1
|
Rosoff DB, Wagner J, Bell AS, Mavromatis LA, Jung J, Lohoff FW. A multi-omics Mendelian randomization study identifies new therapeutic targets for alcohol use disorder and problem drinking. Nat Hum Behav 2024:10.1038/s41562-024-02040-1. [PMID: 39528761 DOI: 10.1038/s41562-024-02040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Integrating proteomic and transcriptomic data with genetic architectures of problematic alcohol use and alcohol consumption behaviours can advance our understanding and help identify therapeutic targets. We conducted systematic screens using genome-wise association study data from ~3,500 cortical proteins (N = 722) and ~6,100 genes in 8 canonical brain cell types (N = 192) with 4 alcohol-related outcomes (N ≤ 537,349), identifying 217 cortical proteins and 255 cell-type genes associated with these behaviours, with 36 proteins and 37 cell-type genes being new. Although there was limited overlap between proteome and transcriptome targets, downstream neuroimaging revealed shared neurophysiological pathways. Colocalization with independent genome-wise association study data further prioritized 16 proteins, including CAB39L and NRBP1, and 12 cell-type genes, implicating mechanisms such as mTOR signalling. In addition, genes such as SAMHD1, VIPAS39, NUP160 and INO80E were identified as having favourable neuropsychiatric profiles. These findings provide insights into the genetic landscapes governing problematic alcohol use and alcohol consumption behaviours, highlighting promising therapeutic targets for future research.
Collapse
Affiliation(s)
- Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, National Institutes of Health, Bethesda, MD, USA
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Roy S, Lutsenko S. Mechanism of Cu entry into the brain: many unanswered questions. Neural Regen Res 2024; 19:2421-2429. [PMID: 38526278 PMCID: PMC11090436 DOI: 10.4103/1673-5374.393107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/10/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Brain tissue requires high amounts of copper (Cu) for its key physiological processes, such as energy production, neurotransmitter synthesis, maturation of neuropeptides, myelination, synaptic plasticity, and radical scavenging. The requirements for Cu in the brain vary depending on specific brain regions, cell types, organism age, and nutritional status. Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease, Wilson disease, Alzheimer's disease, Parkinson's disease, and others. Despite the well-established role of Cu homeostasis in brain development and function, the mechanisms that govern Cu delivery to the brain are not well defined. This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research.
Collapse
Affiliation(s)
- Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Quellec J, Piro-Megy C, Cannac M, Nisole S, Marty FH, Gosselet F, Shimizu F, Kanda T, Cêtre-Sossah C, Salinas S. Rift Valley fever virus is able to cross the human blood-brain barrier in vitro by direct infection with no deleterious effects. J Virol 2024; 98:e0126724. [PMID: 39345143 PMCID: PMC11494904 DOI: 10.1128/jvi.01267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arboviral disease that causes recurrent epidemics in Africa that may trigger fatal neurological disorders. However, the mechanisms of neuroinvasion by which the RVF virus (RVFV) reaches the human central nervous system (CNS) remain poorly characterized. In particular, it is not clear how RVFV is able to cross the human blood-brain barrier (hBBB), which is a neurovascular endothelium that protects the brain by regulating brain and blood exchanges. To explore these mechanisms, we used an in vitro hBBB model to mimic in vivo hBBB selectiveness and apicobasal polarity. Our results highlight the ability of RVFV to cross the hBBB by direct infection in a non-structural protein S (NSs)-independent but strain-dependent manner, leading to astrocyte and pericyte infections. Interestingly, RVFV infection did not induce hBBB disruption and was associated with progressive elimination of infected cells with no impairment of the tight junction protein scaffold and barrier function. Our work also shows that NSs, a well described RVFV virulence factor, limited the establishment of the hBBB-induced innate immune response and subsequent lymphocyte recruitment. These results provide in vitro confirmation of the ability of RVFV to reach human CNS by direct infection of the hBBB without altering its barrier function, and provide new directions to explore human RVFV neurovirulence and neuroinvasion mechanisms.IMPORTANCEThe RVF virus (RVFV) is capable of infecting humans and inducing severe and fatal neurological disorders. Neuropathogenesis and human central nervous system (CNS) invasion mechanisms of RVFV are still unknown, with only historical studies of autopsy data from fatal human cases in the 1980s and exploration studies in rodent models. One of the gaps in understanding RVFV human pathogenesis is how RVFV is able to cross the blood-brain barrier (BBB) in order to reach the human CNS. For the first time, we show that RVFV is able to directly infect cells of the human BBB in vitro to release viral particles into the human CNS, a well-characterized neuroinvasion mechanism of pathogens. Furthermore, we demonstrate strain-dependent variability of this neuroinvasion mechanism, identifying possible viral properties that could be explored to prevent neurological disorders during RVFV outbreaks.
Collapse
Affiliation(s)
- Jordan Quellec
- ASTRE, CIRAD, INRAE, University of Montpellier, Montpellier, France
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | | | - Marion Cannac
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, University of Montpellier, Montpellier, France
| | - Florent H. Marty
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, Faculty of Science Jean Perrin, Artois University, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Sara Salinas
- PCCEI, University of Montpellier, INSERM, Etablissement Français du Sang, Montpellier, France
| |
Collapse
|
4
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ahmad D, Linares I, Pietropaoli A, Waugh RE, McGrath JL. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model. Adv Healthc Mater 2024; 13:e2304338. [PMID: 38547536 PMCID: PMC11338706 DOI: 10.1002/adhm.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Indexed: 04/09/2024]
Abstract
While the role of dysregulated polymorphonuclear leukocyte (PMN) transmigration in septic mediated tissue damage is well documented, strategies to mitigate aberrant transmigration across endothelium have yet to yield viable therapeutics. Recently, microphysiological systems (MPS) have emerged as novel in vitro mimetics that facilitate the development of human models of disease. With this advancement, aspects of endothelial physiology that are difficult to assess with other models can be directly probed. In this study, the role of endothelial cell (EC) apicobasal polarity on leukocyte trafficking response is evaluated with the µSiM-MVM (microphysiological system enabled by a silicon membrane - microvascular mimetic). Here, ECs are stimulated either apically or basally with a cytokine cocktail to model a septic-like challenge before introducing healthy donor PMNs into the device. Basally oriented stimulation generated a stronger PMN transmigratory response versus apical stimulation. Importantly, healthy PMNs are unable to migrate towards a bacterial peptide chemoattractant when ECs are apically stimulated, which mimics the attenuated PMN chemotaxis seen in sepsis. Escalating the apical inflammatory stimulus by a factor of five is necessary to elicit high PMN transmigration levels across endothelium. These results demonstrate that EC apicobasal polarity modulates PMN transmigratory behavior and provides insight into the mechanisms underlying sepsis.
Collapse
Affiliation(s)
- Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care at the University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
6
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
7
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
9
|
Körbelin J, Arrulo A, Schwaninger M. Gene therapy targeting the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:191-217. [PMID: 39029973 DOI: 10.1016/bs.vh.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Endothelial cells are the building blocks of vessels in the central nervous system (CNS) and form the blood-brain barrier (BBB). An intact BBB limits permeation of large hydrophilic molecules into the CNS. Thus, the healthy BBB is a major obstacle for the treatment of CNS disorders with antibodies, recombinant proteins or viral vectors. Several strategies have been devised to overcome the barrier. A key principle often consists in attaching the therapeutic compound to a ligand of receptors expressed on the BBB, for example, the transferrin receptor (TfR). The fusion molecule will bind to TfR on the luminal side of brain endothelial cells, pass the endothelial layer by transcytosis and be delivered to the brain parenchyma. However, attempts to endow therapeutic compounds with the ability to cross the BBB can be difficult to implement. An alternative and possibly more straight-forward approach is to produce therapeutic proteins in the endothelial cells that form the barrier. These cells are accessible from blood circulation and have a large interface with the brain parenchyma. They may be an ideal production site for therapeutic protein and afford direct supply to the CNS.
Collapse
Affiliation(s)
- Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, UKE Hamburg-Eppendorf, Hamburg, Germany
| | - Adriana Arrulo
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Hamburg-Lübeck-Kiel, Germany.
| |
Collapse
|
10
|
Kofoed RH, Aubert I. Focused ultrasound gene delivery for the treatment of neurological disorders. Trends Mol Med 2024; 30:263-277. [PMID: 38216449 DOI: 10.1016/j.molmed.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
The transformative potential of gene therapy has been demonstrated in humans. However, there is an unmet need for non-invasive targeted gene delivery and regulation in the treatment of brain disorders. Transcranial focused ultrasound (FUS) has gained tremendous momentum to address these challenges. FUS non-invasively modulates brain cells and their environment, and is a powerful tool to facilitate gene delivery across the blood-brain barrier (BBB) with millimeter precision and promptly regulate transgene expression. This review highlights technical aspects of FUS-mediated gene therapies for the central nervous system (CNS) and lessons learned from discoveries in other organs. Understanding the possibilities and remaining obstacles of FUS-mediated gene therapy will be necessary to harness remarkable technologies and create life-changing treatments for neurological disorders.
