1
|
Chang X, Gao J, Yang J, Ma Y, Song G. The Chinese hamster as an excellent experimental animal model. Exp Anim 2025; 74:1-15. [PMID: 39198205 PMCID: PMC11742471 DOI: 10.1538/expanim.24-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Hamsters are valuable rodent models that are distinct from mice and rats. Currently, the main hamster species used for experimental research are the Syrian golden hamster and Chinese hamster, in addition to hamster species from other countries. Chinese hamsters are small, easy to run and feed, and inexpensive. They are prominent species found only in China and are part of the experimental animal resources of Chinese specialty. Chinese hamsters are distinguished by a black stripe on their back, short tail, pair of easily retractable cheek pouches, and pair of large drooping testes in males with 22 chromosomes. Due to their unique anatomical structure and biological features, Chinese hamsters have been used as a model in biomedical research. Moreover, the breeding and use of Chinese hamsters was comprehensively studied in 1958, with significant breakthroughs. We present a thorough review of the current developments and applications of Chinese hamsters and support the use of this species as a suitable and innovative experimental research model. With the success of Chinese hamster transgenic technology, this species will become more commonly employed in biological and medical research in the future.
Collapse
Affiliation(s)
- Xiaoqi Chang
- The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
| | - Jiping Gao
- The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
| | - Junting Yang
- The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
| | - Yunhui Ma
- The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
| | - Guohua Song
- The Laboratory Animal Center, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
- Department of Basic Medical Sciences, Shanxi Medical University, No 56 Xinjian South Road, Taiyuan 030001, P.R. China
| |
Collapse
|
2
|
Marinho LDSS, Andrade MCR, Lopes CADA, Coelho da Silva KVG, Gama E Souza KDM, Machado-Santos C. Immunohistochemical identification of ACE-2 (SARS-COV II entry mechanism) in the gastrointestinal tract, kidney and lung of rhesus monkeys (Macaca mulatta) and squirrel monkeys (Saimiri sciureus). Tissue Cell 2024; 93:102711. [PMID: 39787940 DOI: 10.1016/j.tice.2024.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys. The sections from 18 rhesus monkey and 17 squirrel monkeys were incubated with rabbit polyclonal antibody to ACE2 (ab65863). In the lung of the rhesus monkeys, the presence of ACE-2 was noted in the bronchial mucosa of the respiratory epithelium. In the kidney, there was irregular in the proximal convoluted tubules. In the pyloric stomach, duodenum and in the large intestine it was observed on the surface of the lining epithelium. In the lung of the squirrel monkeys, this marking was present in both the ciliated cylindrical and goblet cell sof the bronchi. In the kidney light marking was observed along the surfasse of the cubic epithelium of the proximal convoluted tubules and in the renal glomerulus. No markings were observed throughout the stomach and intense staining was observed along the surfasse of the intestinal epithelium of the duodenum, jejunum and ileum, as well as in the intestinal glands. In our study, we can observe not able differences in the distribution of ACE2 between the two species of primates analysed. These differences must be considered in experimental studies on this disease, which continues to be a topic of notable importance for Public Health.
Collapse
Affiliation(s)
- Larissa Dos Santos Sebould Marinho
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | | | | | - Kassia Valéria Gomes Coelho da Silva
- Department of Pathology and Veterinary Clinic, Faculty of Veterinary, Fluminense Federal University, Vital Brazil/Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Kauet de Matos Gama E Souza
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil
| | - Clarice Machado-Santos
- Laboratory of Teaching and Research in Histology and Comparative Embryology (LEPHEC), Biomedical Institute, Fluminense Federal University, Niterói, RJ CEP 24210-130, Brazil.
| |
Collapse
|
3
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
4
|
Gibson SA, Liu Y, Li R, Hurst BL, Fan Z, Siddharthan V, Larson DP, Sheesley AY, Stewart R, Kunzler M, Polejaeva IA, Van Wettere AJ, Moisyadi S, Morrey JD, Tarbet EB, Wang Z. Differences in Susceptibility to SARS-CoV-2 Infection Among Transgenic hACE2-Hamster Founder Lines. Viruses 2024; 16:1625. [PMID: 39459957 PMCID: PMC11512293 DOI: 10.3390/v16101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Animal models that are susceptible to SARS-CoV-2 infection and develop clinical signs like human COVID-19 are desired to understand viral pathogenesis and develop effective medical countermeasures. The golden Syrian hamster is important for the study of SARS-CoV-2 since hamsters are naturally susceptible to SARS-CoV-2. However, infected hamsters show only limited clinical disease and resolve infection quickly. In this study, we describe development of human angiotensin-converting enzyme 2 (hACE2) transgenic hamsters as a model for COVID-19. During development of the model for SARS-CoV-2, we observed that different hACE2 transgenic hamster founder lines varied in their susceptibility to SARS-CoV-2 lethal infection. The highly susceptible hACE2 founder lines F0F35 and F0M41 rapidly progress to severe infection and death within 6 days post-infection (p.i.). Clinical signs included lethargy, weight loss, dyspnea, and mortality. Lethality was observed in a viral dose-dependent manner with a lethal dose as low as 1 × 100.15 CCID50. In addition, virus shedding from highly susceptible lines was detected in oropharyngeal swabs on days 2-5 p.i., and virus titers were observed at 105.5-6.5 CCID50 in lung and brain tissue by day 4 p.i.. Histopathology revealed that infected hACE2-hamsters developed rhinitis, tracheitis, bronchointerstitial pneumonia, and encephalitis. Mortality in highly susceptible hACE2-hamsters can be attributed to neurologic disease with contributions from the accompanying respiratory disease. In contrast, virus challenge of animals from less susceptible founder lines, F0M44 and F0M51, resulted in only 0-20% mortality. To demonstrate utility of this SARS-CoV-2 infection model, we determined the protective effect of the TLR3 agonist polyinosinic-polycytidylic acid (Poly (I:C)). Prophylactic treatment with Poly (I:C) significantly improved survival in highly susceptible hACE2-hamsters. In summary, our studies demonstrate that hACE2 transgenic hamsters differ in their susceptibility to SARS-CoV-2 infection, based on the transgenic hamster founder line, and that prophylactic treatment with Poly (I:C) was protective in this COVID-19 model of highly susceptible hACE2-hamsters.
Collapse
Affiliation(s)
- Scott A. Gibson
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Yanan Liu
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Rong Li
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Brett L. Hurst
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Zhiqiang Fan
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Venkatraman Siddharthan
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Deanna P. Larson
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Ashley Y. Sheesley
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Rebekah Stewart
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Madelyn Kunzler
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Irina A. Polejaeva
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| | - Arnaud J Van Wettere
- Department of Veterinary, Clinical, and Life Sciences, Utah State University, Logan, UT 84322, USA;
- Utah Veterinary Diagnostic Laboratory, Utah State University, Logan, UT 84322, USA
| | - Stefan Moisyadi
- Institute of Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA;
| | - John D. Morrey
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - E. Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
- Department of Veterinary, Clinical, and Life Sciences, Utah State University, Logan, UT 84322, USA;
| | - Zhongde Wang
- Department of Animal, Diary and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (S.A.G.); (Y.L.); (R.L.); (B.L.H.); (Z.F.); (V.S.); (D.P.L.); (A.Y.S.); (R.S.); (M.K.); (I.A.P.); (J.D.M.); (Z.W.)
| |
Collapse
|
5
|
Friedrich VD, Pennitz P, Wyler E, Adler JM, Postmus D, Müller K, Teixeira Alves LG, Prigann J, Pott F, Vladimirova D, Hoefler T, Goekeri C, Landthaler M, Goffinet C, Saliba AE, Scholz M, Witzenrath M, Trimpert J, Kirsten H, Nouailles G. Neural network-assisted humanisation of COVID-19 hamster transcriptomic data reveals matching severity states in human disease. EBioMedicine 2024; 108:105312. [PMID: 39317638 DOI: 10.1016/j.ebiom.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Translating findings from animal models to human disease is essential for dissecting disease mechanisms, developing and testing precise therapeutic strategies. The coronavirus disease 2019 (COVID-19) pandemic has highlighted this need, particularly for models showing disease severity-dependent immune responses. METHODS Single-cell transcriptomics (scRNAseq) is well poised to reveal similarities and differences between species at the molecular and cellular level with unprecedented resolution. However, computational methods enabling detailed matching are still scarce. Here, we provide a structured scRNAseq-based approach that we applied to scRNAseq from blood leukocytes originating from humans and hamsters affected with moderate or severe COVID-19. FINDINGS Integration of data from patients with COVID-19 with two hamster models that develop moderate (Syrian hamster, Mesocricetus auratus) or severe (Roborovski hamster, Phodopus roborovskii) disease revealed that most cellular states are shared across species. A neural network-based analysis using variational autoencoders quantified the overall transcriptomic similarity across species and severity levels, showing highest similarity between neutrophils of Roborovski hamsters and patients with severe COVID-19, while Syrian hamsters better matched patients with moderate disease, particularly in classical monocytes. We further used transcriptome-wide differential expression analysis to identify which disease stages and cell types display strongest transcriptional changes. INTERPRETATION Consistently, hamsters' response to COVID-19 was most similar to humans in monocytes and neutrophils. Disease-linked pathways found in all species specifically related to interferon response or inhibition of viral replication. Analysis of candidate genes and signatures supported the results. Our structured neural network-supported workflow could be applied to other diseases, allowing better identification of suitable animal models with similar pathomechanisms across species. FUNDING This work was supported by German Federal Ministry of Education and Research, (BMBF) grant IDs: 01ZX1304B, 01ZX1604B, 01ZX1906A, 01ZX1906B, 01KI2124, 01IS18026B and German Research Foundation (DFG) grant IDs: 14933180, 431232613.
