1
|
Lehtola T, Nummenmaa E, Nieminen R, Hämäläinen M, Vuolteenaho K, Moilanen E. The glucocorticoid dexamethasone alleviates allergic inflammation through a mitogen-activated protein kinase phosphatase-1-dependent mechanism in mice. Basic Clin Pharmacol Toxicol 2024; 134:686-694. [PMID: 38439200 DOI: 10.1111/bcpt.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
Glucocorticoids are widely used in the treatment of allergic and inflammatory diseases. Glucocorticoids have a widespread action on gene expression resulting in their pharmacological actions and also an array of adverse effects which limit their clinical use. It remains, however, to be studied which target gene effects are essential for the anti-allergic activity of glucocorticoids. Mitogen-activated protein kinase phosphatase-1 (MKP-1) inhibits proinflammatory signalling by suppressing the activity of mitogen activated protein kinase (MAP kinase) pathways. MKP-1 is one of the anti-inflammatory genes whose expression is enhanced by glucocorticoids. In the present study, we aimed to investigate the role of MKP-1 in the therapeutic effects of the glucocorticoid dexamethasone in acute allergic reaction. The effects of dexamethasone were studied in wild-type and MKP-1 deficient mice. The mice were first sensitized to ovalbumin, and the allergic reaction was then induced by a subcutaneous ovalbumin injection in the hind paw. Inflammatory edema was quantified with plethysmometer and expression of inflammatory factors was measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Dexamethasone reduced the ovalbumin-induced paw edema at 1.5, 3 and 6 h time points in wild-type mice by 70%, 95% and 89%, respectively. The effect was largely abolished in MKP-1 deficient mice. Furthermore, dexamethasone significantly attenuated the expression of ovalbumin-induced inflammatory factors cyclooxygenase-2 (COX-2); inducible nitric oxide synthase (iNOS); interleukins (IL) 1β, 6 and 13; C-C motif chemokine 11 (CCL-11); tumour necrosis factor (TNF) and thymic stromal lymphopoietin (TSLP) in wild-type mice by more than 40%. In contrast, in MKP-1 deficient mice dexamethasone had no effect or even enhanced the expression of these inflammatory factors. The results suggest that dexamethasone alleviates allergic inflammation through an MKP-1-dependent mechanism. The results also demonstrate MKP-1 as an important conveyor of the favourable glucocorticoid effects in ovalbumin-induced type I allergic reaction. Together with previous findings, the present study supports the concept of MKP-1 enhancing compounds as potential novel anti-inflammatory and anti-allergic drugs.
Collapse
Affiliation(s)
- Tiina Lehtola
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
3
|
Liu FC, Yu HP, Lee HC, Chen CY, Liao CC. The Modulation of Phospho-Extracellular Signal-Regulated Kinase and Phospho-Protein Kinase B Signaling Pathways plus Activity of Macrophage-Stimulating Protein Contribute to the Protective Effect of Stachydrine on Acetaminophen-Induced Liver Injury. Int J Mol Sci 2024; 25:1484. [PMID: 38338766 PMCID: PMC10855734 DOI: 10.3390/ijms25031484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Stachydrine, a prominent bioactive alkaloid derived from Leonurus heterophyllus, is a significant herb in traditional medicine. It has been noted for its anti-inflammatory and antioxidant characteristics. Consequently, we conducted a study of its hepatoprotective effect and the fundamental mechanisms involved in acetaminophen (APAP)-induced liver injury, utilizing a mouse model. Mice were intraperitoneally administered a hepatotoxic dose of APAP (300 mg/kg). Thirty minutes after APAP administration, mice were treated with different concentrations of stachydrine (0, 2.5, 5, and 10 mg/kg). Animals were sacrificed 16 h after APAP injection for serum and liver tissue assays. APAP overdose significantly elevated the serum alanine transferase levels, hepatic pro-inflammatory cytokines, malondialdehyde activity, phospho-extracellular signal-regulated kinase (ERK), phospho-protein kinase B (AKT), and macrophage-stimulating protein expression. Stachydrine treatment significantly decreased these parameters in mice with APAP-induced liver damage. Our results suggest that stachydrine may be a promising beneficial target in the prevention of APAP-induced liver damage through attenuation of the inflammatory response, inhibition of the ERK and AKT pathways, and expression of macrophage-stimulating proteins.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Yu Chen
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (F.-C.L.); (H.-P.Y.); (H.-C.L.); (C.-Y.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
Jaeschke H, Ramachandran A. Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. ANNUAL REVIEW OF PATHOLOGY 2024; 19:453-478. [PMID: 38265880 PMCID: PMC11131139 DOI: 10.1146/annurev-pathmechdis-051122-094016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA; ,
| |
Collapse
|
5
|
Tian WS, Zhao J, Kim MK, Tae HJ, Kim IS, Ahn D, Hwang HP, Mao MX, Park BY. Veronica persica ameliorates acetaminophen-induced murine hepatotoxicity via attenuating oxidative stress and inflammation. Biomed Pharmacother 2023; 169:115898. [PMID: 37989029 DOI: 10.1016/j.biopha.2023.115898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Excess acetaminophen (APAP) commonly causes severe acute liver injury (ALI), characterized by oxidative stress, pro-inflammatory responses, and hepatocyte damage. Veronica persica (VP) is a traditional medicine with antioxidant and anti-inflammatory properties. There is a paucity of information on its medicinal value, especially its potential mechanisms for alleviating ALI. This study aimed to clarify the ameliorative effects and intracellular mechanisms of VP on APAP-induced ALI via attenuating oxidative stress and inflammation. Mice were given VP for 7 days before exposure to APAP (300 mg/kg). The HPLC and radical scavenging assay found that VP contains 12 phenolic acids and 6 flavonoids, as well as show robust antioxidant capacity. In the APAP-induced ALI model, pre-treatment with VP significantly reduces APAP-induced hepatotoxicity by observing improved hepatocyte pathological injury and further confirmed by serum biochemical indicator. Also, the reduction of TUNEL-positive regions and the regulation of Bcl-2-associated X protein indicated that VP attenuates hepatocytotoxicity. Moreover, VP pre-intervention inhibits the formation of liver pro-inflammatory cytokines, the expression of inflammatory response genes, and increases in myeloperoxidase (MPO) in APAP-exposed mice. The elevated reduced glutathione (GSH) levels and decreased oxidative stress markers indicate that VP reduces APAP-promoted oxidative stress. Further study revealed that VP inhibited the phosphorylation of NF-κB/STAT3 cascade, blocked ERK and JNK phosphorylation, and activated AMP-activated protein kinase (AMPK). To sum up, this study demonstrated that VP exists hepatoprotective abilities on APAP-induced ALI, primarily by suppressing the phosphorylation of NF-κB/STAT3 cascade and ERK-JNK and inducing AMPK activation to alleviate oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wei-Shun Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China; College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Jing Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Myung-Kon Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea
| | - Hong Pil Hwang
- Department of Surgery of Jeonbuk National University Medical School and Hospital, Jeonju 54896, Republic of Korea
| | - Ming-Xian Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Byung-Yong Park
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Jeollabuk-do 54596, Republic of Korea.
