1
|
Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol 2022; 96:2739-2754. [PMID: 35881160 PMCID: PMC9352639 DOI: 10.1007/s00204-022-03338-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72–144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2′-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.
Collapse
|
2
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
3
|
TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. Proc Natl Acad Sci U S A 2019; 116:11408-11417. [PMID: 31097586 DOI: 10.1073/pnas.1903244116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.
Collapse
|
4
|
Trosko JE. Cancer Prevention and Therapy of Two Types of Gap Junctional Intercellular Communication⁻Deficient "Cancer Stem Cell". Cancers (Basel) 2019; 11:cancers11010087. [PMID: 30646567 PMCID: PMC6356618 DOI: 10.3390/cancers11010087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Early observations showed a lack of growth control and terminal differentiation with a lack of gap junctional intercellular communication (GJIC). Subsequent observations showed that epigenetic tumor promoters and activated oncogenes, which block gap junction function, provide insights into the multi-stage, multi-mechanism carcinogenic process. With the isolation of embryonic induced pluri-potent stem cells and organ-specific adult stem cells, gap junctions were linked to early development. While tumors and tumor cell lines are a heterogeneous mixture of "cancer stem cells" and "cancer non-stem cells", the cancer stem cells seem to be of two types, namely, they express (a) no connexin genes or (b) connexin genes, but do not have functional GJIC. These observations suggest that these "cancer stem cells" originate from normal adult stem cells or from the de-differentiation or re-programming of somatic differentiated cells. This "Concept Paper" provides a hypothesis that "cancer stem cells" either originate from (a) organ-specific adult stem cells before the expression of the connexin genes or (b) organ-specific adult stem cells that just express gap junction genes but that the connexin proteins are rendered dysfunctional by activated oncogenes. Therefore, cancer prevention and therapeutic strategies must account for these two different types of "cancer stem cell".
Collapse
Affiliation(s)
- James E Trosko
- Department Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
5
|
Braeuning A, Kollotzek F, Zeller E, Knorpp T, Templin MF, Schwarz M. Mouse Hepatomas with Ha-ras and B-raf Mutations Differ in Mitogen-Activated Protein Kinase Signaling and Response to Constitutive Androstane Receptor Activation. Drug Metab Dispos 2018; 46:1462-1465. [PMID: 30115646 DOI: 10.1124/dmd.118.083014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022] Open
Abstract
Nuclear receptors mediate the hepatic induction of drug-metabolizing enzymes by xenobiotics. Not much is known about enzyme induction in liver tumors. Here, we treated tumor-bearing mice with phenobarbital, an activator of the constitutive androstane receptor (CAR), to analyze the response of chemically induced Ha-ras- and B-raf-mutated mouse liver adenoma to CAR activation in vivo. Both tumor subpopulations possess almost identical gene expression profiles. CAR target gene induction in the tumors was studied at the mRNA and protein levels, and a reverse-phase protein microarray approach was chosen to characterize important signaling cascades. CAR target gene induction was pronounced in B-raf-mutated but not in Ha-ras-mutated tumors. Phosphoproteomic profiling revealed that phosphorylation-activated extracellular signal-regulated kinase (ERK) 1/2 was more abundant in Ha-ras-mutated than in B-raf-mutated tumors. ERK activation in tumor tissue was negatively correlated with CAR target induction. ERK activation is known to inhibit CAR-dependent transcription. In summary, profound differences exist between the two closely related tumor subpopulations with respect to the activation of mitogenic signaling cascades, and these dissimilarities might explain the differences in xenobiotic induction of CAR target genes.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Ferdinand Kollotzek
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Eva Zeller
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Thomas Knorpp
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Markus F Templin
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| | - Michael Schwarz
- Department of Toxicology, University of Tübingen, Tübingen, Germany (A.B., F.K., E.Z., M.S.); Natural and Medical Sciences Institute, Reutlingen, Germany (T.K., M.F.T.); and Department Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany (A.B.)
| |
Collapse
|
6
|
Lake BG. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol Res (Camb) 2018; 7:697-717. [PMID: 30090615 PMCID: PMC6060665 DOI: 10.1039/c8tx00008e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023] Open
Abstract
A large number of nongenotoxic chemicals have been shown to increase the incidence of liver tumours in rats and/or mice by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with the model CAR activator phenobarbital (PB) and its sodium salt (sodium phenobarbital; NaPB) have demonstrated that the key and associative events for rat and mouse liver tumour formation include CAR activation, increased hepatocyte replicative DNA synthesis (RDS), induction of cytochrome P450 CYP2B subfamily enzymes, liver hypertrophy, increased altered hepatic foci and hepatocellular adenomas/carcinomas. The key species difference between the rat and mouse compared to humans, is that human hepatocytes are refractory to the mitogenic effects of PB/NaPB and other CAR activators. While PB/NaPB and other CAR activators stimulate RDS in rat and mouse hepatocytes in both in vitro and in vivo studies, such compounds do not stimulate RDS in cultured human hepatocytes and in in vivo studies performed in chimeric mice with humanised livers. In terms of species differences in RDS, unlike the rat and mouse, humans are similar to other species such as the Syrian hamster and guinea pig in being nonresponsive to the mitogenic effects of CAR activators. Overall, the MOA for rat and mouse liver tumour formation by PB/NaPB and other CAR activators is considered qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies, which demonstrate that chronic treatment with PB does not increase the incidence of liver cancer in humans.
Collapse
Affiliation(s)
- Brian G Lake
- Centre for Toxicology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|
7
|
Meehan RR, Thomson JP, Lentini A, Nestor CE, Pennings S. DNA methylation as a genomic marker of exposure to chemical and environmental agents. Curr Opin Chem Biol 2018; 45:48-56. [PMID: 29505975 DOI: 10.1016/j.cbpa.2018.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Recent progress in interpreting comprehensive genetic and epigenetic profiles for human cellular states has contributed new insights into the developmental origins of disease, elucidated novel signalling pathways and enhanced drug discovery programs. A similar comprehensive approach to decoding the epigenetic readouts from chemical challenges in vivo would yield new paradigms for monitoring and assessing environmental exposure in model systems and humans.
