba, Beja, Tunisie
- Ecole Nationale de Médecine Vétérinaire de Sidi Thabet, Université de la Manouba, Manouba, Tunisie
| |
Collapse
|
6
|
Schytz Andersen-Civil AI, Arora P, Zhu L, Myhill LJ, Büdeyri Gökgöz N, Castro-Mejia JL, Leppä MM, Hansen LH, Lessard-Lord J, Salminen JP, Thamsborg SM, Sandris Nielsen D, Desjardins Y, Williams AR. Gut microbiota-mediated polyphenol metabolism is restrained by parasitic whipworm infection and associated with altered immune function in mice. Gut Microbes 2024; 16:2370917. [PMID: 38944838 PMCID: PMC11216105 DOI: 10.1080/19490976.2024.2370917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.
Collapse
Affiliation(s)
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J. Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Milla M. Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Singh A. Brain-derived neurotrophic factor - a key player in the gastrointestinal system. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:380-392. [PMID: 38572454 PMCID: PMC10985741 DOI: 10.5114/pg.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 04/05/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is highly expressed throughout the gastrointestinal (GI) tract and plays a critical role in the regulation of intestinal motility, secretion, sensation, immunity, and mucosal integrity. Dysregulation of BDNF signalling has been implicated in the pathophysiology of various GI disorders including inflammatory bowel disease, irritable bowel syndrome, functional dyspepsia, and diabetic gastroenteropathy. This review provides a comprehensive overview of BDNF localization, synthesis, receptors, and signalling mechanisms in the gut. In addition, current evidence on the diverse physiologic and pathophysiologic roles of BDNF in the control of intestinal peristalsis, mucosal transport processes, visceral sensation, neuroimmune interactions, gastrointestinal mucosal healing, and enteric nervous system homeostasis are discussed. Finally, the therapeutic potential of targeting BDNF for the treatment of functional GI diseases is explored. Advancing knowledge of BDNF biology and mechanisms of action may lead to new therapies based on harnessing the gut trophic effects of this neurotrophin.
Collapse
Affiliation(s)
- Arjun Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
- Molecular Pharmacology Program and Chemistry, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
8
|
Li J, Guo Y, Ma L, Liu Y, Zou C, Kuang H, Han B, Xiao Y, Wang Y. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
9
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
10
|
Xue C, Li G, Gu X, Su Y, Zheng Q, Yuan X, Bao Z, Lu J, Li L. Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. RESEARCH (WASHINGTON, D.C.) 2023; 6:0107. [PMID: 37040299 PMCID: PMC10079265 DOI: 10.34133/research.0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Akkermansia muciniphila (A. muciniphila) has drawn much attention as an important gut microbe strain in recent years. A. muciniphila can influence the occurrence and development of diseases of the endocrine, nervous, digestive, musculoskeletal, and respiratory systems and other diseases. It can also improve immunotherapy for some cancers. A. muciniphila is expected to become a new probiotic in addition to Lactobacillus and Bifidobacterium. An increase in A. muciniphila abundance through direct or indirect A. muciniphila supplementation may inhibit or even reverse disease progression. However, some contrary findings are found in type 2 diabetes mellitus and neurodegenerative diseases, where increased A. muciniphila abundance may aggravate the diseases. To enable a more comprehensive understanding of the role of A. muciniphila in diseases, we summarize the relevant information on A. muciniphila in different systemic diseases and introduce regulators of A. muciniphila abundance to promote the clinical transformation of A. muciniphila research.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Protective Effect of Red Rice Extract Rich in Proanthocyanidins in a Murine Colitis Model. Biomedicines 2023; 11:biomedicines11020265. [PMID: 36830802 PMCID: PMC9953176 DOI: 10.3390/biomedicines11020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global concern. Proanthocyanidin-rich red rice extract (PRRE) has been shown to suppress the inflammatory response in cellular cultures. However, the anti-colitis effect of PRRE has never been investigated in animals. This study aimed to examine the protective effect of the PRRE against dextran sulfate sodium (DSS)-induced colitis in mice. Male mice were orally administrated with PRRE of 50, 250 and 500 mg/kg/day for 21 days. Acute colitis was subsequently induced by administrated 2.5% DSS in drinking water for the final seven days. Sulfasalazine-treated mice were the positive group. All doses of PRRE and sulfasalazine significantly ameliorated DSS-induced severity of colitis, as indicated by decreasing daily activity index and restoring colon shortening. Treatments with PRRE, but not sulfasalazine, significantly reduced the histopathological index and infiltration of inflammatory cells. Furthermore, the PRRE treatments effectively improved mucous in colonic goblet cells using PAS staining, and suppressed the production of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 induced by DSS, while sulfasalazine reduced only IL-1β and IL-6. This study suggested that PRRE had a greater anti-colitis effect than sulfasalazine. Thus, PRRE has a potential anti-colitis effect, and should be developed in a clinical trial as a natural active pharmaceutical ingredient for IBD.
Collapse
|
12
|
Rajeswari M, Pola S, Sravani DSL. Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. HUMAN MICROBIOME IN HEALTH, DISEASE, AND THERAPY 2023:97-125. [DOI: 10.1007/978-981-99-5114-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
High polyphenolic cranberry beverage alters specific fecal microbiota but not gut permeability following aspirin challenge in healthy obese adults: A randomized, double-blind, crossover trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Amin R, Thalluri C, Docea AO, Sharifi‐Rad J, Calina D. Therapeutic potential of cranberry for kidney health and diseases. EFOOD 2022. [DOI: 10.1002/efd2.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science Assam Down Town University Guwahati Assam India
| | | | - Anca Oana Docea
- Department of Toxicology University of Medicine and Pharmacy of Craiova Craiova Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania
| |
Collapse
|
15
|
Wang M, Zhang Z, Sun H, He S, Liu S, Zhang T, Wang L, Ma G. Research progress of anthocyanin prebiotic activity: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154145. [PMID: 35567994 DOI: 10.1016/j.phymed.2022.154145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Anthocyanins are a kind of flavonoids and natural water-soluble pigments, which endow fruits, vegetables, and plants with multiple colors. They are important source of new products with prebiotic activity. However, there is no systematic review documenting prebiotic activity of anthocyanins and their structural analogues. This study aims to fill this gap in literature. PURPOSE The objective of this review is to summarize and evaluate the prebiotic activity of anthocyanin's, and discuss the physical and molecular modification methods to improve their biological activities. STUDY DESIGN AND METHODS In this review, the databases (PubMed, Google Scholar, Web of Science, Researchgate and Elsevier) were searched profoundly with keywords (anthocyanin's, prebiotics, probiotics, physical embedding and molecular modification). RESULTS A total of 34 articles were considered for reviewing. These studies approved that anthocyanins play an important role in promoting the proliferation of probiotics, inhibiting the growth of harmful bacteria and improving the intestinal environment. In addition, physical embedding and molecular modification have also been proved to be effective methods to improve the prebiotic activity of anthocyanins. Anthocyanins could promote the production of short chain fatty acids, accelerate self degradation and improve microbial related enzyme activities to promote the proliferation of probiotics. They inhibited the growth of harmful bacteria by inhibiting the expression of harmful bacteria genes, interfering with the role of metabolism related enzymes and affecting respiratory metabolism. They promoted the formation of a complete intestinal barrier and regulated the intestinal environment to keep the body healthy. Physical embedding, including microencapsulation and colloidal embedding, greatly improved the stability of anthocyanins. On the other hand, molecular modification, especially enzymatic modification, significantly improved the biological activities (antioxidant, prebiotic activity and so on) of anthocyanins. CONCLUSION All these research results displayed by this review indicate that anthocyanins are a useful tool for developing prebiotic products. The better activities of the new anthocyanins formed by embedding and modification may make them become more effective raw materials. Our review provides a scientific basis for the future research and application of anthocyanins.
