1
|
Wang Y, Wang Y, Yue G, Lin J, Liu X, Wang L, Zhao Y. Effects of ligustrazine on energy metabolism in migraine rats based on mitochondria-inflammation pathway. Neurosci Lett 2025; 844:138035. [PMID: 39505199 DOI: 10.1016/j.neulet.2024.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To evaluate the effects of Ligustrazine (Lig) on nitroglycerin-induced migraine and explore the mechanism through the mitochondria-inflammation pathway. METHODS Rats were divided into control, model, Lig(50 mg/kg) + Erastin, Lig(100 mg/kg), Lig(50 mg/kg), and Zolmitriptan groups. Nitroglycerin (NTG) was administered through injection to trigger a migraine. The following parameters were measured: mechanical pain threshold, mitochondrial morphology, levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), Adenosine triphosphate (ATP), and Nitric oxide (NO). The neuronal nitric oxide synthase (nNOS), transient receptor potential A1 (TRPA1), interleukin 1 beta (IL-1β), nuclear factor-kappaB (NF-κB), and calcitonin gene-related peptide (CGRP) were detected by Western blotting and immunohistochemistry. RESULTS Compared with the model group, the Lig(100 mg/kg) and Lig(50 mg/kg) groups increased mechanical pain threshold as well as improved abnormal mitochondrial morphology. Moreover, compared with the model group, the Lig(100 mg/kg) and Lig(50 mg/kg) groups demonstrated reduced levels of ROS, and NO, and increased MMP, and ATP. Lig(100 mg/kg) and Lig(50 mg/kg) groups reduced inflammation and oxidative stress by inhibiting certain gene expressions. When Erastin was injected, the effectiveness of Lig decreased, indicating that Lig's therapeutic effect was related to the extent of mPTP opening. CONCLUSION The mitochondria-inflammation pathway plays a critical role in regulating migraine. Lig exerts anti-migraine effects primarily by modulating the mitochondria-inflammation pathway providing a novel perspective on migraine research that is beneficial for its clinical application.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Lin
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xueying Liu
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Liwei Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Maddahi A, Warfvinge K, Holm A, Edvinsson JCA, Reducha PV, Kazantzi S, Haanes KA, Edvinsson L. Progesterone distribution in the trigeminal system and its role to modulate sensory neurotransmission: influence of sex. J Headache Pain 2023; 24:154. [PMID: 37957603 PMCID: PMC10644471 DOI: 10.1186/s10194-023-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Women are disproportionately affected by migraine, representing up to 75% of all migraine cases. This discrepancy has been proposed to be influenced by differences in hormone levels between the sexes. One such hormone is progesterone. Calcitonin gene-related peptide (CGRP) system is an important factor in migraine pathophysiology and could be influenced by circulating hormones. The purpose of this study was to investigate the distribution of progesterone and its receptor (PR) in the trigeminovascular system, and to examine the role of progesterone to modulate sensory neurotransmission. METHODS Trigeminal ganglion (TG), hypothalamus, dura mater, and the basilar artery from male and female rats were carefully dissected. Expression of progesterone and PR proteins, and mRNA levels from TG and hypothalamus were analyzed by immunohistochemistry and real-time quantitative PCR. CGRP release from TG and dura mater were measured using an enzyme-linked immunosorbent assay. In addition, the vasomotor effect of progesterone on male and female basilar artery segments was investigated with myography. RESULTS Progesterone and progesterone receptor -A (PR-A) immunoreactivity were found in TG. Progesterone was located predominantly in cell membranes and in Aδ-fibers, and PR-A was found in neuronal cytoplasm and nucleus, and in satellite glial cells. The number of positive progesterone immunoreactive cells in the TG was higher in female compared to male rats. The PR mRNA was expressed in both hypothalamus and TG; however, the PR expression level was significantly higher in the hypothalamus. Progesterone did not induce a significant change neither in basal level nor upon stimulated release of CGRP from dura mater or TG in male or female rats when compared to the vehicle control. However, pre-treated with 10 µM progesterone weakly enhanced capsaicin induced CGRP release observed in the dura mater of male rats. Similarly, in male basilar arteries, progesterone significantly amplified the dilation in response to capsaicin. CONCLUSIONS In conclusion, these results highlight the potential for progesterone to modulate sensory neurotransmission and vascular responses in a complex manner, with effects varying by sex, tissue type, and the nature of the stimulus. Further investigations are needed to elucidate the underlying mechanisms and physiological implications of these findings.