Collapse
Affiliation(s)
- Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Antonio Lentini
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE 58183, Sweden.
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, UK.
| |
Collapse
|
8
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
9
|
Trosko JE, Lenz HJ. What roles do colon stem cells and gap junctions play in the left and right location of origin of colorectal cancers? J Cell Commun Signal 2017; 11:79-87. [PMID: 28220297 PMCID: PMC5362582 DOI: 10.1007/s12079-017-0381-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
This "Commentary" examines an important clinical observation that right-sided colorectal cancers appear less treatable than the left-sided cancers. The concepts of (a) the "initiation/promotion/progression" process, (b) the stem cell hypothesis, (c) the role gap junctional intercellular communication, (d) cancer cells lacking GJIC either because of the non-expression of connexin genes or of non-functional gap junction proteins, and (e) the role of the microbiome in promoting initiated colon stem cells to divide symmetrically or asymmetrically are examined to find an explanation. It has been speculated that "embryonic-like" lesions in the ascending colon are initiated stem cells, promoted via symmetrical cell division, while the polyp-type lesions in the descending colon are initiated stem cells stimulated to divide asymmetrically. To test this hypothesis, experiments could be designed to examine if right-sided lesions might express Oct4A and ABCG2 genes but not any connexin genes, whereas the left-sided lesions might express a connexin gene, but not Oct4A or the ABCG2 genes. Treatment of the right sided lesions might include transcriptional regulators, whereas the left-sided lesions would need to restore the posttranslational status of the connexin proteins.
Collapse
Affiliation(s)
- James E Trosko
- Department Pediatrics and Human Development, College of Human Medicine, Michigan State University, 1129 Farm Lane, East Lansing, MI, 48824, USA.
| | - Heinz-Josef Lenz
- University of California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Henderson JM, Zhang HE, Polak N, Gorrell MD. Hepatocellular carcinoma: Mouse models and the potential roles of proteases. Cancer Lett 2016; 387:106-113. [PMID: 27045475 DOI: 10.1016/j.canlet.2016.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
Abstract
Primary liver cancer is the second most common cause of mortality from cancer. The most common models of hepatocellular carcinoma, which use a chemical and/or metabolic insult, xenograft, or genetic manipulation, are discussed in this review. In the tumour microenvironment lymphocytes, fibroblasts, endothelial cells and antigen presenting cells are important determinants of cell fate. These cells make a range of proteases that modify the biological activity of other proteins, particularly extracellular matrix proteins that alter cell migration of tumour cells, fibroblasts and leucocytes, and chemokines that alter leucocyte migration. The DPP4 family of post-proline peptidase enzymes modifies cell movement and the activities of many bioactive molecules including growth factors and chemokines.
Collapse
Affiliation(s)
- James M Henderson
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Hui Emma Zhang
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Natasa Polak
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia
| | - Mark D Gorrell
- Centenary Institute and Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 Australia.
| |
Collapse
|
11
|
Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Arch Toxicol 2016; 90:1481-94. [DOI: 10.1007/s00204-016-1667-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 01/16/2023]
|
12
|
Laird A, Thomson JP, Harrison DJ, Meehan RR. 5-hydroxymethylcytosine profiling as an indicator of cellular state. Epigenomics 2014; 5:655-69. [PMID: 24283880 DOI: 10.2217/epi.13.69] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is widely studied in the context of cancer. However, the rediscovery of 5-hydroxymethylation of DNA adds a new layer of complexity to understanding the epigenetic basis of development and disease, including carcinogenesis. There have been significant advances in techniques for the detection of 5-hydroxymethylcytosine and, with this, greater insight into the distribution, regulation and function of this mark, which are reviewed here. Better understanding of the associated pathways involved in regulation of, and by, 5-hydroxymethylcytosine may give promise to new therapeutic targets. We discuss evidence to support the view of 5-hydroxymethylcytosine as a unique and dynamic mark of cellular state. These 5-hydroxymethylcytosine profiles may offer optimism for the development of diagnostic, prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Alexander Laird
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | | | | | | |
Collapse
|
13
|
Braeuning A, Gavrilov A, Brown S, Wolf CR, Henderson CJ, Schwarz M. Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR. Toxicol Sci 2014; 140:259-70. [PMID: 24863967 DOI: 10.1093/toxsci/kfu099] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear receptors CAR (constitutive androstane receptor) and possibly PXR (pregnane X receptor) mediate the hepatic effects of phenobarbital (PB) and similar-acting compounds. Although PB is a potent nongenotoxic tumor promoter in rodent liver, epidemiological data from epilepsy patients treated with phenobarbital do not show a specific role of PB in human liver cancer risk. That points to species differences in the susceptibility to tumor promotion by PB, which might be attributed to divergent functions of the PB receptors CAR and PXR in mice and humans. In the present study, male transgenic mice expressing human CAR and PXR were used to detect possible differences between wild-type (WT) and humanized mice in their response to CAR activation in a tumor initiation/promotion experiment with a single injection of the tumor initiator N-nitrosodiethylamine preceding chronic PB treatment for 10 months. Analysis of liver tumor burden revealed that PB strongly promoted the outgrowth of hepatocellular adenoma driven by activated β-catenin in WT mice, whereas the tumor-promoting effect of PB was much less pronounced in the humanized group. In conclusion, the present findings demonstrate that human CAR and PXR support tumor promotion by PB in mouse liver, but to a significantly lesser extent than the WT murine receptors.