Collapse
Affiliation(s)
- Vincent D Friedrich
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Emanuel Wyler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia M Adler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Dylan Postmus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Kristina Müller
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany
| | - Luiz Gustavo Teixeira Alves
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Julia Prigann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Gladstone Institutes, San Francisco, USA
| | - Fabian Pott
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Thomas Hoefler
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Cengiz Goekeri
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; Cyprus International University, Faculty of Medicine, Nicosia, Cyprus
| | - Markus Landthaler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Humboldt-Universität zu Berlin, Institut fuer Biologie, Berlin, Germany
| | - Christine Goffinet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Liverpool, United Kingdom
| | - Antoine-Emmanuel Saliba
- Faculty of Medicine, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Markus Scholz
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany; University of Leipzig, Faculty of Mathematics and Computer Science, Leipzig, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Jakob Trimpert
- Freie Universität Berlin, Institut für Virologie, Berlin, Germany
| | - Holger Kirsten
- University of Leipzig, Institute for Medical Informatics, Statistics, and Epidemiology, Leipzig, Germany.
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
| |
Collapse
|
6
|
Gorskaya AV, Vasilev DS. Problems in the Diagnosis of Dysfunctions of the Olfactory Analyzer in Laboratory Animals Based on Behavioral and Electrophysiological Study Methods. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2024; 54:990-1002. [DOI: 10.1007/s11055-024-01702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2025]
|
7
|
de Souza AJS, de Souza AF, Zimpel CK, Ayupe MC, de Araújo MV, Machado RRG, Salles E, Salgado CL, Tavares MS, Silva-Pereira TT, de Souza PC, Durigon EL, Heinemann MB, Brandão PE, da Fonseca DM, Guimarães AMDS, de Sá LRM. Hepatic endotheliitis in Golden Syrian hamsters (Mesocricetus auratus) experimentally infected with SARS-CoV-2. Rev Inst Med Trop Sao Paulo 2024; 66:e44. [PMID: 39082483 PMCID: PMC11295288 DOI: 10.1590/s1678-9946202466044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatic injuries in COVID-19 are not yet fully understood and indirect pathways (without viral replication in the liver) have been associated with the activation of vascular mechanisms of liver injury in humans infected with SARS-CoV-2. Golden Syrian hamsters are an effective model for experimental reproduction of moderate and self-limiting lung disease during SARS-CoV-2 infection. As observed in humans, this experimental model reproduces lesions of bronchointerstitial pneumonia and pulmonary vascular lesions, including endotheliitis (attachment of lymphoid cells to the luminal surface of endothelium). Extrapulmonary vascular lesions are well documented in COVID-19, but such extrapulmonary vascular lesions have not yet been described in the Golden Syrian hamster model of SARS-CoV-2 infection. The study aimed to evaluate microscopic liver lesions in Golden Syrian hamsters experimentally infected with SARS-CoV-2. In total, 38 conventional Golden Syrian hamsters, divided into infected group (n=24) and mock-infected group (n=14), were euthanized at 2-, 3-, 4-, 5-, 7-, 14-, and 15-days post infection with SARS-CoV-2. Liver fragments were evaluated by histopathology and immunohistochemical detection of SARS-CoV-2 Spike S2 antigens. The frequencies of portal vein endotheliitis, lobular activity, hepatocellular degeneration, and lobular vascular changes were higher among SARS-CoV-2-infected animals. Spike S2 antigen was not detected in liver. The main results indicate that SARS-CoV-2 infection exacerbated vascular and inflammatory lesions in the liver of hamsters with pre-existing hepatitis of unknown origin. A potential application of this animal model in studies of the pathogenesis and evolution of liver lesions associated with SARS-CoV-2 infection still needs further evaluation.
Collapse
Affiliation(s)
- Alex Junior Souza de Souza
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, São Paulo, São Paulo, Brazil
| | - Antônio Francisco de Souza
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Cristina Kraemer Zimpel
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Marcelo Valdemir de Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
- Instituto Butantan, Centro de Desenvolvimento e Inovação, Laboratório de Virologia, São Paulo, São Paulo, Brazil
| | - Rafael Rahal Guaragna Machado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Erika Salles
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Mariana Silva Tavares
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Paula Carolina de Souza
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Paulo Eduardo Brandão
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Ana Marcia de Sá Guimarães
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
9
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024; 61:609-620. [PMID: 38323378 DOI: 10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Between September and November 2021, 5 snow leopards (Panthera uncia) and 1 lion (Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska-Lincoln, Lincoln, NE
| | - Jana M Ritter
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai'i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
10
|
Peidli S, Nouailles G, Wyler E, Adler JM, Kunder S, Voß A, Kazmierski J, Pott F, Pennitz P, Postmus D, Teixeira Alves LG, Goffinet C, Gruber AD, Blüthgen N, Witzenrath M, Trimpert J, Landthaler M, Praktiknjo SD. Single-cell-resolved interspecies comparison shows a shared inflammatory axis and a dominant neutrophil-endothelial program in severe COVID-19. Cell Rep 2024; 43:114328. [PMID: 38861386 DOI: 10.1016/j.celrep.2024.114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
A key issue for research on COVID-19 pathogenesis is the lack of biopsies from patients and of samples at the onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this disease. Here, we further leverage the model to molecularly survey the disease progression from time-resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify a shared axis of inflammation dominated by macrophages, neutrophils, and endothelial cells, which we show to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2 infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19 outcomes, respectively.
Collapse
Affiliation(s)
- Stefan Peidli
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany; Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Sandra Kunder
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anne Voß
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Julia Kazmierski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Pott
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Dylan Postmus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christine Goffinet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany; Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany; German Center for Lung Research (DZL), Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Markus Landthaler
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Samantha D Praktiknjo
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Belser JA, Kieran TJ, Mitchell ZA, Sun X, Mayfield K, Tumpey TM, Spengler JR, Maines TR. Key considerations to improve the normalization, interpretation and reproducibility of morbidity data in mammalian models of viral disease. Dis Model Mech 2024; 17:dmm050511. [PMID: 38440823 PMCID: PMC10941659 DOI: 10.1242/dmm.050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Viral pathogenesis and therapeutic screening studies that utilize small mammalian models rely on the accurate quantification and interpretation of morbidity measurements, such as weight and body temperature, which can vary depending on the model, agent and/or experimental design used. As a result, morbidity-related data are frequently normalized within and across screening studies to aid with their interpretation. However, such data normalization can be performed in a variety of ways, leading to differences in conclusions drawn and making comparisons between studies challenging. Here, we discuss variability in the normalization, interpretation, and presentation of morbidity measurements for four model species frequently used to study a diverse range of human viral pathogens - mice, hamsters, guinea pigs and ferrets. We also analyze findings aggregated from influenza A virus-infected ferrets to contextualize this discussion. We focus on serially collected weight and temperature data to illustrate how the conclusions drawn from this information can vary depending on how raw data are collected, normalized and measured. Taken together, this work supports continued efforts in understanding how normalization affects the interpretation of morbidity data and highlights best practices to improve the interpretation and utility of these findings for extrapolation to public health contexts.