| |
Collapse
|
6
|
Wang L, Yan F, Zhang J, Xiao Y, Wang C, Zhu Y, Li C, Liu Z, Li W, Wang C, Liu J, Zhang H, Xiong H, Shi D. Cornuside improves murine autoimmune hepatitis through inhibition of inflammatory responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155077. [PMID: 37716032 DOI: 10.1016/j.phymed.2023.155077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) poses an important public health concern worldwide, with few therapeutic options available. Cornuside, a primary cornel iridoid glycoside present in Cornus officinalis Sieb. et Zucc., is a well-known traditional Chinese medicine that possesses anti-inflammatory, antioxidant and anti-apoptotic properties. However, the effects of cornuside on autoimmune diseases including AIH is still not defined, neither is clear on the mechanisms of cornuside in the suppression of inflammatory responses. PURPOSE The study was aimed to investigate the therapeutic effects of cornuside on AIH using murine models. STUDY DESIGN A murine model of AIH induced by concanavalin A (Con A) was used to examine the pharmacological activity of cornuside in suppressing the inflammatory responses in vivo. METHODS C57BL/6J mice were intravenously with different doses of cornuside and challenged with 18 mg/kg Con A 3 h later. Network pharmacological analysis was performed to identify the potential target genes and signaling pathways by cornuside in AIH. Next serum and liver tissues were collected 12 h after Con A injection to analyze the levels of markers for hepatic injury, apoptosis, oxidative stress, immune responses, and inflammation. RESULTS Network pharmacological analysis revealed that cornuside may modulate oxidative stress and apoptosis in AIH. Compared with the Con A group, cornuside pretreatment significantly reduced the serum levels of alanine aminotransferase and aspartate aminotransferase, improving histopathological damage and apoptosis in the livers. In addition, cornuside decreased the levels of malondialdehyde, myeloperoxidase, but increased superoxide dismutase levels, suggesting the relieving of oxidative stress. Furthermore, cornuside suppressed the activation of T and natural killer T cells, whereas the proportion of myeloid-derived suppressor cells was significantly increased. The production of proinflammatory cytokines, including interleukin (IL)-6, IL-12, IL-1β, and tumor necrosis factor-alpha (TNF-α), was also clearly decreased. Finally, western blot analysis displayed that cornuside inhibited the phosphorylation of extracellular receptor kinase (ERK) and c-Jun N-terminal kinase (JNK). CONCLUSIONS We demonstrated that cornuside has protective effects for Con A-induced immune-mediated hepatitis by suppressing the oxidative stress, apoptosis, and the inflammatory responses through the ERK and JNK signaling pathways, as well as by modulating the activation and recruitment of immune cells.
Collapse
Affiliation(s)
- Lin Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yucai Xiao
- Cheeloo College of Medicine, Shandong University, Jinan, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Yuanbo Zhu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Wenbo Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Chengduo Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Jie Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining, China.
| | - Dongmei Shi
- Cheeloo College of Medicine, Shandong University, Jinan, China; Laboratory of Medical Mycology, Department of Dermatology, Jining No.1 People's Hospital, Jining, China.
| |
Collapse
|
7
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. Nat Commun 2023; 14:5405. [PMID: 37669951 PMCID: PMC10480499 DOI: 10.1038/s41467-023-41145-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed male mice. The focus of this work is to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreases liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed male mice releases nuclear LKB1 into the cytoplasm to activate AMPKα and prevents hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
Affiliation(s)
- Bin Qiu
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Ahmed Lawan
- University of Alabama, Department of Biological Sciences, 301 Sparkman Drive, Huntsville, AL, 35899, USA
| | - Chrysovalantou E Xirouchaki
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Jae-Sung Yi
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Marie Robert
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
| | - Lei Zhang
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Hospital, Melbourne, Victoria, 3004, Australia
| | - Carlos Fernández-Hernando
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Yale University School of Medicine, Department of Pathology, 300 Cedar Street, New Haven, CT, 06520, USA
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoyong Yang
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anton M Bennett
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Yale Center of Molecular and Systems Metabolism, New Haven, CT, 06520, USA.
- Yale University School of Medicine, Vascular Biology and Therapeutics Program, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Liu C, Li X, Gao M, Dong Y, Chen Z. Downregulation of hepatic METTL3 contributes to APAP-induced liver injury in mice. JHEP Rep 2023; 5:100766. [PMID: 37456679 PMCID: PMC10338307 DOI: 10.1016/j.jhepr.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background & Aims Acetaminophen (APAP) overdose is a major cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. Methyltransferase-like 3 (METTL3) is a core N6-methyl-adenosine (m6A) RNA methyltransferase that has been shown to regulate many physiological and pathological processes. This study aimed to investigate the role of METTL3 in APAP-induced liver injury in mice. Methods Hepatocyte-specific Mettl3 knockout (Mettl3-HKO) mice and adenovirus-mediated gene overexpression or knockdown were used. We assayed APAP-induced liver injury by measuring serum alanine aminotransferase/aspartate aminotransferase activity, necrotic area, cell death, reactive oxygen species levels and activation of signalling pathways. We also performed mechanistic studies using a variety of assays and molecular techniques. Results Hepatic METTL3 is downregulated in APAP-induced liver injury, and hepatocyte-specific deletion of Mettl3 accelerates APAP-induced liver injury, leading to increased mortality as a result of the dramatic activation of the mitogen-activated protein kinase kinase 4 (MKK4) / c-Jun NH2-terminal kinase (JNK) signalling pathway. Inhibition of JNK by SP600125 largely blocks APAP-induced liver injury in Mettl3-HKO mice. Hepatic deletion of Mettl3 activates the MKK4/JNK signalling pathway by increasing the protein stability of MKK4 and JNK1/2 as a result of decreased proteasome activity. Restoration of proteasome activity by overexpression of proteasome 20S subunit beta 4 (PSMB4) or proteasome 20S subunit beta 6 (PSMB6) leads to the downregulation of MKK4 and JNK in Mettl3-HKO hepatocytes. Mechanistically, METTL3 interacts with RNA polymerase II and active histone modifications such as H3K9ac, H3K27ac, and H3K36me3 to maintain the expression of proteasome-related genes. Conclusions Our study demonstrated that downregulation of METTL3 promotes APAP-induced liver injury by decreasing proteasome activity and thereby enhancing activity of the MKK4/JNK signalling pathway. Impact and Implications Acetaminophen (APAP) overdose is a key cause of acute liver failure in the Western world, but its molecular mechanisms are not fully understood. We demonstrated in this study that methyltransferase-like 3 (METTL3), a core m6A RNA methyltransferase, is downregulated in APAP-induced liver injury, which exacerbates APAP-induced liver injury through enhancing the MKK4/JNK signalling pathway with involvement of the decreased proteasome activity.
Collapse
Affiliation(s)
- Chunhong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
Qiu B, Lawan A, Xirouchaki CE, Yi JS, Robert M, Zhang L, Brown W, Fernández-Hernando C, Yang X, Tiganis T, Bennett AM. MKP1 promotes nonalcoholic steatohepatitis by suppressing AMPK activity through LKB1 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548263. [PMID: 37502892 PMCID: PMC10369865 DOI: 10.1101/2023.07.10.548263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is triggered by hepatocyte death through activation of caspase 6, as a result of decreased adenosine monophosphate (AMP)-activated protein kinase-alpha (AMPKα) activity. Increased hepatocellular death promotes inflammation which drives hepatic fibrosis. We show that the nuclear-localized mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in NASH patients and in NASH diet fed mice. The focus of this work was to investigate whether and how MKP1 is involved in the development of NASH. Under NASH conditions increased oxidative stress, induces MKP1 expression leading to nuclear p38 MAPK dephosphorylation and decreased liver kinase B1 (LKB1) phosphorylation at a site required to promote LKB1 nuclear exit. Hepatic deletion of MKP1 in NASH diet fed mice released nuclear LKB1 into the cytoplasm to activate AMPKα and prevent hepatocellular death, inflammation and NASH. Hence, nuclear-localized MKP1-p38 MAPK-LKB1 signaling is required to suppress AMPKα which triggers hepatocyte death and the development of NASH.