Collapse
Affiliation(s)
- Albert Braeuning
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Alina Gavrilov
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| | - Susan Brown
- CXR Biosciences, 2 James Lyndsay Place, Dundee Technopole, Dundee DD1 5JJ, Scotland, UK
| | - C Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, University of Dundee, James Arrott Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK
| | - Michael Schwarz
- University of Tuebingen, Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Toxicology, Wilhelmstr. 56, 72074 Tuebingen, Germany
| |
Collapse
|
14
|
KIM JEEYOUNG, AHN HUIJEONG, WOO HEUNGMYONG, LEE EUNSONG, LEE GEUNSHIK. Generation of liver-specific TGF-α and c-Myc-overexpressing fibroblasts for future creation of a liver cancer porcine model. Mol Med Rep 2014; 10:329-35. [DOI: 10.3892/mmr.2014.2217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/28/2014] [Indexed: 11/05/2022] Open
|
15
|
Luo M, Yang F, Huang SX, Kuang ZP, Luo XL, Li YD, Wu JN, Xie YA. Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res 2014; 20:517-28. [PMID: 24063282 DOI: 10.3727/096504013x13747716581336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to develop an efficient and reproducible mouse model for hepatocellular carcinoma (HCC) research and assess the expression of two proto-oncogenes (c-myc and N-ras) and tumor suppressor gene p53 in the carcinogenic process. In this study, we found that diethylnitrosamine initiation with CCl4 and ethanol promotion could induce a short-term, two-stage liver carcinogenesis model in male BALB/c mice, the process of hepatocarcinogenesis including liver damage, liver necrosis/cell death, liver inflammation, liver proliferation, liver hyperplasia, liver steatosis, and liver cirrhosis and hepatocellular nodules, which mimicked the usual sequence of events observed in human HCC. We also identified that the increase in expression of the p53 gene is related to the proliferation of hepatocytes, whereas overexpression of the c-myc and N-ras genes is associated with hepatocarcinogenesis. This animal model may serve as a basis for recapitulating the molecular pathogenesis of HCC seen in humans.
Collapse
Affiliation(s)
- Min Luo
- Biomedical Research Center, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Luisier R, Unterberger EB, Goodman JI, Schwarz M, Moggs J, Terranova R, van Nimwegen E. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion. Nucleic Acids Res 2014; 42:4180-95. [PMID: 24464994 PMCID: PMC3985636 DOI: 10.1093/nar/gkt1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, 4057 Basel, Switzerland, Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany, Department of Pharmacology and Toxicology, Michigan State University, MI 48824, USA and Biozentrum, University of Basel and Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Geter DR, Bhat VS, Gollapudi BB, Sura R, Hester SD. Dose-Response Modeling of Early Molecular and Cellular Key Events in the CAR-Mediated Hepatocarcinogenesis Pathway. Toxicol Sci 2014; 138:425-45. [DOI: 10.1093/toxsci/kfu014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
19
|
Thomson JP, Moggs JG, Wolf CR, Meehan RR. Epigenetic profiles as defined signatures of xenobiotic exposure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 764-765:3-9. [PMID: 24001620 DOI: 10.1016/j.mrgentox.2013.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
With the advent of high resolution sequencing technologies there has been increasing interest in the study of genome-wide epigenetic modification patterns that govern the underlying gene expression events of a particular cell or tissue type. There is now mounting evidence that perturbations to the epigenetic landscape occur during a host of cellular processes including normal proliferation/differentiation and aberrant outcomes such as carcinogenesis. Furthermore, epigenetic perturbations have been associated with exposure to a range of drugs and toxicants, including non-genotoxic carcinogens (NGCs). Although a variety of epigenetic modifications induced by NGCs have been studied previously, recent genome-wide integrated epigenomic and transcriptomic studies reveal for the first time the extent and dynamic nature of the epigenetic perturbations resulting from xenobiotic exposure. The interrogation and integration of one such epigenetic mark, the newly discovered 5-hydroxymethylcytosine (5hmC) modification, reveals that drug treatment associated perturbations of the epigenome can result in unique epigenetic signatures. This review focuses on how recent advances in the field of epigenetics can enhance our mechanistic understanding of xenobiotic exposure and provide novel safety biomarkers.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Jonathan G Moggs
- Discovery & Investigative Safety, Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
20
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
21
|
The connection of β-catenin and phenobarbital in murine hepatocarcinogenesis: a critical discussion of Awuah et al., PLoS ONE 7(6):e39771, 2012. Arch Toxicol 2012; 87:401-2. [PMID: 23266721 DOI: 10.1007/s00204-012-1002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
22
|
Braeuning A, Heubach Y, Knorpp T, Kowalik MA, Templin M, Columbano A, Schwarz M. Gender-specific interplay of signaling through β-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci 2011; 123:113-22. [PMID: 21705713 DOI: 10.1093/toxsci/kfr166] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aberrant signaling through the Wnt/β-catenin pathway is a critical determinant in human and rodent liver carcinogenesis and generally accepted to be a potent driver of proliferation. Xenobiotic agonists of the constitutive androstane receptor (CAR) induce massive acute hyperplasia of mouse liver and facilitate the outgrowth of hepatocellular carcinomas with activated β-catenin. In the present study, the interplay of β-catenin-dependent and CAR-dependent signaling in the liver and its effect on hepatocyte proliferation were analyzed in transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) following treatment with two CAR agonists, 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene (TCPOBOP) and phenobarbital. Hepatocyte-specific knockout of β-catenin inhibited CAR agonists-induced hepatocyte proliferation in male mice. By contrast, the proliferative effect of CAR agonists was strongly augmented in female β-catenin knockout animals. This was due to prolonged proliferation of the knockout hepatocytes. CAR-mediated hepatocyte proliferation was, at least in part, dependent on estrogen signaling and was associated with enhanced expression of FoxM1 and elevated activity of the PDK1/p90RSK pathway. In conclusion, our study shows that gender-specific factors determine whether β-catenin signaling plays a pro- or an antiproliferative role in the regulation of mouse hepatocyte proliferation induced by CAR agonists.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Kushida M, Kamendulis LM, Peat TJ, Klaunig JE. Dose-related induction of hepatic preneoplastic lesions by diethylnitrosamine in C57BL/6 mice. Toxicol Pathol 2011; 39:776-86. [PMID: 21628716 DOI: 10.1177/0192623311409596] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The C57BL/6 mouse strain (or derivation of this strain) is used as a background for many transgenic mouse models. This strain has a relatively low susceptibility to chemically induced hepatocarcinogenesis compared with other commonly used experimental mouse strains. In the present study, the authors treated C57BL/6 mice with 25, 50, and 75 mg/kg of diethylnitrosamine (DEN) for 4 or 8 weeks by intraperitoneal injection to investigate the dose-response pattern of preneoplastic and neoplastic lesion formation in the liver. DEN induced preneoplastic lesions and cytokeratin 8/18-positive foci in a dose-dependent manner. In the 75 mg/kg for 8 weeks treatment group, hepatocellular adenoma, cholangioma and hemangioma, and cytokeratin 19-positive foci were also induced, but a significant decrease in body weight was observed. The suitable DEN treatment range for this strain was concluded to be from 75 mg/kg for 4 weeks (total amount = 300 mg/kg) to 50 mg/kg for 8 weeks (total amount = 400 mg/kg). These results should prove useful for future studies investigating hepatocarcinogenesis in both the background C57BL/6 strain and other transgenic mouse models derived from it.