Collapse
Affiliation(s)
- Muwen Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Zuoyong Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China.
| | - Shuyun Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Tao Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| | - Gang Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
16
|
Tu P, Tang Q, Wang M, Chen W, Ye X, Zheng X. Protective role of bayberry extract: associations with gut microbiota modulation and key metabolites. Food Funct 2022; 13:5547-5558. [PMID: 35476043 DOI: 10.1039/d1fo04253j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dysbiosis of the gut microbiota is inextricably intertwined with the onset and development of metabolic diseases. Dietary modulation of the gut microbiota has received much attention in recent years; however, currently there are still few effective approaches. Polyphenols extracted from fruits protect against metabolic disorders, and this effect is associated with the gut microbiota. We aimed to investigate the metabolic impact of bayberry extract cyanidin-3-O-glucoside and its associations with changes in the gut microbiota. Based on C57BL/6 and db/db mouse models, combined with 16S rRNA high-throughput sequencing and metabolomic profiling, we found that C3G administration reduced weight gain and fasting blood glucose levels. More importantly, C3G significantly modulated the gut microbiota including its composition, diversity and functional pathways. A distinct metabolite profile in addition to alterations of key metabolites was observed probably resulting from changes in the gut bacterial composition and metabolic pathways induced by C3G administration. This study may provide evidence for the missing link in mechanisms underlying the beneficial effects of poorly absorbed dietary polyphenols.
Collapse
Affiliation(s)
- Pengcheng Tu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qiong Tang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Meng Wang
- Jiangxi Agricultural Engineering College, Zhangshu 331200, People's Republic of China
| | - Wen Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiang Ye
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China. .,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
17
|
Khoo C, Duysburgh C, Marzorati M, Van den Abbeele P, Zhang D. A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro. BIOTECH 2022; 11:biotech11020014. [PMID: 35822787 PMCID: PMC9264401 DOI: 10.3390/biotech11020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The American cranberry, Vaccinium macrocarpon, contains fibers and (poly)phenols that could exert health-promoting effects through modulation of gut microbiota. This study aimed to investigate how a freeze-dried whole cranberry powder (FCP) modulated metabolite production and microbial composition using both a 48-h incubation strategy and a long-term human gut simulator study with the M-SHIME (Mucosal Simulator of the Human Intestinal Microbial Ecosystem). FCP was repeatedly administered over three weeks. The studies included five and three study subjects, respectively. In both models, FCP significantly increased levels of health-related short-chain fatty acids (SCFA: acetate, propionate and butyrate), while decreased levels of branched-chain fatty acids (markers of proteolytic fermentation). Interestingly, FCP consistently increased luminal Bacteroidetes abundances in the proximal colon of the M-SHIME (+17.5 ± 9.3%) at the expense of Proteobacteria (−10.2 ± 1.5%). At family level, this was due to the stimulation of Bacteroidaceae and Prevotellaceae and a decrease of Pseudomonodaceae and Enterobacteriaceae. Despite of interpersonal differences, FCP also increased the abundance of families of known butyrate producers. Overall, FCP displayed an interesting prebiotic potential in vitro given its selective utilization by host microorganisms and potential health-related effects on inhibition of pathogens and selective stimulation of beneficial metabolites.
Collapse
Affiliation(s)
- Christina Khoo
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- Correspondence:
| | - Cindy Duysburgh
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
| | - Massimo Marzorati
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Center of Microbial Ecology and Technology (CMET), Ghent University, 9000 Ghent, Belgium
| | - Pieter Van den Abbeele
- ProDigest BV, Technologiepark-Zwijnaarde 73, 9052 Ghent, Belgium; (C.D.); (M.M.)
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium;
| | - Derek Zhang
- Ocean Spray Cranberries, Inc., Bridge Street 152, Middleborough, MA 02349, USA
- IQVIA, Emperor Boulevard 4820, Durham, NC 27703, USA;
| |
Collapse
|
18
|
Soares E, Soares AC, Trindade PL, Monteiro EB, Martins FF, Forgie AJ, Inada KOP, de Bem GF, Resende A, Perrone D, Souza-Mello V, Tomás-Barberán F, Willing BP, Monteiro M, Daleprane JB. Jaboticaba (Myrciaria jaboticaba) powder consumption improves the metabolic profile and regulates gut microbiome composition in high-fat diet-fed mice. Biomed Pharmacother 2021; 144:112314. [PMID: 34634561 DOI: 10.1016/j.biopha.2021.112314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The consumption of a high-fat diet can cause metabolic syndrome and induces host gut microbial dysbiosis and non-alcoholic fatty liver disease (NAFLD). We evaluated the effect of polyphenol-rich jaboticaba peel and seed powder (JPSP) on the gut microbial community composition and liver health in a mouse model of NAFLD. Three-month-old C57BL/6 J male mice, received either a control (C, 10% of lipids as energy, n = 16) or high-fat (HF, 50% of lipids as energy, n = 64) diet for nine weeks. The HF mice were randomly subdivided into four groups (n = 16 in each group), three of which (HF-J5, HF-J10, and HF-J15) were supplemented with dietary JPSP for four weeks (5%, 10%, and 15%, respectively). In addition to attenuating weight gain, JPSP consumption improved dyslipidemia and insulin resistance. In a dose-dependent manner, JPSP consumption ameliorated the expression of hepatic lipogenesis genes (AMPK, SREBP-1, HGMCoA, and ABCG8). The effects on the microbial community structure were determined in all JPSP-supplemented groups; however, the HF-J10 and HF-J15 diets led to a drastic depletion in the species of numerous bacterial families (Bifidobacteriaceae, Mogibacteriaceae, Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococcaceae) compared to the HF diet, some of which represented a reversal of increases associated with HF. The Lachnospiraceae and Enterobacteriaceae families and the Parabacteroides, Sutterella, Allobaculum, and Akkermansia genera were enriched more in the HF-J10 and HF-J15 groups than in the HF group. In conclusion, JPSP consumption improved obesity-related metabolic profiles and had a strong impact on the microbial community structure, thereby reversing NAFLD and decreasing its severity.
