1
|
Peregud DI, Gulyaeva NV. Contribution of Visceral Systems to the Development of Substance Use Disorders: Translational Aspects of Interaction between Central and Peripheral Mechanisms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1868-1888. [PMID: 39647817 DOI: 10.1134/s0006297924110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 12/10/2024]
Abstract
Substance use disorders are associated with structural and functional changes in the neuroendocrine, neuromediator, and neuromodulator systems in brain areas involved in the reward and stress response circuits. Chronic intoxication provokes emergence of somatic diseases and aggravates existing pathologies. Substance use disorders and somatic diseases often exacerbate the clinical courses of each other. Elucidation of biochemical pathways common for comorbidities may serve as a basis for the development of new effective pharmacotherapy agents, as well as drug repurposing. Here, we discussed molecular mechanisms underlying integration of visceral systems into the central mechanisms of drug dependence.
Collapse
Affiliation(s)
- Danil I Peregud
- Serbsky National Medical Research Center for Psychiatry and Drug Addiction, Ministry of Health of the Russian Federation, Moscow, 119034, Russia.
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
2
|
Wu Z, Sun X, Su J, Zhang X, Hu J, Li C. Revealing the graded activation mechanism of neurotensin receptor 1. Int J Biol Macromol 2024; 278:134488. [PMID: 39111461 DOI: 10.1016/j.ijbiomac.2024.134488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Graded activation contributes to the precise regulation of GPCR activity, presenting new opportunities for drug design. In this work, a total of 10 μs enhanced-sampling simulations are performed to provide molecular insights into the binding dynamics differences of the neurotensin receptor 1 (NTSR1) to the full agonist SRI-9829, partial agonist RTI-3a and inverse agonist SR48692. The possible graded activation mechanism of NTSR1 is revealed by an integrated analysis utilizing the reweighted potential of mean force (PMF), deep learning (DL) and transfer entropy (TE). Specifically, the orthosteric pocket is observed to undergo expansion and contraction, with the G-protein-binding site experiencing interconversions among the inactive, intermediate and active-like states. Detailed structural comparisons capture subtle conformational differences arising from ligand binding in allosteric signaling, which can well explain the graded activation. Critical microswitches that contribute to graded activation are efficiently identified with the DL model. TE calculations enable the visualization of allosteric communication networks within the receptor, elucidating the driver-responder relationships associated with signal transduction. Fortunately, the dissociation of the full agonist from the orthosteric pocket is observed. The current findings systematically reveal the mechanism of NTSR1 graded activation, and also provide implications for structure-based drug design.
Collapse
Affiliation(s)
- Zhixiang Wu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jingjie Su
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xinyu Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China.
| | - Chunhua Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| |
Collapse
|
3
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
5
|
Singhal SM, Zell V, Faget L, Slosky LM, Barak LS, Caron MG, Pinkerton AB, Hnasko TS. Neurotensin receptor 1-biased ligand attenuates neurotensin-mediated excitation of ventral tegmental area dopamine neurons and dopamine release in the nucleus accumbens. Neuropharmacology 2023; 234:109544. [PMID: 37055008 PMCID: PMC10192038 DOI: 10.1016/j.neuropharm.2023.109544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/29/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Strong expression of the G protein-coupled receptor (GPCR) neurotensin receptor 1 (NTR1) in ventral tegmental area (VTA) dopamine (DA) neurons and terminals makes it an attractive target to modulate DA neuron activity and normalize DA-related pathologies. Recent studies have identified a novel class of NTR1 ligand that shows promising effects in preclinical models of addiction. A lead molecule, SBI-0654553 (SBI-553), can act as a positive allosteric modulator of NTR1 β-arrestin recruitment while simultaneously antagonizing NTR1 Gq protein signaling. Using cell-attached recordings from mouse VTA DA neurons we discovered that, unlike neurotensin (NT), SBI-553 did not independently increase spontaneous firing. Instead, SBI-553 blocked the NT-mediated increase in firing. SBI-553 also antagonized the effects of NT on dopamine D2 auto-receptor signaling, potentially through its inhibitory effects on G-protein signaling. We also measured DA release directly, using fast-scan cyclic voltammetry in the nucleus accumbens and observed antagonist effects of SBI-553 on an NT-induced increase in DA release. Further, in vivo administration of SBI-553 did not notably change basal or cocaine-evoked DA release measured in NAc using fiber photometry. Overall, these results indicate that SBI-553 blunts NT's effects on spontaneous DA neuron firing, D2 auto-receptor function, and DA release, without independently affecting these measures. In the presence of NT, SBI-553 has an inhibitory effect on mesolimbic DA activity, which could contribute to its efficacy in animal models of psychostimulant use.
Collapse
Affiliation(s)
- Sarthak M Singhal
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Vivien Zell
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren Faget
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Marc G Caron
- Departments of Cell Biology, Neurobiology and Medicine, Duke University, Durham, NC, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Thomas S Hnasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
6
|
Bumbak F, Bower JB, Zemmer SC, Inoue A, Pons M, Paniagua JC, Yan F, Ford J, Wu H, Robson SA, Bathgate RAD, Scott DJ, Gooley PR, Ziarek JJ. Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314. Nat Commun 2023; 14:3328. [PMID: 37286565 PMCID: PMC10247727 DOI: 10.1038/s41467-023-38894-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. β-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A β-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.