Collapse
Affiliation(s)
- Jessica A. Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Troy J. Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Zoë A. Mitchell
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kristin Mayfield
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Terrence M. Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Jessica R. Spengler
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Taronna R. Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
12
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
13
|
Drozd M, Ritter JM, Samuelson JP, Parker M, Wang L, Sander SJ, Yoshicedo J, Wright L, Odani J, Shrader T, Lee E, Lockhart SR, Ghai RR, Terio KA. Mortality associated with SARS-CoV-2 in nondomestic felids. Vet Pathol 2024. [DOI: https:/doi.org/10.1177/03009858231225500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Between September and November 2021, 5 snow leopards ( Panthera uncia) and 1 lion ( Panthera leo) were naturally infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) and developed progressive respiratory disease that resulted in death. Severe acute respiratory syndrome coronavirus 2 sequencing identified the delta variant in all cases sequenced, which was the predominant human variant at that time. The time between initial clinical signs and death ranged from 3 to 45 days. Gross lesions in all 6 cats included nasal turbinate hyperemia with purulent discharge and marked pulmonary edema. Ulcerative tracheitis and bronchitis were noted in 4 cases. Histologically, there was necrotizing and ulcerative rhinotracheitis and bronchitis with fibrinocellular exudates and fibrinosuppurative to pyogranulomatous bronchopneumonia. The 4 cats that survived longer than 8 days had fungal abscesses. Concurrent bacteria were noted in 4 cases, including those with more acute disease courses. Severe acute respiratory syndrome coronavirus 2 was detected by in situ hybridization using probes against SARS-CoV-2 spike and nucleocapsid genes and by immunohistochemistry. Viral nucleic acid and protein were variably localized to mucosal and glandular epithelial cells, pneumocytes, macrophages, and fibrinocellular debris. Based on established criteria, SARS-CoV-2 was considered a contributing cause of death in all 6 cats. While mild clinical infections are more common, these findings suggest that some SARS-CoV-2 variants may cause more severe disease and that snow leopards may be more severely affected than other felids.
Collapse
Affiliation(s)
- Mary Drozd
- University of Nebraska–Lincoln, Lincoln, NE
| | | | | | | | - Leyi Wang
- University of Illinois Urbana-Champaign, Urbana, IL
| | | | | | - Louden Wright
- Great Plain Zoo, Sioux Falls, SD
- Nashville Zoo at Grassmere, Nashville, TN
| | - Jenee Odani
- University of Hawai‘i at Mānoa, Honolulu, HI
| | | | - Elizabeth Lee
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | - Ria R. Ghai
- Centers for Disease Control and Prevention, Atlanta, GA
| | | |
Collapse
|
14
|
Bagato O, Balkema-Buschmann A, Todt D, Weber S, Gömer A, Qu B, Miskey C, Ivics Z, Mettenleiter TC, Finke S, Brown RJP, Breithaupt A, Ushakov DS. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr 2024; 12:e0246923. [PMID: 38009950 PMCID: PMC10782978 DOI: 10.1128/spectrum.02469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.
Collapse
Affiliation(s)
- Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Water Pollution Research Department, Dokki, Giza, Egypt
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Dmitry S. Ushakov
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
15
|
Haystead T, Lee E, Cho K, Gullickson G, Hughes P, Krafsur G, Freeze R, Scarneo S. Investigation of SARS-CoV-2 individual proteins reveals the in vitro and in vivo immunogenicity of membrane protein. Sci Rep 2023; 13:22873. [PMID: 38129491 PMCID: PMC10739983 DOI: 10.1038/s41598-023-49077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Evidence in SARS-CoV-2 patients have identified that viral infection is accompanied by the expression of inflammatory mediators by both immune and stromal cells within the pulmonary system. However, the immunogenicity of individual SARS-CoV-2 proteins has yet to be evaluated. The SARS-CoV-2 virus consists of 29 proteins, categorized either as nonstructural proteins (NSP's), structural proteins (SP's) or accessory proteins. Here we sought to evaluate the immunogenicity of NSP 1, 7, 8, 9, 10, 12, 14, 16 and the SP's spike protein (full length, S1, S2 and receptor binding domain subunits), nucleocapsid and membrane SARS-CoV-2 proteins against THP-1 and human peripheral blood mononuclear cells (PBMCs). Our results indicate that various SARS-CoV-2 proteins elicit a proinflammatory immune response indicated by increases in cytokines TNF, IL-6 and IL-1β. Our results support that SARS-CoV-2 membrane protein induced a robust increase of TNF, IL-6, IL-1β and IL-10 expression in both THP-1 and human PBMC's. Further evaluation of intranasal membrane protein challenge in male and female BALB/c mice show increases in BALF (bronchalveolar lavage fluid) proinflammatory cytokine expression, elevated cellularity, predominantly neutrophilic, and concomitant peribronchiolar and perivascular lymphomononuclear and neutrophilic inflammation. Our results suggest that individual membrane associated SARS-CoV-2 proteins induce a robust immune response that may contribute to viral induced cytokine release syndrome (CRS) in the lungs of moderate to severe COVID-19 patients. We posit that SARS-CoV-2 membrane challenges in immune-competent mice can serve as an adequate surrogate for the development of novel treatments for SARS-CoV-2 induced pulmonary inflammation, thereby avoiding expensive live virus studies under BSL-3 conditions.
Collapse
Affiliation(s)
- Timothy Haystead
- EydisBio Inc, Durham, NC, 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27701, USA
| | | | | | | | - Philip Hughes
- EydisBio Inc, Durham, NC, 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27701, USA
| | | | | | | |
Collapse
|
16
|
Rudramurthy GR, Naveenkumar CN, Bharathkumar K, Shandil RK, Narayanan S. Genomic Mutations in SARS-CoV-2 Genome following Infection in Syrian Golden Hamster and Associated Lung Pathologies. Pathogens 2023; 12:1328. [PMID: 38003792 PMCID: PMC10674674 DOI: 10.3390/pathogens12111328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The continuous evolution of the SARS-CoV-2 virus led to constant developments and efforts in understanding the significance and impacts of SARS-CoV-2 variants on human health. Our study aimed to determine the accumulation of genetic mutations and associated lung pathologies in male and female hamsters infected with the ancestral Wuhan strain of SARS-CoV-2. The present study showed no significant difference in the viral load between male and female hamsters and peak infection was found to be on day four post infection in both sexes of the animals. Live virus particles were detected up to 5 days post infection (dpi) through the TCID-50 assay, while qRT-PCR could detect viral RNA up to 14 dpi from all the infected animals. Further, the determination of the neutralizing antibody titer showed the onset of the humoral immune response as early as 4 dpi in both sexes against SARS-CoV-2, and a significant cross-protection against the delta variant of SARS-CoV-2 was observed. Histopathology showed edema, inflammation, inflammatory cell infiltration, necrosis, and degeneration of alveolar and bronchial epithelium cells from 3 dpi to 14 dpi in both sexes. Furthermore, next-generation sequencing (NGS) showed up to 10 single-nucleotide polymorphisms (SNPs) in the SARS-CoV-2 (ancestral Wuhan strain) genome isolated from both male and female hamsters. The mutation observed at the 23014 position (Glu484Asp) in the SARS-CoV-2 genome isolated from both sexes of the hamsters plays a significant role in the antiviral efficacy of small molecules, vaccines, and the Mabs-targeting S protein. The present study shows that either of the genders can be used in the pre-clinical efficacy of antiviral agents against SARS-CoV-2 in hamsters. However, considering the major mutation in the S protein, the understanding of the genetic mutation in SARS-CoV-2 after passing through hamsters is crucial in deciding the efficacy of the antiviral agents targeting the S protein. Importance: Our study findings indicate the accumulation of genomic mutations in SARS-CoV-2 after passing through the Syrian golden hamsters. Understanding the genomic mutations showed that either of the hamster genders can be used in the pre-clinical efficacy of antiviral agents and vaccines.
Collapse
Affiliation(s)
- Gudepalya Renukaiah Rudramurthy
- Foundation for Neglected Disease Research (FNDR), Plot No. 20A, KIADB Industrial Area, Bengaluru 561203, Karnataka, India; (C.N.N.); (K.B.); (R.K.S.); (S.N.)
| | | | | | | | | |
Collapse
|
17
|
Meehan GR, Herder V, Allan J, Huang X, Kerr K, Mendonca DC, Ilia G, Wright DW, Nomikou K, Gu Q, Molina Arias S, Hansmann F, Hardas A, Attipa C, De Lorenzo G, Cowton V, Upfold N, Palmalux N, Brown JC, Barclay WS, Filipe ADS, Furnon W, Patel AH, Palmarini M. Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning. PLoS Pathog 2023; 19:e1011589. [PMID: 37934791 PMCID: PMC10656012 DOI: 10.1371/journal.ppat.1011589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/17/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.