Collapse
Affiliation(s)
- Aida Maddahi
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Anja Holm
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jacob C A Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Philip Victor Reducha
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Spyridoula Kazantzi
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Rigshospitalet Glostrup, Copenhagen, Denmark
| |
Collapse
|
3
|
Karsan N, Gosalia H, Goadsby PJ. Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 2023; 24:11993. [PMID: 37569369 PMCID: PMC10418996 DOI: 10.3390/ijms241511993] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Migraine is a common condition with disabling attacks that burdens people in the prime of their working lives. Despite years of research into migraine pathophysiology and therapeutics, much remains to be learned about the mechanisms at play in this complex neurovascular condition. Additionally, there remains a relative paucity of specific and targeted therapies available. Many sufferers remain underserved by currently available broad action preventive strategies, which are also complicated by poor tolerance and adverse effects. The development of preclinical migraine models in the laboratory, and the advances in human experimental migraine provocation, have led to the identification of key molecules likely involved in the molecular circuity of migraine, and have provided novel therapeutic targets. Importantly, the identification that vasoconstriction is neither necessary nor required for headache abortion has changed the landscape of migraine treatment and has broadened the therapy targets for patients with vascular risk factors or vascular disease. These targets include nitric oxide synthase (NOS) and several neuropeptides that are involved in migraine. The ability of NO donors and infusion of some of these peptides into humans to trigger typical migraine-like attacks has supported the development of targeted therapies against these molecules. Some of these, such as those targeting calcitonin gene-related peptide (CGRP), have already reached clinical practice and are displaying a positive outcome in migraineurs for the better by offering targeted efficacy without significant adverse effects. Others, such as those targeting pituitary adenylate cyclase activating polypeptide (PACAP), are showing promise and are likely to enter phase 3 clinical trials in the near future. Understanding these nitrergic and peptidergic mechanisms in migraine and their interactions is likely to lead to further therapeutic strategies for migraine in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Helin Gosalia
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
| | - Peter J. Goadsby
- Headache Group, NIHR King’s Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9PJ, UK; (N.K.); (H.G.)
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Sureda-Gibert P, Romero-Reyes M, Akerman S. Nitroglycerin as a model of migraine: Clinical and preclinical review. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100105. [PMID: 36974065 PMCID: PMC10039393 DOI: 10.1016/j.ynpai.2022.100105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Migraine stands as one of the most disabling neurological conditions worldwide. It is a disorder of great challenge to study given its heterogeneous representation, cyclic nature, and complexity of neural networks involved. Despite this, clinical and preclinical research has greatly benefitted from the use of the nitric oxide donor, nitroglycerin (NTG), to model this disorder, dissect underlying mechanisms, and to facilitate the development and screening of effective therapeutics. NTG is capable of triggering a migraine attack, only in migraineurs or patients with a history of migraine and inducing migraine-like phenotypes in rodent models. It is however unclear to what extent NTG and NO, as its breakdown product, is a determinant factor in the underlying pathophysiology of migraine, and importantly, whether it really does facilitate the translation from the bench to the bedside, and vice-versa. This review provides an insight into the evidence supporting the strengths of this model, as well as its limitations, and shines a light into the possible role of NO-related mechanisms in altered molecular signalling pathways.
Collapse
Affiliation(s)
- Paula Sureda-Gibert
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Biringer RG. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 2022; 477:2269-2296. [PMID: 35482233 DOI: 10.1007/s11010-022-04438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.
Collapse
Affiliation(s)
- Roger Gregory Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Christiansen IM, Edvinsson JCA, Reducha PV, Edvinsson L, Haanes KA. Dual action of the cannabinoid receptor 1 ligand arachidonyl-2′-chloroethylamide on calcitonin gene-related peptide release. J Headache Pain 2022; 23:30. [PMID: 35189809 PMCID: PMC8903492 DOI: 10.1186/s10194-022-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2′-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition. Methods The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG. Results CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura. Conclusions Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01399-8.
Collapse
|
8
|
Evaluating Plasma and Brain TRPV1 Channels in the Animal Model of Episodic and Chronic Migraine: The Possible Role of Somatosensory Cortex TRPV1 in Migraine Transformation. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.115709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Despite extensive research, the exact molecular mechanisms underlying migraine development and especially its progression and transformation from episodic into chronic is still unknown. Objectives: This study aimed to assess the role of somatosensory cortex and hippocampal transient receptor potential vanilloid 1 (TRPV1) in migraine in a rat model. Methods: This study was an intervention study. Adult male Wistar rats were divided into three groups, including sham, episodic migraine (EM), and chronic migraine (CM). The sham group received normal intraperitoneal (IP) saline injections every two days for 11 days, and the EM group received a single dose of trinitroglycerin (TNG) injection (IP; 10 mg/kg). For the CM group, TNG was administrated every two days (on days 3, 5, 7, 9, and 11; IP; 10 mg/kg). TRPV1 levels in plasma, somatosensory cortex, and hippocampus were detected with an enzyme-linked immunosorbent assay (ELISA) kit. Results: The findings showed that in both CM and EM groups the TRPV1 levels in plasma (P < 0.001 in both groups), somatosensory cortex (P < 0.05 and P < 0.001, respectively), and hippocampus (P < 0.01 in both groups) increased after migraine induction. Interestingly, in the somatosensory cortex, this TRPV1 elevation in the CM group was much greater than the EM group, and a significant difference was observed between the two groups (P < 0.05). Conclusions: Our results suggested that headache severity and frequency may enhance concomitant with the upregulation of somatosensory cortex TRPV1. This new achievement can help to develop new drug approaches to prevent CM.