Collapse
Affiliation(s)
- Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - James B Bower
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Skylar C Zemmer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fei Yan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Ford
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
7
|
Jin R, Sun S, Hu Y, Zhang H, Sun X. Neuropeptides Modulate Feeding via the Dopamine Reward Pathway. Neurochem Res 2023:10.1007/s11064-023-03954-4. [PMID: 37233918 DOI: 10.1007/s11064-023-03954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Dopamine (DA) is a catecholamine neurotransmitter widely distributed in the central nervous system. It participates in various physiological functions, such as feeding, anxiety, fear, sleeping and arousal. The regulation of feeding is exceptionally complex, involving energy homeostasis and reward motivation. The reward system comprises the ventral tegmental area (VTA), nucleus accumbens (NAc), hypothalamus, and limbic system. This paper illustrates the detailed mechanisms of eight typical orexigenic and anorexic neuropeptides that regulate food intake through the reward system. According to recent literature, neuropeptides released from the hypothalamus and other brain regions regulate reward feeding predominantly through dopaminergic neurons projecting from the VTA to the NAc. In addition, their effect on the dopaminergic system is mediated by the prefrontal cortex, paraventricular thalamus, laterodorsal tegmental area, amygdala, and complex neural circuits. Research on neuropeptides involved in reward feeding can help identify more targets to treat diseases with metabolic disorders, such as obesity.
Collapse
Affiliation(s)
- Ruijie Jin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Shanbin Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yang Hu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hongfei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Department of Clinical Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Tereshchenko SY. Neurobiological risk factors for problematic social media use as a specific form of Internet addiction: A narrative review. World J Psychiatry 2023; 13:160-173. [PMID: 37303928 PMCID: PMC10251362 DOI: 10.5498/wjp.v13.i5.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Problematic social media use (PSMU) is a behavioral addiction, a specific form of problematic Internet use associated with the uncontrolled use of social networks. It is typical mostly for modern adolescents and young adults, which are the first generations fully grown up in the era of total digitalization of society. The modern biopsychosocial model of the formation of behavioral addictions, postulating the impact of a large number of biological, psychological, and social factors on addictive behavior formation, may be quite applicable to PSMU. In this narrative review, we discussed neurobiological risk factors for Internet addiction with a focus on current evidence on the association between PSMU and structural/ functional characteristics of the brain and autonomic nervous system, neurochemical correlations, and genetic features. A review of the literature shows that the vast majority of the mentioned neurobiological studies were focused on computer games addiction and generalized Internet addiction (without taking into account the consumed content). Even though a certain number of neuroimaging studies have been conducted for PSMU, there is practically no research on neuropeptide and genetic associations for PSMU to date. This fact points to the extremely high relevance of such studies.
Collapse
Affiliation(s)
- Sergey Yu Tereshchenko
- Department of Child's Physical and Mental Health, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Research Institute of Medical Problems of the North, Krasnoyarsk 660022, Russia
| |
Collapse
|
9
|
Rodríguez FD, Sánchez ML, Coveñas R. Neurotensin and Alcohol Use Disorders: Towards a Pharmacological Treatment. Int J Mol Sci 2023; 24:ijms24108656. [PMID: 37240004 DOI: 10.3390/ijms24108656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Harmful alcohol use is responsible for a group of disorders collectively named alcohol use disorders (AUDs), according to the DSM-5 classification. The damage induced by alcohol depends on the amount, time, and consumption patterns (continuous and heavy episodic drinking). It affects individual global well-being and social and familial environments with variable impact. Alcohol addiction manifests with different degrees of organ and mental health detriment for the individual, exhibiting two main traits: compulsive drinking and negative emotional states occurring at withdrawal, frequently causing relapse episodes. Numerous individual and living conditions, including the concomitant use of other psychoactive substances, lie in the complexity of AUD. Ethanol and its metabolites directly impact the tissues and may cause local damage or alter the homeostasis of brain neurotransmission, immunity scaffolding, or cell repair biochemical pathways. Brain modulator and neurotransmitter-assembled neurocircuitries govern reward, reinforcement, social interaction, and consumption of alcohol behaviors in an intertwined manner. Experimental evidence supports the participation of neurotensin (NT) in preclinical models of alcohol addiction. For example, NT neurons in the central nucleus of the amygdala projecting to the parabrachial nucleus strengthen alcohol consumption and preference. In addition, the levels of NT in the frontal cortex were found to be lower in rats bred to prefer alcohol to water in a free alcohol-water choice compared to wild-type animals. NT receptors 1 and 2 seem to be involved in alcohol consumption and alcohol effects in several models of knockout mice. This review aims to present an updated picture of the role of NT systems in alcohol addiction and the possible use of nonpeptide ligands modulating the activity of the NT system, applied to experimental animal models of harmful drinking behavior mimicking alcohol addiction leading to health ruin in humans.