Collapse
Affiliation(s)
- Elaine Soares
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aruanna C Soares
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Patricia Leticia Trindade
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Elisa B Monteiro
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane F Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrew J Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kim O P Inada
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele F de Bem
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Chemistry Institute, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528 A, 21941-909 Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Francisco Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio B Daleprane
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
20
|
Daoust L, Pilon G, Marette A. Perspective: Nutritional Strategies Targeting the Gut Microbiome to Mitigate COVID-19 Outcomes. Adv Nutr 2021; 12:1074-1086. [PMID: 33783468 PMCID: PMC8083677 DOI: 10.1093/advances/nmab031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
More than a year has passed since the first reported case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection in the city of Wuhan in China's Hubei Province. Until now, few antiviral medications (e.g., remdesivir) or drugs that target inflammatory complications associated with SARS-CoV2 infection have been considered safe by public health authorities. By the end of November 2020, this crisis had led to >1 million deaths and revealed the high susceptibility of people with pre-existing comorbidities (e.g., obesity, diabetes, coronary heart disease, hypertension) to suffer from a severe form of the disease. Elderly people have also been found to be highly susceptible to SARS-CoV2 infection and morbidity. Gastrointestinal manifestations and gut microbial alterations observed in SARS-CoV2-infected hospitalized patients have raised awareness of the potential role of intestinal mechanisms in increasing the severity of the disease. It is therefore critically important to find alternative or complementary approaches, not only to prevent or treat the disease, but also to reduce its growing societal and economic burden. In this review, we explore potential nutritional strategies that implicate the use of polyphenols, probiotics, vitamin D, and ω-3 fatty acids with a focus on the gut microbiome, and that could lead to concrete recommendations that are easily applicable to both vulnerable people with pre-existing metabolic comorbidities and the elderly, but also to the general population.
Collapse
Affiliation(s)
- Laurence Daoust
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Geneviève Pilon
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - André Marette
- Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
21
|
Bongiovanni T, Yin MOL, Heaney L. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int J Sports Med 2021; 42:1143-1158. [PMID: 34256388 DOI: 10.1055/a-1524-2095] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete's immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.
Collapse
Affiliation(s)
| | | | - Liam Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
22
|
Effect of Lactobacillus plantarum-fermented mulberry pomace on antioxidant properties and fecal microbial community. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Neto CC, Mortzfeld BM, Turbitt JR, Bhattarai SK, Yeliseyev V, DiBenedetto N, Bry L, Bucci V. Proanthocyanidin-enriched cranberry extract induces resilient bacterial community dynamics in a gnotobiotic mouse model. MICROBIAL CELL 2021; 8:131-142. [PMID: 34055966 PMCID: PMC8144911 DOI: 10.15698/mic2021.06.752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cranberry consumption has numerous health benefits, with experimental reports showing its anti-inflammatory and anti-tumor properties. Importantly, microbiome research has demonstrated that the gastrointestinal bacterial community modulates host immunity, raising the question of whether the cranberry-derived effect may be related to its ability to modulate the microbiome. Only a few studies have investigated the effect of cranberry products on the microbiome to date. Especially because cranberries are rich in dietary fibers, the extent of microbiome modulation by polyphenols, particularly proanthocyanidins (PACs), remains to be shown. Since previous work has only focused on long-term effects of cranberry extracts, in this study we investigated the effect of a water-soluble, PAC-rich cranberry juice extract (CJE) on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model. CJE characterization revealed a high enrichment in PACs (57%), the highest ever utilized in a microbiome study. In a 37-day experiment with a ten-day CJE intervention and 14-day recovery phase, we profiled the microbiota via 16S rRNA sequencing and applied diverse time-series analytics methods to identify individual bacterial responses. We show that daily administration of CJE induces distinct dynamic patterns in bacterial abundances during and after treatment, before recovering resiliently to pre-treatment levels. Specifically, we observed an increase of Akkermansia muciniphila and Clostridium hiranonis at the expense of Bacteroides ovatus after the offset of the selection pressure imposed by the PAC-rich CJE. This demonstrates that termination of an intervention with a cranberry product can induce changes of a magnitude as high as the intervention itself.
Collapse
Affiliation(s)
- Catherine C Neto
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Benedikt M Mortzfeld
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - John R Turbitt
- Department of Chemistry and Biochemistry University of Massachusetts Dartmouth, North Dartmouth, MA.,UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA
| | - Shakti K Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Vanni Bucci
- UMass Cranberry Health Research Center, University of Massachusetts Dartmouth, North Dartmouth, MA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
24
|
Corb Aron RA, Abid A, Vesa CM, Nechifor AC, Behl T, Ghitea TC, Munteanu MA, Fratila O, Andronie-Cioara FL, Toma MM, Bungau S. Recognizing the Benefits of Pre-/Probiotics in Metabolic Syndrome and Type 2 Diabetes Mellitus Considering the Influence of Akkermansia muciniphila as a Key Gut Bacterium. Microorganisms 2021; 9:microorganisms9030618. [PMID: 33802777 PMCID: PMC8002498 DOI: 10.3390/microorganisms9030618] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are diseases that can be influenced by the structure of gut microbiota, whose improvement is often neglected in metabolic pathology. This review highlights the following main aspects: the relationship between probiotics/gut microbes with the pathogenesis of MetS, the particular positive roles of Akkermansia muciniphila supplementation in the onset of MetS, and the interaction between dietary polyphenols (prebiotics) with gut microbiota. Therefore, an extensive and in-depth analysis of the often-neglected correlation between gut microbiota and chronic metabolic diseases was conducted, considering that this topic continues to fascinate and stimulate researchers through the discovery of novel strains and their beneficial properties.
Collapse
Affiliation(s)
- Raluca Anca Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, 4032 Debrecen, Hungary;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (R.A.C.A.); (C.M.V.)
| | - Aurelia Cristina Nechifor
- Department of Analytical Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Ovidiu Fratila
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.A.M.); (O.F.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (T.C.G.); (M.M.T.)
- Correspondence: ; Tel.: +40-726-776-588
| |
Collapse
|
25
|
Li J, Zhang L, Li Y, Wu Y, Wu T, Feng H, Xu Z, Liu Y, Ruan Z, Zhou S. Puerarin improves intestinal barrier function through enhancing goblet cells and mucus barrier. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Régnier M, Rastelli M, Morissette A, Suriano F, Le Roy T, Pilon G, Delzenne NM, Marette A, Van Hul M, Cani PD. Rhubarb Supplementation Prevents Diet-Induced Obesity and Diabetes in Association with Increased Akkermansia muciniphila in Mice. Nutrients 2020; 12:nu12102932. [PMID: 32987923 PMCID: PMC7601677 DOI: 10.3390/nu12102932] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity and obesity-related disorders, such as type 2 diabetes have been progressively increasing worldwide and treatments have failed to counteract their progression. Growing evidence have demonstrated that gut microbiota is associated with the incidence of these pathologies. Hence, the identification of new nutritional compounds, able to improve health through a modulation of gut microbiota, is gaining interest. In this context, the aim of this study was to investigate the gut-driving effects of rhubarb extract in a context of diet-induced obesity and diabetes. Eight weeks old C57BL6/J male mice were fed a control diet (CTRL), a high fat and high sucrose diet (HFHS) or a HFHS diet supplemented with 0.3% (g/g) of rhubarb extract for eight weeks. Rhubarb supplementation fully prevented HFHS-induced obesity, diabetes, visceral adiposity, adipose tissue inflammation and liver triglyceride accumulation, without any modification in food intake. By combining sequencing and qPCR methods, we found that all these effects were associated with a blooming of Akkermansia muciniphila, which is strongly correlated with increased expression of Reg3γ in the colon. Our data showed that rhubarb supplementation is sufficient to protect against metabolic disorders induced by a diet rich in lipid and carbohydrates in association with a reciprocal interaction between Akkermansia muciniphila and Reg3γ.