Collapse
|
9
|
Abstract
Migraine is a common and disabling neurological disorder, with several manifestations, of which pain is just one. Despite its worldwide prevalence, there remains a paucity of targeted and effective treatments for the condition, leaving many of those affected underserved by available treatments. Work over the last 30+ years has recently led to the emergence of the first targeted acute and preventive treatments in our practice since the triptan era in the early 1990s, which are changing the landscape of migraine treatment. These include the monoclonal antibodies targeting calcitonin gene-related peptide or its receptor. Evolving work on novel therapeutic targets, as well as continuing to exploit drugs used in other disorders that may also have a therapeutic effect in migraine, is likely to lead to more and more treatments being able to be offered to migraineurs. Future work involves the development of agents that lack vasoconstrictive effects, such as lasmiditan, do not contribute to medication overuse, such as the gepants, and do not interact with other drugs that may be used for the disorder, as well as agents that can act both acutely and preventively, thereby utilising the quantum between acute and preventive drug effects which has been demonstrated with different migraine drugs before. Here we discuss the evolution of oral migraine treatments over the last 5 years, including those that have gained regulatory approval and reached clinical practice, those in development and potential other targets for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR King's Clinical Research Facility and South London and Maudsley Biomedical Research Centre, Wellcome Foundation Building, King's College Hospital, London, SE5 9PJ, UK.
- Department of Neurology, University of California, Los Angeles, USA.
| |
Collapse
|
10
|
Tajti J, Szok D, Nyári A, Vécsei L. CGRP and CGRP-receptor as targets of migraine therapy: Brain Prize-2021. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:460-478. [PMID: 34635045 DOI: 10.2174/1871527320666211011110307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Migraine is a highly prevalent primary headache with an unclear pathomechanism. During the last 40 years numerous hypotheses have arisen, among them the theory of the trigeminovascular system is the primary one. It serves as a skeleton in successful preclinical studies and in the development of effective therapeutic options for migraine headache. OBJECTIVE The Brain Prize (awarded annually by the Lundbeck Foundation) is the most prestigious tribute in neuroscience. The winners in 2021 were Lars Edvinsson, Peter Goadsby, Michael Moskowitz and Jes Olesen. They are the fathers of the migraine pathomechanism which led to revolutionary new treatments. This review summarizes their landmark findings. METHODS Data related to this topic were reviewed from PubMed records published between 1979 and May 2021. Searches were based on preclinical and clinical studies in the covered field. The findings were listed in chronological order. From a therapeutic perspective, only randomized controlled trials and meta-analysis were discussed. RESULTS The calcitonin gene-related peptide-related pathogenesis of migraine is based on the activation of the trigeminovascular system. The therapeutic triad for migraine is triptans, gepants and calcitonin gene-related peptide-targeted monoclonal antibodies. CONCLUSION In the past 40 years, the systematic work of leading headache scientists has resulted in robust theoretical and therapeutic knowledge in the preclinical and clinical study of migraine.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - Délia Szok
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725, Szeged. Hungary
| |
Collapse
|
11
|
Abstract
INTRODUCTION Migraine is a common and disabling neurological disorder. A greater understanding of the pathophysiological mechanisms underlying migraine has led to the availability of specific new drugs targeting calcitonin gene-related peptide (CGRP). The success of the CGRP inhibitors validates research efforts into migraine-specific therapies. AREAS COVERED There are additional promising therapeutic targets that will be covered in this paper, focusing on the pain phase. They include pituitary adenylate cyclase-activating polypeptide (PACAP), the orexinergic system, the nitric oxide signaling pathway specifically neuronal nitric oxide synthase inhibitors (nNOSi), and metabotropic glutamate receptor 5 (mGluR5). EXPERT OPINION Based on currently available research; the targets discussed in this paper are all on equal footing with each other in terms of their potential as effective novel migraine therapies. There is a need for more clinical trials to pinpoint which of these potential drug targets will be effective for migraine preventio.