Collapse
Affiliation(s)
- Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37008 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
| | - Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37008 Salamanca, Spain
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, C/Pintor Fernando Gallego 1, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Chen G, Lai S, Bao G, Ke J, Meng X, Lu S, Wu X, Xu H, Wu F, Xu Y, Xu F, Bi GQ, Peng G, Zhou K, Zhu Y. Distinct reward processing by subregions of the nucleus accumbens. Cell Rep 2023; 42:112069. [PMID: 36753418 DOI: 10.1016/j.celrep.2023.112069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/11/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
The nucleus accumbens (NAc) plays an important role in motivation and reward processing. Recent studies suggest that different NAc subnuclei differentially contribute to reward-related behaviors. However, how reward is encoded in individual NAc neurons remains unclear. Using in vivo single-cell resolution calcium imaging, we find diverse patterns of reward encoding in the medial and lateral shell subdivision of the NAc (NAcMed and NAcLat, respectively). Reward consumption increases NAcLat activity but decreases NAcMed activity, albeit with high variability among neurons. The heterogeneity in reward encoding could be attributed to differences in their synaptic inputs and transcriptional profiles. Specific optogenetic activation of Nts-positive neurons in the NAcLat promotes positive reinforcement, while activation of Cartpt-positive neurons in the NAcMed induces behavior aversion. Collectively, our study shows the organizational and transcriptional differences in NAc subregions and provides a framework for future dissection of NAc subregions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Shishi Lai
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Yunnan University School of Medicine, Yunnan University, Kunming 650091, China
| | - Guo Bao
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jincan Ke
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaogao Meng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Science and Technology of China, Hefei 230026, China
| | - Shanshan Lu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaocong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Fengyi Wu
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming 650032, China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Qiang Bi
- University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangdun Peng
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kuikui Zhou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
11
|
Ollmann T, Lénárd L, Péczely L, Berta B, Kertes E, Zagorácz O, Hormay E, László K, Szabó Á, Gálosi R, Karádi Z, Kállai V. Effect of D1- and D2-like Dopamine Receptor Antagonists on the Rewarding and Anxiolytic Effects of Neurotensin in the Ventral Pallidum. Biomedicines 2022; 10:biomedicines10092104. [PMID: 36140205 PMCID: PMC9495457 DOI: 10.3390/biomedicines10092104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Neurotensin (NT) acts as a neurotransmitter and neuromodulator in the central nervous system. It was shown previously that NT in the ventral pallidum (VP) has rewarding and anxiolytic effects. NT exerts its effect in interaction with dopamine (DA) receptors in numerous brain areas; however, this has not yet been investigated in the VP. The aim of this study was to examine whether the inhibition of D1-like and D2-like DA receptors of the VP can modify the above mentioned effects of NT. Methods: Microinjection cannulas were implanted by means of stereotaxic operations into the VP of male Wistar rats. The rewarding effect of NT was examined by means of a conditioned place preference test. Anxiety was investigated with an elevated plus maze test. To investigate the possible interaction, D1-like DA receptor antagonist SCH23390 or D2-like DA receptor antagonist sulpiride were microinjected prior to NT. All of the drugs were also injected independently to analyze their effects alone. Results: In the present experiments, both the rewarding and anxiolytic effects of NT in the VP were prevented by both D1-like and D2-like DA receptor antagonists. Administered on their own, the antagonists did not influence reward and anxiety. Conclusion: Our present results show that the activity of the D1-like and D2-like DA receptors of the VP is a necessary requirement for both the rewarding and anxiolytic effects of NT.
Collapse
Affiliation(s)
- Tamás Ollmann
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-536000 (ext. 31095)
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Beáta Berta
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Erika Kertes
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Olga Zagorácz
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kristóf László
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Ádám Szabó
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Rita Gálosi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, H-7624 Pécs, Hungary
| | - Veronika Kállai
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
12
|
Harris SS, Urs NM. Targeting β-Arrestins in the Treatment of Psychiatric and Neurological Disorders. CNS Drugs 2021; 35:253-264. [PMID: 33651366 DOI: 10.1007/s40263-021-00796-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 12/23/2022]
Abstract
Therapies for psychiatric and neurological disorders have been in the development and refinement process for the past 5 decades. Yet, most of these therapies lack optimal therapeutic efficacy and have multiple debilitating side effects. Recent advances in understanding the pathophysiological processes of psychiatric and neurological disorders have revealed an important role for β-arrestins, which are important regulators of G-protein-coupled receptor (GPCR) function, including desensitization and intracellular signaling. These findings have pushed β-arrestins to the forefront as potential therapeutic targets. Here, we highlight current knowledge on β-arrestin functions in certain psychiatric and neurological disorders (schizophrenia, Parkinson's disease, and substance abuse disorders), and how this has been leveraged to develop new therapeutic strategies. Furthermore, we discuss the obstacles impacting the field of β-arrestin-based therapeutic development and future approaches that might help advance strategies to develop optimal β-arrestin-based therapies.