Collapse
|
10
|
Deng F, Qin G, Chen Y, Zhang X, Zhu M, Hou M, Yao Q, Gu W, Wang C, Yang H, Jia X, Wu C, Peng H, Du H, Tang S. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131760. [PMID: 37285786 DOI: 10.1016/j.jhazmat.2023.131760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
2-Bromo-4, 6-dinitroaniline (BDNA) is a widespread azo-dye-related hazardous pollutant. However, its reported adverse effects are limited to mutagenicity, genotoxicity, endocrine disruption, and reproductive toxicity. We systematically assessed the hepatotoxicity of BDNA exposure via pathological and biochemical examinations and explored the underlying mechanisms via integrative multi-omics analyses of the transcriptome, metabolome, and microbiome in rats. After 28 days of oral administration, compared with the control group, 100 mg/kg BDNA significantly triggered hepatotoxicity, upregulated toxicity indicators (e.g., HSI, ALT, and ARG1), and induced systemic inflammation (e.g., G-CSF, MIP-2, RANTES, and VEGF), dyslipidemia (e.g., TC and TG), and bile acid (BA) synthesis (e.g., CA, GCA, and GDCA). Transcriptomic and metabolomic analyses revealed broad perturbations in gene transcripts and metabolites involved in the representative pathways of liver inflammation (e.g., Hmox1, Spi1, L-methionine, valproic acid, and choline), steatosis (e.g., Nr0b2, Cyp1a1, Cyp1a2, Dusp1, Plin3, arachidonic acid, linoleic acid, and palmitic acid), and cholestasis (e.g., FXR/Nr1h4, Cdkn1a, Cyp7a1, and bilirubin). Microbiome analysis revealed reduced relative abundances of beneficial gut microbial taxa (e.g., Ruminococcaceae and Akkermansia muciniphila), which further contributed to the inflammatory response, lipid accumulation, and BA synthesis in the enterohepatic circulation. The observed effect concentrations here were comparable to the highly contaminated wastewaters, showcasing BDNA's hepatotoxic effects at environmentally relevant concentrations. These results shed light on the biomolecular mechanism and important role of the gut-liver axis underpinning BDNA-induced cholestatic liver disorders in vivo.
Collapse
Affiliation(s)
- Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
11
|
Chen W, Deng YY, Yu JW, Leung YT, Bai JX, Chen YJ, Wu Y, Wang L, Fan XY, Wang XQ, Hu J, Chen WH, Dou X, Leung KSY, Fu XQ, Yu ZL. A tri-herb formulation protects against ethanol-induced mouse liver injury and downregulates mitogen-activated protein kinase phosphatase 1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154802. [PMID: 37054486 DOI: 10.1016/j.phymed.2023.154802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.
Collapse
Affiliation(s)
- Wei Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yu-Yi Deng
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jun-Wen Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuk-Tung Leung
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jing-Xuan Bai
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying-Jie Chen
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ying Wu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Yun Fan
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Qi Wang
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Zhi-Ling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
12
|
Flores JJ, Ding Y, Sherchan P, Zhang JH, Tang J. Annexin A1 upregulates hematoma resolution via the FPR2/p-ERK(1/2)/DUSP1/CD36 signaling pathway after germinal matrix hemorrhage. Exp Neurol 2023; 359:114257. [PMID: 36279933 PMCID: PMC10681750 DOI: 10.1016/j.expneurol.2022.114257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Germinal matrix hemorrhage (GMH) is one of the leading causes of morbidity and mortality in preterm infants in the United States, with little progress made in its clinical management. Blood clots disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage are key contributors towards post-hemorrhagic hydrocephalus development. n-formyl peptide receptor 2 (FPR2), a G-protein-coupled receptor, has been associated with the activation of p-ERK1/2, which in turn promotes the transcription of the DUSP1 gene, which may play a role in CD36 signaling. CD36 scavenger, a transmembrane glycoprotein, plays an essential role in microglia phagocytic blood clot clearance after GMH. FPR2's role in blood clot clearance after hemorrhagic stroke is unknown. We hypothesize that FPR2 activation by FPR2 agonist Annexin A1 (AnxA1) will enhance hematoma resolution via the upregulation of the CD36 signaling pathway, thereby improving short- and long-term neurological outcomes. Bacterial collagenase (0.3 U) was infused intraparenchymally into the right hemispheric ganglionic eminence in P7 rat pups to induce GMH. AnxA1 and FPR2 Inhibitor (Boc2) were given at 1-h post-GMH via intranasal administration. FPR2 CRISPR was given 48-h prior to GMH induction. Short-term neurological deficits were assessed using negative geotaxis test. Hematoma volume was assessed using hemoglobin assay. Protein expression was assessed using western blots. Long-term neurocognitive deficits and motor coordination were assessed using Morris water maze, rotarod, and foot fault tests. We have demonstrated that AnxA1 treatment enhances hematoma resolution and improved short and long-term outcomes. Lastly, FPR2 agonist AnxA1 treatment resulted in the upregulation of the FPR2/p-ERK(1/2)/DUSP1/CD36 signaling pathway.
Collapse
Affiliation(s)
- Jerry J Flores
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yan Ding
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Departments of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
13
|
Pirfenidone attenuates acetaminophen-induced liver injury via suppressing c-Jun N-terminal kinase phosphorylation. Toxicol Appl Pharmacol 2022; 434:115817. [PMID: 34890640 DOI: 10.1016/j.taap.2021.115817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.
Collapse
|
14
|
Widowati W, Kusuma HSW, Arumwardana S, Afifah E, Wahyuni CD, Wijayanti CR, Maulana MA, Rizal R. Corilagin potential in inhibiting oxidative and inflammatory stress in LPS-induced murine macrophage cell lines (RAW 264.7). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1656-1665. [PMID: 35432805 PMCID: PMC8976907 DOI: 10.22038/ijbms.2021.59348.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Inflammation is thought to be the common pathophysiological basis for several disorders. Corilagin is one of the major active compounds which showed broad-spectrum biological and therapeutic activities, such as antitumor, hepatoprotective, anti-oxidant, and anti-inflammatory. This study aimed to evaluate the anti-oxidant and anti-inflammatory activities of corilagin in LPS-induced RAW264.7 cells. MATERIALS AND METHODS Anti-oxidant activities were examined by free radical scavenging of H2O2, NO, and *OH. The safe concentrations of corilagin on RAW264.7 were determined by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on RAW264.7 cell lines. The inflammation cells model was induced with LPS. The anti-inflammatory activities measured IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels using ELISA assay. RESULTS The results showed that corilagin had a significant inhibition activity dose-dependently in scavenging activities toward H2O2, *OH, and NO with IC50 values 76.85 µg/ml, 26.68 µg/ml, and 66.64 µg/ml, respectively. The anti-inflammatory activity of corilagin also showed a significant decrease toward IL-6, TNF-α, NO, IL-1β, PGE-2, iNOS, and COX-2 levels at the highest concentration (75 µM) compared with others concentration (50 and 25 µM) with the highest inhibition activities being 48.09%, 42.37%, 65.69%, 26.47%, 46.88%, 56.22%, 59.99%, respectively (P<0.05). CONCLUSION Corilagin has potential as anti-oxidant and anti-inflammatory in LPS-induced RAW 264.7 cell lines by its ability to scavenge free radical NO, *OH, and H2O2 and also suppress the production of proinflammatory mediators including COX-2, IL-6, IL-1β, and TNF-α in RAW 264.7 murine macrophage cell lines.
Collapse
Affiliation(s)
- Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Jl. Surya Sumantri No. 65, Bandung 40164, West Java, Indonesia,Corresponding author: Wahyu Widowati. Medical Research Center, Faculty of Medicine, Maranatha Christian University, Prof. Drg. Suria Sumantri 65, Bandung, 40164, West Java, Indonesia. Tel: +6281910040010;
| | - Hanna Sari Widya Kusuma
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Seila Arumwardana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Ervi Afifah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cintani Dewi Wahyuni
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Cahyaning Riski Wijayanti
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Muhamad Aldi Maulana
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia
| | - Rizal Rizal
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Jl Babakan Jeruk II No. 9, Bandung 40163, West Java, Indonesia,Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16426, West Java, Indonesia
| |
Collapse
|
15
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
16
|
JNK Signaling in Drosophila Aging and Longevity. Int J Mol Sci 2021; 22:ijms22179649. [PMID: 34502551 PMCID: PMC8431792 DOI: 10.3390/ijms22179649] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The evolutionarily conserved c-Jun N-terminal kinase (JNK) signaling pathway is a critical genetic determinant in the control of longevity. In response to extrinsic and intrinsic stresses, JNK signaling is activated to protect cells from stress damage and promote survival. In Drosophila, global JNK upregulation can delay aging and extend lifespan, whereas tissue/organ-specific manipulation of JNK signaling impacts lifespan in a context-dependent manner. In this review, focusing on several tissues/organs that are highly associated with age-related diseases-including metabolic organs (intestine and fat body), neurons, and muscles-we summarize the distinct effects of tissue/organ-specific JNK signaling on aging and lifespan. We also highlight recent progress in elucidating the molecular mechanisms underlying the tissue-specific effects of JNK activity. Together, these studies highlight an important and comprehensive role for JNK signaling in the regulation of longevity in Drosophila.