Collapse
Affiliation(s)
- Oyindamola Ogunlaja
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Nazia Karsan
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Peter Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK.,Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Akerman S, Salvemini D, Romero-Reyes M. Targeting reactive nitroxidative species in preclinical models of migraine. Cephalalgia 2021; 41:1187-1200. [PMID: 34256650 DOI: 10.1177/03331024211017884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Reactive nitroxidative species, such as nitric oxide but particularly peroxynitrite, have been strongly implicated in pain mechanisms. Targeting peroxynitrite is anti-nociceptive in pain models, but little is known about its role in migraine mechanisms. Given the need to validate novel targets for migraine headache, our objective was to study the potential of reactive nitroxidative species, particularly peroxynitrite, as novel targets for drug discovery and their role in migraine mechanisms. METHODS We recorded neuronal activity in rats with extracellular electrodes and examined the effects of targeting nitric oxide or peroxynitrite on ongoing and cranial-evoked firing rates of central trigeminocervical neurons. We injected calcitonin gene-related peptide (which produces migraine-like headache in migraineurs) and characterized neuronal responses to cranial stimulation and on behavioral responses to nociceptive periorbital stimulation and determined the effects of targeting reactive nitroxidative species on the mediated changes. RESULTS L-NAME (nitric oxide synthase inhibitor) and Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS; peroxynitrite decomposition catalyst) inhibited ongoing and dural-evoked responses of trigeminocervical neurons, without affecting normal facial-cutaneous responses. Calcitonin gene-related peptide caused activation and sensitization of dural-responsive trigeminovascular neurons with hypersensitivity to intracranial and extracranial stimulation, and reduction of periorbital withdrawal thresholds. Only the peroxynitrite decomposition catalyst prevented these neuronal and behavioral nociceptive responses. DISCUSSION The data support that calcitonin gene-related peptide mediates the underlying neurobiological mechanisms related to the development of migraine-like headache. They also confirm the role of nitric oxide and implicate peroxynitrite production along the trigeminovascular migraine pathway in these mechanisms. The data also support peroxynitrite as a novel and potentially effective target for migraine treatment. The current drug development focus on peroxynitrite decomposition catalysts for chronic pain disorders should therefore extend to migraine.
Collapse
Affiliation(s)
- Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63104, USA
| | - Marcela Romero-Reyes
- Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Abstract
Lasmiditan, an antimigraine drug with selective 5-HT1F receptor affinity, prejunctionally inhibits calcitonin gene-related peptide release in peripheral and central trigeminal nerve terminals of rodents. Migraine headache pathophysiology involves trigeminovascular system activation, calcitonin gene-related peptide (CGRP) release, and dysfunctional nociceptive transmission. Triptans are 5-HT1B/1D/(1F) receptor agonists that prejunctionally inhibit trigeminal CGRP release, but their vasoconstrictor properties limit their use in migraine patients with cardiovascular disease. By contrast, lasmiditan is a novel antimigraine and selective 5-HT1F receptor agonist devoid of vasoconstrictor properties. On this basis, this study has investigated the modulation of trigeminal CGRP release by lasmiditan. For this purpose, we have comparatively analysed the inhibition of several components of the trigeminovascular system induced by lasmiditan and sumatriptan through: ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion, and trigeminal nucleus caudalis of mice; and in vivo dural vasodilation in the rat closed-cranial window model induced by endogenous (electrical stimulation and capsaicin) and exogenous CGRP. The ex vivo release of CGRP was similarly inhibited by sumatriptan and lasmiditan in all trigeminovascular system components. In vivo, intravenous (i.v.) lasmiditan or higher doses of sumatriptan significantly attenuated the vasodilatory responses to endogenous CGRP release, but not exogenous CGRP effects. These data suggest that lasmiditan prejunctionally inhibits CGRP release in peripheral and central trigeminal nerve terminals. Because lasmiditan is a lipophilic drug that crosses the blood–brain barrier, additional central sites of action remain to be determined.
Collapse
|
14
|
Dao VTV, Elbatreek MH, Fuchß T, Grädler U, Schmidt HHHW, Shah AM, Wallace A, Knowles R. Nitric Oxide Synthase Inhibitors into the Clinic at Last. Handb Exp Pharmacol 2021; 264:169-204. [PMID: 32797331 DOI: 10.1007/164_2020_382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thomas Fuchß
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Ulrich Grädler
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Alan Wallace
- Health and Life Sciences, Coventry University, Coventry, UK
| | - Richard Knowles
- Knowles Consulting Ltd., The Stevenage Bioscience Catalyst, Stevenage, UK.