Collapse
Affiliation(s)
- Marion Régnier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - Arianne Morissette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, QC G1V 4G5, Canada; (A.M.); (G.P.); (A.M.)
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - Tiphaine Le Roy
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, QC G1V 4G5, Canada; (A.M.); (G.P.); (A.M.)
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, QC G1V 4G5, Canada; (A.M.); (G.P.); (A.M.)
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life sciences and BIOtechnology (WELBIO), UCLouvain, Université catholique de Louvain, Av. E. Mounier, 73 B1.73.11, 1200 Bruxelles, Belgium; (M.R.); (M.R.); (F.S.); (T.L.R.); (N.M.D.); (M.V.H.)
- Correspondence: ; Tel.: +32-(0)2-764-73-97
| |
Collapse
|
27
|
Denis MC, Dubé P, Dudonné S, Desjardins Y, Matei C, Delvin E, Levy E, Furtos A. Characterization of bioactive cranberry fractions by mass spectrometry. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates that fruits contain functional bio-active compounds that have several preventive and therapeutic health benefits. Our group has recently conducted studies to assess the potential effects of cranberry polyphenolic fractions on intestinal Caco-2/15 epithelial cells and a substantial reduction in oxidative stress and inflammation was observed. The aim of the present work was to determine the polyphenolic species most likely responsible for the observed biological activity. Low, medium, and high molecular weight cranberry fractions were generated with a Sephadex LH-20 column by elution with 60% MeOH, 100% MeOH, and 70% acetone, respectively. The total phenolic content in these fractions was determined by the Folin–Ciocalteu method. A combination of LC–MS and MALDI-TOF methods were used to characterize the nature of polyphenolic compounds in the cranberry extracts. High resolution mass spectrometry was used to generate empirical formulae for the detected species. The low molecular weight fraction was essentially constituted of small phenolic acids (hydroxycinnamic and hydroxybenzoic acids). The medium fraction was mostly composed of anthocyanin, flavonols (quercetin, myricetin, isorhamnetin, kaempferol), procyanidins monomers (epicatechin, catechin), dimers, and few small oligomers. The heavy fraction was devoid of phenolic acids and anthocyanins, and it contained for the most part oligomers and polymers of procyanidins. Proanthocyanidins oligomers up to n = 22 were detected, which is, to our knowledge, the largest individual polymers reported to date. With this approach, it was also possible to distinguish between the A-type and B-type linkages.
Collapse
Affiliation(s)
- Marie-Claude Denis
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Pascal Dubé
- Institute of Nutrition and Functional foods (INAF), Université Laval, Laval, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional foods (INAF), Université Laval, Laval, QC G1V 0A6, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional foods (INAF), Université Laval, Laval, QC G1V 0A6, Canada
| | - Cristina Matei
- Department of Chemistry, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Edgard Delvin
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1C5, Canada
- Department of Chemistry, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Alexandra Furtos
- Department of Chemistry, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
28
|
Formiga RDO, Alves Júnior EB, Vasconcelos RC, Guerra GCB, Antunes de Araújo A, de Carvalho TG, Garcia VB, de Araújo Junior RF, Gadelha FAAF, Vieira GC, Sobral MV, Barbosa Filho JM, Spiller F, Batista LM. p-Cymene and Rosmarinic Acid Ameliorate TNBS-Induced Intestinal Inflammation Upkeeping ZO-1 and MUC-2: Role of Antioxidant System and Immunomodulation. Int J Mol Sci 2020; 21:E5870. [PMID: 32824269 PMCID: PMC7461622 DOI: 10.3390/ijms21165870] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1β and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.
Collapse
Affiliation(s)
- Rodrigo de Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Edvaldo Balbino Alves Júnior
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Roseane Carvalho Vasconcelos
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (R.C.V); (G.C.B.G.); (A.A.d.A.)
| | - Thaís Gomes de Carvalho
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Vinícius Barreto Garcia
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Junior
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59064-741, Brazil; (T.G.d.C.); (V.B.G.); (R.F.d.A.J.)
| | - Francisco Allysson Assis Ferreira Gadelha
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis 88037-000, Brazil;
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Federal University of Paraíba (UFPB), João Pessoa 58051970, Brazil; (R.d.O.F); (E.B.A.J.); (F.A.A.F.G.); (G.C.V.); (M.V.S.); (J.M.B.F.)
| |
Collapse
|
29
|
Abstract
Purpose of Review In this review, we focus on microbiota modulation using non-digestible carbohydrate and polyphenols (i.e., prebiotics) that have the potential to modulate body weight. Recent Findings Prebiotics derived from plants have gained the interest of public and scientific communities as they may prevent diseases and help maintain health. Summary Maintaining a healthy body weight is key to reducing the risk of developing chronic metabolic complications. However, the prevalence of obesity has increased to pandemic proportions and is now ranked globally in the top five risk factors for death. While diet and behavioral modification programs aiming to reduce weight gain and promote weight loss are effective in the short term, they remain insufficient over the long haul as compliance is often low and weight regain is very common. As a result, novel dietary strategies targeting the gut microbiota have been successful in decreasing obesity and metabolic disorders via different molecular mechanisms.
Collapse
|
30
|
Farràs M, Martinez-Gili L, Portune K, Arranz S, Frost G, Tondo M, Blanco-Vaca F. Modulation of the Gut Microbiota by Olive Oil Phenolic Compounds: Implications for Lipid Metabolism, Immune System, and Obesity. Nutrients 2020; 12:nu12082200. [PMID: 32718098 PMCID: PMC7468985 DOI: 10.3390/nu12082200] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.
Collapse
Affiliation(s)
- Marta Farràs
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Correspondence: ; Tel.: +34-935537595
| | - Laura Martinez-Gili
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Kevin Portune
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Sara Arranz
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, AstondoBidea, Edificio 609, 48160 Derio, Spain; (K.P.); (S.A.)