Collapse
Affiliation(s)
- Gavin R. Meehan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Derek W. Wright
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Sergi Molina Arias
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Germany
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, North Mymms, United Kingdom
| | - Charalampos Attipa
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, United Kingdom
| | | | - Vanessa Cowton
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Jonathan C. Brown
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S. Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | | |
Collapse
|
18
|
Gallardo-Toledo E, Neary M, Sharp J, Herriott J, Kijak E, Bramwell C, Curley P, Arshad U, Pertinez H, Rajoli RKR, Valentijn A, Cox H, Tatham L, Kipar A, Stewart JP, Owen A. Chemoprophylactic Assessment of Combined Intranasal SARS-CoV-2 Polymerase and Exonuclease Inhibition in Syrian Golden Hamsters. Viruses 2023; 15:2161. [PMID: 38005839 PMCID: PMC10675045 DOI: 10.3390/v15112161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Pibrentasvir (PIB) has been demonstrated to block exonuclease activity of the SARS-CoV-2 polymerase, protecting favipiravir (FVP) and remdesivir (RDV) from post-incorporation excision and eliciting antiviral synergy in vitro. The present study investigated the chemoprophylactic efficacy of PIB, FVP, RDV, FVP with PIB, or RDV with PIB dosed intranasally twice a day, using a Syrian golden hamster contact transmission model. Compared to the saline control, viral RNA levels were significantly lower in throat swabs in FVP (day 7), RDV (day 3, 5, 7), and RDV+PIB (day 3, 5) treatment groups. Similarly, findings were evident for nasal turbinate after PIB and RDV treatment, and lungs after PIB, FVP, and FVP+PIB treatment at day 7. Lung viral RNA levels after RDV and RDV+PIB treatment were only detectable in two animals per group, but the overall difference was not statistically significant. In situ examination of the lungs confirmed SARS-CoV-2 infection in all animals, except for one in each of the RDV and RDV+PIB treatment groups, which tested negative in all virus detection approaches. Overall, prevention of transmission was observed in most animals treated with RDV, while other agents reduced the viral load following contact transmission. No benefit of combining FVP or RDV with PIB was observed.
Collapse
Affiliation(s)
- Eduardo Gallardo-Toledo
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Megan Neary
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Joanne Sharp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Joanne Herriott
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Edyta Kijak
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Chloe Bramwell
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Paul Curley
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Usman Arshad
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Henry Pertinez
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Rajith K. R. Rajoli
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Anthony Valentijn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Helen Cox
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Lee Tatham
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| | - Anja Kipar
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - James P. Stewart
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (E.G.-T.); (J.H.); (E.K.); (C.B.); (H.C.); (L.T.)
- Centre of Excellence in Long-Acting Therapeutics (CELT), University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
19
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhaddou M, Crossland NA, Barrall EA, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena I, Aslam S, Saqi A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Ak B, Marin A, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. Cell Host Microbe 2023; 31:1668-1684.e12. [PMID: 37738983 PMCID: PMC10750313 DOI: 10.1016/j.chom.2023.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 08/07/2023] [Indexed: 09/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes several proteins that inhibit host interferon responses. Among these, ORF6 antagonizes interferon signaling by disrupting nucleocytoplasmic trafficking through interactions with the nuclear pore complex components Nup98-Rae1. However, the roles and contributions of ORF6 during physiological infection remain unexplored. We assessed the role of ORF6 during infection using recombinant viruses carrying a deletion or loss-of-function (LoF) mutation in ORF6. ORF6 plays key roles in interferon antagonism and viral pathogenesis by interfering with nuclear import and specifically the translocation of IRF and STAT transcription factors. Additionally, ORF6 inhibits cellular mRNA export, resulting in the remodeling of the host cell proteome, and regulates viral protein expression. Interestingly, the ORF6:D61L mutation that emerged in the Omicron BA.2 and BA.4 variants exhibits reduced interactions with Nup98-Rae1 and consequently impairs immune evasion. Our findings highlight the role of ORF6 in antagonizing innate immunity and emphasize the importance of studying the immune evasion strategies of SARS-CoV-2.
Collapse
Affiliation(s)
- Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, Los Angeles, CA 90024, USA; Institute for Quantitative and Computational Biosciences (OCBio), University of California, Los Angeles, Los Angeles, CA 90024, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Nicholas A Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Tseng
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02215, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Tolga Çağatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Flores
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fahmida Alam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Magdalena Rutkowska
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manisha R Ummadi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - R Blake Richardson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Baran Ak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arturo Marin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilia M Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorena Zuliani-Alvarez
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Štrbenc M, Kuhar U, Lainšček D, Orehek S, Slavec B, Krapež U, Malovrh T, Majdič G. Rehoming and Other Refinements and Replacement in Procedures Using Golden Hamsters in SARS-CoV-2 Vaccine Research. Animals (Basel) 2023; 13:2616. [PMID: 37627407 PMCID: PMC10451472 DOI: 10.3390/ani13162616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Effective vaccines are needed to fight the COVID-19 pandemic. Forty golden hamsters were inoculated with two promising vaccine candidates and eighteen animals were used in pilot trials with viral challenge. ELISA assays were performed to determine endpoint serum titres for specific antibodies and virus neutralisation tests were used to evaluate the efficacy of antibodies. All tests with serum from vaccinated hamsters were negative even after booster vaccinations and changes in vaccination protocol. We concluded that antibodies did not have sufficient neutralising properties. Refinements were observed at all steps, and the in vitro method (virus neutralisation test) presented a replacement measure and ultimately lead to a reduction in the total number of animals used in the project. The institutional animal welfare officer and institutional designated veterinarian approved the reuse or rehoming of the surplus animals. Simple socialization procedures were performed and ultimately 19 animals were rehomed, and feedback was collected. Recently, FELASA published recommendations for rehoming of animals used for scientific and educational purposes, with species-specific guidelines, including mice, rats, and rabbits. Based on our positive experience and feedback from adopters, we concluded that the rehoming of rodents, including hamsters, is not only possible, but highly recommended.
Collapse
Affiliation(s)
- Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (T.M.)
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (D.L.); (S.O.)
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (D.L.); (S.O.)
| | - Brigita Slavec
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (U.K.)
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (B.S.); (U.K.)
| | - Tadej Malovrh
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (T.M.)
| | - Gregor Majdič
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
21
|
Xi J, Si XA, Malvè M. Nasal anatomy and sniffing in respiration and olfaction of wild and domestic animals. Front Vet Sci 2023; 10:1172140. [PMID: 37520001 PMCID: PMC10375297 DOI: 10.3389/fvets.2023.1172140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Animals have been widely utilized as surrogate models for humans in exposure testing, infectious disease experiments, and immunology studies. However, respiratory diseases affect both humans and animals. These disorders can spontaneously affect wild and domestic animals, impacting their quality and quantity of life. The origin of such responses can primarily be traced back to the pathogens deposited in the respiratory tract. There is a lack of understanding of the transport and deposition of respirable particulate matter (bio-aerosols or viruses) in either wild or domestic animals. Moreover, local dosimetry is more relevant than the total or regionally averaged doses in assessing exposure risks or therapeutic outcomes. An accurate prediction of the total and local dosimetry is the crucial first step to quantifying the dose-response relationship, which in turn necessitates detailed knowledge of animals' respiratory tract and flow/aerosol dynamics within it. In this review, we examined the nasal anatomy and physiology (i.e., structure-function relationship) of different animals, including the dog, rat, rabbit, deer, rhombus monkey, cat, and other domestic and wild animals. Special attention was paid to the similarities and differences in the vestibular, respiratory, and olfactory regions among different species. The ventilation airflow and behaviors of inhaled aerosols were described as pertinent to the animals' mechanisms for ventilation modulation and olfaction enhancement. In particular, sniffing, a breathing maneuver that animals often practice enhancing olfaction, was examined in detail in different animals. Animal models used in COVID-19 research were discussed. The advances and challenges of using numerical modeling in place of animal studies were discussed. The application of this technique in animals is relevant for bidirectional improvements in animal and human health.