| |
Collapse
|
15
|
Ran C, Michalska JM, Fourier C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. Analysis of NOS Gene Polymorphisms in Relation to Cluster Headache and Predisposing Factors in Sweden. Brain Sci 2020; 11:brainsci11010034. [PMID: 33396232 PMCID: PMC7824326 DOI: 10.3390/brainsci11010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Cluster headache is characterized by activation of the autonomic-trigeminal reflex. Nitric oxide can trigger headaches in patients, and nitric oxide signaling is known to be affected in cluster headache. Based on the hypothesis of nitric oxide being involved in cluster headache pathophysiology we investigated nitric oxide synthases as potential candidate genes for cluster headache. We analyzed eight variants in the three forms of nitric oxide synthase (NOS) genes, inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS), and tested for association with cluster headache. Swedish cluster headache patients (n = 542) and controls (n = 581) were genotyped using TaqMan® assays on an Applied Biosystems 7500 qPCR cycler. This is the largest performed genetic study on NOS involvement in cluster headache so far. We found an association between cluster headache and one iNOS haplotype consisting of the minor alleles of rs2297518 and rs2779249 (p = 0.022). In addition, one of the analyzed nNOS variants, rs2682826, was associated with reported triptan use (p = 0.039). Our data suggest that genetic variants in NOS genes do not have a strong influence on cluster headache pathophysiology, but that certain combinations of genetic variants in NOS genes may influence the risk of developing the disorder or triptan use.
Collapse
Affiliation(s)
- Caroline Ran
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
- Correspondence: ; Tel.: +46-(0)8-5248-7051
| | - Julia M. Michalska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Carmen Fourier
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (C.S.); (E.W.); (A.S.)
- Department of Neurology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Andrea C. Belin
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden; (J.M.M.); (C.F.); (A.C.B.)
| |
Collapse
|
16
|
Bertels Z, Pradhan AAA. Emerging Treatment Targets for Migraine and Other Headaches. Headache 2020; 59 Suppl 2:50-65. [PMID: 31291018 DOI: 10.1111/head.13585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Migraine is a complex disorder that is characterized by an assortment of neurological and systemic effects. While headache is the most prominent feature of migraine, a host of symptoms affecting many physiological functions are also observed before, during, and after an attack. Furthermore, migraineurs are heterogeneous and have a wide range of responses to migraine therapies. The recent approval of calcitonin gene-related-peptide based therapies has opened up the treatment of migraine and generated a renewed interest in migraine research and discovery. Ongoing advances in migraine research have identified a number of other promising therapeutic targets for this disorder. In this review, we highlight emergent treatments within the following biological systems: pituitary adenylate cyclase activating peptdie, 2 non-mu opioid receptors that have low abuse liability - the delta and kappa opioid receptors, orexin, and nitric oxide-based therapies. Multiple mechanisms have been identified in the induction and maintenance of migraine symptoms; and this divergent set of targets have highly distinct biological effects. Increasing the mechanistic diversity of the migraine tool box will lead to more treatment options and better patient care.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
17
|
Warfvinge K, Krause DN, Maddahi A, Grell AS, Edvinsson JC, Haanes KA, Edvinsson L. Oxytocin as a regulatory neuropeptide in the trigeminovascular system: Localization, expression and function of oxytocin and oxytocin receptors. Cephalalgia 2020; 40:1283-1295. [PMID: 32486908 DOI: 10.1177/0333102420929027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. METHODS The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. RESULTS Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. CONCLUSION Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.
Collapse
Affiliation(s)
- Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,Department of Pharmaceutical Sciences, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Aida Maddahi
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Jacob Ca Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
18
|
Edvinsson JCA, Grell AS, Warfvinge K, Sheykhzade M, Edvinsson L, Haanes KA. Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system. Cephalalgia 2020; 40:1296-1309. [DOI: 10.1177/0333102420929026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Several neurotransmitters are expressed in the neurons of the trigeminal ganglion. One such signalling molecule is the pituitary adenylate cyclase-activating peptide (PACAP). PACAP signalling has been suggested to have a possible role in the pathophysiology of primary headaches. Objective The present study was designed to investigate the relationship between PACAP and calcitonin gene-related peptide, currently the two most relevant migraine peptides. Methods In the current study, we used ELISA to investigate PACAP and calcitonin gene-related peptide release in response to 60 mM K+ or capsaicin using a rat hemi-skull model. We combined this analysis with qPCR and immunohistochemistry to study the expression of PACAP and calcitonin gene-related peptide receptors and ligands. Results Calcitonin gene-related peptide (CGRP) is released from the trigeminal ganglion and dura mater. In contrast, PACAP is only released from the trigeminal ganglion. We observed a weak correlation between the stimulated release of the two neuropeptides. PACAP-38 immunoreactivity was expressed alone and in a subpopulation of neurons in the trigeminal ganglion that also store calcitonin gene-related peptide. The receptor subtype PAC1 was mainly expressed in the satellite glial cells (SGCs), which envelop the neurons in the trigeminal ganglion, in some neuronal processes, inside the Aδ-fibres and in the outermost layer of the myelin sheath that envelopes the Aδ-fibres. Conclusion Unlike CGRP, PACAP is only released within the trigeminal ganglion. This raises the question of whether a migraine therapy aimed at preventing peripheral PACAP signalling would be as successful as the CGRP signalling targeted treatments.