Collapse
|
17
|
Wu HY, Zhang XC, Jia BB, Cao Y, Yan K, Li JY, Tao L, Jie ZG, Liu QW. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acetaminophen-induced acute liver failure through activating ERK and IGF-1R/PI3K/AKT signaling pathway. J Pharmacol Sci 2021; 147:143-155. [PMID: 34294366 DOI: 10.1016/j.jphs.2021.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the therapeutic potential of human umbilical cord mesenchymal stem cells derived exosomes (hUCMSC-Exo) in acute liver failure (ALF) in mice as well as its underlying mechanism. We found that a single tail vein administration of hucMSC-Exo effectively enhanced the survival rate, inhibited apoptosis in hepatocytes, and improved liver function in APAP-induced mouse model of ALF. Furthermore, the deletion of glutathione (GSH) and superoxide dismutase (SOD), generation of malondialdehyde (MDA), and the over production of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP were also inhibited by hucMSC-Exo, indicating that hucMSC-Exo inhibited APAP-induced apoptosis of hepatocytes by reducing oxidative stress. Moreover, hucMSC-Exo significantly down-regulated the levels of inflammatory cytokines IL-6, IL-1β, and TNF-α in APAP-treated livers. Western blot showed that hucMSC-Exo significantly promoted the activation of ERK1/2 and IGF-1R/PI3K/AKT signaling pathways in APAP-injured LO2 cells, resulting in the inhibition of apoptosis of LO2 cells. Importantly, PI3K inhibitor LY294002 and ERK1/2 inhibitor PD98059 could reverse the function of hucMSC-Exo on APAP-injured LO2 cells in some extent. Our results suggest that hucMSC-Exo offer antioxidant hepatoprotection against APAP in vitro and in vivo by inhibitiing oxidative stress-induced apoptosis via upregulation of ERK1/2 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, PR China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Bing-Bing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, PR China
| | - Ye Cao
- Information Engineering School of NanChang University, Nanchang, 330031, PR China
| | - Kai Yan
- Department of Pediatrics, The First Affiliated Hospital of NanChang University, NanChang, 330006, PR China
| | - Jing-Yuan Li
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, 330013, China
| | - Li Tao
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Zhi-Gang Jie
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
18
|
Tan YL, Ho HK. Hypothermia Advocates Functional Mitochondria and Alleviates Oxidative Stress to Combat Acetaminophen-Induced Hepatotoxicity. Cells 2020; 9:cells9112354. [PMID: 33114500 PMCID: PMC7693152 DOI: 10.3390/cells9112354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
For years, moderate hypothermia (32 °C) has been proposed as an unorthodox therapy for liver injuries, with proven hepatoprotective potential. Yet, limited mechanistic understanding has largely denied its acceptance over conventional pharmaceuticals for hepatoprotection. Today, facing a high prevalence of acetaminophen-induced liver injury (AILI) which accounts for the highest incidence of acute liver failure, hypothermia was evaluated as a potential therapy to combat AILI. For which, transforming growth factor-α transgenic mouse hepatocytes (TAMH) were subjected to concomitant 5 mM acetaminophen toxicity and moderate hypothermic conditioning for 24 h. Thereafter, its impact on mitophagy, mitochondrial biogenesis, glutathione homeostasis and c-Jun N-terminal kinase (JNK) signaling pathways were investigated. In the presence of AILI, hypothermia displayed simultaneous mitophagy and mitochondrial biogenesis to conserve functional mitochondria. Furthermore, antioxidant response was apparent with higher glutathione recycling and repressed JNK activation. These effects were, however, unremarkable with hypothermia alone without liver injury. This may suggest an adaptive response of hypothermia only to the injured sites, rendering it favorable as a potential targeted therapy. In fact, its cytoprotective effects were displayed in other DILI of similar pathology as acetaminophen i.e., valproate- and diclofenac-induced liver injury and this further corroborates the mechanistic findings of hypothermic actions on AILI.
Collapse
Affiliation(s)
- Yeong Lan Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
- NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, National University of Singapore, Singapore 119077, Singapore
- Correspondence:
| |
Collapse
|
19
|
Liu FC, Yu HP, Chou AH, Lee HC, Liao CC. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF- κB signaling pathway in a mouse model. Am J Transl Res 2020; 12:5597-5607. [PMID: 33042441 PMCID: PMC7540130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Corilagin is a major active polyphenolic tannins extracted from Phyllanthus urinaria, an important herb used in traditional medicine. Previous reports demonstrated that corilagin possesses antioxidant and anti-inflammatory properties. Therefore, this study aimed to evaluate its hepatoprotective effects and mechanisms on acetaminophen (APAP)-induced liver injury in mice. Mice included in this study were intraperitoneally injected with a hepatotoxic APAP dose (300 mg/kg). After a 30 min of APAP administration, corilagin was injected intraperitoneally at concentrations of 0, 1, 5, 10, and 20 mg/kg. Then, after 16 h of corilagin treatment, mice were sacrificed for further analysis. APAP overdose significantly elevated the serum ALT level, hepatic myeloperoxidase (MPO) activity, cytokines (TNF-α, IL-1β, and IL-6) production, malondialdehyde (MDA) activity, and ERK/JNK MAPK and NF-κB protein expressions. Corilagin treatment significantly decreased these parameters in a dose-dependent manner (1-20 mg/kg). This study demonstrated that corilagin may be a potential therapeutic target for the prevention of APAP-induced hepatotoxicity by down-regulating the inflammatory response and by inhibiting ERK/JNK MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung UniversityTaoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| |
Collapse
|
20
|
Qu H, Liu S, Cheng C, Zhao H, Gao X, Wang Z, Yi J. Hepatoprotection of pine nut polysaccharide via NRF2/ARE/MKP1/JNK signaling pathways against carbon tetrachloride-induced liver injury in mice. Food Chem Toxicol 2020; 142:111490. [PMID: 32540477 DOI: 10.1016/j.fct.2020.111490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Previously, we obtained a purified polysaccharide (PNP40c-1) from Pinus koraiensis pine nut and reported its protective effect on carbon tetrachloride (CCl4)-induced liver injury in vitro. The object of this study is to investigate its hepatoprotective activity in vivo and elucidate the mechanism underlying the hepatoprotection. PNP40c-1 effectively prevented the accumulation of serum liver injury biomarkers including alanine aminotransferase, aspartate aminotransferase, alkaline phpsphatase and total bilirubin stimulated by CCl4. The pathological changes in PNP40c-1-treated mice livers were also markedly ameliorated. Results showed that PNP40c-1 suppressed the production of reactive oxygen species (ROS) and lipid peroxidation, upregulated Nrf2/ARE pathway and enhanced the antioxidant capacity of hepatocytes. Furthermore, the reaction between Nrf2 and ARE promoted the generation of Mkp1, which inhibited the activation of JNK induced by CCl4, and suppressed hepatocytes apoptosis by regulating the protein expression of Bax, cleaved-Caspase-3 and Bcl2, exerting hepatoprotective activity. Taken together, upregulation of Nrf2/ARE pathway and suppression of JNK activation via Nrf2/ARE/Mkp1/JNK signaling pathways are the main mechanisms underlying the hepatoprotective effect of PNP40c-1 against CCl4-induced mice liver injury. These results indicated that PNP40c-1 has potential to serve as a hepatoprotective agent against chemical induced hepatotoxicity.