Collapse
Affiliation(s)
- Masahiko Kushida
- Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Primary liver cancer remains one of the most lethal malignancies worldwide. As this disease is lethal in most cases, research has to be done to improve our understanding of the disease and to offer insights for possible treatment options. Animal models have been widely used in the research of primary liver cancer. Here, we review the progress and prospects for the development of animal models of primary liver cancer, highlighting the best candidates for future preclinical investigations.
Collapse
|
25
|
Lempiäinen H, Müller A, Brasa S, Teo SS, Roloff TC, Morawiec L, Zamurovic N, Vicart A, Funhoff E, Couttet P, Schübeler D, Grenet O, Marlowe J, Moggs J, Terranova R. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice. PLoS One 2011; 6:e18216. [PMID: 21455306 PMCID: PMC3063791 DOI: 10.1371/journal.pone.0018216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/28/2011] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.
Collapse
Affiliation(s)
- Harri Lempiäinen
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Müller
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sarah Brasa
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Soon-Siong Teo
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Laurent Morawiec
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Natasa Zamurovic
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Axel Vicart
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Enrico Funhoff
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Grenet
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jennifer Marlowe
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Moggs
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Rémi Terranova
- Investigative Toxicology, Preclinical Safety, Translational Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Pakharukova M, Smetanina M, Kaledin V, Obut T, Merkulova T. The increased CAR-dependent metabolism of thyroid hormones in mice with high cancer susceptibility. Life Sci 2010; 87:439-44. [PMID: 20816995 DOI: 10.1016/j.lfs.2010.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/07/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
AIM our aim was to compare activation of the constitutive androstane receptor (CAR), hepatic expression of its target genes, and the serum thyroid hormone levels in C3H/He, C57BL/6J, and CC57BR/Mv mice following phenobarbital treatment. These differences, if present, could help to explain the different susceptibility to phenobarbital-induced liver tumor promotion among these strains of mice. MAIN METHODS CAR DNA-binding activity and CAR content in nuclear protein extracts from mouse livers were assessed using the electrophoretic mobility shift assay and immunoblotting. Serum thyroid hormone concentrations were determined by radioimmunoassay. Real-time PCR was used to measure the hepatic expression level of CAR target genes. KEY FINDINGS we found a 2.3-fold increase of CAR DNA-binding activity in response to phenobarbital in the sensitive C3H/He mice, but no change in the relatively resistant C57BL/6J and CC57BR/Mv mice. Phenobarbital treatment caused a significant decrease in triiodothyronine and free thyroxine concentrations (17% and 40%, respectively) in the sensitive C3H/He mice by the end of 60-day treatment, while in the resistant mice, these changes were not observed. In the sensitive C3H/He mice only, the expression of a CAR target gene encoding sulfotransferase Sult2a1, the thyroid hormone inactivation enzyme, increased by 260-fold after phenobarbital administration. The expression of another CAR target gene, Mdm2, was also increased by phenobarbital treatment in C3H/He mice. SIGNIFICANCE we have shown that phenobarbital activates CAR and increases the expression of its target genes thereby accelerating the metabolism of thyroid hormones only in mice susceptible to liver tumor promotion by phenobarbital, but not in relatively resistant animals.
Collapse
|
27
|
Suzuki S, Takeshita K, Doi Y, Asamoto M, Takahashi S, Naiki-Ito A, Shirai T. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)-induced hepatocarcinogenesis is not enhanced by CYP1A inducers, alpha- and beta-naphthoflavone: relationship to intralobular distribution of CYP1A expression. Toxicol Pathol 2010; 38:583-91. [PMID: 20448087 DOI: 10.1177/0192623310367808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction of more than two chemicals from foods is a very important factor for carcinogenic risk assessment and management. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), one of the most abundant carcinogenic heterocyclic amines in cooked foods, is speculated to be a human liver carcinogen. MeIQx is metabolically activated by CYP1A2 and then N-acetyltransferase (NAT), findings that suggest that its carcinogenic potential might be enhanced by simultaneous exposure to chemical(s) inducing CYP1A2. Therefore, we here investigated the effects of alpha- and beta-naphthoflavone as CYP1A2 inducers on MeIQx-induced rat hepatocarcinogenesis in a medium-term rat liver bioassay. Unexpectedly, no modifying influence of naphthoflavones on MeIQx-induced hepatocarcinogenesis was demonstrated with reference to glutathione S-transferase placental form (GST-P) positive foci in the liver, although up-regulation of CYP1A2 was detected on Western blot analysis. Activity of NAT was not affected. In MeIQx-treated rats, CYP1A expression was mainly detected in zone 3 of the liver where GST-P positive foci were preferentially located, while naphthoflavones alone or combinations of naphthoflavones and MeIQx induced CYP1A expression in zone 1. This difference in intralobular distribution of CYP1A might be related to the fact that MeIQx hepatocarcinogenesis was not modified by the two CYP1A inducers.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Trosko JE, Chang CC. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology 2009; 270:18-34. [PMID: 19948204 DOI: 10.1016/j.tox.2009.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 11/23/2009] [Indexed: 12/15/2022]
Abstract