Collapse
Affiliation(s)
- Jacob Carl Alexander Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Department of Medicine, Institute of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
19
|
Lin J, Zhang X, Li C, Zhang Y, Lu H, Chen J, Li Z, Yang X, Wu Z. Evodiamine via targeting nNOS and AMPA receptor GluA1 inhibits nitroglycerin-induced migraine-like response. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112727. [PMID: 32147481 DOI: 10.1016/j.jep.2020.112727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evodiamine (EVO) is a natural compound derived from Tetradium ruticarpum (A.Juss.) T.G.Hartley used to treat pain and migraine in traditional Chinese medicine. EVO is the primary active ingredient of Tetradium ruticarpum. However, the preventive effect of EVO against migraine remains unexplored. AIM OF THE STUDY To investigate the preventive effect of EVO against nitroglycerin (NTG)-induced acute migraine in rats. MATERIALS AND METHODS Male Sprague-Dawley rats were intragastrically administered EVO (45 or 90 mg/kg) for nine days. To establish an acute migraine model, we subcutaneously injected rats with a 10 mg/kg NTG solution. The migraine-like behavior of the rats was evaluated via the formalin test and the warm water tail-withdrawal assay. The periaqueductal gray (PAG) and serum samples were collected from the rats and used to determine the effect of EVO on the levels of serum nitric oxide (NO), CGRP, c-Fos, neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor GluA1. RESULTS The formalin test and the warm water tail-withdrawal assay showed that EVO inhibited the licking foot/shaking response and reversed the shortened tail-withdrawal latency in NTG-treated rats. Additionally, EVO suppressed serum NO levels and reduced the mRNA/protein expression of c-Fos and nNOS, but not iNOS, in the PAG. Furthermore, EVO suppressed total protein expression of the AMPA receptor GluA1 and its phosphorylation at Ser831 and Ser845. CONCLUSIONS This study showed that EVO inhibits the migraine-like pain response and that this beneficial effect might be attributed to the regulation of nNOS and suppression of the AMPA receptor GluA1. We suggest that EVO has the potential to treat migraine as a lead compound of natural origin.
Collapse
Affiliation(s)
- Jiacheng Lin
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Xu Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Chaotong Li
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Yingyan Zhang
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Hanzhi Lu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Jiwei Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Zeyu Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China
| | - Xuejun Yang
- Institute of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, China.
| | - Zhongping Wu
- School of Basic Medicine Science, Shanghai University of Traditional Chinese Medicine, 1200, Cailun Road, Shanghai, China.
| |
Collapse
|
20
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
21
|
Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, Haanes KA. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain 2019; 20:105. [PMID: 31718551 PMCID: PMC6852900 DOI: 10.1186/s10194-019-1055-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). Methods With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. Results Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. Conclusion We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
Collapse
Affiliation(s)
- Jacob C A Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Frank W Blixt
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
- University of Copenhagen, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark. .,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Copenhagen, Denmark
| |
Collapse
|
22
|
Haanes KA, Labastida-Ramírez A, Blixt FW, Rubio-Beltrán E, Dirven CM, Danser AH, Edvinsson L, MaassenVanDenBrink A. Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 2019; 39:1421-1434. [PMID: 31104506 DOI: 10.1177/0333102419851810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The current understanding of mechanisms behind migraine pain has been greatly enhanced with the recent therapies targeting calcitonin gene-related peptide and its receptor. The clinical efficacy of calcitonin gene-related peptide-blocking drugs indicates that, at least in a considerable proportion of patients, calcitonin gene-related peptide is a key molecule in migraine pain. There are several receptors and molecular pathways that can affect the release of and response to calcitonin gene-related peptide. One of these could be purinergic receptors that are involved in nociception, but these are greatly understudied with respect to migraine. OBJECTIVE We aimed to explore purinergic receptors as potential anti-migraine targets. METHODS We used the human middle meningeal artery as a proxy for the trigeminal system to screen for possible anti-migraine candidates. The human findings were followed by intravital microscopy and calcitonin gene-related peptide release measurements in rodents. RESULTS We show that the purinergic P2Y13 receptor fulfills all the features of a potential anti-migraine target. The P2Y13 receptor is expressed in both the human trigeminal ganglion and middle meningeal artery and activation of this receptor causes: a) middle meningeal artery contraction in vitro; b) reduced dural artery dilation following periarterial electrical stimulation in vivo and c) a reduction of CGRP release from both the dura and the trigeminal ganglion in situ. Furthermore, we show that P2X3 receptor activation of the trigeminal ganglion causes calcitonin gene-related peptide release and middle meningeal artery dilation. CONCLUSION Both an agonist directed at the P2Y13 receptor and an antagonist of the P2X3 receptor seem to be viable potential anti-migraine therapies.