Collapse
Affiliation(s)
- Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Shuang Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
21
|
Ramachandran A, Jaeschke H. A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 140:111282. [PMID: 32209353 PMCID: PMC7254872 DOI: 10.1016/j.fct.2020.111282] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the United States and APAP-induced hepatotoxicity is initiated by formation of a reactive metabolite which depletes hepatic glutathione and forms protein adducts. Studies over the years have established the critical role of c-Jun N terminal kinase (JNK) and its mitochondrial translocation, as well as mitochondrial oxidant stress and subsequent induction of the mitochondrial permeability transition in APAP pathophysiology. However, it is now evident that mitochondrial responses to APAP overdose are more nuanced than appreciated earlier, with multiple levels of control, for example, to dose of APAP. In addition, mitochondrial dynamics, as well as the organelle's importance in recovery and regeneration after APAP-induced liver injury is also being recognized, which are exciting new areas with significant therapeutic potential. Thus, this review examines the temporal course of hepatocyte mitochondrial responses to an APAP overdose with an emphasis on mechanistic response to various trigger checkpoints such as NAPQI-mitochondrial protein adduct formation and activated JNK translocation. Mitochondrial dynamics, the organelle's role in recovery after APAP and emerging areas of research which promise to provide further insight into modulation of APAP pathophysiology by these fascinating organelles will also be discussed.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
22
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
23
|
Chen Y, Liu K, Zhang J, Hai Y, Wang P, Wang H, Liu Q, Wong CC, Yao J, Gao Y, Liao Y, Tang X, Wang XJ. c-Jun NH 2 -Terminal Protein Kinase Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor Erythroid 2-Related Factor 2 and Downregulates Cytoprotective Genes in Acetaminophen-Induced Liver Injury in Mice. Hepatology 2020; 71:1787-1801. [PMID: 31945188 PMCID: PMC7318587 DOI: 10.1002/hep.31116] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Acetaminophen (APAP) overdose induces severe liver injury and hepatic failure. While the activation of c-Jun NH2 -terminal kinase (JNK) has been implicated as a mechanism in APAP-induced liver injury, the hepatic defense system controlled by nuclear factor erythroid 2-related factor 2 (Nrf2) plays a central role in the mitigation of APAP toxicity. However, the link between the two signaling pathways in APAP-induced liver injury (AILI) remains unclear. APPROACH AND RESULTS In this study, we demonstrated that the activation of JNK in mouse liver following exposure to APAP was correlated with the phosphorylation of Nrf2 and down-regulation of the antioxidant response element (ARE)-driven genes, NAD(P)H:quinone dehydrogenase 1, glutathione S-transferase α3, glutathione S-transferase M1, glutathione S-transferase M5, and aldo-keto reductase 1C. The JNK inhibitor, SP600125, or knockdown of JNK by infection of adenovirus expressing JNK small interfering RNA, ameliorated the APAP induced liver toxicity, and inhibited the phosphorylation of Nrf2 and down-regulation of detoxifying enzymes by stabilizing the transcription factor. Mechanistically, JNK antagonized Nrf2- and ARE-driven gene expression in a Kelch-like ECH-associated protein 1-independent manner. Biochemical analysis revealed that phosphorylated JNK (P-JNK) directly interacted with the Nrf2-ECH homology (Neh) 1 domain of Nrf2 and phosphorylated the serine-aspartate-serine motif 1 (SDS1) region in the Neh6 domain of Nrf2. CONCLUSIONS Mass spectrometric analysis identified serine 335 in the SDS1 region of mNrf2 as the major phosphorylation site for modulation of Nrf2 ubiquitylation by P-JNK. This study demonstrates that Nrf2 is a target of P-JNK in AILI. Our finding may provide a strategy for the treatment of AILI.
Collapse
Affiliation(s)
- Yiping Chen
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Kaihua Liu
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Jingwen Zhang
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Yan Hai
- Department of Biochemistry and Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Peng Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Hongyan Wang
- Department of Biochemistry and Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Qiuyan Liu
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Catherine C.L. Wong
- Center for Precision Medicine Multi‐Omics ResearchPeking University Health Science CenterBeijingChina,State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina,National Center for Protein Science (Shanghai)Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jun Yao
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Yang Gao
- Department of Biochemistry and Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Yijiao Liao
- Department of Biochemistry and Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouPR China
| |
Collapse
|
24
|
Kirk SG, Samavati L, Liu Y. MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sci 2020; 241:117157. [PMID: 31837332 PMCID: PMC7480273 DOI: 10.1016/j.lfs.2019.117157] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK)§ cascades are crucial signaling pathways in the regulation of the host immune response to infection. MAPK phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the down-regulation of p38 and JNK. Studies using cultured macrophages have demonstrated a pivotal role of MKP-1 in the restraint of the biosynthesis of both pro-inflammatory and anti-inflammatory cytokines as well as chemokines. Using MKP-1 knockout mice, several groups have not only confirmed the critical importance of MKP-1 in the regulation of the cytokine synthesis in vivo during the acute host response to bacterial infections, but also revealed novel functions of MKP-1 in maintaining bactericidal functions and host metabolic activities. RNA-seq analyses on livers of septic mice infected with E. coli have revealed that MKP-1 deficiency caused substantial perturbation in the expression of over 5000 genes, an impressive >20% of the entire murine genome. Among the genes whose expression are dramatically affected by MKP-1 deficiency are those encoding metabolic regulators and acute phase response proteins. These studies demonstrate that MKP-1 is an essential gate-keeper of the acute innate immune response, facilitating pathogen killing and regulating the metabolic response during pathogenic infection. In this review article, we will summarize the studies on the function of MKP-1 during acute innate immune response in the regulation of inflammation, metabolism, and acute phase response. We will also discuss the role of MKP-1 in the actions of numerous immunomodulatory agents.
Collapse
Affiliation(s)
- Sean G. Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA,Corresponding author at: Center for Perinatal Research The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Cross Road, Columbus, OH 43215, USA. (Y. Liu)
| |
Collapse
|
25
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
26
|
Jaeschke H, Duan L, Nguyen N, Ramachandran A. Mitochondrial Damage and Biogenesis in Acetaminophen-induced Liver Injury. LIVER RESEARCH 2019; 3:150-156. [PMID: 32655976 PMCID: PMC7351365 DOI: 10.1016/j.livres.2019.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver injury and acute liver failure caused by acetaminophen (APAP) overdose is the clinically most important drug toxicity in western countries. Mechanistic investigations have revealed a central role of mitochondria in the pathophysiology. Excess formation of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) after an overdose leads to hepatic glutathione depletion, mitochondrial protein adducts formation and an initial oxidant stress, which triggers the activation of mitogen activated protein (MAP) kinase cascade ultimately leading to c-jun N-terminal kinase (JNK) phosphorylation. Phospho-JNK translocates to the mitochondria and amplifies the oxidative and nitrosative stress eventually causing the mitochondrial membrane permeability transition pore opening and cessation of ATP synthesis. In addition, mitochondrial matrix swelling ruptures the outer membrane and releases endonucleases, which cause nuclear DNA fragmentation. Together, the nuclear DNA damage and the extensive mitochondrial dysfunction result in necrotic cell death. However, the pro-cell death signaling events are counteracted by adaptive responses such as autophagy and mitochondrial biogenesis. The improved mechanistic insight into the pathophysiology leads to better understanding of the mechanisms of action of the existing antidote N-acetylcysteine and justifies the clinical testing of novel therapeutics such as 4-methylpyrazole and calmangafodipir.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nga Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
27
|
Lee HC, Yu HP, Liao CC, Chou AH, Liu FC. Escin protects against acetaminophen-induced liver injury in mice via attenuating inflammatory response and inhibiting ERK signaling pathway. Am J Transl Res 2019; 11:5170-5182. [PMID: 31497232 PMCID: PMC6731419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Acetaminophen (APAP) overdose may lead to the formation of oxidative stress, hepatocyte apoptosis and necrosis, and, eventually result in acute liver failure. Escin, a major extracted component of Aesculus hippocastanum, reportedly exerts anti-inflammatory, anti-edematous and anti-oxidant properties. Previous studies have demonstrated these protective effects of A. hippocastanum extracts on ischemia/reperfusion intestinal injury and endotoxin-induced lung injury. In this study, we aimed to evaluate the effect of escin on APAP-induced liver injury in mice. Mice were intraperitoneally administrated with APAP (300 mg/kg) or an equal volume of saline (control), followed by a treatment with various concentrations of escin (0, 0.5, 1, 2 and 4 mg/kg) for 30 min. The animals were sacrificed 16 h following APAP administration for serum and liver tissue assay. Escin treatment attenuated the damage of APAP-induced liver injury in a dose-dependent manner (0.5-4 mg/kg). Escin also attenuated the hepatic myeloperoxidase (MPO) activity and hepatic pro-inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6 and IL-17). Furthermore, escin treatment decreased the hepatic phosphorylation expression of extracellular signal-regulated kinase (ERK). Our data indicates that escin shows protective effects on APAP-induced hepatotoxicity in a dose-dependent manner through anti-inflammatory mechanism and the inhibition of ERK signaling pathway.