Given the reality of the inadequacies of current concepts of the mechanisms of chemical toxicities, of the various assays to predict toxicities from current molecular, biochemical, in vitro and animal bioassays, and of the failure to generate efficacious and safe chemicals for medicines, food supplements, industrial, consumer and agricultural chemicals, the recent NAS Report, "Toxicity Testing in the 21st Century: A Vision and a Strategy", has drawn attention to a renewed examination of what needs to be done to improve our current approach for better assessment of potential risk to human health. This "Commentary" provides a major paradigm challenge to the current concepts of how chemicals induce toxicities and how these various mechanisms of toxicities can contribute to the pathogenesis of some human diseases, such as birth defects and cancer. In concordance with the NAS Report to take "... advantage of the on-going revolution in biology and biotechnology", this "Commentary" supports the use of human embryonic and adult stem cells, grown in vitro under simulated "in vivo niche conditions". The human being should be viewed "as greater than the sum of its parts". Homeostatic control of the "emergent properties" of the human hierarchy, needed to maintain human health, requires complex integration of endogenous and exogenous signaling molecules that control cell proliferation, differentiation, apoptosis and senescence of stem, progenitor and differentiated cells. Currently, in vitro toxicity assays (mutagenesis, cytotoxicity, epigenetic modulation), done on 2-dimensional primary rodent or human cells (which are always mixtures of cells), on immortalized or tumorigenic rodent or human cell lines do not represent normal human cells in vivo [which do not grow on plastic and which are in micro-environments representing 3 dimensions and constantly interacting factors]. In addition, with the known genetic, gender, and developmental state of cells in vivo, any in vitro toxicity assay will need to mimic these conditions in vitro. More specifically, while tissues contain a few stem cells, many progenitor/transit cells and terminally differentiated cells, it should be obvious that both embryonic and adult stem cells would be critical "target" cells for toxicity testing. The ultimate potential for in vitro testing of human stem cells will to try to mimic a 3-D in vitro micro-environment on multiple "organ-specific and multiple genotypic/gender "adult stem cells. The role of stem cells in many chronic diseases, such as cancer, birth defects, and possibly adult diseases after pre-natal and early post-natal exposures (Barker hypothesis), demands toxicity studies of stem cells. While alteration of gene expression ("toxico-epigenomics") is a legitimate endpoint of these toxicity studies, alteration of the quantity of stem cells during development must be serious considered. If the future utility of human stem cells proves to be valid, the elimination of less relevant, expensive and time-consuming rodent and 2-D human in vitro assays will be eliminated.
Collapse
Affiliation(s)
- James Edward Trosko
- Center for Integrative Toxicology, Food Safety and Toxicology Center, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
29
|
Hattis D, Chu M, Rahmioglu N, Goble R, Verma P, Hartman K, Kozlak M. A preliminary operational classification system for nonmutagenic modes of action for carcinogenesis. Crit Rev Toxicol 2009; 39:97-138. [PMID: 19009457 DOI: 10.1080/10408440802307467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article proposes a system of categories for nonmutagenic modes of action for carcinogenesis. The classification is of modes of action rather than individual carcinogens, because the same compound can affect carcinogenesis in more than one way. Basically, we categorize modes of action as: (1) co-initiation (facilitating the original mutagenic changes in stem and progenitor cells that start the cancer process) (e.g. induction of activating enzymes for other carcinogens); (2) promotion (enhancing the relative growth vs differentiation/death of initiated clones (e.g. inhibition of growth-suppressing cell-cell communication); (3) progression (enhancing the growth, malignancy, or spread of already developed tumors) (e.g. suppression of immune surveillance, hormonally mediated growth stimulation for tumors with appropriate receptors by estrogens); and (4) multiphase (e.g., "epigenetic" silencing of tumor suppressor genes). A priori, agents that act at relatively early stages in the process are expected to manifest greater relative susceptibility in early life, whereas agents that act via later stage modes will tend to show greater susceptibility for exposures later in life.
Collapse
Affiliation(s)
- D Hattis
- George Perkins Marsh Institute, Clark University, Worcester, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bhattacharjee N, Pathak S, Khuda-Bukhsh AR. Amelioration of carcinogen-induced toxicity in mice by administration of a potentized homeopathic drug, natrum sulphuricum 200. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2009; 6:65-75. [PMID: 18955221 PMCID: PMC2644277 DOI: 10.1093/ecam/nem067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 05/08/2007] [Indexed: 12/22/2022]
Abstract
To examine if a potentized homeopathic drug, Natrum Sulphuricum 200 (Nat Sulph-200) has protective potentials against hepatocarcinogenesis, liver tumors were induced in mice through chronic feeding of P-dimethylaminoazobenzene (p-DAB; initiator of hepatocarcinogenesis) and phenobarbital (PB; promoter). Mice were divided into five sub-groups: fed normal low protein diet (Gr. I, normal control); fed normal low protein plus alcohol-200 (vehicle of the homeopathic remedy) (Gr. II); fed diet mixed with 0.06% p-DAB plus 0.05% PB (Gr. III); fed diet and carcinogens like Gr.III, plus alcohol 200 (positive control for drug fed mice) (Gr. IV) and fed diet and carcinogens like Gr. III, plus Natrum Sulphuiricum-200 (Gr. V; drug fed). Mice were sacrificed at day 7, 15, 30, 60, 90 and day 120 for study of cytogenetical endpoints like chromosome aberrations (CA), micronuclei (MN), mitotic index (MI) and sperm head anomaly (SHA) and biochemical toxicity parameters like aspartate amino transferase (AST), alanine amino transferase (ALT), acid (AcP) and alkaline (AlkP) phosphatases, lipid peroxidation (LPO) and reduced glutathione (GSH) content. Less number of liver tumors were observed in Gr. V (drug fed) mice. Administration of Nat Sulph 200 reduced genomic damage, activities of AcP, AlkP, AST, ALT, LPO and increased GSH content. Therefore, independent replication of the study by others is encouraged.