Collapse
Affiliation(s)
- Rikke Hahn Kofoed
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Koh I, Hagiwara M. Modular tissue-in-a-CUBE platform to model blood-brain barrier (BBB) and brain interaction. Commun Biol 2024; 7:177. [PMID: 38418614 PMCID: PMC10901775 DOI: 10.1038/s42003-024-05857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
With the advent of increasingly sophisticated organoids, there is growing demand for technology to replicate the interactions between multiple tissues or organs. This is challenging to achieve, however, due to the varying culture conditions of the different cell types that make up each tissue. Current methods often require complicated microfluidic setups, but fragile tissue samples tend not to fare well with rough handling. Furthermore, the more complicated the human system to be replicated, the more difficult the model becomes to operate. Here, we present the development of a multi-tissue chip platform that takes advantage of the modularity and convenient handling ability of a CUBE device. We first developed a blood-brain barrier-in-a-CUBE by layering astrocytes, pericytes, and brain microvascular endothelial cells in the CUBE, and confirmed the expression and function of important tight junction and transporter proteins in the blood-brain barrier model. Then, we demonstrated the application of integrating Tissue-in-a-CUBE with a chip in simulating the in vitro testing of the permeability of a drug through the blood-brain barrier to the brain and its effect on treating the glioblastoma brain cancer model. We anticipate that this platform can be adapted for use with organoids to build complex human systems in vitro by the combination of multiple simple CUBE units.
Collapse
Affiliation(s)
- Isabel Koh
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan
| | - Masaya Hagiwara
- Cluster for Pioneering Research, RIKEN, Kobe, Hyogo, Japan.
- Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
12
|
Stanca S, Rossetti M, Bokulic Panichi L, Bongioanni P. The Cellular Dysfunction of the Brain-Blood Barrier from Endothelial Cells to Astrocytes: The Pathway towards Neurotransmitter Impairment in Schizophrenia. Int J Mol Sci 2024; 25:1250. [PMID: 38279249 PMCID: PMC10816922 DOI: 10.3390/ijms25021250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Schizophrenia (SCZ) is an articulated psychiatric syndrome characterized by a combination of genetic, epigenetic, and environmental factors. Our intention is to present a pathogenetic model combining SCZ alterations and the main cellular actors of the blood-brain barrier (BBB): endothelial cells (ECs), pericytes, and astrocytes. The homeostasis of the BBB is preserved by the neurovascular unit which is constituted by ECs, astrocytes and microglia, neurons, and the extracellular matrix. The role of the BBB is strictly linked to its ability to preserve the biochemical integrity of brain parenchyma integrity. In SCZ, there is an increased BBB permeability, demonstrated by elevated levels of albumin and immunoglobulins in the cerebrospinal fluid, and this is the result of an intrinsic endothelial impairment. Increased BBB permeability would lead to enhanced concentrations of neurotoxic and neuroactive molecules in the brain. The pathogenetic involvement of astrocytes in SCZ reverberates its consequences on BBB, together with the impact on its permeability and selectivity represented by the EC and pericyte damage occurring in the psychotic picture. Understanding the strict interaction between ECs and astrocytes, and its consequent impact on cognition, is diriment not only for comprehension of neurotransmitter dyshomeostasis in SCZ, but also for focusing on other potential therapeutic targets.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Leona Bokulic Panichi
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Neuroscience Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
13
|
Colclough N, Alluri RV, Tucker JW, Gozalpour E, Li D, Du H, Li W, Harlfinger S, O'Neill DJ, Sproat GG, Chen K, Yan Y, McGinnity DF. Utilizing a Dual Human Transporter MDCKII-MDR1-BCRP Cell Line to Assess Efflux at the Blood Brain Barrier. Drug Metab Dispos 2024; 52:95-105. [PMID: 38071533 DOI: 10.1124/dmd.123.001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
To facilitate the design of drugs readily able to cross the blood brain barrier (BBB), a Madin-Darby canine kidney (MDCK) cell line was established that over expresses both P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), the main human efflux transporters of the BBB. Proteomics analyses indicate BCRP is expressed at a higher level than Pgp in this cell line. This cell line shows good activity for both transporters [BCRP substrate dantrolene efflux ratio (ER) 16.3 ± 0.9, Pgp substrate quinidine ER 27.5 ± 1.2], and use of selective transporter inhibitors enables an assessment of the relative contributions to overall ERs. The MDCKII-MDR1-BCRP ER negatively correlates with rat unbound brain/unbound plasma ratio, Kpuu Highly brain penetrant compounds with rat Kpuu ≥ 0.3 show ERs ≤ 2 in the MDCKII-MDR1-BCRP assay while compounds predominantly excluded from the brain, Kpuu ≤ 0.05, demonstrate ERs ≥ 20. A subset of compounds with MDCKII-MDR1-BCRP ER < 2 and rat Kpuu < 0.3 were shown to be substrates of rat Pgp using a rat transfected cell line, MDCKII-rMdr1a. These compounds also showed ERs > 2 in the human National Institutes of Health (NIH) MDCKI-MDR1 (high Pgp expression) cell line, which suggests that they are weak human Pgp substrates. Characterization of 37 drugs targeting the central nervous system in the MDCKII-MDR1-BCRP efflux assay show 36 have ERs < 2. In drug discovery, use of the MDCKII-MDR1-BCRP in parallel with the NIH MDCKI-MDR1 cell line is useful for identification of compounds with high brain penetration. SIGNIFICANCE STATEMENT: A single cell line that includes both the major human efflux transporters of the blood brain barrier (MDCKII-MDR1-BCRP) has been established facilitating the rapid identification of efflux substrates and enabling the design of brain penetrant molecules. Efflux ratios using this cell line demonstrate a clear relationship with brain penetration as defined by rat brain Kpuu.
Collapse
Affiliation(s)
- Nicola Colclough
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Ravindra V Alluri
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - James W Tucker
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Elnaz Gozalpour
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Danxi Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Hongwen Du
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Wei Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Stephanie Harlfinger
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Daniel J O'Neill
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Graham G Sproat
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Kan Chen
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Yumei Yan
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Dermot F McGinnity
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| |
Collapse
|
14
|
Est CB, Murphy RM. An in vitro model for vitamin A transport across the human blood-brain barrier. eLife 2023; 12:RP87863. [PMID: 37934575 PMCID: PMC10629827 DOI: 10.7554/elife.87863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Vitamin A, supplied by the diet, is critical for brain health, but little is known about its delivery across the blood-brain barrier (BBB). Brain microvascular endothelial-like cells (BMECs) differentiated from human-derived induced pluripotent stem cells (iPSCs) form a tight barrier that recapitulates many of the properties of the human BBB. We paired iPSC-derived BMECs with recombinant vitamin A serum transport proteins, retinol-binding protein (RBP), and transthyretin (TTR), to create an in vitro model for the study of vitamin A (retinol) delivery across the human BBB. iPSC-derived BMECs display a strong barrier phenotype, express key vitamin A metabolism markers, and can be used for quantitative modeling of retinol accumulation and permeation. Manipulation of retinol, RBP, and TTR concentrations, and the use of mutant RBP and TTR, yielded novel insights into the patterns of retinol accumulation in, and permeation across, the BBB. The results described herein provide a platform for deeper exploration of the regulatory mechanisms of retinol trafficking to the human brain.
Collapse
Affiliation(s)
- Chandler B Est
- Department of Chemical and Biological Engineering, University of WisconsinMadisonUnited States
| | - Regina M Murphy
- Department of Chemical and Biological Engineering, University of WisconsinMadisonUnited States
| |
Collapse
|
15
|
Holst MR, de Wit NM, Ozgür B, Brachner A, Hyldig K, Appelt-Menzel A, Sleven H, Cader Z, de Vries HE, Neuhaus W, Jensen A, Brodin B, Nielsen MS. Subcellular trafficking and transcytosis efficacy of different receptor types for therapeutic antibody delivery at the blood‒brain barrier. Fluids Barriers CNS 2023; 20:82. [PMID: 37932749 PMCID: PMC10626680 DOI: 10.1186/s12987-023-00480-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Here, we report an experimental setup to benchmark different receptors for targeted therapeutic antibody delivery at the blood-brain barrier. We used brain capillary endothelial-like cells derived from induced pluripotent stem cells (hiPSC-BECs) as a model system and compared them to colon epithelial Caco-2 cells. This approach helped to identify favourable receptors for transport into the cell layer itself or for directing transport for transcytosis across the cell layer. The sorting receptors transferrin receptor and sortilin were shown to be efficient as antibody cargo receptors for intracellular delivery to the cell layer. In contrast, the cell surface receptors CD133 and podocalyxin were identified as static and inefficient receptors for delivering cargo antibodies. Similar to in vivo studies, the hiPSC-BECs maintained detectable transcytotic transport via transferrin receptor, while transcytosis was restricted using sortilin as a cargo receptor. Based on these findings, we propose the application of sortilin as a cargo receptor for delivering therapeutic antibodies into the brain microvascular endothelium.