Collapse
Affiliation(s)
- Sharonda S Harris
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Dr, ARB-R5-140, Gainesville, FL, 32610, USA
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, 1200 Newell Dr, ARB-R5-140, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
14
|
Dominguez‐Lopez S, Sharma R, Beckstead MJ. Neurotensin receptor 1 deletion decreases methamphetamine self-administration and the associated reduction in dopamine cell firing. Addict Biol 2021; 26:e12854. [PMID: 31742874 DOI: 10.1111/adb.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 12/26/2022]
Abstract
We previously reported that a non-selective pharmacological blockade of neurotensin receptors in the ventral tegmental area (VTA) decreases methamphetamine (METH) self-administration in mice. Here, we explored the consequences of genetic deletion of neurotensin receptor 1 (NtsR1) on METH self-administration and VTA dopamine neuron firing activity. We implanted mice with an indwelling jugular catheter and trained them to nose-poke for intravenous infusions of METH. Mice with NtsR1 deletion (KO) acquired self-administration similar to wildtype (WT) and heterozygous (HET) littermates. However, in NtsR1 KO and HET mice, METH intake and motivated METH seeking decreased when the response requirement was increased to a fixed ratio 3 and when mice were tested on a progressive ratio protocol. After completion of METH self-administration, single cell in vivo extracellular recordings of dopamine firing activity in the VTA were obtained in anesthetized mice. Non-bursting dopamine neurons from KO mice fired at slower rates than those from WT mice, supporting an excitatory role for NtsR1 on VTA dopamine neuronal activity. In WT mice, a history of METH self-administration decreased dopamine cell firing frequency compared with cells from drug-naïve controls. NtsR1 KO and HET mice did not exhibit this decline in dopamine cell firing activity after METH experience. We also observed an increase in population activity following METH self-administration that was strongest in the WT group. Our results suggest a role for NtsR1 in METH-seeking behavior and indicate that ablation of NtsR1 prevents the detrimental effects of prolonged METH self-administration on VTA dopamine cell firing frequency.
Collapse
Affiliation(s)
- Sergio Dominguez‐Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Ramaswamy Sharma
- Department of Cell Systems & Anatomy, UT Health San Antonio San Antonio TX USA
| | - Michael J. Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation Oklahoma City OK USA
| |
Collapse
|
15
|
Bumbak F, Thomas T, Noonan-Williams BJ, Vaid TM, Yan F, Whitehead AR, Bruell S, Kocan M, Tan X, Johnson MA, Bathgate RAD, Chalmers DK, Gooley PR, Scott DJ. Conformational Changes in Tyrosine 11 of Neurotensin Are Required to Activate the Neurotensin Receptor 1. ACS Pharmacol Transl Sci 2020; 3:690-705. [PMID: 32832871 PMCID: PMC7432660 DOI: 10.1021/acsptsci.0c00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Cell-cell communication via endogenous peptides and their receptors is vital for controlling all aspects of human physiology and most peptides signal through G protein-coupled receptors (GPCRs). Disordered peptides bind GPCRs through complex modes for which there are few representative crystal structures. The disordered peptide neurotensin (NT) is a neuromodulator of classical neurotransmitters such as dopamine and glutamate, through activation of neurotensin receptor 1 (NTS1). While several experimental structures show how NT binds NTS1, details about the structural dynamics of NT during and after binding NTS1, or the role of peptide dynamics on receptor activation, remain obscure. Here saturation transfer difference (STD) NMR revealed that the binding mode of NT fragment NT10-13 is heterogeneous. Epitope maps of NT10-13 at NTS1 suggested that tyrosine 11 (Y11) samples other conformations to those observed in crystal structures of NT-bound NTS1. Molecular dynamics (MD) simulations confirmed that when NT is bound to NTS1, residue Y11 can exist in two χ1 rotameric states, gauche plus (g+) or gauche minus (g-). Since only the g+ Y11 state is observed in all the structures solved to date, we asked if the g- state is important for receptor activation. NT analogues with Y11 replaced with 7-OH-Tic were synthesized to restrain the dynamics of the side chain. P(OH-TIC)IL bound NTS1 with the same affinity as NT10-13 but did not activate NTS1, instead acted as an antagonist. This study highlights that flexibility of Y11 in NT may be required for NT activation of NTS1.
Collapse
Affiliation(s)
- Fabian Bumbak
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trayder Thomas
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Billy J. Noonan-Williams
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Tasneem M. Vaid
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fei Yan
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice R. Whitehead
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shoni Bruell
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Kocan
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- The School
of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xuan Tan
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Margaret A. Johnson
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Ross A. D. Bathgate
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Paul R. Gooley
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel J. Scott
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
16
|
Slosky LM, Bai Y, Toth K, Ray C, Rochelle LK, Badea A, Chandrasekhar R, Pogorelov VM, Abraham DM, Atluri N, Peddibhotla S, Hedrick MP, Hershberger P, Maloney P, Yuan H, Li Z, Wetsel WC, Pinkerton AB, Barak LS, Caron MG. β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell 2020; 181:1364-1379.e14. [PMID: 32470395 PMCID: PMC7466280 DOI: 10.1016/j.cell.2020.04.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages β-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a β-arrestin-biased agonist but also extends profound β-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and β-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Krisztian Toth
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Caroline Ray
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Alexandra Badea
- Departments of Radiology and Neurology, Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | | | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University, Durham, NC 27710, USA
| | - Namratha Atluri
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Linebarger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Abstract
Previously, we revealed that neurotensin (NTS) derived from the oviduct and uterus can function during fertilization. However, little is known about NTS
actions on the pre-implantation embryo after fertilization. Here, we found that pro-Nts mRNA is expressed in the oviduct and uterus during when
preimplantation embryos develop and an increase in mRNA level in the uterus is induced by human chorionic gonadotropin (hCG) treatment. Expression of mRNA for
two NTS receptors, Ntr1 and Ntr3, was found throughout these stages, whereas Ntr2 mRNA was not detected,
suggesting that NTS signaling occurred through NTR1 and NTR3. Supplementation of 1, 10, 100 or 1000 nM NTS to embryo culture medium after fertilization showed
that 100 nM NTS significantly improved the blastocyst formation. In comparison, the total number of cells and inner cell mass ratio of blastocysts was not
significant different between the 0 nM and 100 nM NTS treatment groups. These results indicate that NTS has a positive effect upon preimplantation embryo
development in vitro.