Collapse
Affiliation(s)
- Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA, United States
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, United States
| | - Mauro Malvè
- Department of Engineering, Public University of Navarre, Pamplona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
22
|
Tu WJ, Melino M, Dunn J, McCuaig RD, Bielefeldt-Ohmann H, Tsimbalyuk S, Forwood JK, Ahuja T, Vandermeide J, Tan X, Tran M, Nguyen Q, Zhang L, Nam A, Pan L, Liang Y, Smith C, Lineburg K, Nguyen TH, Sng JDJ, Tong ZWM, Chew KY, Short KR, Le Grand R, Seddiki N, Rao S. In vivo inhibition of nuclear ACE2 translocation protects against SARS-CoV-2 replication and lung damage through epigenetic imprinting. Nat Commun 2023; 14:3680. [PMID: 37369668 DOI: 10.1038/s41467-023-39341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle Melino
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Taniya Ahuja
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Vandermeide
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiao Tan
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh Tran
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liang Zhang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Yan Liang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Corey Smith
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katie Lineburg
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tam H Nguyen
- Flow and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roger Le Grand
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nabila Seddiki
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Stauft CB, Selvaraj P, D'Agnillo F, Meseda CA, Liu S, Pedro CL, Sangare K, Lien CZ, Weir JP, Starost MF, Wang TT. Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants. Nat Commun 2023; 14:3393. [PMID: 37296125 PMCID: PMC10250859 DOI: 10.1038/s41467-023-39090-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by vaccines against a respiratory virus, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induces both mucosal and systemic IgA and IgG in male Syrian hamsters. Interestingly, either direct intranasal immunization or airborne transmission-mediated delivery of Nsp1-K164A/H165A in Syrian hamsters offers protection against heterologous challenge with variants of concern (VOCs) including Delta, Omicron BA.1, BA.2.12.1 and BA.5. Vaccinated animals show significant reduction in both tissue viral loads and lung inflammation. Similarly attenuated viruses bearing BA.1 and BA.5 spike boost variant-specific neutralizing antibodies in male mice that were first vaccinated with modified vaccinia virus Ankara vectors (MVA) expressing full-length WA1/2020 Spike protein. Together, these results demonstrate that our attenuated virus may be a promising nasal vaccine candidate for boosting mucosal immunity against future SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Charles B Stauft
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Prabhuanand Selvaraj
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Felice D'Agnillo
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Clement A Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Shufeng Liu
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Cyntia L Pedro
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kotou Sangare
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Christopher Z Lien
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew F Starost
- Division of Veterinary Resources, Diagnostic and Research Services Branch, National Institutes of Health, Rockville Pike, MD, USA
| | - Tony T Wang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
24
|
Olivier T, Blomet J, Desmecht D. Central role of lung macrophages in SARS-CoV-2 physiopathology: a cross-model single-cell RNA-seq perspective. Front Immunol 2023; 14:1197588. [PMID: 37350967 PMCID: PMC10282834 DOI: 10.3389/fimmu.2023.1197588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Cytokine storms are considered a driving factor in coronavirus disease 2019 (COVID-19) severity. However, the triggering and resolution of this cytokine production, as well as the link between this phenomenon and infected cells, are still poorly understood. In this study, a cross-species scRNA-seq analysis showed that cytokine-producing macrophages together with pneumocytes were found to be the main contributors of viral transcripts in both Syrian hamsters and African green monkeys. Whatever the cell type, viral read-bearing cells show an apoptotic phenotype. A comparison of SARS-CoV-2 entry receptor candidates showed that Fc receptors are better correlated with infected cells than ACE2, NRP1, or AXL. Although both species show similar interferon responses, differences in adaptive immunity were highlighted. Lastly, Fc receptor and cytokine upregulation in M1 macrophages was found to correlate with a comprehensive interferon response. Based on these results, we propose a model in which lung macrophages play a central role in COVID-19 severity through antibody-dependent enhancement.
Collapse
Affiliation(s)
- Thibaut Olivier
- GAS Department, Prevor Research Laboratories, Valmondois, France
- Department of Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| | - Joël Blomet
- GAS Department, Prevor Research Laboratories, Valmondois, France
| | - Daniel Desmecht
- Department of Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Liège, Belgium
| |
Collapse
|
25
|
Gattinger P, Ohradanova-Repic A, Valenta R. Importance, Applications and Features of Assays Measuring SARS-CoV-2 Neutralizing Antibodies. Int J Mol Sci 2023; 24:ijms24065352. [PMID: 36982424 PMCID: PMC10048970 DOI: 10.3390/ijms24065352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
More than three years ago, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused the unforeseen COVID-19 pandemic with millions of deaths. In the meantime, SARS-CoV-2 has become endemic and is now part of the repertoire of viruses causing seasonal severe respiratory infections. Due to several factors, among them the development of SARS-CoV-2 immunity through natural infection, vaccination and the current dominance of seemingly less pathogenic strains belonging to the omicron lineage, the COVID-19 situation has stabilized. However, several challenges remain and the possible new occurrence of highly pathogenic variants remains a threat. Here we review the development, features and importance of assays measuring SARS-CoV-2 neutralizing antibodies (NAbs). In particular we focus on in vitro infection assays and molecular interaction assays studying the binding of the receptor binding domain (RBD) with its cognate cellular receptor ACE2. These assays, but not the measurement of SARS-CoV-2-specific antibodies per se, can inform us of whether antibodies produced by convalescent or vaccinated subjects may protect against the infection and thus have the potential to predict the risk of becoming newly infected. This information is extremely important given the fact that a considerable number of subjects, in particular vulnerable persons, respond poorly to the vaccination with the production of neutralizing antibodies. Furthermore, these assays allow to determine and evaluate the virus-neutralizing capacity of antibodies induced by vaccines and administration of plasma-, immunoglobulin preparations, monoclonal antibodies, ACE2 variants or synthetic compounds to be used for therapy of COVID-19 and assist in the preclinical evaluation of vaccines. Both types of assays can be relatively quickly adapted to newly emerging virus variants to inform us about the magnitude of cross-neutralization, which may even allow us to estimate the risk of becoming infected by newly appearing virus variants. Given the paramount importance of the infection and interaction assays we discuss their specific features, possible advantages and disadvantages, technical aspects and not yet fully resolved issues, such as cut-off levels predicting the degree of in vivo protection.
Collapse
Affiliation(s)
- Pia Gattinger
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Karl Landsteiner University, 3500 Krems an der Donau, Austria
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergology, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- NRC Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
- Correspondence:
| |
Collapse
|
26
|
Fernandes de Souza WD, da Fonseca DM, Sartori A. COVID-19 and Multiple Sclerosis: A Complex Relationship Possibly Aggravated by Low Vitamin D Levels. Cells 2023; 12:684. [PMID: 36899820 PMCID: PMC10000583 DOI: 10.3390/cells12050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally transmissible and pathogenic coronavirus that appeared at the end of 2019 and triggered a pandemic of acute respiratory disease, known as coronavirus disease 2019 (COVID-19). COVID-19 can evolve into a severe disease associated with immediate and delayed sequelae in different organs, including the central nervous system (CNS). A topic that deserves attention in this context is the complex relationship between SARS-CoV-2 infection and multiple sclerosis (MS). Here, we initially described the clinical and immunopathogenic characteristics of these two illnesses, accentuating the fact that COVID-19 can, in defined patients, reach the CNS, the target tissue of the MS autoimmune process. The well-known contribution of viral agents such as the Epstein-Barr virus and the postulated participation of SARS-CoV-2 as a risk factor for the triggering or worsening of MS are then described. We emphasize the contribution of vitamin D in this scenario, considering its relevance in the susceptibility, severity and control of both pathologies. Finally, we discuss the experimental animal models that could be explored to better understand the complex interplay of these two diseases, including the possible use of vitamin D as an adjunct immunomodulator to treat them.