Collapse
Affiliation(s)
| | - Nienke Marije de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Andreas Brachner
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Antje Appelt-Menzel
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, Röntgenring 11, Würzburg, Germany
- Translational Center Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, Würzburg, Germany
| | - Hannah Sleven
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Zameel Cader
- Translational Molecular Neuroscience Group, University of Oxford, Oxford, UK
| | - Helga Eveline de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Unit Molecular Diagnostics, Centre for Health and Bioresources, Vienna, Austria
- Department of Medicine, Faculty Medicine and Dentistry, Private Danube University, 3500, Krems, Austria
| | - Allan Jensen
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, 2500, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
de Rus Jacquet A, Layé S, Calon F. How nutrients and natural products act on the brain: Beyond pharmacology. Cell Rep Med 2023; 4:101243. [PMID: 37852184 PMCID: PMC10591063 DOI: 10.1016/j.xcrm.2023.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Understanding how natural products promote brain health is key to designing diverse strategies to improve the lives of people with, or at risk of developing, neurodegenerative disorders. The mechanisms of action involved and recent technological progress are discussed.
Collapse
Affiliation(s)
- Aurelie de Rus Jacquet
- Neurosciences Axis, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France; OptiNutriBrain - Laboratoire International Associé, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Neurosciences Axis, Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada; OptiNutriBrain - Laboratoire International Associé, Québec, QC G1V 0A6, Canada; Faculty of Pharmacy, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Phillips CM, Johnson AM, Stamatovic SM, Keep RF, Andjelkovic AV. 20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3. Neurobiol Dis 2023; 186:106277. [PMID: 37652184 DOI: 10.1016/j.nbd.2023.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate program, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
19
|
Abla KK, Mehanna MM. The battle of lipid-based nanocarriers against blood-brain barrier: a critical review. J Drug Target 2023; 31:832-857. [PMID: 37577919 DOI: 10.1080/1061186x.2023.2247583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Central nervous system integrity is the state of brain functioning across sensory, cognitive, emotional-social behaviors, and motor domains, allowing a person to realise his full potential. Thus, brain disorders seriously affect patients' quality of life. Efficient drug delivery to treat brain disorders remains a crucial challenge due to numerous brain barriers, particularly the blood-brain barrier (BBB), which greatly impacts the ultimate drug therapeutic efficacy. Lately, nanocarrier technology has made huge progress in overcoming these barriers by improving drug solubility, ameliorating its retention, reducing its toxicity, and targeting the encapsulated agents to different brain tissues. The current review primarily offers an overview of the different components of BBB and the progress, strategies, and contemporary applications of the nanocarriers, specifically lipid-based nanocarriers (LBNs), in treating various brain disorders.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Faculty of Pharmacy, Industrial Pharmacy Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
21
|
Est CB, Murphy RM. An in vitro model for vitamin A transport across the human blood-brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536348. [PMID: 37090623 PMCID: PMC10120720 DOI: 10.1101/2023.04.11.536348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Vitamin A, supplied by the diet, is critical for brain health, but little is known about its delivery across the blood-brain barrier (BBB). Brain microvascular endothelial-like cells (BMECs) differentiated from human-derived induced pluripotent stem cells (iPSC) form a tight barrier that recapitulates many of the properties of the human BBB. We paired iPSC-derived BMECs with recombinant vitamin A serum transport proteins, retinol binding protein (RBP) and transthyretin (TTR), to create an in vitro model for the study of vitamin A (retinol) delivery across the human BBB. iPSC-derived BMECs display a strong barrier phenotype, express key vitamin A metabolism markers and can be used for quantitative modeling of retinol accumulation and permeation. Manipulation of retinol, RBP and TTR concentrations, and the use of mutant RBP and TTR, yielded novel insights into the patterns of retinol accumulation in, and permeation across, the BBB. The results described herein provide a platform for deeper exploration of the regulatory mechanisms of retinol trafficking to the human brain.
Collapse
Affiliation(s)
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison 1415 Engineering Dr., Madison, WI 53706
| |
Collapse
|
22
|
Ahmad SD, Cetin M, Waugh RE, McGrath JL. A computer vision approach for analyzing label free leukocyte trafficking dynamics on a microvascular mimetic. Front Immunol 2023; 14:1140395. [PMID: 37033977 PMCID: PMC10080102 DOI: 10.3389/fimmu.2023.1140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
High-content imaging techniques in conjunction with in vitro microphysiological systems (MPS) allow for novel explorations of physiological phenomena with a high degree of translational relevance due to the usage of human cell lines. MPS featuring ultrathin and nanoporous silicon nitride membranes (µSiM) have been utilized in the past to facilitate high magnification phase contrast microscopy recordings of leukocyte trafficking events in a living mimetic of the human vascular microenvironment. Notably, the imaging plane can be set directly at the endothelial interface in a µSiM device, resulting in a high-resolution capture of an endothelial cell (EC) and leukocyte coculture reacting to different stimulatory conditions. The abundance of data generated from recording observations at this interface can be used to elucidate disease mechanisms related to vascular barrier dysfunction, such as sepsis. The appearance of leukocytes in these recordings is dynamic, changing in character, location and time. Consequently, conventional image processing techniques are incapable of extracting the spatiotemporal profiles and bulk statistics of numerous leukocytes responding to a disease state, necessitating labor-intensive manual processing, a significant limitation of this approach. Here we describe a machine learning pipeline that uses a semantic segmentation algorithm and classification script that, in combination, is capable of automated and label-free leukocyte trafficking analysis in a coculture mimetic. The developed computational toolset has demonstrable parity with manually tabulated datasets when characterizing leukocyte spatiotemporal behavior, is computationally efficient and capable of managing large imaging datasets in a semi-automated manner.
Collapse
Affiliation(s)
- S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Mujdat Cetin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
23
|
Nielsen SSE, Holst MR, Langthaler K, Bruun EH, Brodin B, Nielsen MS. Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells. Fluids Barriers CNS 2023; 20:2. [PMID: 36624498 PMCID: PMC9830855 DOI: 10.1186/s12987-022-00404-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The detailed mechanisms by which the transferrin receptor (TfR) and associated ligands traffic across brain capillary endothelial cells (BECs) of the CNS-protective blood-brain barrier constitute an important knowledge gap within maintenance and regulation of brain iron homeostasis. This knowledge gap also presents a major obstacle in research aiming to develop strategies for efficient receptor-mediated drug delivery to the brain. While TfR-mediated trafficking from blood to brain have been widely studied, investigation of TfR-mediated trafficking from brain to blood has been limited. In this study we investigated TfR distribution on the apical and basal plasma membranes of BECs using expansion microscopy, enabling sufficient resolution to separate the cellular plasma membranes of these morphological flat cells, and verifying both apical and basal TfR membrane domain localization. Using immunofluorescence-based transcellular transport studies, we delineated endosomal sorting of TfR endocytosed from the apical and basal membrane, respectively, as well as bi-directional TfR transcellular transport capability. The findings indicate different intracellular sorting mechanisms of TfR, depending on the apicobasal trafficking direction across the BBB, with the highest transcytosis capacity in the brain-to-blood direction. These results are of high importance for the current understanding of brain iron homeostasis. Also, the high level of TfR trafficking from the basal to apical membrane of BECs potentially explains the low transcytosis which are observed for the TfR-targeted therapeutics to the brain parenchyma.