Collapse
|
31
|
Maronpot RR. Biological Basis of Differential Susceptibility to Hepatocarcinogenesis among Mouse Strains. J Toxicol Pathol 2009; 22:11-33. [PMID: 22271974 PMCID: PMC3246016 DOI: 10.1293/tox.22.11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/07/2008] [Indexed: 12/13/2022] Open
Abstract
There is a vast amount of literature related to mouse liver tumorigenesis generated over the past 60 years, not all of which has been captured here. The studies reported in this literature have generally been state of the art at the time they were carried out. A PubMed search on the topic "mouse liver tumors" covering the past 10 years yields over 7000 scientific papers. This review address several important topics related to the unresolved controversy regarding the relevance of mouse liver tumor responses observed in cancer bioassays. The inherent mouse strain differential sensitivities to hepatocarcinogenesis largely parallel the strain susceptibility to chemically induced liver neoplasia. The effects of phenobarbital and halogenated hydrocarbons in mouse hepatocarcinogenesis have been summarized because of recurring interest and numerous publications on these topics. No single simple paradigm fully explains differential mouse strain responses, which can vary more than 50-fold among inbred strains. In addition to inherent genetics, modifying factors including cell cycle balance, enzyme induction, DNA methylation, oncogenes and suppressor genes, diet, and intercellular communication influence susceptibility to spontaneous and induced mouse hepatocarcinogenesis. Comments are offered on the evaluation, interpretation, and relevance of mouse liver tumor responses in the context of cancer bioassays.
Collapse
Affiliation(s)
- Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607-4726, USA
| |
Collapse
|
32
|
Leenders MWH, Nijkamp MW, Rinkes IHMB. Mouse models in liver cancer research: A review of current literature. World J Gastroenterol 2008; 14:6915-23. [PMID: 19058325 PMCID: PMC2773853 DOI: 10.3748/wjg.14.6915] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer remains one of the most lethal malignancies worldwide. Due to differences in prevalence of etiological factors the incidence of primary liver cancer varies among the world, with a peak in East-Asia. As this disease is still lethal in most of the cases, research has to be done to improve our understanding of the disease, offering insights for possible treatment options. For this purpose, animal models are widely used, especially mouse models. In this review, we describe the different types of mouse models used in liver cancer research, with emphasis on genetically engineered mice used in this field. We focus on hepatocellular carcinoma (HCC), as this is by far the most common type of primary liver cancer, accounting for 70%-85% of cases.
Collapse
|
33
|
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer whose pathogenesis is incompletely understood. Comparative genomic studies from human HCC samples have classified HCCs into different molecular subgroups; yet, the unifying feature of this tumor is its propensity to arise upon a background of inflammation and fibrosis. This review seeks to analyze the available experimental models in HCC research and to correlate data from human populations with them in order to consolidate our efforts to date, as it is increasingly clear that different models will be required to mimic different subclasses of the neoplasm. These models will be instrumental in the evaluation of compounds targeting specific molecular pathways in future preclinical studies.
Collapse
|
34
|
Pathak S, Khuda-Bukhsh AR. Assessment of hepatocellular damage and hematological alterations in mice chronically fed p-dimethyl aminoazobenzene and phenobarbital. Exp Mol Pathol 2006; 83:104-11. [PMID: 17189631 DOI: 10.1016/j.yexmp.2006.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 10/30/2006] [Indexed: 11/28/2022]
Abstract
Two sets of mice (Mus musculus) were chronically fed 0.06% p-dimethylaminoazobenzene (p-DAB) and 0.05% Phenobarbital (PB) for 90 and 120 days, respectively, and several cell biological and hematological parameters were studied against normal diet fed controls. The cell biological studies included: (i) matrix metalloproteinase (MMP) and reduced glutathione content (GSH), and (ii) ultra-structural changes in liver through scanning (SEM) and transmission (TEM) electron microscopies. Further, changes in some other parameters like blood glucose level, cholesterol and hemoglobin contents, serum cortisol concentration and rate of viability of lymphocytes were also recorded. The serum hormonal levels of estradiol and testosterone were also measured in view of the observation that mice subjected to chronic feeding of p-DAB and PB had dramatically reduced reproductive abilities. All results clearly indicated that the chronic feeding of the carcinogens induced considerable toxicity and palpable hepato-cellular injuries along with some other changes during the carcinogenetic process in liver.
Collapse
Affiliation(s)
- Surajit Pathak
- Department of Zoology, Cytogenetics and Molecular Biology Laboratory, University of Kalyani, Kalyani, 741235, India
| | | |
Collapse
|
35
|
Silva HTH, Hartmann AA. [Potentially pre-neoplasics areas in rat's liver associated to chronic use of phenobarbital]. ARQUIVOS DE GASTROENTEROLOGIA 2006; 43:121-4. [PMID: 17119667 DOI: 10.1590/s0004-28032006000200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/23/2005] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phenobarbital has been used in experimental models because it is an important agent of carcinogenesis promotion in the liver of rats, and it is also non-genotoxic, organ-specific and dose-dependent. AIM To evaluate the effects of the daily administration of phenobarbital in old rats treated with phenobarbital since their birth up to 24 months of age, in the absence of concomitant administration of chemical agents, which initiate carcinogenesis. PATIENTS AND METHODS A control group of male Wistar rats was fed with a basic diet and a second group was fed with the same basic diet added of 0.05% of phenobarbital, for a period of 24 months. Medium and right liver fragments were submitted to the histological processing and they were stained by hematoxiciline and eosin and were immunohystochemically colored to glutathione S-transferase placentary form. RESULTS Glutathione S-transferase placentary positive zones were detected in both groups and the images were analyzed concerning their number and surface extension through the technique of histometry analyses. CONCLUSION Chronic use of phenobarbital did not modify the number of glutathione S-transferase placentary form positive areas. Although, data indicates that glutathione S-transferase placentary form positive areas media size are increased, probably because there are an increase in their evolution capacity and irreversibility.