| | - Gary Frost
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain;
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
31
|
Liu Y, Yu X, Zhao J, Zhang H, Zhai Q, Chen W. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. Int J Biol Macromol 2020; 164:884-891. [PMID: 32707285 DOI: 10.1016/j.ijbiomac.2020.07.191] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022]
Abstract
MUC2 mucin is an important secretory protein found in the human gut. Recent studies indicated that MUC2 mucin plays a role in the protection of gut barrier, the regulation of microbiome homeostasis and the prevention of diseases. In this review, the physiological properties of MUC2 mucin and its interactions with the intestinal microbiome are firstly discussed. Its roles in intestinal diseases including inflammatory bowel disease, colorectal cancer and parasitic infections are concluded. We also reviewed dietary components known to have modulative effects on MUC2 mucin expression, such as polysaccharides, amino acids and polyphenols.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinjie Yu
- Hwa Chong Institution (College), 661 Bukit Timah Road, Singapore 269734, Singapore
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
32
|
Williams AR, Andersen-Civil AIS, Zhu L, Blanchard A. Dietary phytonutrients and animal health: regulation of immune function during gastrointestinal infections. J Anim Sci 2020; 98:5718206. [PMID: 31999321 DOI: 10.1093/jas/skaa030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022] Open
Abstract
The composition of dietary macronutrients (proteins, carbohydrates, and fibers) and micronutrients (vitamins, phytochemicals) can markedly influence the development of immune responses to enteric infection. This has important implications for livestock production, where a significant challenge exists to ensure healthy and productive animals in an era of increasing drug resistance and concerns about the sector's environmental footprint. Nutritional intervention may ultimately be a sustainable method to prevent disease and improve efficiency of livestock enterprises, and it is now well established that certain phytonutrients can significantly improve animal performance during challenge with infectious pathogens. However, many questions remain unanswered concerning the complex interplay between diet, immunity, and infection. In this review, we examine the role of phytonutrients in regulating immune and inflammatory responses during enteric bacterial and parasitic infections in livestock, with a specific focus on some increasingly well-studied phytochemical classes-polyphenols (especially proanthocyanidins), essential oil components (cinnamaldehyde, eugenol, and carvacrol), and curcumin. Despite the contrasting chemical structures of these molecules, they appear to induce a number of similar immunological responses. These include promotion of mucosal antibody and antimicrobial peptide production, coupled with a strong suppression of inflammatory cytokines and reactive oxygen species. Although there have been some recent advances in our understanding of the mechanisms underlying their bioactivity, how these phytonutrients modulate immune responses in the intestine remains mostly unknown. We discuss the complex inter-relationships between metabolism of dietary phytonutrients, the gut microbiota, and the mucosal immune system, and propose that an increased understanding of the basic immunological mechanisms involved will allow the rational development of novel dietary additives to promote intestinal health in farmed animals.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
33
|
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, De Filippis A, Xiao H, Quiles JL, Xiao J, Capanoglu E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.25] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Gizem Catalkaya
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation Faculty of Science and Engineering Maastricht University ‐ Campus Venlo Venlo The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University Maastricht The Netherlands
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Dominique Delmas
- INSERM Research Center U1231 Université de Bourgogne Franche‐Comté Centre anticancéreux Georges François Leclerc Université de Bourgogne Franche‐Comté Dijon 21000 France
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Anna De Filippis
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA USA
| | - José L. Quiles
- Department of Physiology Institute of Nutrition and Food Technology ‘‘José Mataix” Biomedical Research Centre University of Granada Granada Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
34
|
Guarino MPL, Altomare A, Emerenziani S, Di Rosa C, Ribolsi M, Balestrieri P, Iovino P, Rocchi G, Cicala M. Mechanisms of Action of Prebiotics and Their Effects on Gastro-Intestinal Disorders in Adults. Nutrients 2020; 12:1037. [PMID: 32283802 PMCID: PMC7231265 DOI: 10.3390/nu12041037] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, research has focused on the use of dietary fibers and prebiotics, since many of these polysaccharides can be metabolized by intestinal microbiota, leading to the production of short-chain fatty acids. The metabolites of prebiotic fermentation also show anti-inflammatory and immunomodulatory capabilities, suggesting an interesting role in the treatment of several pathological conditions. Galacto-oligosaccharide and short- and long-chain fructans (Fructo-oligosaccharides and inulin) are the most studied prebiotics, even if other dietary compounds seem to show the same features. There is an increasing interest in dietary strategies to modulate microbiota. The aim of this review is to explore the mechanisms of action of prebiotics and their effects on the principal gastro-intestinal disorders in adults, with a special focus on Galacto-oligosaccharides, Fructo-oligosaccharides, lactulose and new emerging substances which currently have evidence of prebiotics effects, such as xilooligosaccharides, soybean oligosaccharides, isomaltooligosaccharides, lactobionic acid, resistant starch and polyphenols.
Collapse
Affiliation(s)
- Michele Pier Luca Guarino
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Annamaria Altomare
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Sara Emerenziani
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
- (M.P.L.G.)
- (S.E.)
- (M.R.)
- (P.B.)
- (G.R.)
- (M.C.)
| | - Claudia Di Rosa
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy;
| | - Mentore Ribolsi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Balestrieri
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, Università di Salerno, Via Allende, 84081 Salerno, Italy;
| | - Giulia Rocchi
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| | - Michele Cicala
- Gastroenterology Unit, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; (M.P.L.G.); (S.E.); (M.R.); (P.B.); (G.R.); (M.C.)
| |
Collapse
|
35
|
Therapeutic Potential of Proanthocyanidins in Ulcerative Colitis in Remission. J Clin Med 2020; 9:jcm9030771. [PMID: 32178368 PMCID: PMC7141196 DOI: 10.3390/jcm9030771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
A number of bioactive components of diet are indicated as potential dietary factors for the management of ulcerative colitis, while the recent study conducted in an animal model revealed that proanthocyanidins from grape seeds exert a broadly positive impact. The aim of the study was to verify the influence of dietary proanthocyanidins intake on the symptoms of ulcerative colitis in remission in human subjects. The study was conducted in a group of 55 participants (19 males, 36 females) in remission of ulcerative colitis confirmed based on both the Mayo Scoring system and Rachmilewitz index. Their habitual dietary intake of proanthocyanidins and intake recalculated per 1000 kcal of diet was assessed and it was verified whether they are associated with symptoms of ulcerative colitis. The energy value of diet and intake of other nutrients were analyzed as potential interfering factors. Participants declaring the presence of mucus in their stool compared with other participants were characterized by higher proanthocyanidins intake (142 vs. 75 mg; p = 0.0441) and intake per 1000 kcal (91 vs. 37 mg/1000 kcal; p = 0.0092), while for no other nutrient such association was stated. Participants declaring constipation compared with other participants were characterized by higher proanthocyanidins intake (214 vs. 82 mg; p = 0.0289) and intake per 1000 kcal (118 vs. 41 mg/1000 kcal; p = 0.0194). Similar association for constipation was observed in the case of energy value of diet and protein intake, but only for proanthocyanidins intake, it was confirmed in the logistic regression model (p = 0.0183; OR = 1.01; 95% CI 1.00-1.02). The positive influence of habitual dietary intake of proanthocyanidins was confirmed in the studied group of patients with ulcerative colitis in remission, as this intake may have increased the production of mucus, which is beneficial for intestinal healing, and may have reduced the frequency of bowel movements. However, further experimental human studies are necessary to confirm the potential influence of proanthocyanidins intake in patients with ulcerative colitis in remission.