Collapse
Affiliation(s)
- Simone S. E. Nielsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel R. Holst
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Kristine Langthaler
- grid.5254.60000 0001 0674 042XCNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark ,grid.424580.f0000 0004 0476 7612Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - Elisabeth Helena Bruun
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Birger Brodin
- grid.5254.60000 0001 0674 042XDepartment of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Morten S. Nielsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
24
|
Wasiak S, Fu L, Daze E, Gilham D, Rakai BD, Stotz SC, Tsujikawa LM, Sarsons CD, Studer D, Rinker KD, Jahagirdar R, Wong NCW, Sweeney M, Johansson JO, Kulikowski E. The BET inhibitor apabetalone decreases neuroendothelial proinflammatory activation in vitro and in a mouse model of systemic inflammation. Transl Neurosci 2023; 14:20220332. [PMID: 38222824 PMCID: PMC10787226 DOI: 10.1515/tnsci-2022-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
Brain vascular inflammation is characterized by endothelial activation and immune cell recruitment to the blood vessel wall, potentially causing a breach in the blood - brain barrier, brain parenchyma inflammation, and a decline of cognitive function. The clinical-stage small molecule, apabetalone, reduces circulating vascular endothelial inflammation markers and improves cognitive scores in elderly patients by targeting epigenetic regulators of gene transcription, bromodomain and extraterminal proteins. However, the effect of apabetalone on cytokine-activated brain vascular endothelial cells (BMVECs) is unknown. Here, we show that apabetalone treatment of BMVECs reduces hallmarks of in vitro endothelial activation, including monocyte chemoattractant protein-1 (MCP-1) and RANTES chemokine secretion, cell surface expression of endothelial cell adhesion molecule VCAM-1, as well as endothelial capture of THP-1 monocytes in static and shear stress conditions. Apabetalone pretreatment of THP-1 downregulates cell surface expression of chemokine receptors CCR1, CCR2, and CCR5, and of the VCAM-1 cognate receptor, integrin α4. Consequently, apabetalone reduces THP-1 chemoattraction towards soluble CCR ligands MCP-1 and RANTES, and THP-1 adhesion to activated BMVECs. In a mouse model of brain inflammation, apabetalone counters lipopolysaccharide-induced transcription of endothelial and myeloid cell markers, consistent with decreased neuroendothelial inflammation. In conclusion, apabetalone decreases proinflammatory activation of brain endothelial cells and monocytes in vitro and in the mouse brain during systemic inflammation.
Collapse
Affiliation(s)
- Sylwia Wasiak
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Li Fu
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Emily Daze
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Dean Gilham
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Brooke D. Rakai
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Stephanie C. Stotz
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Laura M. Tsujikawa
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Chris D. Sarsons
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Deborah Studer
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Kristina D. Rinker
- Department of Biomedical Engineering, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Ravi Jahagirdar
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Norman C. W. Wong
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Jan O. Johansson
- Resverlogix Corp., 535 Mission Street, 14th Floor, San Francisco, CA, 94105, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., Suite 300, 4820 Richard Road SW, Calgary, AB, T3e 6L1, Canada
| |
Collapse
|
25
|
Li C, Qin S, Wen Y, Zhao W, Huang Y, Liu J. Overcoming the blood-brain barrier: Exosomes as theranostic nanocarriers for precision neuroimaging. J Control Release 2022; 349:902-916. [PMID: 35932883 DOI: 10.1016/j.jconrel.2022.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Exosomes are cell-derived vesicles with a lipid bilayer membrane that play important roles in intercellular communication. They provide an unprecedented opportunity for the development of drug delivery nanoplatforms due to their low immunogenicity, low toxicity, biocompatibility, stability, and ability to change the functions of recipient cells. In addition, exosomes can penetrate the blood-brain barrier and then target and accumulate in relevant pathological brain regions. However, few studies have focused on the applications of exosomes as nanocarriers for use in precision neuroimaging studies. Thus, this report presents the feasibility of fabricating specific exosome-based diagnostic reagents for the application of personalized/precision radiology in the central nervous system based on important recent fundamental discoveries and technological advances.
Collapse
Affiliation(s)
- Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Shenghui Qin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha 410000, PR China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yijie Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410000, PR China.
| |
Collapse
|
26
|
Bosma EK, Darwesh S, Zheng JY, van Noorden CJF, Schlingemann RO, Klaassen I. Quantitative Assessment of the Apical and Basolateral Membrane Expression of VEGFR2 and NRP2 in VEGF-A-stimulated Cultured Human Umbilical Vein Endothelial Cells. J Histochem Cytochem 2022; 70:557-569. [PMID: 35876388 PMCID: PMC9393510 DOI: 10.1369/00221554221115767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells (ECs) form a precisely regulated polarized monolayer in capillary walls. Vascular endothelial growth factor-A (VEGF-A) induces endothelial hyperpermeability, and VEGF-A applied to the basolateral side, but not the apical side, has been shown to be a strong barrier disruptor in blood-retinal barrier ECs. We show here that VEGF-A presented to the basolateral side of human umbilical vein ECs (HUVECs) induces higher permeability than apical stimulation, which is similar to results obtained with bovine retinal ECs. We investigated with immunocytochemistry and confocal imaging the distribution of VEGF receptor-2 (VEGFR2) and neuropilin-2 (NRP2) in perinuclear apical and basolateral membrane domains. Orthogonal z-sections of cultured HUVECs were obtained, and the fluorescence intensity at the apical and basolateral membrane compartments was measured. We found that VEGFR2 and NRP2 are evenly distributed throughout perinuclear apical and basolateral membrane compartments in unstimulated HUVECs grown on Transwell inserts, whereas basolateral VEGF-A stimulation induces a shift toward basolateral VEGFR2 and NRP2 localization. When HUVECs were grown on coverslips, the distribution of VEGFR2 and NRP2 across the perinuclear apical and basolateral membrane domains was different. Our findings demonstrate that HUVECs dynamically regulate VEGFR2 and NRP2 localization on membrane microdomains, depending on growth conditions and the polarity of VEGF-A stimulation.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.,Department of Ophthalmology, Fondation Asile des Aveugles, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Steimle BL, Bailey DK, Smith FM, Rosenblum SL, Kosman DJ. Calcium and the Ca-ATPase SPCA1 modulate plasma membrane abundance of ZIP8 and ZIP14 to regulate Mn(II) uptake in brain microvascular endothelial cells. J Biol Chem 2022; 298:102211. [PMID: 35787370 PMCID: PMC9352541 DOI: 10.1016/j.jbc.2022.102211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 11/12/2022] Open
Abstract
Manganese (II) accumulation in human brain microvascular endothelial cells is mediated by the metal-ion transporters ZRT IRT-like protein 8 (ZIP8) and ZRT IRT-like protein 14 (ZIP14). The plasma membrane occupancy of ZIP14, in particular, is increased in cells treated with Mn2+, lipopolysaccharide, or IL-6, but the mechanism of this regulation has not been elucidated. The calcium-transporting type 2C member 1 ATPase, SPCA1, is a Golgi-localized Ca2+-uptake transporter thought to support Golgi uptake of Mn2+ also. Here, we show using surface protein biotinylation, indirect immunofluorescence, and GFP-tagged proteins that cytoplasmic Ca2+ regulates ZIP8- and ZIP14-mediated manganese accumulation in human brain microvascular endothelial cells by increasing the plasma membrane localization of these transporters. We demonstrate that RNAi knockdown of SPCA1 expression results in an increase in cytoplasmic Ca2+ levels. In turn, we found increased cytoplasmic Ca2+ enhances membrane-localized ZIP8 and ZIP14 and a subsequent increase in 54Mn2+ uptake. Furthermore, overexpression of WT SPCA1 or a gain-of-function mutant resulted in a decrease in cytoplasmic Ca2+ and 54Mn2+ accumulation. While addition of Ca2+ positively regulated ZIP-mediated 54Mn2+ uptake, we show chelation of Ca2+ diminished manganese transport. In conclusion, the modulation of ZIP8 and ZIP14 membrane cycling by cytoplasmic calcium is a novel finding and provides new insight into the regulation of the uptake of Mn2+ and other divalent metal ions–mediated ZIP metal transporters.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Danielle K Bailey
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Shaina L Rosenblum
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, 955 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
28
|
Alam P, Holst MR, Lauritsen L, Nielsen J, Nielsen SSE, Jensen PH, Brewer JR, Otzen DE, Nielsen MS. Polarized α-synuclein trafficking and transcytosis across brain endothelial cells via Rab7-decorated carriers. Fluids Barriers CNS 2022; 19:37. [PMID: 35637478 PMCID: PMC9150364 DOI: 10.1186/s12987-022-00334-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractParkinson’s disease is mainly caused by aggregation of α-synuclein (α-syn) in the brain. Exchange of α-syn between the brain and peripheral tissues could have important pathophysiological and therapeutic implications, but the trafficking mechanism of α-syn across the blood brain-barrier (BBB) remains unclear. In this study, we therefore investigated uptake and transport mechanisms of α-syn monomers and oligomers across an in vitro BBB model system. Both α-syn monomers and oligomers were internalized by primary brain endothelial cells, with increased restriction of oligomeric over monomeric transport. To enlighten the trafficking route of monomeric α-syn in brain endothelial cells, we investigated co-localization of α-syn and intracellular markers of vesicular transport. Here, we observed the highest colocalization with clathrin, Rab7 and VPS35, suggesting a clathrin-dependent internalization, preferentially followed by a late endosome retromer-connected trafficking pathway. Furthermore, STED microscopy revealed monomeric α-syn trafficking via Rab7-decorated carriers. Knockdown of Caveolin1, VPS35, and Rab7 using siRNA did not affect monomeric α-syn uptake into endothelial cells. However, it significantly reduced transcytosis of monomeric α-syn in the luminal-abluminal direction, suggesting a polarized regulation of monomeric α-syn vesicular transport. Our findings suggest a direct role for Rab7 in polarized trafficking of monomeric α-syn across BBB endothelium, and the potential of Rab7 directed trafficking to constitute a target pathway for new therapeutic strategies against Parkinson’s disease and related synucleinopathies.