Collapse
Affiliation(s)
- Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung UniversityTaoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
- College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| |
Collapse
|
28
|
Sha J, Zhang H, Zhao Y, Feng X, Hu X, Wang C, Song M, Fan H. Dexmedetomidine attenuates lipopolysaccharide-induced liver oxidative stress and cell apoptosis in rats by increasing GSK-3β/MKP-1/Nrf2 pathway activity via the α2 adrenergic receptor. Toxicol Appl Pharmacol 2019; 364:144-152. [DOI: 10.1016/j.taap.2018.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022]
|
29
|
Lee HC, Liao CC, Day YJ, Liou JT, Li AH, Liu FC. IL-17 deficiency attenuates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2018; 292:20-30. [PMID: 29689376 DOI: 10.1016/j.toxlet.2018.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose results in the production of reactive oxygen species (ROS), hepatocyte necrosis, and cell death, and leads to acute liver failure. Interleukin-17 (IL-17), a pro-inflammatory cytokine, plays a key role in the recruitment of neutrophils into sites of inflammation and subsequent damage after liver ischemia-reperfusion injury. In this study, we employed IL-17 knockout (KO) mice to investigate the role of IL-17 in APAP-induced hepatotoxicity. IL-17 wide type (WT) and IL-17 KO mice received an intraperitoneal injection of APAP (300 mg/kg). After 16 h of treatment, the hepatic injury, inflammatory mediators, immune cell infiltration, and western blotting were examined and analyzed. The serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity were significantly elevated 16 h after APAP treatment in the WT mice. IL-17 deficiency significantly attenuates APAP-induced liver injury, MPO activity, pro-inflammatory cytokines (tumor necrosis factor-α, IL-6 and interferon-γ) levels and inflammatory cell (neutrophils, macrophage) infiltration in the liver. Moreover, phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased at 16 h after APAP treatment in the IL-17 KO mice compared with the IL-17 WT mice. Our data suggests that IL-17 plays a pivotal role in APAP-induced hepatotoxicity through modulation of inflammatory response, and perhaps in part through the ERK signaling pathway. Blockade of IL-17 could be a potential therapeutic target for APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Yuan-Ji Day
- Department of Anesthesiology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien, Taiwan, ROC
| | - Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Allen H Li
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC; College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
| |
Collapse
|
30
|
McGreal SR, Bhushan B, Walesky C, McGill MR, Lebofsky M, Kandel SE, Winefield RD, Jaeschke H, Zachara NE, Zhang Z, Tan EP, Slawson C, Apte U. Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis. Toxicol Sci 2018; 162:599-610. [PMID: 29325178 PMCID: PMC6012490 DOI: 10.1093/toxsci/kfy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.
Collapse
Affiliation(s)
- Steven R McGreal
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bharat Bhushan
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Chad Walesky
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Mitchell R McGill
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Margitta Lebofsky
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sylvie E Kandel
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Robert D Winefield
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Natasha E Zachara
- Department of Biological Chemistry, The John Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Zhen Zhang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ee Phie Tan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Udayan Apte
- The Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
31
|
Luo L, Chen Y, Wang H, Wang S, Liu K, Li X, Wang XJ, Tang X. Mkp-1 protects mice against toxin-induced liver damage by promoting the Nrf2 cytoprotective response. Free Radic Biol Med 2018; 115:361-370. [PMID: 29241671 DOI: 10.1016/j.freeradbiomed.2017.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
Abstract
The present study was undertaken to investigate the possible protective effect of mitogen-activated protein kinase phosphatase 1 (Mkp-1) on toxin-induced hepatic injury. Here, we uncovered a positive feedback loop between Mkp-1, a dual threonine/tyrosine phosphatase, and nuclear factor erythroid 2-related factor 2 (Nrf2), a crucial regulator of the defense system in the liver. Mkp-1-/- mice exhibited decreased protein levels of Nrf2, phase II gene products, and reduced glutathione (GSH) in the liver. Induction of detoxifying enzymes by the Nrf2 activator butylated hydroxyanisole (BHA) or sulforaphane, was attenuated in the liver and small intestines of Mkp-1-/- mice, indicating that the Nrf2 signaling pathway is impaired as a result of Mkp-1 deficiency. Mkp-1-/- mice suffered more severe liver injury after a single exposure to hepatotoxin carbon tetrachloride (CCl4) than their wild-type (WT) counterparts. BHA partially rescued the CCl4-induced liver damage in WT mice, but not in Mkp-1-/- mice, suggesting the requirement of Mkp-1 in the activation of Nrf2 signaling against the liver injury. Mechanistically, Mkp-1 upregulated Nrf2 through a direct interaction with the Neh2 domain in the transcription factor, while Nrf2 enhanced the expression of Mkp-1 mRNA by binding to the ARE site at -1719 to -1710bp in the Mkp-1 promoter. Our results reveal novel role of Mkp-1 in the maintenance of redox homeostasis in the liver. Thus, strategies aimed at augmenting Mkp-1 expression may be beneficial in protecting the liver and may provide novel therapeutic approaches to toxin-induced liver injury.
Collapse
Affiliation(s)
- Lin Luo
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yeru Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Hongyan Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Shengcun Wang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Kaihua Liu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xin Li
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Xiu Jun Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| | - Xiuwen Tang
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, PR China.