Collapse
Affiliation(s)
- William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Denise Morais da Fonseca
- Laboratory of Mucosal Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, Brazil
| | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
27
|
Thieulent CJ, Dittmar W, Balasuriya UBR, Crossland NA, Wen X, Richt JA, Carossino M. Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. mSphere 2023; 8:e0055822. [PMID: 36728430 PMCID: PMC9942576 DOI: 10.1128/msphere.00558-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
Several models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the in vivo efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains. Here, we compared the clinical progression, viral replication kinetics and dissemination, pulmonary tropism, and host innate immune response dynamics between the mouse-adapted MA10 strain and its parental strain (USA-WA1/2020) following intranasal inoculation of K18-hACE2 mice, a widely used model. Compared to its parental counterpart, the MA10 strain induced earlier clinical decline with significantly higher viral replication and earlier neurodissemination. Importantly, the MA10 strain also showed a wider tropism, with infection of bronchiolar epithelia. While both SARS-CoV-2 strains induced comparable pulmonary cytokine/chemokine responses, many proinflammatory and monocyte-recruitment chemokines, such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10/CXCL10, and MCP-1/CCL2, showed an earlier peak in MA10-infected mice. Furthermore, both strains induced a similar downregulation of murine Ace2, with only a transient downregulation of Tmprss2 and no alterations in hACE2 expression. Overall, these data demonstrate that in K18-hACE2 mice, the MA10 strain has a pulmonary tropism that more closely resembles SARS-CoV-2 tropism in humans (airways and pneumocytes) than its parental strain. Its rapid replication and neurodissemination and early host pulmonary responses can have a significant impact on the clinical outcomes of infection and are, therefore, critical features to consider for study designs using these strains and mouse model. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, is still significantly impacting health care systems around the globe. Refined animal models are needed to study SARS-CoV-2 pathogenicity as well as efficacy of vaccines and therapeutics. In line with this, thorough evaluation of animal models and virus strains/variants are paramount for standardization and meaningful comparisons. Here, we demonstrated differences in replication dynamics between the Wuhan-like USA-WA1/2020 strain and the derivative mouse-adapted MA10 strain in K18-hACE2 mice. The MA10 strain showed accelerated viral replication and neurodissemination, differential pulmonary tropism, and earlier pulmonary innate immune responses. The observed differences allow us to better refine experimental designs when considering the use of the MA10 strain in the widely utilized K18-hACE2 murine model.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xue Wen
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
28
|
Host Response of Syrian Hamster to SARS-CoV-2 Infection including Differences with Humans and between Sexes. Viruses 2023; 15:v15020428. [PMID: 36851642 PMCID: PMC9960357 DOI: 10.3390/v15020428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the importance of having proper tools and models to study the pathophysiology of emerging infectious diseases to test therapeutic protocols, assess changes in viral phenotypes, and evaluate the effects of viral evolution. This study provided a comprehensive characterization of the Syrian hamster (Mesocricetus auratus) as an animal model for SARS-CoV-2 infection using different approaches (description of clinical signs, viral load, receptor profiling, and host immune response) and targeting four different organs (lungs, intestine, brain, and PBMCs). Our data showed that both male and female hamsters were susceptible to the infection and developed a disease similar to the one observed in patients with COVID-19 that included moderate to severe pulmonary lesions, inflammation, and recruitment of the immune system in the lungs and at the systemic level. However, all animals recovered within 14 days without developing the severe pathology seen in humans, and none of them died. We found faint evidence for intestinal and neurological tropism associated with the absence of lesions and a minimal host response in intestines and brains, which highlighted another crucial difference with the multiorgan impairment of severe COVID-19. When comparing male and female hamsters, we observed that males sustained higher viral RNA shedding and replication in the lungs, suffered from more severe symptoms and histopathological lesions, and triggered higher pulmonary inflammation. Overall, these data confirmed the Syrian hamster as a suitable model for mild to moderate COVID-19 and reflected sex-related differences in the response against the virus observed in humans.
Collapse
|
29
|
Gabrielson K, Myers S, Yi J, Gabrielson E, Jimenez IA. Comparison of Cardiovascular Pathology In Animal Models of SARS-CoV-2 Infection: Recommendations Regarding Standardization of Research Methods. Comp Med 2023; 73:58-71. [PMID: 36731878 PMCID: PMC9948900 DOI: 10.30802/aalas-cm-22-000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the viral pathogen that led to the global COVID-19 pandemic that began in late 2019. Because SARS-CoV-2 primarily causes a respiratory disease, much research conducted to date has focused on the respiratory system. However, SARS-CoV-2 infection also affects other organ systems, including the cardiovascular system. In this critical analysis of published data, we evaluate the evidence of cardiovascular pathology in human patients and animals. Overall, we find that the presence or absence of cardiovascular pathology is reported infrequently in both human autopsy studies and animal models of SARS-CoV-2 infection. Moreover, in those studies that have reported cardiovascular pathology, we identified issues in their design and execution that reduce confidence in the conclusions regarding SARS-CoV-2 infection as a cause of significant cardiovascular pathology. Throughout this overview, we expand on these limitations and provide recommendations to ensure a high level of scientific rigor and reproducibility.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Myers
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas; and
| | - Jena Yi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Kehrer T, Cupic A, Ye C, Yildiz S, Bouhhadou M, Crossland NA, Barrall E, Cohen P, Tseng A, Çağatay T, Rathnasinghe R, Flores D, Jangra S, Alam F, Mena N, Aslam S, Saqi A, Marin A, Rutkowska M, Ummadi MR, Pisanelli G, Richardson RB, Veit EC, Fabius JM, Soucheray M, Polacco BJ, Evans MJ, Swaney DL, Gonzalez-Reiche AS, Sordillo EM, van Bakel H, Simon V, Zuliani-Alvarez L, Fontoura BMA, Rosenberg BR, Krogan NJ, Martinez-Sobrido L, García-Sastre A, Miorin L. Impact of SARS-CoV-2 ORF6 and its variant polymorphisms on host responses and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.18.512708. [PMID: 36299428 PMCID: PMC9603824 DOI: 10.1101/2022.10.18.512708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
We and others have previously shown that the SARS-CoV-2 accessory protein ORF6 is a powerful antagonist of the interferon (IFN) signaling pathway by directly interacting with Nup98-Rae1 at the nuclear pore complex (NPC) and disrupting bidirectional nucleo-cytoplasmic trafficking. In this study, we further assessed the role of ORF6 during infection using recombinant SARS-CoV-2 viruses carrying either a deletion or a well characterized M58R loss-of-function mutation in ORF6. We show that ORF6 plays a key role in the antagonism of IFN signaling and in viral pathogenesis by interfering with karyopherin(importin)-mediated nuclear import during SARS-CoV-2 infection both in vitro , and in the Syrian golden hamster model in vivo . In addition, we found that ORF6-Nup98 interaction also contributes to inhibition of cellular mRNA export during SARS-CoV-2 infection. As a result, ORF6 expression significantly remodels the host cell proteome upon infection. Importantly, we also unravel a previously unrecognized function of ORF6 in the modulation of viral protein expression, which is independent of its function at the nuclear pore. Lastly, we characterized the ORF6 D61L mutation that recently emerged in Omicron BA.2 and BA.4 and demonstrated that it is able to disrupt ORF6 protein functions at the NPC and to impair SARS-CoV-2 innate immune evasion strategies. Importantly, the now more abundant Omicron BA.5 lacks this loss-of-function polymorphism in ORF6. Altogether, our findings not only further highlight the key role of ORF6 in the antagonism of the antiviral innate immune response, but also emphasize the importance of studying the role of non-spike mutations to better understand the mechanisms governing differential pathogenicity and immune evasion strategies of SARS-CoV-2 and its evolving variants. ONE SENTENCE SUMMARY SARS-CoV-2 ORF6 subverts bidirectional nucleo-cytoplasmic trafficking to inhibit host gene expression and contribute to viral pathogenesis.
Collapse
|
31
|
Characterization of Three Variants of SARS-CoV-2 In Vivo Shows Host-Dependent Pathogenicity in Hamsters, While Not in K18-hACE2 Mice. Viruses 2022; 14:v14112584. [PMID: 36423193 PMCID: PMC9693146 DOI: 10.3390/v14112584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Animal models are used in preclinical trials to test vaccines, antivirals, monoclonal antibodies, and immunomodulatory drug therapies against SARS-CoV-2. However, these drugs often do not produce equivalent results in human clinical trials. Here, we show how different animal models infected with some of the most clinically relevant SARS-CoV-2 variants, WA1/2020, B.1.617.2/Delta, B.1.1.529/Omicron, and BA5.2/Omicron, have independent outcomes. We show that in K18-hACE2 mice, B.1.617.2 is more pathogenic, followed by WA1, while B.1.1.529 showed an absence of clinical signs. Only B.1.1.529 was able to infect C57BL/6J mice, which lack the human ACE2 receptor. B.1.1.529-infected C57BL/6J mice had different T cell profiles compared to infected K18-hACE2 mice, while viral shedding profiles and viral titers in lungs were similar between the K18-hACE2 and the C57BL/6J mice. These data suggest B.1.1.529 virus adaptation to a new host and shows that asymptomatic carriers can accumulate and shed virus. Next, we show how B.1.617.2, WA1 and BA5.2/Omicron have similar viral replication kinetics, pathogenicity, and viral shedding profiles in hamsters, demonstrating that the increased pathogenicity of B.1.617.2 observed in mice is host-dependent. Overall, these findings suggest that small animal models are useful to parallel human clinical data, but the experimental design places an important role in interpreting the data. Importance: There is a need to investigate SARS-CoV-2 variant phenotypes in different animal models due to the lack of reproducible outcomes when translating experiments to the human population. Our findings highlight the correlation of clinically relevant SARS-CoV-2 variants in animal models with human infections. Experimental design and understanding of correct animal models are essential to interpreting data to develop antivirals, vaccines, and other therapeutic compounds against COVID-19.