Collapse
|
36
|
Polewski MA, Esquivel-Alvarado D, Wedde NS, Kruger CG, Reed JD. Isolation and Characterization of Blueberry Polyphenolic Components and Their Effects on Gut Barrier Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2940-2947. [PMID: 31199652 DOI: 10.1021/acs.jafc.9b01689] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Highbush blueberries contain anthocyanins and proanthocyanidins that have antimicrobial and anti-inflammatory bioactivities. We isolated and characterized three polyphenolic fractions, a total polyphenol fraction (TPF), an anthocyanin-enriched fraction (AEF), and a proanthocyanidin-enriched fraction (PEF), from freeze-dried blueberry powder and evaluated their effects on an in vitro model of gut barrier dysfunction. High-performance liquid chromatography chromatograms illustrate successful fractionation of the blueberry powder into TPF, AEF, and PEF. AEF contained 21 anthocyanins, and PEF contained proanthocyanidin oligomers of (epi)catechin with primarily B-type interflavan bonds. The model uses a strain of Escherichia coli to disrupt a Caco-2 cell monolayer on Transwell inserts. Barrier function was measured by transepithelial electrical resistance (TEER), a marker of membrane permeability. All fractions were able to restore TEER values after an E. coli challenge when compared to the control, while AEF was able to attenuate the E. coli-induced decrease in TEER in a dose-dependent manner.
Collapse
Affiliation(s)
- Michael A Polewski
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Daniel Esquivel-Alvarado
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Nicholas S Wedde
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Christian G Kruger
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Jess D Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
37
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Feng Y. Function of Akkermansia muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front Microbiol 2020; 11:219. [PMID: 32153527 PMCID: PMC7046546 DOI: 10.3389/fmicb.2020.00219] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity and its metabolic syndrome, including liver disorders and type 2 diabetes, are a worldwide epidemic and are intimately linked to diet. The gut microbiota interaction has been pointed to as a hot topic of research in the treatment of obesity and related metabolic diseases by influencing energy metabolism and the immune system. In terms of the novel beneficial microbes identified, Akkermansia muciniphila (A. muciniphila) colonizes the mucosa layer of the gut and modulates basal metabolism. A. muciniphila is consistently correlated with obesity. The causal beneficial impact of A. muciniphila treatment on obesity is coming to light, having been proved by a variety of animal models and human studies. A. muciniphila has been characterized as a beneficial player in body metabolism and has great prospects for treatments of the metabolic disorders associated with obesity, as well as being considered for next-generation therapeutic agents. This paper aimed to investigate the basic mechanism underlying the relation of A. muciniphila to obesity and its host interactions, as identified in recent discoveries, facilitating the establishment of the causal relationship in A. muciniphila-associated therapeutic supplement in humans.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
38
|
Coleman CM, Ferreira D. Oligosaccharides and Complex Carbohydrates: A New Paradigm for Cranberry Bioactivity. Molecules 2020; 25:E881. [PMID: 32079271 PMCID: PMC7070526 DOI: 10.3390/molecules25040881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cranberry is a well-known functional food, but the compounds directly responsible for many of its reported health benefits remain unidentified. Complex carbohydrates, specifically xyloglucan and pectic oligosaccharides, are the newest recognized class of biologically active compounds identified in cranberry materials. Cranberry oligosaccharides have shown similar biological properties as other dietary oligosaccharides, including effects on bacterial adhesion, biofilm formation, and microbial growth. Immunomodulatory and anti-inflammatory activity has also been observed. Oligosaccharides may therefore be significant contributors to many of the health benefits associated with cranberry products. Soluble oligosaccharides are present at relatively high concentrations (~20% w/w or greater) in many cranberry materials, and yet their possible contributions to biological activity have remained unrecognized. This is partly due to the inherent difficulty of detecting these compounds without intentionally seeking them. Inconsistencies in product descriptions and terminology have led to additional confusion regarding cranberry product composition and the possible presence of oligosaccharides. This review will present our current understanding of cranberry oligosaccharides and will discuss their occurrence, structures, ADME, biological properties, and possible prebiotic effects for both gut and urinary tract microbiota. Our hope is that future investigators will consider these compounds as possible significant contributors to the observed biological effects of cranberry.
Collapse
Affiliation(s)
- Christina M. Coleman
- Department of BioMolecular Sciences, Division of Pharmacognosy, and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
39
|
Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, Levy É, Marette A, Roy D, Desjardins Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep 2020; 10:2217. [PMID: 32041991 PMCID: PMC7010699 DOI: 10.1038/s41598-020-58863-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Blueberries are a rich source of polyphenols, widely studied for the prevention or attenuation of metabolic diseases. However, the health contribution and mechanisms of action of polyphenols depend on their type and structure. Here, we evaluated the effects of a wild blueberry polyphenolic extract (WBE) (Vaccinium angustifolium Aiton) on cardiometabolic parameters, gut microbiota composition and gut epithelium histology of high-fat high-sucrose (HFHS) diet-induced obese mice and determined which constitutive polyphenolic fractions (BPF) was responsible for the observed effects. To do so, the whole extract was separated in three fractions, F1) Anthocyanins and phenolic acids, F2) oligomeric proanthocyanidins (PACs), phenolic acids and flavonols (PACs degree of polymerization DP < 4), and F3) PACs polymers (PACs DP > 4) and supplied at their respective concentration in the whole extract. After 8 weeks, WBE reduced OGTT AUC by 18.3% compared to the HFHS treated rodents and the F3 fraction contributed the most to this effect. The anthocyanin rich F1 fraction did not reproduce this response. WBE and the BPF restored the colonic mucus layer. Particularly, the polymeric PACs-rich F3 fraction increased the mucin-secreting goblet cells number. WBE caused a significant 2-fold higher proportion of Adlercreutzia equolifaciens whereas oligomeric PACs-rich F2 fraction increased by 2.5-fold the proportion of Akkermansia muciniphila. This study reveals the key role of WBE PACs in modulating the gut microbiota and restoring colonic epithelial mucus layer, providing a suitable ecological niche for mucosa-associated symbiotic bacteria, which may be crucial in triggering health effects of blueberry polyphenols.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Laurence Daoust
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Lemia Boutkrabt
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Thibault Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada. .,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada.
| |
Collapse
|
40
|
Wang Y, Harrington PDB, Chen P. Analysis of Phenolic Compositions in Cranberry Dietary Supplements using UHPLC-HRMS. J Food Compost Anal 2019; 86. [PMID: 32863574 DOI: 10.1016/j.jfca.2019.103362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The potential human health benefits of American cranberry (Vaccinium macrocarpon Ait.) leads to the popularity of its dietary supplements in the U.S. market. However, the qualities of the cranberry dietary supplements (CDSs) have never been carefully evaluated. In this study, the phenolic components in ten different CDSs were analyzed using ultra-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS). The study found quercetin and myricetin aglycones in most CDSs, but not in cranberry fruits, despite otherwise similar phenolic profiles between CDS and cranberry fruits in general. One supplement with high levels of B-type proanthocyanidins and non-cranberry flavonol rutin was determined to be adulterated by other botanical extracts. The CDSs only possessed 4% to 11% of the phenolic contents comparing to their claimed fresh cranberry equivalents, emphasizing the urgency of standardized product quality control and labelling for CDS manufacture and marketing.