Collapse
|
29
|
Sicardi A, Prévot V. [MCH neurons regulate fenestration of the median eminence vascular loops reaching the arcuate nucleus of the hypothalamus]. Med Sci (Paris) 2022; 38:248-251. [PMID: 35333160 DOI: 10.1051/medsci/2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alicia Sicardi
- Univ. Lille, Inserm, CHU Lille, Laboratoire de Développement et plasticité du cerveau neuroendocrine, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratoire de Développement et plasticité du cerveau neuroendocrine, Lille Neuroscience et Cognition, UMR-S1172, 1 place de Verdun, 59045 Lille Cedex, France
| |
Collapse
|
30
|
Shan Y, Cen Y, Zhang Y, Tan R, Zhao J, Nie Z, Zhang J, Yu S. Effect of P-glycoprotein Inhibition on the Penetration of Ceftriaxone Across the Blood-Brain Barrier. Neurochem Res 2022; 47:634-643. [PMID: 34694535 DOI: 10.1007/s11064-021-03472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that inhibition of the efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may represent a putative strategy to increase the BBB penetration of several antibiotics. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of ceftriaxone (CFX) across the BBB. Blood and brain microdialysis in rats was used to monitor blood and brain unbound CFX concentrations following intravenous administration (50 mg/kg), with or without pretreatment with one of the P-gp inhibitors, cyclosporin A (6.25, 12.5, 25 mg/kg) or verapamil (5, 10, 20 mg/kg). An inhibitory effect was demonstrated by an increase in the ratio of unbound brain to unbound blood concentration (Kp.uu.brain) of CFX. The concentrations of CFX in blood and brain from 0 to 180 min after intravenous administration (CFX, 50 mg/kg) ranged from 3 to 40 μg/ml and 1 to 10 μg/ml, respectively. The Kp.uu.brain of CFX was 24.74 ± 1.34%. Pretreatment with cyclosporin A increased the brain concentration and the Kp.uu.brain of CFX in a dose-dependent manner. However, pretreatment with verapamil increased the brain concentration of CFX but not the Kp.uu.brain. The present data shows that CFX might be a substrate of P-gp efflux transporter at the BBB and P-gp inhibition might enhance the brain concentration of CFX. Future studies involving more selective P-gp inhibitors or knockout mouse models should be conducted to specifically elucidate the impact of P-gp inhibition on penetration of CFX across the BBB.
Collapse
Affiliation(s)
- Yuheng Shan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
- Department of Neurology, Characteristic Medical Centre of People's Armed Police Force, Tianjin, 300162, People's Republic of China
| | - Yuying Cen
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yanjin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Ruishu Tan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Jiahua Zhao
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China.
| | - Jiatang Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, No. 28, Fuxing Road, Beijing, 100853, People's Republic of China
| |
Collapse
|
31
|
Shan Y, Cen Y, Zhang Y, Tan R, Zhao J, Nie Z, Zhang J, Yu S. Acyclovir Brain Disposition: Interactions with P-gp, Bcrp, Mrp2, and Oat3 at the Blood-Brain Barrier. Eur J Drug Metab Pharmacokinet 2022; 47:279-289. [PMID: 35112329 DOI: 10.1007/s13318-021-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Acyclovir is effective in treating herpes simplex virus infections of the central nervous system. The purpose of this study was to investigate the interactions between acyclovir and the efflux pumps P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), multidrug resistance protein 2 (Mrp2), and organic anion transporter 3 (Oat3) at the blood-brain barrier (BBB). METHODS Acyclovir concentrations in the blood and brain were evaluated by microdialysis and high-performance liquid chromatography. Acyclovir pharmacokinetic parameters, including the area under the unbound blood concentration-time curve (AUCu,blood), the area under the unbound brain concentration-time curve (AUCu,brain), and the ratio of AUCu,brain to AUCu,blood (Kp.uu.brain), were evaluated in the presence and absence of elacridar (P-gp/Bcrp inhibitor, 7.5 mg/kg), tariquidar (P-gp/Bcrp inhibitor, 7.5 mg/kg), MK571 (Mrp2 inhibitor, 7.5 mg/kg), cyclosporine (P-gp/Bcrp/Mrp2 inhibitor, 25 mg/kg), and probenecid (Oat3 inhibitor, 50 mg/kg). RESULTS The average AUCu,blood, AUCu,brain, and Kp.uu.brain in rats who received acyclovir (25 mg/kg, intravenous) alone were 1377.7 min · μg/ml, 435.4 min · μg/ml, and 31.6%, respectively. Probenecid drastically increased the AUCu,blood of acyclovir 1.73-fold, whereas coadministration with elacridar, tariquidar, MK571, and cyclosporine did not alter the blood pharmacokinetic parameters of acyclovir. Elacridar, tariquidar, MK571, cyclosporine, and probenecid significantly increased the AUCu,brain of acyclovir 1.51-, 1.54-, 1.47-, 1.95-, and 2.34-fold, respectively. Additionally, the Kp.uu.brain of acyclovir markedly increased 1.48-, 1.63-, 1.39-, 1.90-, and 1.35-fold following elacridar, tariquidar, MK571, cyclosporine, and probenecid administration, respectively. CONCLUSION The present study demonstrated that P-gp, Bcrp, Mrp2, and Oat3 inhibition increased the penetration of acyclovir across the BBB, supporting the hypothesis that these efflux pumps restrict the distribution of acyclovir in the brain.
Collapse
Affiliation(s)
- Yuheng Shan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
- Department of Neurology, Characteristic Medical Centre of People's Armed Police Force, Tianjin, 300162, People's Republic of China
| | - Yuying Cen
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yanjin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China
| | - Ruishu Tan
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Jiahua Zhao
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, People's Republic of China.
| | - Jiatang Zhang
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
32
|
Reginald-Opara JN, Svirskis D, Paek S, Tang M, O'Carroll SJ, Dean JM, Chamley LW, Wu Z. The involvement of extracellular vesicles in the transcytosis of nanoliposomes through brain endothelial cells, and the impact of liposomal pH-sensitivity. Mater Today Bio 2022; 13:100212. [PMID: 35198960 PMCID: PMC8841812 DOI: 10.1016/j.mtbio.2022.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 10/29/2022] Open
|
33
|
Rojo Salvador C, Galicia Guerrero MDL, Sánchez Maldonado B, González-Gil A, Picazo González RA. Morphological and ultrastructural characterization of neurospheres spontaneously generated in the culture from sheep ovarian cortical cells. Anat Rec (Hoboken) 2021; 305:2265-2280. [PMID: 34873872 DOI: 10.1002/ar.24850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022]
Abstract
Neurospheres (NS) derived from adult stem cells of non-neural tissues represent a promising source of neural stem cells (NSCs) and neural progenitor cells (NPCs) for autologous cell therapy. Knowing the fine structure of NS cells is essential for characterizing them during differentiation or oncogenic transformation. NS are generated by culturing ovarian cortical cells (OCCs) under specific conditions. To establish whether these OCCs exhibited a similar morphophenotype as those from the central nervous system (CNS) reported in the literature, sheep OCCs were cultured for 21 days to generate NS. Expression levels of pluripotency (Nanog, octamer-binding transcription factor 4 [Oct4], and SRY-box transcription factor 2 [Sox2]) and NSCs/NPCs (nestin, paired box 6 [Pax6], and p75 neurotrophin receptor [P75NTR]) transcripts were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the NSC/NPC antigens were immunolocalized, and structural and ultrastructural analyses were performed in OCC-NS on Days 10, 15, and 21 in culture. Spheroids expressed transcripts and antigens of pluripotency as well as NSCs/NPCs. Cells were arranged into an inner core, with frequent apoptotic and degenerative events, and a peripheral epithelial-like cover with abundant cytoplasmic organelles, apical microvilli, and filament bundles of cytoskeleton elements. Adherens junctions and apical tight and lateral loose interdigitations were found in peripheral cells that eventually lost apical-basal polarization, which might indicate their disengaging/aggregating from/to the NS. We can conclude that OCC-NS shares the most structural and ultrastructural characteristics with CNS-NS.