Collapse
|
36
|
Trosko JE, Chang CC, Upham BL, Tai MH. The role of human adult stem cells and cell-cell communication in cancer chemoprevention and chemotherapy strategies. Mutat Res 2005; 591:187-97. [PMID: 16084532 DOI: 10.1016/j.mrfmmm.2005.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 12/29/2004] [Accepted: 01/12/2005] [Indexed: 05/03/2023]
Abstract
Since carcinogenesis is a multi-stage, multi-mechanism process, involving mutagenic, cell death and epigenetic mechanisms, during the "initiation/promotion/and progression" phases, chemoprevention must be based on understanding the underlying mechanism(s) of each phase, In principle, prevention of each of these phases could reduce the risk to cancer. However, because reducing the mutagenic/initiation phase to a zero level is impossible, the most efficacious intervention would be at the promotion phase that requires a sustained exposure to promoting conditions/agents. In addition, assuming the "target" cells for carcinogenesis are the pluri-potent stem cells and their early progenitor or transit cells, chemoprevention strategies for inhibiting the promotion of these two types of pre-malignant "initiated" cells will require different kinds of agents. A hypothesis will be proposed that involves adult stem cells, which express Oct-4 gene and lack gap junctional intercellular communication (GJIC-) or the early progenitor cells which express GJIC+ and are partially-differentiated, if initiated, will be promoted by agents that either inhibit secreted negative growth regulators or by inhibitors of GJIC. Consequently, anti-tumor promoting chemopreventing agents to each of these two types of initiated cells must have different mechanisms of action and work on different target cells. Assuming stem cells are target cells for carcinogenesis, an alternative method of chemoprevention would be to reduce the stem cell pool. Many classes of anti-tumor promoter chemopreventive agents, such as green tea components, resveratrol, caffeic acid phenethylene ester, either up-regulate GJIC in stem cells or prevent the down regulation of GJIC by tumor promoters in early progenitor cells.
Collapse
Affiliation(s)
- James E Trosko
- 246 National Food Safety Toxicology Center, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
37
|
Trosko JE, Upham BL. The emperor wears no clothes in the field of carcinogen risk assessment: ignored concepts in cancer risk assessment. Mutagenesis 2005; 20:81-92. [PMID: 15784692 DOI: 10.1093/mutage/gei017] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The following is a position paper challenging the paradigm that 'carcinogen = mutagen', and that the current rodent bioassay to predict risks to human cancers is relevant and useful. Specifically, we review current observations concerning carcinogenesis that might lead to another approach for assessing the identification of human carcinogenic hazards and the risk assessment that chemicals might pose. We give a brief review of the multistage and multimechanism process of cancer in a tissue that involves not only genotoxic but also epigenetic events, and the importance of stem and progenitor cells in the development of cancer. We focus on the often ignored 'epigenetic' effects of carcinogens and the role of cell communication systems in epigenetically altering gene expression that leads to an imbalance of cell proliferation, differentiation and apoptosis in a tissue that can contribute to the cancer process. To draw attention to the fact that the current paradigm and policy to test toxic chemicals is often misleading and incorrect, we discuss how oxidative stress, in spite of the DNA damaging data, most probably contributes to cancer at the epigenetic level. Additionally, we briefly review how this mutagenic concept has greatly diverted attention away from doing research on the lower molecular weight, non-genotoxic, polycyclic aromatic hydrocarbons (PAHs), and how these low molecular weight PAHs are etiologically more relevant to the disease potential of environmental mixtures such as cigarette smoke.
Collapse
Affiliation(s)
- James E Trosko
- National Food Safety Toxicology Center, Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
38
|
Bursch W, Chabicovsky M, Wastl U, Grasl-Kraupp B, Bukowska K, Taper H, Schulte-Hermann R. Apoptosis in stages of mouse hepatocarcinogenesis: failure to counterbalance cell proliferation and to account for strain differences in tumor susceptibility. Toxicol Sci 2005; 85:515-29. [PMID: 15728704 DOI: 10.1093/toxsci/kfi129] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
C3H/He and B6C3F1 show much higher liver cancer susceptibility than C57BL/6J mice. We studied the hypothesis that this difference might result from failure of apoptosis. Hepatocarcinogenesis was induced by a single dose of N-nitrosodiethylamine (NDEA), followed by phenobarbital (PB) for up to 90 weeks. We observed (1) earlier appearance of putative preneoplastic foci (PPF), hepatocellular adenoma (HCA), and carcinoma (HCC) in C3H/He than in C57Bl/6J mice and (2) an increase of hepatocellular DNA synthesis in C3H/He and C57Bl/6J mice, compared to normal liver, via PPF and HCA to HCC. PB enhanced DNA synthesis and growth of PPF, in the C3H/He strain only, and of HCA and HCC of both strains. Apoptoses were rare in unaltered livers as well as in preneoplastic lesions, but tended to increase in HCA and HCC of both strains. PB lowered apoptotic activity in PPF of C3H/He mice, but enhanced it in HCA and HCC of C57Bl/6J mice at late stages. In conclusion, the strain difference in growth rates of PPF and tumors is largely determined by higher rates of cell proliferation in C3H/He mice, with and without promotion by PB. Moreover, in C57Bl/6J mice the promoting effect of PB was restricted to HCA and HCC and was not seen in PPF. Apoptosis was generally low and was not a major cause of the strain difference in tumor susceptibility. In contrast with rat liver, inhibition of apoptosis appears to be a minor determinant of tumor promotion in mice.
Collapse
Affiliation(s)
- Wilfried Bursch
- Medizinische Universität Wien, Univ. Klinik für Innere MedizinI, Abtl. Institut für Krebsforschung, Borschkegasse 8a, A-1090 Wien.
| | | | | | | | | | | | | |
Collapse
|
39
|
Biswas SJ, Pathak S, Khuda-Bukhsh AR. Assessment of the genotoxic and cytotoxic potential of an anti-epileptic drug, phenobarbital, in mice: a time course study. Mutat Res 2004; 563:1-11. [PMID: 15324744 DOI: 10.1016/j.mrgentox.2004.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 04/27/2004] [Accepted: 05/24/2004] [Indexed: 11/30/2022]
Abstract
To examine if chronic oral administration of phenobarbital (PB), a widely used anti-epileptic drug, has any genotoxic and cytotoxic potential in mice, a mammalian model, cytogenetic assays through several endpoints such as chromosome aberrations, induction of micronuclei, mitotic index of bone marrow cells, sperm-head anomaly in testis and enzymatic assays of several toxicity marker enzymes have been conducted by use of standard techniques. Mice of both treated (chronically receiving an oral dose of PB at 1.2 mg/kg bw) and control (without receiving PB) groups were sacrificed at 7, 15, 30, 60, 90 and 120 days for the study with all the above-mentioned protocols. Further, total protein profiles in liver of both control and treated mice were analyzed through the SDS-PAGE technique at day 60. The results of all these studies, when compared with controls, showed that PB has both genotoxic and cytotoxic potential in apparently increasing intensity at longer periods of chronic feeding in mice, which would warrant due consideration in its long-term use on human subjects.