Collapse
Affiliation(s)
- Yifei Wang
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Composition and Methods Development Laboratory, Beltsville, MD, US 20705
- Center for Intelligent Chemical Instrumentation, Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio, 45701
| | - Peter de B Harrington
- Center for Intelligent Chemical Instrumentation, Department of Chemistry & Biochemistry, Ohio University, Athens, Ohio, 45701
| | - Pei Chen
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Composition and Methods Development Laboratory, Beltsville, MD, US 20705
| |
Collapse
|
41
|
Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr Rev 2019; 76:29-46. [PMID: 29087531 DOI: 10.1093/nutrit/nux039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Berries are generally considered beneficial to health. This health-promoting potential has mainly been ascribed to berries' phytochemical and vitamin content, and little attention has been paid to the potential benefits of berries for the digestive tract, despite this being the first point of contact. In vivo studies that described the health effects of berries on individual parts of the digestive tract (ie, the mouth, esophagus, stomach, small and large intestine, microbiome, and immune system) were reviewed. Immune effects were included because a large part of the immune system is located in the intestine. Beneficial health effects were mainly observed for whole berry extracts, not individual berry components. These effects ranged from support of the immune system and beneficial microbiota to reduction in the number and size of premalignant and malignant lesions. These results demonstrate the potency of berries and suggest berries can serve as a strong adjuvant to established treatments or therapies for a variety of gastrointestinal and immune-related illnesses.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Muzeyyen Berkel Kasikci
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands.,Department of Food Engineering, Faculty of Engineering, Celal Bayar University, Manisa, Turkey
| | - Addie A van der Sluis
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Bornse Weilanden, Wageningen, the Netherlands
| |
Collapse
|
42
|
Lordan C, Thapa D, Ross RP, Cotter PD. Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 2019; 11:1-20. [PMID: 31116628 PMCID: PMC6973326 DOI: 10.1080/19490976.2019.1613124] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human intestinal commensal microbiota and associated metabolic products have long been regarded as contributors to host health. As the identity and activities of the various members of this community have become clearer, newly identified health-associated bacteria, such as Faecalibacterium prausnitzii, Akkermansia muciniphila, Ruminococcus bromii and Roseburia species, have emerged. Notably, the abundance of many of these bacteria is inversely correlated to several disease states. While technological and regulatory hurdles may limit the use of strains from these taxa as probiotics, it should be possible to utilize prebiotics and other dietary components to selectively enhance their growth in situ. Dietary components of potential relevance include well-established prebiotics, such as galacto-oligosaccharides, fructo-oligosaccharides and inulin, while other putative prebiotics, such as other oligosaccharides, polyphenols, resistant starch, algae and seaweed as well as host gut metabolites such as lactate and acetate, may also be applied with the aim of selectively and/or differentially affecting the beneficial bacterial community within the gastrointestinal environment. The present review provides an overview of the dietary components that could be applied in this manner.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland,School of Microbiology, University College Cork, Ireland
| | - Dinesh Thapa
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, Ireland,APC Microbiome Ireland, University College Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland,APC Microbiome Ireland, University College Cork, Ireland,CONTACT Paul D. Cotter
| |
Collapse
|
43
|
de Almeida Alvarenga L, Borges NA, Moreira LDSG, Resende Teixeira KT, Carraro-Eduardo JC, Dai L, Stenvinkel P, Lindholm B, Mafra D. Cranberries – potential benefits in patients with chronic kidney disease. Food Funct 2019; 10:3103-3112. [DOI: 10.1039/c9fo00375d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Patients with chronic kidney disease (CKD) present many complications that potentially could be linked to increased cardiovascular mortality such as inflammation, oxidative stress, cellular senescence and gut dysbiosis.
Collapse
Affiliation(s)
| | - Natália Alvarenga Borges
- Graduate Program in Nutrition Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Cardiovascular Sciences
| | | | | | | | - Lu Dai
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum
- Department of Clinical Science
- Technology and Intervention
- Karolinska Institutet
- Stockholm
| | - Denise Mafra
- Graduate Program in Medical Sciences
- Fluminense Federal University (UFF)
- Niterói
- Brazil
- Graduate Program in Nutrition Sciences
| |
Collapse
|
44
|
Diaz-Garcia L, Schlautman B, Covarrubias-Pazaran G, Maule A, Johnson-Cicalese J, Grygleski E, Vorsa N, Zalapa J. Massive phenotyping of multiple cranberry populations reveals novel QTLs for fruit anthocyanin content and other important chemical traits. Mol Genet Genomics 2018; 293:1379-1392. [PMID: 29967963 DOI: 10.1007/s00438-018-1464-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023]
Abstract
Because of its known phytochemical activity and benefits for human health, American cranberry (Vaccinium macrocarpon L.) production and commercialization around the world has gained importance in recent years. Flavonoid compounds as well as the balance of sugars and acids are key quality characteristics of fresh and processed cranberry products. In this study, we identified novel QTL that influence total anthocyanin content (TAcy), titratable acidity (TA), proanthocyanidin content (PAC), Brix, and mean fruit weight (MFW) in cranberry fruits. Using repeated measurements over the fruit ripening period, different QTLs were identified at specific time points that coincide with known chemical changes during fruit development and maturation. Some genetic regions appear to be regulating more than one trait. In addition, we demonstrate the utility of digital imaging as a reliable, inexpensive and high-throughput strategy for the quantification of anthocyanin content in cranberry fruits. Using this imaging approach, we identified a set of QTLs across three different breeding populations which collocated with anthocyanin QTL identified using wet-lab approaches. We demonstrate the use of a high-throughput, reliable and highly accessible imaging strategy for predicting anthocyanin content based on cranberry fruit color, which could have a large impact for both industry and cranberry research.
Collapse
Affiliation(s)
- Luis Diaz-Garcia
- Department of Horticulture, University of Wisconsin, Madison, WI, USA. .,Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Aguascalientes, Mexico.
| | | | | | - Andrew Maule
- Department of Horticulture, University of Wisconsin, Madison, WI, USA
| | | | | | - Nicholi Vorsa
- Blueberry and Cranberry Research and Extension Center, Rutgers University, Chatsworth, NJ, USA
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin, Madison, WI, USA. .,USDA-ARS, Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
45
|
Oteiza P, Fraga C, Mills D, Taft D. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol Aspects Med 2018; 61:41-49. [DOI: 10.1016/j.mam.2018.01.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
46
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|
47
|
Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur J Nutr 2017; 57:2897-2911. [PMID: 29127476 DOI: 10.1007/s00394-017-1561-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Cranberries are a rich source of polyphenolic antioxidants. Purified sugars or artificial sweeteners are being added to cranberry-based food products to mask tartness. Refined sugar and artificial sweeteners intake modulate gut microbiota and result in metabolic complications. We evaluated effects of isomalto-oligosaccharides (IMOs; sweet tasting non-digestible oligosaccharides) with cranberry extract (CRX) on high fat diet (HFD)-induced metabolic alterations in mice. METHODS Male Swiss albino mice were fed normal chow or HFD (58% fat kcal), and were administered either CRX (200 mg/kg) alone or in combination with IMOs (1 g/kg). Cecal short-chain fatty acids, abundances of selected (1) butyrate producing, (2) metabolically beneficial, and (3) selective lipopolysaccharides producing gram negative gut bacteria were studied. Further, gut-related histological, biochemical, genomic changes along with circulating pro-/anti-inflammatory markers and systemic obesity-associated metabolic changes were studied. RESULTS Co-supplementation of CRX and IMOs significantly improved cecal SCFAs, especially butyrate levels, selected butyrate-producing bacteria (clostridial cluster XIVa bacteria) and butyrate kinase expression in HFD-fed mice. The combination also significantly improved gut beneficial bacterial abundance, gut histology and related changes (colon mucin production, gut permeability) as compared to individual agents. It also prevented HFD-induced systemic and tissue inflammation, glucose intolerance and systemic obesity-associated metabolic changes in adipose tissue and liver. The combination of CRX and IMOs appeared more effective in the prevention of HFD-induced gut derangements. CONCLUSION Combination of CRX and IMOs could be advantageous for normalization of metabolic alterations seen in diet-induced obesity via beneficial modulation of gastrointestinal health.