Collapse
Affiliation(s)
- Kristian A Haanes
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.,Clinical Experimental Research Department, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Frank W Blixt
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Eloisa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Clemens M Dirven
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Hj Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Clinical Experimental Research Department, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Transcriptomic profiling of trigeminal nucleus caudalis and spinal cord dorsal horn. Brain Res 2018; 1692:23-33. [DOI: 10.1016/j.brainres.2018.04.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
24
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
25
|
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule that has important biological effects. It has been heavily implicated in migraine; and the NO donor, nitroglycerin, has been used extensively as a human migraine trigger. Correspondingly, a number of components of the NO signaling cascade have been shown to be upregulated in migraine patients. NO is endogenously produced in the body by NO synthase (NOS), of which there are three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Based on the accumulating evidence that endogenous NO regulation is altered in migraine pathogenesis, global and isoform-selective inhibitors of NOS have been targeted for migraine drug development. This review highlights the evidence for the role of NO in migraine and focuses on the use of NOS inhibitors for the treatment of this disorder. In addition, we discuss other molecules within the NO signaling pathway that may be promising therapeutic targets for migraine.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street (MC 912), Chicago, IL, 60612, USA.
| | - Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street (MC 912), Chicago, IL, 60612, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Schytz HW, Hargreaves R, Ashina M. Challenges in developing drugs for primary headaches. Prog Neurobiol 2017; 152:70-88. [DOI: 10.1016/j.pneurobio.2015.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022]
|
27
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1084] [Impact Index Per Article: 154.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
28
|
Macone AE, Perloff MD. Triptans and migraine: advances in use, administration, formulation, and development. Expert Opin Pharmacother 2017; 18:387-397. [DOI: 10.1080/14656566.2017.1288721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amanda E. Macone
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, USA
| | - Michael D. Perloff
- Department of Neurology, Boston University School of Medicine, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|
29
|
Barbanti P, Aurilia C, Egeo G, Fofi L, Palmirotta R. Serotonin receptor targeted therapy for migraine treatment: an overview of drugs in phase I and II clinical development. Expert Opin Investig Drugs 2017; 26:269-277. [PMID: 28103158 DOI: 10.1080/13543784.2017.1283404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - C. Aurilia
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - G. Egeo
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - L. Fofi
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - R. Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
30
|
The Use of Gene Ontology Term and KEGG Pathway Enrichment for Analysis of Drug Half-Life. PLoS One 2016; 11:e0165496. [PMID: 27780226 PMCID: PMC5079577 DOI: 10.1371/journal.pone.0165496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
A drug's biological half-life is defined as the time required for the human body to metabolize or eliminate 50% of the initial drug dosage. Correctly measuring the half-life of a given drug is helpful for the safe and accurate usage of the drug. In this study, we investigated which gene ontology (GO) terms and biological pathways were highly related to the determination of drug half-life. The investigated drugs, with known half-lives, were analyzed based on their enrichment scores for associated GO terms and KEGG pathways. These scores indicate which GO terms or KEGG pathways the drug targets. The feature selection method, minimum redundancy maximum relevance, was used to analyze these GO terms and KEGG pathways and to identify important GO terms and pathways, such as sodium-independent organic anion transmembrane transporter activity (GO:0015347), monoamine transmembrane transporter activity (GO:0008504), negative regulation of synaptic transmission (GO:0050805), neuroactive ligand-receptor interaction (hsa04080), serotonergic synapse (hsa04726), and linoleic acid metabolism (hsa00591), among others. This analysis confirmed our results and may show evidence for a new method in studying drug half-lives and building effective computational methods for the prediction of drug half-lives.
Collapse
|
31
|
Diener HC, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol 2015; 14:1010-22. [PMID: 26376968 DOI: 10.1016/s1474-4422(15)00198-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 02/03/2023]
Abstract
The management of patients with migraine is often unsatisfactory because available acute and preventive therapies are either ineffective or poorly tolerated. The acute treatment of migraine attacks has been limited to the use of analgesics, combinations of analgesics with caffeine, ergotamines, and the triptans. Successful new approaches for the treatment of acute migraine target calcitonin gene-related peptide (CGRP) and serotonin (5-hydroxytryptamine, 5-HT1F) receptors. Other approaches targeting the transient receptor potential vanilloid (TRPV1) receptor, glutamate, GABAA receptors, or a combination of 5-HT1B/1D receptors and neuronal nitric oxide synthesis have been investigated but have not been successful in clinical trials thus far. In migraine prevention, the most promising new approaches are humanised antibodies against CGRP or the CGRP receptor. Non-invasive and invasive neuromodulation approaches also show promise as both acute and preventive therapies, although further studies are needed to define appropriate candidates for these therapies and optimum protocols for their use.