Collapse
Affiliation(s)
- Concepción Rojo Salvador
- Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Belén Sánchez Maldonado
- Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfredo González-Gil
- Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa Ana Picazo González
- Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Sharp KA, Khoury MJ, Wirtz-Peitz F, Bilder D. Evidence for a nuclear role for Drosophila Dlg as a regulator of the NURF complex. Mol Biol Cell 2021; 32:ar23. [PMID: 34495684 PMCID: PMC8693970 DOI: 10.1091/mbc.e21-04-0187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scribble (Scrib), Discs-large (Dlg), and Lethal giant larvae (Lgl) are basolateral regulators of epithelial polarity and tumor suppressors whose molecular mechanisms of action remain unclear. We used proximity biotinylation to identify proteins localized near Dlg in the Drosophila wing imaginal disc epithelium. In addition to expected membrane- and cytoskeleton-associated protein classes, nuclear proteins were prevalent in the resulting mass spectrometry dataset, including all four members of the nucleosome remodeling factor (NURF) chromatin remodeling complex. Subcellular fractionation demonstrated a nuclear pool of Dlg and proximity ligation confirmed its position near the NURF complex. Genetic analysis showed that NURF activity is also required for the overgrowth of dlg tumors, and this growth suppression correlated with a reduction in Hippo pathway gene expression. Together, these data suggest a nuclear role for Dlg in regulating chromatin and transcription through a more direct mechanism than previously thought.
Collapse
Affiliation(s)
- Katherine A Sharp
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | - Mark J Khoury
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| | | | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA 94720
| |
Collapse
|
35
|
Toth AE, Helms HC, Harazin A, Johnsen KB, Goldeman C, Burkhart A, Thomsen MS, Kempen PJ, Klepe A, Lipka DV, Møller PL, Andresen TL, Nyegaard M, Moos T, Brodin B, Nielsen MS. Sortilin regulates blood-brain barrier integrity. FEBS J 2021; 289:1062-1079. [PMID: 34626084 DOI: 10.1111/febs.16225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/09/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023]
Abstract
Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and β-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark
| | - Hans C Helms
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Andras Harazin
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Kasper B Johnsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Charlotte Goldeman
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Annette Burkhart
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Maj S Thomsen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Paul J Kempen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Adrián Klepe
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Dora V Lipka
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Peter L Møller
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Thomas L Andresen
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Lyngby, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Torben Moos
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Laboratory of Neurobiology, Biomedicine Group, Department of Health Science and Technology, Aalborg University, Denmark
| | - Birger Brodin
- Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark.,Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Copenhagen, Denmark
| |
Collapse
|
36
|
Salminen AT, Tithof J, Izhiman Y, Masters EA, McCloskey MC, Gaborski TR, Kelley DH, Pietropaoli AP, Waugh RE, McGrath JL. Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic. Integr Biol (Camb) 2021; 12:275-289. [PMID: 33164044 DOI: 10.1093/intbio/zyaa022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Endothelial cells (ECs) are an active component of the immune system and interact directly with inflammatory cytokines. While ECs are known to be polarized cells, the potential role of apicobasal polarity in response to inflammatory mediators has been scarcely studied. Acute inflammation is vital in maintaining healthy tissue in response to infection; however, chronic inflammation can lead to the production of systemic inflammatory cytokines and deregulated leukocyte trafficking, even in the absence of a local infection. Elevated levels of cytokines in circulation underlie the pathogenesis of sepsis, the leading cause of intensive care death. Because ECs constitute a key barrier between circulation (luminal interface) and tissue (abluminal interface), we hypothesize that ECs respond differentially to inflammatory challenge originating in the tissue versus circulation as in local and systemic inflammation, respectively. To begin this investigation, we stimulated ECs abluminally and luminally with the inflammatory cytokine tumor necrosis factor alpha (TNF-α) to mimic a key feature of local and systemic inflammation, respectively, in a microvascular mimetic (μSiM-MVM). Polarized IL-8 secretion and polymorphonuclear neutrophil (PMN) transmigration were quantified to characterize the EC response to luminal versus abluminal TNF-α. We observed that ECs uniformly secrete IL-8 in response to abluminal TNF-α and is followed by PMN transmigration. The response to abluminal treatment was coupled with the formation of ICAM-1-rich membrane ruffles on the apical surface of ECs. In contrast, luminally stimulated ECs secreted five times more IL-8 into the luminal compartment than the abluminal compartment and sequestered PMNs on the apical EC surface. Our results identify clear differences in the response of ECs to TNF-α originating from the abluminal versus luminal side of a monolayer for the first time and may provide novel insight into future inflammatory disease intervention strategies.
Collapse
Affiliation(s)
- Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Yara Izhiman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Elysia A Masters
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Thomas R Gaborski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, USA
| | - Anthony P Pietropaoli
- Medicine, Pulmonary Disease and Critical Care, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
37
|
Raacke M, Kerr A, Dörpinghaus M, Brehmer J, Wu Y, Lorenzen S, Fink C, Jacobs T, Roeder T, Sellau J, Bachmann A, Metwally NG, Bruchhaus I. Altered Cytokine Response of Human Brain Endothelial Cells after Stimulation with Malaria Patient Plasma. Cells 2021; 10:cells10071656. [PMID: 34359826 PMCID: PMC8303479 DOI: 10.3390/cells10071656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infections with the deadliest malaria parasite, Plasmodium falciparum, are accompanied by a strong immunological response of the human host. To date, more than 30 cytokines have been detected in elevated levels in plasma of malaria patients compared to healthy controls. Endothelial cells (ECs) are a potential source of these cytokines, but so far it is not known if their cytokine secretion depends on the direct contact of the P. falciparum-infected erythrocytes (IEs) with ECs in terms of cytoadhesion. Culturing ECs with plasma from malaria patients (27 returning travellers) resulted in significantly increased secretion of IL-11, CXCL5, CXCL8, CXCL10, vascular endothelial growth factor (VEGF) and angiopoietin-like protein 4 (ANGPTL4) if compared to matching controls (22 healthy individuals). The accompanying transcriptome study of the ECs identified 43 genes that were significantly increased in expression (≥1.7 fold) after co-incubation with malaria patient plasma, including cxcl5 and angptl4. Further bioinformatic analyses revealed that biological processes such as cell migration, cell proliferation and tube development were particularly affected in these ECs. It can thus be postulated that not only the cytoadhesion of IEs, but also molecules in the plasma of malaria patients exerts an influence on ECs, and that not only the immunological response but also other processes, such as angiogenesis, are altered.
Collapse
Affiliation(s)
- Michaela Raacke
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Amy Kerr
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Michael Dörpinghaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Jana Brehmer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Yifan Wu
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Christine Fink
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Thomas Roeder
- Department of Molecular Physiology, Kiel University, 24118 Kiel, Germany; (C.F.); (T.R.)
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 24118 Kiel, Germany
| | - Julie Sellau
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (M.R.); (A.K.); (M.D.); (J.B.); (Y.W.); (S.L.); (T.J.); (J.S.); (A.B.); (N.G.M.)
- Department of Biology, University of Hamburg, 20148 Hamburg, Germany
- Correspondence: ; Tel.: +49-404-281-8472
| |
Collapse
|
38
|
Kurmann L, Okoniewski M, Ogunshola OO, Leeners B, Imthurn B, Dubey RK. Transcryptomic Analysis of Human Brain-Microvascular Endothelial Response to -Pericytes: Cell Orientation Defines Barrier Function. Cells 2021; 10:cells10040963. [PMID: 33924251 PMCID: PMC8074760 DOI: 10.3390/cells10040963] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Pericytes facilitate blood-brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-β and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine-cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-β regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport.
Collapse
Affiliation(s)
- Lisa Kurmann
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (B.L.); (B.I.)
| | | | - Omolara O. Ogunshola
- Zurich Center Integrative Physiology (ZIHP), Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland;
| | - Brigitte Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (B.L.); (B.I.)
| | - Bruno Imthurn
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (B.L.); (B.I.)
| | - Raghvendra K. Dubey
- Department of Reproductive Endocrinology, University Hospital Zurich, 8952 Schlieren, Switzerland; (L.K.); (B.L.); (B.I.)