Collapse
|
48
|
Jin D, Liu T, Dong W, Zhang Y, Wang S, Xie R, Wang B, Cao H. Dietary feeding of freeze-dried whole cranberry inhibits intestinal tumor development in Apcmin/+ mice. Oncotarget 2017; 8:97787-97800. [PMID: 29228651 PMCID: PMC5716691 DOI: 10.18632/oncotarget.22081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
It is increasingly perceived that dietary components have been linked with the prevention of intestinal cancer. Cranberry is a rich source of phenolic constituents and non-digestible fermentable dietary fiber, which shows anti-proliferation effect in colorectal cancer cells. Herein, we investigated the efficacy of long-term cranberry diet on intestinal adenoma formation in Apcmin/+ mice. Apcmin/+ mice were fed a basal diet or a diet containing 20% (w/w) freeze-dried whole cranberry powder for 12 weeks, and the number and size of tumors were recorded after sacrifice. Our results showed that cranberry strongly prevented the growth of intestinal tumors by 33.1%. Decreased cell proliferation and increased apoptosis were observed in tumors of cranberry-fed mice. Cranberry diet reduced the expression profile of colonic inflammatory cytokines (IFN-γ, IL-1β and TNF-α) accompanied with increased levels of anti-inflammatory cytokines (IL-4 and IL-10). Moreover, the number of colonic goblet cells and MUC2 production were increased, and the intestinal barrier function was also improved. In addition, cranberry diet increased caecal short chain fatty acids concentrations, and down-regulated epidermal growth factor receptor signaling pathway. These data firstly show the efficacy and associated mechanisms of cranberry diet on intestinal tumor growth in Apcmin/+ mice, suggesting its chemopreventive potential against intestinal cancer.
Collapse
Affiliation(s)
- Duochen Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Anhê FF, Nachbar RT, Varin TV, Vilela V, Dudonné S, Pilon G, Fournier M, Lecours MA, Desjardins Y, Roy D, Levy E, Marette A. A polyphenol-rich cranberry extract reverses insulin resistance and hepatic steatosis independently of body weight loss. Mol Metab 2017; 6:1563-1573. [PMID: 29107524 PMCID: PMC5699918 DOI: 10.1016/j.molmet.2017.10.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023] Open
Abstract
Objective Previous studies have reported that polyphenol-rich extracts from various sources can prevent obesity and associated gastro-hepatic and metabolic disorders in diet-induced obese (DIO) mice. However, whether such extracts can reverse obesity-linked metabolic alterations remains unknown. In the present study, we aimed to investigate the potential of a polyphenol-rich extract from cranberry (CE) to reverse obesity and associated metabolic disorders in DIO-mice. Methods Mice were pre-fed either a Chow or a High Fat-High Sucrose (HFHS) diet for 13 weeks to induce obesity and then treated either with CE (200 mg/kg, Chow + CE, HFHS + CE) or vehicle (Chow, HFHS) for 8 additional weeks. Results CE did not reverse weight gain or fat mass accretion in Chow- or HFHS-fed mice. However, HFHS + CE fully reversed hepatic steatosis and this was linked to upregulation of genes involved in lipid catabolism (e.g., PPARα) and downregulation of several pro-inflammatory genes (eg, COX2, TNFα) in the liver. These findings were associated with improved glucose tolerance and normalization of insulin sensitivity in HFHS + CE mice. The gut microbiota of HFHS + CE mice was characterized by lower Firmicutes to Bacteroidetes ratio and a drastic expansion of Akkermansia muciniphila and, to a lesser extent, of Barnesiella spp, as compared to HFHS controls. Conclusions Taken together, our findings demonstrate that CE, without impacting body weight or adiposity, can fully reverse HFHS diet-induced insulin resistance and hepatic steatosis while triggering A. muciniphila blooming in the gut microbiota, thus underscoring the gut-liver axis as a primary target of cranberry polyphenols. CE was shown to prevent obesity and its metabolic complications in DIO-mice. CE did not reverse obesity but alleviated liver steatosis and glucose intolerance. Liver inflammation was blunted in CE-treated mice. CE treatment expanded Akkermansia muciniphila and Barnesiella in the gut microbiota. CE targets the gut-liver axis to primarily improve glucose homeostasis.
Collapse
Affiliation(s)
- Fernando F Anhê
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Canada; Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Renato T Nachbar
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Canada.
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Vanessa Vilela
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Canada.
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Canada; Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Maryse Fournier
- Research Centre, Sainte-Justine Hospital, Montréal, Québec, Canada.
| | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Denis Roy
- Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Montréal, Québec, Canada.
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute, Canada; Institute of Nutrition and Functional Foods, Laval University, Québec, Canada.
| |
Collapse
|
50
|
Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD. Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 22:145-153. [PMID: 28618237 PMCID: PMC5810433 DOI: 10.1089/omi.2016.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relationship among diet, human health, and disease is an area of growing interest in biomarker research. Previous studies suggest that the consumption of cranberries (Vaccinium macrocarpon) could beneficially influence urinary and digestive health. The present study sought to determine if daily consumption of sweetened dried cranberries (SDC) changes the urinary proteome and fecal microbiome, as determined in a prospective sample of 10 healthy individuals. Baseline urine and fecal samples were collected from the subjects in the fasted (8-12 h) state. The subjects then consumed one serving (42 g) of SDC daily with lunch for 2 weeks. Urine and fecal samples were collected again the day after 2 weeks of SDC consumption. Orbitrap Q-Exactive mass spectrometry of urinary proteins showed that consumption of SDC resulted in changes to 22 urinary proteins. Multiplex sequencing of 16S ribosomal RNA genes in fecal samples indicated changes in relative abundance of several bacterial taxonomic units after consumption of SDC. There was a shift in the Firmicutes:Bacteroidetes ratio, increases in commensal bacteria, and decreases or the absence of bacteria associated with negative health effects. A decrease in uromodulin in all subjects and an increase in Akkermansia bacteria in most subjects were observed and warrant further investigation. Future larger clinical studies with multiomics and multitissue sampling designs are required to determine the effects of SDC consumption on nutrition and health.
Collapse
Affiliation(s)
- Nell Bekiares
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Christian G Krueger
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jennifer J Meudt
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jess D Reed
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|