| |
Collapse
|
32
|
Kouam AF, Yuan F, Njayou FN, He H, Tsayem RF, Oladejo BO, Song F, Moundipa PF, Gao GF. Induction of Mkp-1 and Nuclear Translocation of Nrf2 by Limonoids from Khaya grandifoliola C.DC Protect L-02 Hepatocytes against Acetaminophen-Induced Hepatotoxicity. Front Pharmacol 2017; 8:653. [PMID: 28974930 PMCID: PMC5610691 DOI: 10.3389/fphar.2017.00653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem where natural compounds hold promise for its abrogation. Khaya grandifoliola (Meliaceae) is used in Cameroonian traditional medicine for the treatment of liver related diseases and has been studied for its hepatoprotective properties. Till date, reports showing the hepatoprotective molecular mechanism of the plant are lacking. The aim of this study was therefore to identify compounds from the plant bearing hepatoprotective activity and the related molecular mechanism by assessing their effects against acetaminophen (APAP)-induced hepatotoxicity in normal human liver L-02 cells line. The cells were exposed to APAP (10 mM) or co-treated with phytochemical compounds (40 μM) over a period of 36 h and, biochemical and molecular parameters assessed. Three known limonoids namely 17-epi-methyl-6-hydroxylangolensate, 7-deacetoxy-7-oxogedunin and deacetoxy-7R-hydroxygedunin were identified. The results of cells viability and membrane integrity, reactive oxygen species generation and lipid membrane peroxidation assays, cellular glutathione content determination as well as expression of cytochrome P450 2E1 demonstrated the protective action of the limonoids. Immunoblotting analysis revealed that limonoids inhibited APAP-induced c-Jun N-terminal Kinase phosphorylation (p-JNK), mitochondrial translocation of p-JNK and Bcl2-associated X Protein, and the release of Apoptosis-inducing Factor into the cytosol. Interestingly, limonoids increased the expression of Mitogen-activated Protein Kinase Phosphatase (Mkp)-1, an endogenous inhibitor of JNK phosphorylation and, induced the nuclear translocation of Nuclear Factor Erythroid 2-related Factor-2 (Nrf2) and decreased the expression of Kelch-like ECH-associated Protein-1. The limonoids also reversed the APAP-induced decreased mRNA levels of Catalase, Superoxide Dismutase-1, Glutathione-S-Transferase and Methionine Adenosyltransferase-1A. The obtained results suggest that the isolated limonoids protect L-02 hepatocytes against APAP-induced hepatotoxicity mainly through increase expression of Mkp-1 and nuclear translocation of Nrf2. Thus, these compounds are in part responsible of the hepatoprotective activity of K. grandifoliola and further analysis including in vivo and toxicological studies are needed to select the most potent compound that may be useful as therapeutic agents against DILI.
Collapse
Affiliation(s)
- Arnaud F Kouam
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Fei Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Frédéric N Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - Hongtao He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Roméo F Tsayem
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - Babayemi O Oladejo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Fuhang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Paul F Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
33
|
The role of MAP2 kinases and p38 kinase in acute murine liver injury models. Cell Death Dis 2017; 8:e2903. [PMID: 28661486 PMCID: PMC5584575 DOI: 10.1038/cddis.2017.295] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
c-Jun N-terminal kinase (JNK) mediates hepatotoxicity through interaction of its phospho-activated form with a mitochondrial outer membrane protein, Sh3bp5 or Sab, leading to dephosphorylation of intermembrane Src and consequent impaired mitochondrial respiration and enhanced ROS release. ROS production from mitochondria activates MAP3 kinases, such as MLK3 and ASK1, which continue to activate a pathway to sustain JNK activation, and amplifies the toxic effect of acetaminophen (APAP) and TNF/galactosamine (TNF/GalN). Downstream of MAP3K, in various contexts MKK4 activates both JNK and p38 kinases and MKK7 activates only JNK. The relative role of MKK4 versus 7 in liver injury is largely unexplored, as is the potential role of p38 kinase, which might be a key mediator of toxicity in addition to JNK. Antisense oligonucleotides (ASO) to MKK4, MKK7 and p38 (versus scrambled control) were used for in vivo knockdown, and in some experiments PMH were used after in vivo knockdown. Mice were treated with APAP or TNF/GalN and injury assessed. MKK4 and MKK7 were expressed in liver and each was efficiently knocked down with two different ASOs. Massive liver injury and ALT elevation were abrogated by MKK4 but not MKK7 ASO pretreatment in both injury models. The protection was confirmed in PMH. Knockdown of MKK4 completely inhibited basal P-p38 in both cytoplasm and mitochondria. However, ALT levels and histologic injury in APAP-treated mice were not altered with p38 knockdown versus scrambled control. p38 knockdown significantly increased P-JNK levels in cytoplasm but not mitochondria after APAP treatment. In conclusion, MKK4 is the major MAP2K, which activates JNK in acute liver injury. p38, the other downstream target of MKK4, does not contribute to liver injury from APAP or TNF/galactosamine.
Collapse
|
34
|
Liao CC, Day YJ, Lee HC, Liou JT, Chou AH, Liu FC. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:105-121. [DOI: 10.1142/s0192415x17500082] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15–60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.
Collapse
Affiliation(s)
- Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Ji Day
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chen Lee
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
35
|
Woolbright BL, Jaeschke H. Mechanisms of Acetaminophen-Induced Liver Injury. CELLULAR INJURY IN LIVER DISEASES 2017:55-76. [DOI: 10.1007/978-3-319-53774-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
36
|
McGarry DJ, Chakravarty P, Wolf CR, Henderson CJ. Altered protein S-glutathionylation identifies a potential mechanism of resistance to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther 2015; 355:137-44. [PMID: 26311813 PMCID: PMC4631951 DOI: 10.1124/jpet.115.227389] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/25/2015] [Indexed: 01/01/2023] Open
Abstract
Acetaminophen (APAP) is the most commonly used over-the-counter analgesic. However, hepatotoxicity induced by APAP is a major clinical issue, and the factors that define sensitivity to APAP remain unclear. We have previously demonstrated that mice nulled for glutathione S-transferase Pi (GSTP) are resistant to APAP-induced hepatotoxicity. This study aims to exploit this difference to delineate pathways of importance in APAP toxicity. We used mice nulled for GSTP and heme oxygenase-1 oxidative stress reporter mice, together with a novel nanoflow liquid chromatography-tandem mass spectrometry methodology to investigate the role of oxidative stress, cell signaling, and protein S-glutathionylation in APAP hepatotoxicity. We provide evidence that the sensitivity difference between wild-type and Gstp1/2(-/-) mice is unrelated to the ability of APAP to induce oxidative stress, despite observing significant increases in c-Jun N-terminal kinase and extracellular signal-regulated kinase phosphorylation in wild-type mice. The major difference in response to APAP was in the levels of protein S-glutathionylation: Gstp1/2(-/-) mice exhibited a significant increase in the number of S-glutathionylated proteins compared with wild-type animals. Remarkably, these S-glutathionylated proteins are involved in oxidative phosphorylation, respiratory complexes, drug metabolism, and mitochondrial apoptosis. Furthermore, we found that S-glutathionylation of the rate-limiting glutathione-synthesizing enzyme, glutamate cysteine ligase, was markedly increased in Gstp1/2(-/-) mice in response to APAP. The data demonstrate that S-glutathionylation provides an adaptive response to APAP and, as a consequence, suggest that this is an important determinant in APAP hepatotoxicity. This work identifies potential novel avenues associated with cell survival for the treatment of chemical-induced hepatotoxicity.
Collapse
Affiliation(s)
- David J McGarry
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - Probir Chakravarty
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - C Roland Wolf
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| | - Colin J Henderson
- Molecular Pharmacology Group, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, United Kingdom (D.J.M., C.R.W., C.J.H.); and Bioinformatics and Biostatistics Group, Cancer Research UK London Research Institute, London, United Kingdom (P.C.)
| |
Collapse
|
37
|
Murad HAS, Habib H, Kamel Y, Alsayed S, Shakweer M, Elshal M. Thearubigins protect against acetaminophen-induced hepatic and renal injury in mice: biochemical, histopathological, immunohistochemical, and flow cytometry study. Drug Chem Toxicol 2015; 39:190-8. [PMID: 26234406 DOI: 10.3109/01480545.2015.1070170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Acetaminophen toxicity is used as a model for studying chemical toxicity. N-acetylcysteine (NAC) is used for the treatment of hepatotoxicity; however, there is no specific therapy for nephrotoxicity. OBJECTIVE This study was designed to investigate the potential protective effect of black tea extract (BTE) and its main phenolic pigment, thearubigins (TRs), against acetaminophen (APAP)-induced hepatic and renal injury in mice. MATERIALS AND METHODS Besides control groups, six groups (n = 8) were given intraperitoneally APAP (300 mg/kg) and then after 1.5 hours were treated intraperitoneally as follows: NAC (318 mg/kg), BTE (3%, 4.5%), and TRs (50, 60, and 70 mg/kg). Six hours post-APAP injection, blood was collected for biochemical measurements. Later, liver and kidneys were removed for histopathological, immunohistochemical, and flow cytometry studies. RESULTS APAP increased alanine aminotransferase and malondialdehyde and decreased glutathione levels in blood. Treatments significantly reversed these changes mostly with NAC and TRs70. TRs showed dose-dependent significant differences. The APAP-induced central lobular hepatic necrosis and increased TUNEL positivity were mild with co-administration of NAC and TRs (60, 70) while moderate with co-administration of BTE (3, 4.5) and TRs50. The APAP-increased serum creatinine level was significantly reversed by treatments (mostly TRs60, 70). The APAP-induced renal tubular epithelial degeneration and necrosis were mild with co-administration of TRs (60, 70) while moderate with co-administration of NAC, BTE (3, 4.5), and TRs50. The APAP-accumulated apoptotic cells in sub-G1 phase were significantly decreased by treatments, mostly by NAC and TRs70 in the liver and TRs (60, 70) in kidneys. CONCLUSION Thearubigins protected against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice possibly through their antioxidant activity.