Collapse
Affiliation(s)
- Yuki Hiradate
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| |
Collapse
|
18
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
19
|
Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019; 43:1702-1713. [PMID: 31206717 PMCID: PMC6677602 DOI: 10.1111/acer.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Embryonic ethanol (EtOH) exposure is known to increase alcohol drinking later in life and have long-term effects on neurochemical systems in the brain. With zebrafish having marked advantages for elucidating neural mechanisms underlying brain disorders, we recently tested and showed in these fish, similar to rodents, that low-dose embryonic EtOH stimulates voluntary consumption of EtOH while increasing expression of hypocretin/orexin (hcrt) neurons, a neuropeptide that promotes consummatory and reward-related behaviors. The goal of the present study was to characterize how embryonic EtOH affects early development of the hcrt system and produces persistent changes at older ages that may contribute to this increase in EtOH consumption. METHODS We utilized live imaging and Imaris software to investigate how low-dose embryonic EtOH (0.5%), administered from 22 to 24 hours postfertilization, affects specific properties of hcrt neurons in hcrt:EGFP transgenic zebrafish at different ages. RESULTS Time-lapse imaging from 24 to 28 hpf showed that embryonic EtOH increased the number of hcrt neurons, reduced the speed, straightness, and displacement of their migratory paths, and altered their direction early in development. At older ages up to 6 dpf, the embryonic EtOH-induced increase in hcrt neurons was persistent, and the neurons became more widely dispersed. These effects of embryonic EtOH were found to be asymmetric, occurring predominantly on the left side of the brain, and at 6 dpf, they resulted in marked changes in the anatomical location of the hcrt neurons, with some detected outside their normal position in the anterior hypothalamus again primarily on the left side. CONCLUSIONS Our findings demonstrate that low-dose embryonic EtOH has diverse, persistent, and asymmetric effects on the early development of hypothalamic hcrt neurons, which lead to abnormalities in their ultimate location that may contribute to behavioral disturbances, including an increase in EtOH consumption.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Viktoriya Halkina
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Soe S. Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Mia Y. Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | | | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| |
Collapse
|
20
|
Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. [Not Available]. Neuropeptides 2019; 76:101930. [PMID: 31079844 PMCID: PMC7721284 DOI: 10.1016/j.npep.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including cardiovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative densities of the Nts-GFP populations observed throughout the male NtsCre;GFP mouse brain, which will pave the way for future work to define their physiologic roles. We also compared the distribution of Nts-GFP neurons with Nts-In situ Hybridization (Nts-ISH) data from the adult mouse brain. By comparing these data sets we can distinguish Nts-GFP populations that may only transiently express Nts during development but not in the mature brain, and hence which populations may not be amenable to Cre-mediated manipulation in adult NtsCre;GFP mice. This atlas of Nts-GFP neurons will facilitate future studies using the NtsCre;GFP line to describe the physiological functions of individual Nts populations and how modulating them may be useful to treat disease.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ryan Furdock
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Cristina Rivera Quiles
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Patricia Perez-Bonilla
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Angela Garcia
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Crystal Colon-Ortiz
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Juliette Brown
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States.
| |
Collapse
|
21
|
Tereshchenko S, Kasparov E. Neurobiological Risk Factors for the Development of Internet Addiction in Adolescents. Behav Sci (Basel) 2019; 9:bs9060062. [PMID: 31207886 PMCID: PMC6616486 DOI: 10.3390/bs9060062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
The sudden appearance and spread of Internet addiction in adolescent populations, in association with the rapid escalation of consumed Internet content and the broad availability of smartphones and tablets with Internet access, is posing a new challenge for classical addictology which requires urgent solutions. Like the majority of other psychopathological conditions, pathological Internet addiction depends upon a group of multifactor polygenic conditions. For each specific case, there is a unique combination of inherited characteristics (nervous tissue structure, secretion, degradation, and reception of neuromediators), and many are extra-environment factors (family-related, social, and ethnic-cultural). One of the main challenges in the development of the bio-psychosocial model of Internet addiction is to determine which genes and neuromediators are responsible for increased addiction susceptibility. This information will herald the start of a search for new therapeutic targets and the development of early prevention strategies, including the assessment of genetic risk levels. This review summarizes the literature and currently available knowledge related to neurobiological risk factors regarding Internet addiction in adolescents. Genetic, neurochemical and neuroimaging data are presented with links to actual pathogenetic hypotheses according to the bio-psychosocial model of IA forming.