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Correspondence:
| |
Collapse
|
39
|
Reddy S, Tatiparti K, Sau S, Iyer AK. Recent advances in nano delivery systems for blood-brain barrier (BBB) penetration and targeting of brain tumors. Drug Discov Today 2021; 26:1944-1952. [PMID: 33865978 DOI: 10.1016/j.drudis.2021.04.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/24/2021] [Accepted: 04/08/2021] [Indexed: 02/09/2023]
Abstract
Gliomas constitute about 80% of brain tumors and have a meager two-year survival rate. The treatment options available are very few because of poor prognosis and a lack of targeted nanodelivery systems that can cross the blood-brain barrier (BBB) and the blood-tumor barrier. This short review attempts to clarify the challenges for delivery systems designed to cross the BBB, and provides a brief description of the different types of targeted nanodelivery system that have shown potential for success in delivering drugs to the brain. Further, this review describes the most recent studies that have developed nanoparticles for brain delivery in the past five years. We also provide an insight into the most recent clinical trials designed to assess the efficacy of these nanodelivery systems for glioma.
Collapse
Affiliation(s)
- Shriya Reddy
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Northville High School, Northville, MI 48168, USA
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
García-Carlos CA, Camargo-Loaiza JA, García-Villa D, López-Cervantes JG, Domínguez-Avila JA, González-Aguilar GA, Astiazaran-Garcia H, Montiel-Herrera M. Angiotensin II, ATP and high extracellular potassium induced intracellular calcium responses in primary rat brain endothelial cell cultures. Cell Biochem Funct 2021; 39:688-698. [PMID: 33821520 DOI: 10.1002/cbf.3635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/02/2023]
Abstract
The meninges shield the nervous system from diverse, rather harmful stimuli and pathogens from the periphery. This tissue is composed of brain endothelial cells (BECs) that express diverse ion channels and chemical-transmitter receptors also expressed by neurons and glial cells to communicate with each other. However, information about the effects of ATP and angiotensin II on BECs is scarce, despite their essential roles in blood physiology. This work investigated in vitro if BECs from the meninges from rat forebrain respond to ATP, angiotensin II and high extracellular potassium, with intracellular calcium mobilizations and its second messenger-associated pathways. We found that in primary BEC cultures, both ATP and angiotensin II produced intracellular calcium responses linked to the activation of inositol trisphosphate receptors and ryanodine receptors, which led to calcium release from intracellular stores. We also used RT-PCR to explore what potassium channel subunits are expressed by primary BEC cultures and freshly isolated meningeal tissue, and which might be linked to the observed effects. We found that BECs mainly expressed the inward rectifier potassium channel subunits Kir1.1, Kir3.3, Kir 4.1 and Kir6.2. This study contributes to the understanding of the functions elicited by ATP and angiotensin II in BECs from rat meninges. SIGNIFICANCE OF THE STUDY: Brain endothelial cells (BECs) express diverse ion channels and membrane receptors, which they might use to communicate with neurons and glia. This work investigated in vitro, if BECs from the rat forebrain respond to angiotensin II and ATP with intracellular calcium mobilizations. We found that these cells did respond to said substances with intracellular calcium mobilizations linked to inositol trisphosphate and ryanodine receptor activation, which led to calcium release from intracellular stores. These findings are important because they might uncover routes of active communication between brain cells and endothelial cells.
Collapse
Affiliation(s)
| | | | - Denisse García-Villa
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, Mexico
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcinales, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, Mexico
| | - Humberto Astiazaran-Garcia
- Laboratorio de Patología Experimental, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, Mexico
| | | |
Collapse
|
41
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
42
|
Ahn SI, Kim Y. Human Blood-Brain Barrier on a Chip: Featuring Unique Multicellular Cooperation in Pathophysiology. Trends Biotechnol 2021; 39:749-752. [PMID: 33602608 DOI: 10.1016/j.tibtech.2021.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/30/2022]
Abstract
Advances in stem cell engineering have opened new avenues for more accurately developing in vitro models of the human blood-brain barrier (BBB). Here, we highlight state-of-the-art human BBB-on-a-chip technologies and discuss the importance of human brain cells for better modeling the human brain pathophysiology.
Collapse
Affiliation(s)
- Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Mepsgenlab Inc., Atlanta, GA 30309, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Mepsgenlab Inc., Atlanta, GA 30309, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
43
|
Abstract
The myocardium consists of different cell types, of which endothelial cells, cardiomyocytes, and fibroblasts are the most abundant. Communication between these different cell types, also called paracrine signaling, is essential for normal cardiac function, but also important in cardiac remodeling and heart failure. Systematic studies on the expression of ligands and their corresponding receptors in different cell types showed that for 60% of the expressed ligands in a particular cell, the receptor is also expressed. The fact that many ligand-receptor pairs are present in most cells, including the major cell types in the heart, indicates that autocrine signaling is a widespread phenomenon. Autocrine signaling in cardiac remodeling and heart failure is involved in all pathophysiological mechanisms generally observed: hypertrophy, fibrosis, angiogenesis, cell survival, and inflammation. Herein, we review ligand-receptor pairs present in the major cardiac cell types based on RNA-sequencing expression databases, and we review current literature on extracellular signaling proteins with an autocrine function in the heart; these include C-type natriuretic peptide, fibroblast growth factors 2, F21, and 23, macrophage migration inhibitory factor, heparin binding-epidermal growth factor, angiopoietin-like protein 2, leptin, adiponectin, follistatin-like 1, apelin, neuregulin 1, vascular endothelial growth factor, transforming growth factor β, wingless-type integration site family, member 1-induced secreted protein-1, interleukin 11, connective tissue growth factor/cellular communication network factor, and calcitonin gene‒related peptide. The large number of autocrine signaling factors that have been studied in the literature supports the concept that autocrine signaling is an essential part of myocardial biology and disease.
Collapse
Affiliation(s)
- Vincent F. M. Segers
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyUniversity Hospital AntwerpEdegemBelgium
| | - Gilles W. De Keulenaer
- Laboratory of PhysiopharmacologyUniversity of AntwerpBelgium
- Department of CardiologyZNA HospitalAntwerpBelgium
| |
Collapse
|
44
|
Yu Z, Zeng J, Wang J, Cui Y, Song X, Zhang Y, Cheng X, Hou N, Teng Y, Lan Y, Chen Y, Yang X. Hepatocyte growth factor-regulated tyrosine kinase substrate is essential for endothelial cell polarity and cerebrovascular stability. Cardiovasc Res 2021; 117:533-546. [PMID: 32044971 PMCID: PMC7820882 DOI: 10.1093/cvr/cvaa016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS Hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs), a key component of the endosomal sorting complex required for transport (ESCRT), has been implicated in many essential biological processes. However, the physiological role of endogenous Hgs in the vascular system has not previously been explored. Here, we have generated brain endothelial cell (EC) specific Hgs knockout mice to uncover the function of Hgs in EC polarity and cerebrovascular stability. METHODS AND RESULTS Knockout of Hgs in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse in mice. We determined that Hgs is essential for recycling of vascular endothelial (VE)-cadherin to the plasma membrane, since loss of Hgs blocked trafficking of endocytosed VE-cadherin from early endosomes to recycling endosomes, and impaired the motility of recycling endosomes. Supportively, overexpression of the motor kinesin family member 13A (KIF13A) restored endosomal recycling and rescued abrogated polarized trafficking and distribution of VE-cadherin in Hgs knockdown ECs. CONCLUSION These data uncover a novel physiological function of Hgs and support an essential role for the ESCRT machinery in the maintenance of EC polarity and cerebrovascular stability.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Zeng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yaxiong Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaopeng Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yizhe Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yu Lan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yeguang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
45
|
Wazny V, Siau A, Wu KX, Cheung C. Vascular underpinning of COVID-19. Open Biol 2020; 10:200208. [PMID: 32847471 PMCID: PMC7479931 DOI: 10.1098/rsob.200208] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
COVID-19 management guidelines have largely attributed critically ill patients who develop acute respiratory distress syndrome, to a systemic overproduction of pro-inflammatory cytokines. Cardiovascular dysfunction may also represent a primary phenomenon, with increasing data suggesting that severe COVID-19 reflects a confluence of vascular dysfunction, thrombosis and dysregulated inflammation. Here, we first consolidate the information on localized microvascular inflammation and disordered cytokine release, triggering vessel permeability and prothrombotic conditions that play a central role in perpetuating the pathogenic COVID-19 cascade. Secondly, we seek to clarify the gateways which SARS-CoV-2, the causative COVID-19 virus, uses to enter host vascular cells. Post-mortem examinations of patients' tissues have confirmed direct viral endothelial infection within several organs. While there have been advances in single-cell RNA sequencing, endothelial cells across various vascular beds express low or undetectable levels of those touted SARS-CoV-2 entry factors. Emerging studies postulate alternative pathways and the apicobasal distribution of host cell surface factors could influence endothelial SARS-CoV-2 entry and replication. Finally, we provide experimental considerations such as endothelial polarity, cellular heterogeneity in organoids and shear stress dynamics in designing cellular models to facilitate research on viral-induced endothelial dysfunctions. Understanding the vascular underpinning of COVID-19 pathogenesis is crucial to managing outcomes and mortality.