Collapse
Affiliation(s)
| | | | - Y Kamel
- c Department of Microbiology , and
| | - S Alsayed
- d Department of Physiology, Faculty of Medicine , Rabigh, King Abdulaziz University (KAU) , Jeddah , Saudi Arabia
| | - M Shakweer
- e Department of Pathology, Faculty of Medicine , Ain Shams University , Cairo , Egypt , and
| | - M Elshal
- f Department of Biochemistry, Faculty of Science , KAU , Jeddah , Saudi Arabia
| |
Collapse
|
38
|
Du K, Xie Y, McGill MR, Jaeschke H. Pathophysiological significance of c-jun N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug Metab Toxicol 2015; 11:1769-79. [PMID: 26190663 DOI: 10.1517/17425255.2015.1071353] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US. Although substantial progress regarding the mechanisms of APAP hepatotoxicity has been made in the past several decades, therapeutic options are still limited and novel treatments are clearly needed. c-jun N-terminal Kinase (JNK) has emerged as a promising therapeutic target in recent years. AREAS COVERED Early studies established the critical role of JNK activation and mitochondrial translocation in APAP hepatotoxicity. However, this concept has also been challenged. Initial studies failed to reproduce the protection of JNK deficiency in APAP toxicity and concerns over off-target effects of JNK inhibitors and even in knock-out mice are increasing. Interestingly, recent studies have even shown that liver injury can be altered with or without effects on JNK activation. The current review addresses these discrepancies and tries to explain or reconcile some of the conflicting results. EXPERT OPINION JNK is a potential therapeutic target for APAP poisoning. However, controversies still exist regarding its actual role in APAP hepatotoxicity. Future studies are warranted for more in-depth testing of specific inhibitors in well-defined preclinical models and human hepatocytes before JNK can be considered a relevant therapeutic target for APAP poisoning.
Collapse
Affiliation(s)
- Kuo Du
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Yuchao Xie
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Mitchell R McGill
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| | - Hartmut Jaeschke
- a University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , Kansas City, KS, USA +1 913 588 7969 ; +1 913 588 7501 ;
| |
Collapse
|
39
|
Dreaden EC, Kong YW, Morton SW, Correa S, Choi KY, Shopsowitz KE, Renggli K, Drapkin R, Yaffe MB, Hammond PT. Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clin Cancer Res 2015; 21:4410-9. [PMID: 26034127 DOI: 10.1158/1078-0432.ccr-15-0013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/12/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE Cross-talk and feedback between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR cell signaling pathways is critical for tumor initiation, maintenance, and adaptive resistance to targeted therapy in a variety of solid tumors. Combined blockade of these pathways-horizontal blockade-is a promising therapeutic strategy; however, compounded dose-limiting toxicity of free small molecule inhibitor combinations is a significant barrier to its clinical application. EXPERIMENTAL DESIGN AZD6244 (selumetinib), an allosteric inhibitor of Mek1/2, and PX-866, a covalent inhibitor of PI3K, were co-encapsulated in a tumor-targeting nanoscale drug formulation-layer-by-layer (LbL) nanoparticles. Structure, size, and surface charge of the nanoscale formulations were characterized, in addition to in vitro cell entry, synergistic cell killing, and combined signal blockade. In vivo tumor targeting and therapy was investigated in breast tumor xenograft-bearing NCR nude mice by live animal fluorescence/bioluminescence imaging, Western blotting, serum cytokine analysis, and immunohistochemistry. RESULTS Combined MAPK and PI3K axis blockade from the nanoscale formulations (160 ± 20 nm, -40 ± 1 mV) was synergistically toxic toward triple-negative breast (MDA-MB-231) and RAS-mutant lung tumor cells (KP7B) in vitro, effects that were further enhanced upon encapsulation. In vivo, systemically administered LbL nanoparticles preferentially targeted subcutaneous MDA-MB-231 tumor xenografts, simultaneously blocked tumor-specific phosphorylation of the terminal kinases Erk and Akt, and elicited significant disease stabilization in the absence of dose-limiting hepatotoxic effects observed from the free drug combination. Mice receiving untargeted, but dual drug-loaded nanoparticles exhibited progressive disease. CONCLUSIONS Tumor-targeting nanoscale drug formulations could provide a more safe and effective means to synergistically block MAPK and PI3K in the clinic.
Collapse
Affiliation(s)
- Erik C Dreaden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yi Wen Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Stephen W Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Santiago Correa
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ki Young Choi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kevin E Shopsowitz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kasper Renggli
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Basser Research Center for BRCA, University of Pennsylvania, Philadelphia, Pennsylvania. Perelman Center for Advanced Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Division of Acute Care Surgery, Trauma, and Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
40
|
Xie Y, Ramachandran A, Breckenridge DG, Liles JT, Lebofsky M, Farhood A, Jaeschke H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2015; 286:1-9. [PMID: 25818599 DOI: 10.1016/j.taap.2015.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients.
Collapse
Affiliation(s)
- Yuchao Xie
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - John T Liles
- Department of Biology, Gilead Sciences, Inc., Foster City, CA, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anwar Farhood
- Department of Pathology, St. David's North Austin Medical Center, Austin, TX 78756, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
41
|
Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced Liver Injury: from Animal Models to Humans. J Clin Transl Hepatol 2014; 2:153-61. [PMID: 26355817 PMCID: PMC4521247 DOI: 10.14218/jcth.2014.00014] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury is an important clinical problem and a challenge for drug development. Whereas progress in understanding rare and unpredictable (idiosyncratic) drug hepatotoxicity is severely hampered by the lack of relevant animal models, enormous insight has been gained in the area of predictable hepatotoxins, in particular acetaminophen-induced liver injury, from a broad range of experimental models. Importantly, mechanisms of toxicity obtained with certain experimental systems, such as in vivo mouse models, primary mouse hepatocytes, and metabolically competent cell lines, are being confirmed in translational studies in patients and in primary human hepatocytes. Despite this progress, suboptimal models are still being used and experimental data can be confusing, leading to controversial conclusions. Therefore, this review attempts to discuss mechanisms of drug hepatotoxicity using the most studied drug acetaminophen as an example. We compare the various experimental models that are used to investigate mechanisms of acetaminophen hepatotoxicity, discuss controversial topics in the mechanisms, and assess how these experimental findings can be translated to the clinic. The success with acetaminophen in demonstrating the clinical relevance of experimental findings could serve as an example for the study of other drug toxicities.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Correspondence to: Hartmut Jaeschke, Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA. Tel: +1-913-588-7969, Fax: +1-913-588-7501. E-mail:
| | | | | |
Collapse
|
42
|
Williams CD, McGill MR, Lebofsky M, Bajt ML, Jaeschke H. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning. Toxicol Appl Pharmacol 2013; 274:417-24. [PMID: 24345528 DOI: 10.1016/j.taap.2013.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18h or 1h prior to an APAP overdose. Administration of allopurinol 18h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6h after APAP; however, 1h pretreatment offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2h) however late JNK activation (6h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18h or 1h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose.
Collapse
Affiliation(s)
- C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Margitta Lebofsky
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|