Collapse
Affiliation(s)
- Sergey Tereshchenko
- Research Institute of Medical Problems of the North, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660022, Russia.
| | - Edward Kasparov
- Research Institute of Medical Problems of the North, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660022, Russia.
| |
Collapse
|
22
|
Ponté C, Giron A, Crequy M, Lapeyre-Mestre M, Fabre N, Salles J. Cluster Headache in Subjects With Substance Use Disorder: A Case Series and a Review of the Literature. Headache 2019; 59:576-589. [PMID: 30957220 DOI: 10.1111/head.13516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To describe a case series of 7 patients presenting cluster headache (CH) criteria and a substance use disorder, reported to a French Addictovigilance center. Then, to assess clinical, pharmacological, and neurobiological linkages between substance use and CH onset. BACKGROUND CH patients are presenting a higher prevalence of comorbidities, among which the use of psychoactive substances, licit or illicit, have been explored by a few authors. Recently, 3 cases of CH in patients seen in the hospital-based addiction care center have been reported to the Toulouse addictovigilance center. METHODS Other cases have been identified in the same tertiary hospital after a collaborative investigation done with the departments of neurology and psychiatry and included in the case series. A narrative review was performed to assess the potential of psychoactive substance consumption to induce or facilitate CH. RESULTS From 2016 to 2018, 6 males and 1 female aged between 26 and 54 years old, presenting CH criteria and a substance use disorder, were included in our case series. Among substances used, there are: (1) daily use of tobacco and alcohol in 5/7 subjects; (2) daily or almost daily use of cocaine in 5/7 subjects; (3) regular use of cannabis before attacks beginning in 4/7 subjects; and (4) opioids, as a substitutive medication or abused, in 5/7 subjects. The intranasal route administration is reported by all the subjects and precedes the beginning of attacks for 5/7 subjects. CONCLUSIONS We have found a CH prevalence of 0.9% in our studied population, while it is estimated at 0.1% in the general population. The coexistence of cluster headache and addiction behaviors reflects possible common neurobiological pathways, which would include the hypothalamus. Research could be conducted on the potential of hypothalamic therapeutic targets.
Collapse
Affiliation(s)
- Camille Ponté
- Service de Pharmacologie Médicale et Clinique, Centre d'Evaluation et Information sur la Pharmacodépendance-Addictovigilance, Faculté de Médecine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Aurélie Giron
- Service de Psychiatrie et Psychologie, Université de Toulouse III, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Marie Crequy
- Service Universitaire de Psychiatrie et Psychologie Médicale, Centre de Soins d'Accompagnement et de Prévention en Addictologie, Hopital La Grave, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Maryse Lapeyre-Mestre
- Service de Pharmacologie Médicale et Clinique, Centre d'Evaluation et Information sur la Pharmacodépendance-Addictovigilance, INSERM UMR 1027, CIC INSERM 1436, Faculté de Médecine, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Nelly Fabre
- Departement de Neurologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Juliette Salles
- Service de Psychiatrie et Psychologie, INSERM UMR 1043, Université de Toulouse III, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
23
|
Tan L, Yan W, McCorvy JD, Cheng J. Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential. J Med Chem 2018; 61:9841-9878. [PMID: 29939744 DOI: 10.1021/acs.jmedchem.8b00435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) signal through both G-protein-dependent and G-protein-independent pathways, and β-arrestin recruitment is the most recognized one of the latter. Biased ligands selective for either pathway are expected to regulate biological functions of GPCRs in a more precise way, therefore providing new drug molecules with superior efficacy and/or reduced side effects. During the past decade, biased ligands have been discovered and developed for many GPCRs, such as the μ opioid receptor, the angiotensin II receptor type 1, the dopamine D2 receptor, and many others. In this Perspective, recent advances in this field are reviewed by discussing the structure-functional selectivity relationships (SFSRs) of GPCR biased ligands and the therapeutic potential of these molecules. Further understanding of the biological functions associated with each signaling pathway and structural basis for biased signaling will facilitate future drug design in this field.