Collapse
|
32
|
Wang T, Stauft C, Selvaraj P, D'agnillo F, Meseda C, Sangare K, Pedro C, Liu S, Lien C, Weir J, Starost M. Active and Passive Immunization of Syrian Hamsters with An Attenuated SARS-CoV-2 Protects against New Variants of Concern. RESEARCH SQUARE 2022:rs.3.rs-2227555. [PMID: 36380761 PMCID: PMC9665342 DOI: 10.21203/rs.3.rs-2227555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by a vaccine against a respiratory virus like the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that a single intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induced both mucosal and systemic IgA and IgG in Syrian hamsters. Interestingly, either active or passive immunization of hamsters with Nsp1-K164A/H165A offered protection against heterologous challenge with variants of concern (VOCs) including Delta, Omicron BA.1, and Omicron BA.2.12.1. Among challenged animals, Nsp1-K164A/H165A vaccination specifically reduced viral loads in the respiratory tract and suppressed infection-induced macrophage accumulation and MX1 upregulation in the lung. The absence of variant-specific mucosal and systemic antibodies was associated with breakthrough infections, particularly of the nasal cavity following challenges with Omicron isolates. Together, our study demonstrates that an attenuated nasal vaccine may be developed to boost mucosal immunity against future SARS-CoV-2 VOCs.
Collapse
|
33
|
Blaurock C, Breithaupt A, Weber S, Wylezich C, Keller M, Mohl BP, Görlich D, Groschup MH, Sadeghi B, Höper D, Mettenleiter TC, Balkema-Buschmann A. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci Rep 2022; 12:15069. [PMID: 36064749 PMCID: PMC9442591 DOI: 10.1038/s41598-022-19222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
34
|
Assmus F, Driouich JS, Abdelnabi R, Vangeel L, Touret F, Adehin A, Chotsiri P, Cochin M, Foo CS, Jochmans D, Kim S, Luciani L, Moureau G, Park S, Pétit PR, Shum D, Wattanakul T, Weynand B, Fraisse L, Ioset JR, Mowbray CE, Owen A, Hoglund RM, Tarning J, de Lamballerie X, Nougairède A, Neyts J, Sjö P, Escudié F, Scandale I, Chatelain E. Need for a Standardized Translational Drug Development Platform: Lessons Learned from the Repurposing of Drugs for COVID-19. Microorganisms 2022; 10:1639. [PMID: 36014057 PMCID: PMC9460261 DOI: 10.3390/microorganisms10081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the absence of drugs to treat or prevent COVID-19, drug repurposing can be a valuable strategy. Despite a substantial number of clinical trials, drug repurposing did not deliver on its promise. While success was observed with some repurposed drugs (e.g., remdesivir, dexamethasone, tocilizumab, baricitinib), others failed to show clinical efficacy. One reason is the lack of clear translational processes based on adequate preclinical profiling before clinical evaluation. Combined with limitations of existing in vitro and in vivo models, there is a need for a systematic approach to urgent antiviral drug development in the context of a global pandemic. We implemented a methodology to test repurposed and experimental drugs to generate robust preclinical evidence for further clinical development. This translational drug development platform comprises in vitro, ex vivo, and in vivo models of SARS-CoV-2, along with pharmacokinetic modeling and simulation approaches to evaluate exposure levels in plasma and target organs. Here, we provide examples of identified repurposed antiviral drugs tested within our multidisciplinary collaboration to highlight lessons learned in urgent antiviral drug development during the COVID-19 pandemic. Our data confirm the importance of assessing in vitro and in vivo potency in multiple assays to boost the translatability of pre-clinical data. The value of pharmacokinetic modeling and simulations for compound prioritization is also discussed. We advocate the need for a standardized translational drug development platform for mild-to-moderate COVID-19 to generate preclinical evidence in support of clinical trials. We propose clear prerequisites for progression of drug candidates for repurposing into clinical trials. Further research is needed to gain a deeper understanding of the scope and limitations of the presented translational drug development platform.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Rana Abdelnabi
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Laura Vangeel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Touret
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maxime Cochin
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Caroline S. Foo
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Seungtaek Kim
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Léa Luciani
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Grégory Moureau
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Soonju Park
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Paul-Rémi Pétit
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - David Shum
- Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si 13488, Korea
| | - Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Birgit Weynand
- Departmet of Imaging and Pathology, Katholieke Universiteit Leuven, Translational Cell and Tissue Research, 3000 Leuven, Belgium
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Jean-Robert Ioset
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Charles E. Mowbray
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Andrew Owen
- Centre for Excellence in Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7ZX, UK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE), Institut de Recherche pour le Développement (IRD), Aix-Marseille University, 190-Inserm 1207, 13005 Marseille, France
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Fanny Escudié
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), 1202 Geneva, Switzerland
| |
Collapse
|
35
|
SARS-CoV-2 VOC type and biological sex affect molnupiravir efficacy in severe COVID-19 dwarf hamster model. Nat Commun 2022; 13:4416. [PMID: 35906230 PMCID: PMC9338273 DOI: 10.1038/s41467-022-32045-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOC) have triggered infection waves. Oral antivirals such as molnupiravir promise to improve disease management, but efficacy against VOC delta was questioned and potency against omicron is unknown. This study evaluates molnupiravir against VOC in human airway epithelium organoids, ferrets, and a lethal Roborovski dwarf hamster model of severe COVID-19-like lung injury. VOC were equally inhibited by molnupiravir in cells and organoids. Treatment reduced shedding in ferrets and prevented transmission. Pathogenicity in dwarf hamsters was VOC-dependent and highest for delta, gamma, and omicron. All molnupiravir-treated dwarf hamsters survived, showing reduction in lung virus load from one (delta) to four (gamma) orders of magnitude. Treatment effect size varied in individual dwarf hamsters infected with omicron and was significant in males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir in human trials and alerts that benefit must be reassessed in vivo as VOC evolve. Molnupiravir was the first orally available SARS-CoV-2 antiviral approved for outpatient use against SARS-CoV-2, but its efficacy against variants of concern, especially delta, was questioned. Here the authors evaluate molnupiravir against variant of concern in numerous models, including human airway epithelium organoids, ferrets and Roborovski dwarf hamsters.
Collapse
|
36
|
Arora J, Patel DR, Nicol MJ, Field CJ, Restori KH, Wang J, Froelich NE, Katkere B, Terwilliger JA, Weaver V, Luley E, Kelly K, Kirimanjeswara GS, Sutton TC, Cantorna MT. Vitamin D and the Ability to Produce 1,25(OH) 2D Are Critical for Protection from Viral Infection of the Lungs. Nutrients 2022; 14:3061. [PMID: 35893921 PMCID: PMC9332570 DOI: 10.3390/nu14153061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.
Collapse
Affiliation(s)
- Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Devanshi R. Patel
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - McKayla J. Nicol
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Cassandra J. Field
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Katherine H. Restori
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Jinpeng Wang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Nicole E. Froelich
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Bhuvana Katkere
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Josey A. Terwilliger
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Veronika Weaver
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Erin Luley
- Animal Diagnostic Laboratory, The Pennsylvania State University, University Park, PA 16802, USA; (E.L.); (K.K.)
| | - Kathleen Kelly
- Animal Diagnostic Laboratory, The Pennsylvania State University, University Park, PA 16802, USA; (E.L.); (K.K.)
| | - Girish S. Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Troy C. Sutton
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| | - Margherita T. Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.A.); (D.R.P.); (M.J.N.); (C.J.F.); (K.H.R.); (J.W.); (N.E.F.); (B.K.); (J.A.T.); (V.W.); (G.S.K.)
| |
Collapse
|
37
|
Piedra-Mora C, Robinson SR, Tostanoski LH, Dayao DAE, Chandrashekar A, Bauer K, Wrijil L, Ducat S, Hayes T, Yu J, Bondzie EA, McMahan K, Sellers D, Giffin V, Hope D, Nampanya F, Mercado NB, Kar S, Andersen H, Tzipori S, Barouch DH, Martinot AJ. Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Vet Pathol 2022; 59:648-660. [PMID: 35521761 DOI: 10.1177/03009858221095794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.
Collapse
Affiliation(s)
- Cesar Piedra-Mora
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
- Beth Israel Medical Center, Boston, MA
| | - Sally R Robinson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Denise A E Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | - Linda Wrijil
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Sarah Ducat
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | | | | | | | | | | | | | | | | | - Saul Tzipori
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Amanda J Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| |
Collapse
|
38
|
SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun 2022; 13:3519. [PMID: 35725735 PMCID: PMC9207884 DOI: 10.1038/s41467-022-31200-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Since its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains. VOC Omicron infection causes a mild rhinitis with little involvement of the olfactory epithelium and minimal lesions in the lung, with frequent sparing of the alveolar compartment. Similarly, viral antigen, RNA and infectious virus titers are lower in respiratory tissues of VOC Omicron infected hamsters. These findings demonstrate that the variant has a decreased pathogenicity for the upper and lower respiratory tract of hamsters. Since the emergence of SARS-CoV-2 several variants of concerns have been identified, with altered disease progression and transmission dynamics. Here, Armando et al. compare virus spread and pathology in the upper and lower respiratory tracts of Syrian golden hamster after 4 days post infection for VOCs Gamma, Delta and Omicron and find milder pathology for Omicron.