Collapse
Affiliation(s)
- Vanessa Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Anthony Siau
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Kan Xing Wu
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore636921, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore138673, Singapore
| |
Collapse
|
46
|
Subramaniyan Parimalam S, Badilescu S, Sonenberg N, Bhat R, Packirisamy M. Lab-On-A-Chip for the Development of Pro-/Anti-Angiogenic Nanomedicines to Treat Brain Diseases. Int J Mol Sci 2019; 20:ijms20246126. [PMID: 31817343 PMCID: PMC6940944 DOI: 10.3390/ijms20246126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
There is a huge demand for pro-/anti-angiogenic nanomedicines to treat conditions such as ischemic strokes, brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Nanomedicines are therapeutic particles in the size range of 10–1000 nm, where the drug is encapsulated into nano-capsules or adsorbed onto nano-scaffolds. They have good blood–brain barrier permeability, stability and shelf life, and able to rapidly target different sites in the brain. However, the relationship between the nanomedicines’ physical and chemical properties and its ability to travel across the brain remains incompletely understood. The main challenge is the lack of a reliable drug testing model for brain angiogenesis. Recently, microfluidic platforms (known as “lab-on-a-chip” or LOCs) have been developed to mimic the brain micro-vasculature related events, such as vasculogenesis, angiogenesis, inflammation, etc. The LOCs are able to closely replicate the dynamic conditions of the human brain and could be reliable platforms for drug screening applications. There are still many technical difficulties in establishing uniform and reproducible conditions, mainly due to the extreme complexity of the human brain. In this paper, we review the prospective of LOCs in the development of nanomedicines for brain angiogenesis–related conditions.
Collapse
Affiliation(s)
- Subhathirai Subramaniyan Parimalam
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
- Correspondence: or
| | - Simona Badilescu
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada;
| | - Rama Bhat
- Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada;
| | - Muthukumaran Packirisamy
- Optical-Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 2W1, Canada; (S.B.); (M.P.)
| |
Collapse
|
47
|
Wu G, Jiang Q, Cui T, Liu X, Gong D, Yin Y, Wang C, Wang T, Lu Y, Zhu D, Han F. The glymphatic system delivery enhances the transduction efficiency of AAV1 to brain endothelial cells in adult mice. J Neurosci Methods 2019; 328:108441. [PMID: 31574288 DOI: 10.1016/j.jneumeth.2019.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recombinant adeno-associated virus (rAAV) is increasingly applied in neuroscience research or gene therapy. However, there is no simple and efficient tool for specific transfection of rAAV into cerebrovascular tissues. It has been reported that fluorescent tracers or beta-amyloid protein can enter the brain through perivascular spaces, named as "glymphatic system". The purpose of this study was to explore whether rAAV could transduce the cerebral vasculature through the glymphatic pathway. NEW METHOD An AAV1-GFP vector suspension (15 μL) was injected into the intracisternal space of anesthetized mice (n = 2) and 5 μl was injected into the bulbus medullae (n = 2). As controls, 15 μl of artificial cerebrospinal fluid (aCSF) was injected into the cisterna magna. The endothelial specific transduction was verified by Glut1 or PDGFRβ immunofluorescent staining. Immunofluorescence images for all groups were captured with a laser microscope. RESULTS It was observed that infection with rAAV1 vectors encoding green fluorescence protein resulted in a successful cerebrovascular transduction when injected into cisterna magna, compared to aCSF or intra-parenchymal injection at 30 days post-transduction in adult mice. In addition, GFP was co-localized with Glut1 based on immuno-fluorescence. These results indicate that glymphatic system delivery enhances the transduction efficiency of AAV1 to brain endothelial cells. COMPARISON WITH EXISTING METHODS The AAV1 vector can simply and efficiently transduce the cerebral endothelial cells through the glymphatic pathway. CONCLUSION The findings of this study reveal that rAAV1-based vectors have high application potential for endothelial-targeted neurologic disease research or gene-based therapies.
Collapse
Affiliation(s)
- Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tiantian Cui
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiuxiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongmei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Yixuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Chengkun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tiantian Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Department of Pharmacy, Run Run Shaw Hospital affiliated to School of Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - YingMei Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Pharmacy, Nanjing Medical University, Nanjing, Jiang Su, China; School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Danyan Zhu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Pharmacy, Nanjing Medical University, Nanjing, Jiang Su, China.
| |
Collapse
|
48
|
Steimle BL, Smith FM, Kosman DJ. The solute carriers ZIP8 and ZIP14 regulate manganese accumulation in brain microvascular endothelial cells and control brain manganese levels. J Biol Chem 2019; 294:19197-19208. [PMID: 31699897 DOI: 10.1074/jbc.ra119.009371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/29/2019] [Indexed: 12/29/2022] Open
Abstract
Manganese supports numerous neuronal functions but in excess is neurotoxic. Consequently, regulation of manganese flux at the blood-brain barrier (BBB) is critical to brain homeostasis. However, the molecular pathways supporting the transcellular trafficking of divalent manganese ions within the microvascular capillary endothelial cells (BMVECs) that constitute the BBB have not been examined. In this study, we have determined that ZIP8 and ZIP14 (Zrt- and Irt-like proteins 8 and 14) support Mn2+ uptake by BMVECs and that neither DMT1 nor an endocytosis-dependent pathway play any significant role in Mn2+ uptake. Specifically, siRNA-mediated knockdown of ZIP8 and ZIP14 coincided with a decrease in manganese uptake, and kinetic analyses revealed that manganese uptake depends on pH and bicarbonate and is up-regulated by lipopolysaccharide, all biochemical markers of ZIP8 or ZIP14 activity. Mn2+ uptake also was associated with cell-surface membrane presentation of ZIP8 and ZIP14, as indicated by membrane protein biotinylation. Importantly, surface ZIP8 and ZIP14 biotinylation and Mn2+-uptake experiments together revealed that these transporters support manganese uptake at both the apical, blood and basal, brain sides of BMVECs. This indicated that in the BMVECs of the BBB, these two transporters support a bidirectional Mn2+ flux. We conclude that BMVECs play a critical role in controlling manganese homeostasis in the brain.
Collapse
Affiliation(s)
- Brittany L Steimle
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Frances M Smith
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| | - Daniel J Kosman
- Department of Biochemistry, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203
| |
Collapse
|
49
|
Ross EC, Olivera GC, Barragan A. Dysregulation of focal adhesion kinase upon
Toxoplasma gondii
infection facilitates parasite translocation across polarised primary brain endothelial cell monolayers. Cell Microbiol 2019; 21:e13048. [DOI: 10.1111/cmi.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Ross
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Gabriela C. Olivera
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner‐Gren InstituteStockholm University Stockholm Sweden
| |
Collapse
|
50
|
Deng H, Dutta P, Liu J. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. NANOSCALE 2019; 11:11227-11235. [PMID: 31157808 PMCID: PMC6634982 DOI: 10.1039/c9nr02710f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Receptor-mediated transcytosis (RMT) is a fundamental mechanism for the transcellular transport of nanoparticles. RMT is a complex process, during which the nanoparticles actively interact with the membrane and the membrane profile undergoes extreme deformations for particle internalization and expulsion. In this work, we developed a stochastic model to study the endocytosis and exocytosis of nanoparticles across soft membranes. The model is based on the combination of a stochastic particle binding model with a membrane model, and accounts for both clathrin-mediated endocytosis for internalization and actin-mediated exocytosis for expulsion. Our results showed that nanoparticles must have certain avidity with enough ligand density and ligand-receptor binding affinity to be taken up, while too high avidity limited the particle release from the cell surface. We further explored the functional roles of actin during exocytosis, which has been a topic under active debate. Our simulations indicated that the membrane compression due to the actin induced tension tended to break the ligand-receptor bonds and to shrink the fusion pore. Therefore, an intermediate tension promoted the fusion pore expansion and nanoparticle release, while high tension prohibits particle release. Our model provides new and critical mechanistic insights into RMT, and represents a powerful platform for aiding the rational design of nanocarriers for controlled drug delivery.
Collapse
Affiliation(s)
- Hua Deng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|