Collapse
Affiliation(s)
- Liang Tan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - Wenzhong Yan
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| | - John D McCorvy
- Department of Cell Biology, Neurobiology and Anatomy , Medical College of Wisconsin , 8701 W. Watertown Plank Road , Milwaukee , Wisconsin 53226 , United States
| | - Jianjun Cheng
- iHuman Institute , ShanghaiTech University , 393 Middle Huaxia Road , Pudong District, Shanghai 201210 , China
| |
Collapse
|
24
|
Dominguez-Lopez S, Piccart E, Lynch WB, Wollet MB, Sharpe AL, Beckstead MJ. Antagonism of Neurotensin Receptors in the Ventral Tegmental Area Decreases Methamphetamine Self-Administration and Methamphetamine Seeking in Mice. Int J Neuropsychopharmacol 2018; 21:361-370. [PMID: 29272412 PMCID: PMC5888879 DOI: 10.1093/ijnp/pyx117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022] Open
Abstract
Background Neurotensin is a peptide that modulates central dopamine neurotransmission and dopamine-related behaviors. Methamphetamine self-administration increases neurotensin levels in the ventral tegmental area, but the consequences for self-administration behavior have not been described. Here we test the hypothesis that antagonizing neurotensin receptors in the ventral tegmental area attenuates the acquisition of methamphetamine self-administration and methamphetamine intake. Methods We implanted mice with an indwelling catheter in the right jugular vein and bilateral cannulae directed at the ventral tegmental area. Mice were then trained to nose-poke for i.v. infusions of methamphetamine (0.1 mg/kg/infusion) on a fixed ratio 3 schedule. Results Mice receiving microinfusions of the neurotensin NTS1/NTS2 receptor antagonist SR142948A in the ventral tegmental area (10 ng/side) prior to the first 5 days of methamphetamine self-administration required more sessions to reach acquisition criteria. Methamphetamine intake was decreased in SR142948A-treated mice both during training and later during maintenance of self-administration. Drug seeking during extinction, cue-induced reinstatement, and progressive ratio schedules was also reduced in the SR142948A group. The effects of SR142948A were not related to changes in basal locomotor activity or methamphetamine psychomotor properties. In both SR142948A- and saline-treated mice, a strong positive correlation between methamphetamine intake and enhanced locomotor activity was observed. Conclusion Our results suggest that neurotensin input in the ventral tegmental area during initial methamphetamine exposure contributes to the acquisition of methamphetamine self-administration and modulates later intake and methamphetamine-seeking behavior in mice. Furthermore, our results highlight the role of endogenous neurotensin in the ventral tegmental area in the reinforcing efficacy of methamphetamine, independent of its psychomotor effects.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Elisabeth Piccart
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - William B Lynch
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Mackenna B Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, Texas
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, Texas
| |
Collapse
|
25
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
26
|
Merullo DP, Asogwa CN, Sanchez-Valpuesta M, Hayase S, Pattnaik BR, Wada K, Riters LV. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches. Dev Neurobiol 2018; 78:671-686. [PMID: 29569407 DOI: 10.1002/dneu.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine-related measures change throughout development in song-control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song-control regions of male zebra finches in four stages of the song learning process: pre-subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre-subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671-686, 2018.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Chinweike N Asogwa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
27
|
Tschumi CW, Beckstead MJ. Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci 2018; 49:784-793. [PMID: 29405480 DOI: 10.1111/ejn.13858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is expressed throughout the central nervous system and is implicated in the etiology of multiple diseases and disorders. Many primary investigations of NT-induced modulation of neuronal excitability at the level of the synapse have been conducted, but they have not been summarized in review form in nearly 30 years. Therefore, the goal of this review is to discuss the many actions of NT on neuronal excitability across brain regions as well as NT circuit architecture. In the basal ganglia as well as other brain nuclei, NT can act through diverse intracellular signaling cascades to enhance or depress neuronal activity by modulating activity of ion channels, ionotropic and metabotropic neurotransmitter receptors, and presynaptic release of neurotransmitters. Further, NT can produce indirect effects by evoking endocannabinoid release, and recently has itself been identified as a putative retrograde messenger. In the basal ganglia, the diverse actions and circuit architecture of NT signaling allow for input-specific control of reward-related behaviors.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| |
Collapse
|
28
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
29
|
Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings. J Chem Neuroanat 2018; 89:1-10. [PMID: 29407461 DOI: 10.1016/j.jchemneu.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co-localization do not underlie seasonally-appropriate adjustment of communication.
Collapse
|
30
|
Tschumi CW, Beckstead MJ. Neurotensin speeds inhibition of dopamine neurons through temporal modulation of GABA A and GABA B receptor-mediated synaptic input. Neuropharmacology 2018; 131:414-423. [PMID: 29307543 DOI: 10.1016/j.neuropharm.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 01/20/2023]
Abstract
Midbrain dopamine neurons play physiological roles in many processes including reward learning and motivated behavior, and are tonically inhibited by γ-aminobutyric acid (GABA)ergic input from multiple brain regions. Neurotensin (NT) is a neuropeptide which acutely modulates midbrain dopamine neuron excitability through multiple mechanisms, one of which is a decrease of GABA-mediated inhibition. However, the mechanisms through which NT depresses GABA signaling are not known. Here we used whole cell patch-clamp electrophysiology of dopamine neurons in mouse brain slices to show that NT acts both presynaptically to increase GABAA and postsynaptically to decrease GABAB receptor-mediated currents in the substantia nigra. The active peptide fragment NT8-13 enhanced GABAA signaling presynaptically by causing an increase in the size of the readily releasable pool of GABA via activation of the NT type-1 receptor and protein kinase A. Conversely, NT8-13 depressed GABAB signaling postsynaptically via the NT type-2 receptor in a process that was modulated by protein kinase C. Both forms of plasticity could be observed simultaneously in single dopamine neurons. Thus, as the kinetics of GABAA signaling are significantly faster than those of GABAB signaling, NT functionally speeds GABAergic input to midbrain dopamine neurons. This finding contributes to our understanding of how neuropeptide-induced plasticity can simultaneously differentiate and integrate signaling by a single neurotransmitter in a single cell and provides a basis for understanding how neuropeptides use temporal shifts in synaptic strength to encode information.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA; Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
31
|
Schroeder LE, Leinninger GM. Role of central neurotensin in regulating feeding: Implications for the development and treatment of body weight disorders. Biochim Biophys Acta Mol Basis Dis 2017; 1864:900-916. [PMID: 29288794 DOI: 10.1016/j.bbadis.2017.12.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, United States.