Collapse
|
39
|
Wyler E, Adler JM, Eschke K, Teixeira Alves G, Peidli S, Pott F, Kazmierski J, Michalick L, Kershaw O, Bushe J, Andreotti S, Pennitz P, Abdelgawad A, Postmus D, Goffinet C, Kreye J, Reincke SM, Prüss H, Blüthgen N, Gruber AD, Kuebler WM, Witzenrath M, Landthaler M, Nouailles G, Trimpert J. Key benefits of dexamethasone and antibody treatment in COVID-19 hamster models revealed by single-cell transcriptomics. Mol Ther 2022; 30:1952-1965. [PMID: 35339689 PMCID: PMC8942568 DOI: 10.1016/j.ymthe.2022.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
For coronavirus disease 2019 (COVID-19), effective and well-understood treatment options are still scarce. Since vaccine efficacy is challenged by novel variants, short-lasting immunity, and vaccine hesitancy, understanding and optimizing therapeutic options remains essential. We aimed at better understanding the effects of two standard-of-care drugs, dexamethasone and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, on infection and host responses. By using two COVID-19 hamster models, pulmonary immune responses were analyzed to characterize effects of single or combinatorial treatments. Pulmonary viral burden was reduced by anti-SARS-CoV-2 antibody treatment and unaltered or increased by dexamethasone alone. Dexamethasone exhibited strong anti-inflammatory effects and prevented fulminant disease in a severe disease model. Combination therapy showed additive benefits with both anti-viral and anti-inflammatory potency. Bulk and single-cell transcriptomic analyses confirmed dampened inflammatory cell recruitment into lungs upon dexamethasone treatment and identified a specifically responsive subpopulation of neutrophils, thereby indicating a potential mechanism of action. Our analyses confirm the anti-inflammatory properties of dexamethasone and suggest possible mechanisms, validate anti-viral effects of anti-SARS-CoV-2 antibody treatment, and reveal synergistic effects of a combination therapy, thus informing more effective COVID-19 therapies.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Julia M Adler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany
| | - Kathrin Eschke
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - G Teixeira Alves
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefan Peidli
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fabian Pott
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Laura Michalick
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Judith Bushe
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Sandro Andreotti
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Peter Pennitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Azza Abdelgawad
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Dylan Postmus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Goffinet
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Helmholtz Innovation Lab BaoBab (Brain Antibody-Omics and B-Cell Lab), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Neurology, Berlin, Germany
| | - S Momsen Reincke
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Helmholtz Innovation Lab BaoBab (Brain Antibody-Omics and B-Cell Lab), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Helmholtz Innovation Lab BaoBab (Brain Antibody-Omics and B-Cell Lab), Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pathology, Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Berlin, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; IRI Life Sciences, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Pulmonary Inflammation, Berlin, Germany.
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Choudhary S, Kanevsky I, Tomlinson L. Animal models for studying covid-19, prevention, and therapy: Pathology and disease phenotypes. Vet Pathol 2022; 59:516-527. [PMID: 35451341 PMCID: PMC9208071 DOI: 10.1177/03009858221092015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translational models have played an important role in the rapid development of safe and effective vaccines and therapeutic agents for the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Animal models recapitulating the clinical and underlying pathological manifestations of COVID-19 have been vital for identification and rational design of safe and effective vaccines and therapies. This manuscript provides an overview of commonly used COVID-19 animal models and the pathologic features of SARS-CoV-2 infection in these models in relation to their clinical presentation in humans. Also discussed are considerations for selecting appropriate animal models for infectious diseases such as COVID-19, the host determinants that can influence species-specific susceptibility to SARS-CoV-2, and the pathogenesis of COVID-19. Finally, the limitations of currently available COVID-19 animal models are highlighted.
Collapse
Affiliation(s)
| | - Isis Kanevsky
- Pfizer Worldwide Research, Development & Medical, Pearl River, NY
| | | |
Collapse
|
41
|
Mohapatra RK, Kuppili S, Kumar Suvvari T, Kandi V, Behera A, Verma S, Kudrat‐E‐Zahan, Biswal SK, Al‐Noor TH, El‐ajaily MM, Sarangi AK, Dhama K. SARS‐CoV‐2 and its variants of concern including Omicron: looks like a never ending pandemic. Chem Biol Drug Des 2022; 99:769-788. [PMID: 35184391 PMCID: PMC9111768 DOI: 10.1111/cbdd.14035] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The ongoing COVID‐19 pandemic caused by SARS‐CoV‐2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human‐to‐human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to determine whether vaccines are able to interrupt transmission of SARS‐CoV‐2 variant of concern (VOC). Moreover, the VOCs continue to emerge that appear more transmissible and less sensitive to virus‐specific immune responses. In this overview, we have highlighted various drugs and vaccines used to counter this pandemic along with their reported side effects. Moreover, the preliminary data for the novel VOC “Omicron” are discussed with the existing animal models.
Collapse
Affiliation(s)
- Ranjan K. Mohapatra
- Department of Chemistry Government College of Engineering Keonjhar‐758002 Odisha India
| | | | | | - Venkataramana Kandi
- Department of Microbiology Prathima Institute of Medical Sciences Karimnagar‐505417 Telangana India
| | - Ajit Behera
- Department of Metallurgical & Materials Engineering National Institute of Technology Rourkela‐769008 India
| | - Sarika Verma
- Council of Scientific and Industrial Research‐Advanced Materials and Processes Research Institute Bhopal MP 462026 India
- Academy of council Scientific and Industrial Research ‐ Advanced Materials and Processes Research Institute (AMPRI) Hoshangabad Road Bhopal (M.P) 462026 India
| | - Kudrat‐E‐Zahan
- Department of Chemistry Rajshahi University Rajshahi Bangladesh
| | - Susanta K. Biswal
- Department of Chemistry School of Applied Sciences Centurion University of Technology and Management Odisha India
| | - Taghreed H. Al‐Noor
- Chemistry Department Ibn‐Al‐Haithem College of Education for Pure Science Baghdad University Baghdad Iraq
| | - Marei M. El‐ajaily
- Chemistry Department Faculty of Science Benghazi University Benghazi Libya
| | - Ashish K. Sarangi
- Department of Chemistry School of Applied Sciences Centurion University of Technology and Management Odisha India
| | - Kuldeep Dhama
- Division of Pathology ICAR‐Indian Veterinary Research Institute Uttar Pradesh Bareilly India
| |
Collapse
|
42
|
Lieber CM, Cox RM, Sourimant J, Wolf JD, Juergens K, Phung Q, Saindane MT, Natchus MG, Painter GR, Sakamoto K, Greninger AL, Plemper RK. SARS-CoV-2 variant of concern type and biological sex affect efficacy of molnupiravir in dwarf hamster model of severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022. [PMID: 35169793 DOI: 10.1101/2022.02.04.479171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 variants of concern (VOC) have triggered distinct infection waves in the coronavirus disease 2019 (COVID-19) pandemic, culminating in currently all-time high incidence rates of VOC omicron. Orally available direct-acting antivirals such as molnupiravir promise to improve disease management and limit SARS-CoV-2 spread. However, molnupiravir efficacy against VOC delta was questioned based on clinical trial results and its potency against omicron is unknown. This study evaluates molnupiravir against a panel of relevant VOC in three efficacy models: primary human airway epithelium organoids, the ferret model of upper respiratory disease, and a lethal Roborovski dwarf hamster efficacy model of severe COVID-19-like acute lung injury. All VOC were equally efficiently inhibited by molnupiravir in cultured cells and organoids. Treatment consistently reduced upper respiratory VOC shedding in ferrets and prevented viral transmission. Pathogenicity in the dwarf hamsters was VOC-dependent and highest for gamma, omicron, and delta with fulminant lung histopathology. Oral molnupiravir started 12 hours after infection resulted in complete survival of treated dwarf hamsters independent of challenge VOC. However, reduction in lung virus differed VOC-dependently, ranging from one (delta) to four (gamma) orders of magnitude compared to vehicle-treated animals. Dwarf hamsters infected with VOC omicron showed significant individual variation in response to treatment. Virus load reduction was significant in treated males, but not females. The dwarf hamster model recapitulates mixed efficacy of molnupiravir seen in human trials and alerts that therapeutic benefit of approved antivirals must be continuously reassessed in vivo as new VOC emerge.
Collapse
|