Collapse
Affiliation(s)
- Surjyo Jyoti Biswas
- Cytogenetics Laboratory, Department of Zoology, University of Kalyani, West Bengal 741235, India
| | | | | |
Collapse
|
40
|
Okoumassoun LE, Averill-Bates D, Marion M, Denizeau F. Possible mechanisms underlying the mitogenic actionof heptachlor in rat hepatocytes. Toxicol Appl Pharmacol 2003; 193:356-69. [PMID: 14678745 DOI: 10.1016/j.taap.2003.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The worldwide use of the organochlorine pesticide heptachlor has led to widespread contamination in the environment. Like many other organochlorine pesticides, heptachlor is considered to pose a threat to human health. It has been shown that heptachlor is a tumor-promoting agent, but the mechanisms involved still remain unclear. The negative response of heptachlor in in vitro genotoxicity test suggests that this pesticide displays its carcinogenicity through epigenetic pathways. With the growing evidence that proliferation accounts for the tumor-promoting effects of many agents, the purpose of this work was to investigate the mechanisms involved in the mitogenic activity of heptachlor in quiescent rat hepatocytes and to understand the properties of this compound as a tumor promoter in the liver. Heptachlor triggered significant proliferation in quiescent rat hepatocytes. Two mechanisms were delineated to support the mitogenic effect in the hepatocyte: activation of key kinases in signaling pathways and inhibition of apoptosis. Exposure to heptachlor led to activation of protein kinase C mitogenactivated protein kinases. Moreover, these results indicate that like many tumor promoters, heptachlor strongly inhibited TGFbeta-induced apoptosis and cytochrome c release into the cytosol. The levels of the anti-apoptotic protein Bcl-2 were also increased in the presence of heptachlor. In conclusion, these results indicate that heptachlor alters basic cell function by interfering with key cellular signaling pathways.
Collapse
Affiliation(s)
- Liliane-Eustache Okoumassoun
- Université du Québec à Montréal, Département de Chimie, Case postale 8888, Succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | | | | | | |
Collapse
|
41
|
Trosko JE. The role of stem cells and gap junctional intercellular communication in carcinogenesis. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:43-8. [PMID: 12542974 DOI: 10.5483/bmbrep.2003.36.1.043] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the process of carcinogenesis will involve both the accumulation of many scientific facts derived from molecular, biochemical, cellular, physiological, whole animal experiments and epidemiological studies, as well as from conceptual understanding as to how to order and integrate those facts. From decades of cancer research, a number of the "hallmarks of cancer" have been identified, as well as their attendant concepts, including oncogenes, tumor suppressor genes, cell cycle biochemistry, hypotheses of metastasis, angiogenesis, etc. While all these "hallmarks" are well known, two important concepts, with their associated scientific observations, have been generally ignored by many in the cancer research field. The objective of the short review is to highlight the concept of the role of human adult pluri-potent stem cells as "target cells" for the carcinogenic process and the concept of the role of gap junctional intercellular communication in the multi-stage, multi-mechanism process of carcinogenesis. With these two concepts, an attempt has been made to integrate the other well-known concepts, such as the multi-stage, multimechanisn or the "initiation/promotion/progression" hypothesis; the stem cell theory of carcinogenesis; the oncogene/tumor suppression theory and the mutation/epigenetic theories of carcinogenesis. This new "integrative" theory tries to explain the well-known "hallmarks" of cancers, including the observation that cancer cells lack either heterologous or homologous gap junctional intercellular communication whereas normal human adult stem cells do not have expressed or functional gap junctional intercellular communication. On the other hand, their normal differentiated, non-stem cell derivatives do express connexins and express gap junctional intercellular communication during their differentiation. Examination of the roles of chemical tumor promoters, oncogenes, connexin knock-out mice and roles of genetically-engineered tumor and normal cells with connexin and anti-sense connexin genes, respectively, seems to provide evidence which is consistent with the roles of both stem cells and gap junctional communication playing a major role in carcinogenesis. The integrative hypothesis provides new strategies for chemoprevention and chemotherapy which focuses on modulating connexin gene expression or gap junctional intercellular communication in the premalignant and malignant cells, respectively.
Collapse
Affiliation(s)
- James E Trosko
- 246 National Food Safety Toxicology Center, Dept. Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Oliver JD, Roberts RA. Receptor-mediated hepatocarcinogenesis: role of hepatocyte proliferation and apoptosis. PHARMACOLOGY & TOXICOLOGY 2002; 91:1-7. [PMID: 12193254 DOI: 10.1034/j.1600-0773.2002.910101.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rodent liver is a target organ for the action of several non-genotoxic carcinogens. These include dioxins, polychlorinated biphenyls, phenobarbital, peroxisome proliferators and organochlorine pesticides. These chemicals disrupt the homeostasis of the liver by perturbing hepatocyte cell death and proliferation, causing hyperplasia leading to tumour formation. Significant progress has been made towards elucidating the mechanisms of action of these toxicants since the discovery of receptors that bind specific classes of xenobiotics. Dioxins and polychlorinated biphenyls bind to the aryl hydrocarbon receptor, phenobarbital binds to the constitutive androstane receptor and peroxisome proliferators act via the their activated receptor alpha. These three receptors have ligand-dependent transcription activities and therefore mediate changes in gene expression in response to toxicant exposure. The development of transgenic mouse strains where the genes for these receptors are disrupted has demonstrated that receptor activity is essential for the toxicity of these carcinogens. This implies that changes in the expression of key target genes control proliferation and apoptosis in the xenobiotic-induced hepatocyte phenotype.
Collapse
Affiliation(s)
- Jason D Oliver
- Syngenta Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK.
| | | |
Collapse
|
43
|
Corcos C, Brey J, Corcos L. Les récepteurs nucléaires CAR et PXR contrôlent l’induction des cytochromes P450 par le phénobarbital. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|