| |
Collapse
|
32
|
Sadeghi M, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology 2017; 127:116-123. [PMID: 28533165 DOI: 10.1016/j.neuropharm.2017.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023]
Abstract
Conotoxins (conopeptides) are a diverse group of peptides isolated from the venom of marine cone snails. Conus peptides modulate pain by interacting with voltage-gated ion channels and G protein-coupled receptors (GPCRs). Opiate drugs targeting GPCRs have long been used, nonetheless, many undesirable side effects associated with opiates have been observed including addiction. Consequently, alternative avenues to pain management are a largely unmet need. It has been shown that various voltage-gated calcium channels (VGCCs) respond to GPCR modulation. Thus, regulation of VGCCs by GPCRs has become a valuable alternative in the management of pain. In this review, we focus on analgesic conotoxins that exert their effects via GPCR-mediated inhibition of ion channels involved in nociception and pain transmission. Specifically, α-conotoxin Vc1.1 activation of GABAB receptors and inhibition of voltage-gated calcium channels as a novel mechanism for reducing the excitability of dorsal root ganglion neurons is described. Vc1.1 and other α-conotoxins have been shown to be analgesic in different animal models of chronic pain. This review will outline the functional effects of conopeptide modulation of GPCRs and how their signalling is translated to downstream components of the pain pathways. Where available we present the proposed signalling mechanisms that couples metabotropic receptor activation to their downstream effectors to produce analgesia. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
33
|
Pastor V, Antonelli MC, Pallarés ME. Unravelling the Link Between Prenatal Stress, Dopamine and Substance Use Disorder. Neurotox Res 2016; 31:169-186. [DOI: 10.1007/s12640-016-9674-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
|
34
|
Ellenbroek BA, Angelucci F, Husum H, Mathé AA. Gene-environment interactions in a rat model of depression. Maternal separation affects neurotensin in selected brain regions. Neuropeptides 2016; 59:83-88. [PMID: 27372546 DOI: 10.1016/j.npep.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
Although the etiology of major psychiatric disorders has not been elucidated, accumulating evidence indicates that both genetic and early environmental factors play a role. We have previously demonstrated behavioral and neurochemical changes both in non-manipulated genetic rat models of depression, such as Flinders Sensitive Line (FSL) and Fawn Hooded (FH), and in normal rats following maternal separation (MS). The aim of the present study was to extend this work by exploring whether neurotensin (NT), a peptide implicated in several psychiatric disorders, is altered in a new animal model based on gene - environment interactions. More specifically, we used the FSL rats as a genetic model of depression and the Flinders Resistant Line (FRL) as controls and subjected them to MS. Pups randomly assigned to the MS procedure were separated from the dam as a litter for 180min daily between postnatal day 2 to 14. On postnatal day 90, rats were weighed and sacrificed by a two second high energy focused microwave irradiation and several brain regions were obtained by micropuncture. Neurotensin-like immunoreactivity (NT-LI) was measured by radioimmunoassay (RIA). The results showed that the FSL rats compared to the FRL rats have higher baseline NT-LI concentrations in the temporal cortex and periaqueductal gray and a markedly different response to maternal separation. The only observed change following maternal separation in the FRL rats was an NT-LI increase in the periaqueductal gray. In contrast, in the FSL significant increases were found in the nucleus accumbens, hippocampus, and entorhinal cortex and a decrease was seen in the temporal cortex after MS. The present study revealed baseline regional differences in NT-LI concentrations between the FSL and FRL strains and demonstrated that early MD differentially affects the two strains. The relevance of these alterations for depression as well as possible mechanisms underlying this gene-environment interaction are discussed.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | | | - Henriette Husum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Merullo DP, Angyal CS, Stevenson SA, Riters LV. Song in an Affiliative Context Relates to the Neural Expression of Dopamine- and Neurotensin-Related Genes in Male European Starlings. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:81-92. [PMID: 27614972 DOI: 10.1159/000448191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
Abstract
Some animals, including songbirds, vocalize at high rates when alone or in large groups. In songbirds, vocal behavior in these contexts is important for song learning and group cohesion. It is not obviously targeted at any particular individual and is described as 'undirected'. Studies suggest a role for dopamine (DA) in undirected song. The neuropeptide neurotensin (NT) can enhance dopaminergic signaling upon binding to the NT receptor 1 (NTR1) and is found in regions where DA can influence song, including the ventral tegmental area (VTA), septum, and the song control nucleus Area X. To begin to test the hypothesis that NT and DA in these regions interact to influence undirected song, we used quantitative real-time PCR to relate undirected singing to mRNA expression of NT, NTR1, tyrosine hydroxylase (TH; a synthetic enzyme for DA) and D1 and D2 receptors in male European starlings. TH and NT expression in VTA, and NT and D1 expression in Area X, positively correlated with song. NT markers also correlated positively with DA markers in VTA. Given the role of VTA projections to Area X in song learning, these results suggest that interactions between NT and DA in these regions may contribute to vocal learning. In septum, NTR1 expression positively correlated with song and NT and DA markers were correlated, suggesting that NT in this region may influence dopaminergic transmission to facilitate undirected vocalizations. Overall, these findings implicate interactions between NT and DA in affiliative communication.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, Madison, Wis., USA
| | | | | | | |
Collapse
|