Collapse
Affiliation(s)
- Hans-Christoph Diener
- Department of Neurology and Headache Center, University of Duisburg-Essen, Essen, Germany.
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Dagny Holle
- Department of Neurology and Headache Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Serotonin, 5HT1 agonists, and migraine: new data, but old questions still not answered. Curr Opin Support Palliat Care 2015; 8:137-42. [PMID: 24670810 DOI: 10.1097/spc.0000000000000044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The serotonergic system has long been linked to migraine but recent studies highlight how much is still unclear about this link. And recent data add to the uncertainty of where/how triptans act and why they are headache specific. RECENT FINDINGS Markers of 5HT levels in the brains of migraine patients show no changes between attacks. Several recent meta-analyses show the most convincing data on genetic differences in the serotonergic system for 5HT transporters. Findings of additional triptan actions on peripheral trigeminovascular neurons and in the hypothalamus add more fuel to the debate on where these drugs act. A growing list of studies show efficacy of multiple triptans and other 5HT1b/1d agonists in preclinical models of nonheadache pain arguing for reevaluation of whether these drugs have efficacy in other pain states. Despite these issues, serotonergic drugs continue to be the gold standard for abortive agents with new members on the horizon (5HT1f agonists). SUMMARY Given the clear efficacy of serotonergic drugs for migraine, continued study on the role of the endogenous 5HT system may lead to more novel therapies. And with the list of studies demonstrating efficacy triptans in models of nonheadache, clinical studies should address whether these drugs work for other types of pain.
Collapse
|
33
|
|
34
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
35
|
Barbanti P, Egeo G, Aurilia C, Fofi L, Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert Opin Investig Drugs 2014; 23:1141-8. [PMID: 24818644 DOI: 10.1517/13543784.2014.918953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Ample evidence that nitric oxide (NO) is a causative molecule in migraine has encouraged research to develop drugs that target the NO-cGMP cascade for migraine treatment. NO synthase (NOS) inhibition is an innovative therapeutic principle. AREAS COVERED This paper reviews the rationale underlying NOS inhibition in migraine treatment. It also provides a review on the efficacy and safety data for NOS inhibitors (nonselective NOS inhibitor L-N(G)-methyl-arginine hydrochloride [L-NMMA], selective inducible NOS [iNOS] inhibitors GW273629 and GW274150, combined neuronal NOS [nNOS] inhibitor and 5-HT1B/1D receptor agonist NXN-188) in acute or preventive migraine treatment. EXPERT OPINION The data highlighted herein, from four placebo-controlled trials and 1 open-labeled clinical trial using 4 different NOS inhibitors on a total of 705 patients, provide convincing efficacy data only for the nonselective NOS inhibitor L-NMMA. Unfortunately, this NOS inhibitor raises cardiovascular safety concerns and has an unfavorable pharmacokinetic profile. As experimental studies predicted, iNOS inhibitors are ineffective in migraine. Still, upcoming selective nNOS inhibitors are a hope for migraine treatment, with the nNOS isoform being most clearly involved in trigeminovascular transmission and central sensitization. Future studies should help to clarify whether NOS inhibition is equally fruitful in acute and preventive treatment. It should also clarify if nNOS inhibition holds promise as a therapeutic tool for the treatment of chronic migraine and other forms of headache.
Collapse
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana , Rome , Italy
| | | | | | | | | |
Collapse
|
36
|
Chai NC, Bond DS, Moghekar A, Scher AI, Peterlin BL. Obesity and headache: Part II--potential mechanism and treatment considerations. Headache 2014; 54:459-71. [PMID: 24511882 PMCID: PMC3975621 DOI: 10.1111/head.12297] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 12/13/2022]
Abstract
Obesity and headache are both associated with a substantial personal and societal impact, and epidemiologic studies have consistently identified a positive association between obesity and headache in general, as well as obesity and migraine specifically (see part I). In the current manuscript, we will discuss the potential mechanisms for the migraine-obesity association, with a focus on the central and peripheral pathophysiological pathways which overlap between migraine and those modulating the drive to feed. We then discuss surgical, behavioral, and pharmacological treatment considerations for overweight and obese migraineurs as well as for those with idiopathic intracranial hypertension. We close by briefly discussing where future research may be headed in light of this data.
Collapse
Affiliation(s)
- Nu Cindy Chai
- School of Medicine - Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
37
|
Bhatt DK, Gupta S, Olesen J, Jansen-Olesen I. PACAP-38 infusion causes sustained vasodilation of the middle meningeal artery in the rat: possible involvement of mast cells. Cephalalgia 2014; 34:877-86. [PMID: 24563332 DOI: 10.1177/0333102414523846] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In healthy human volunteers and in migraineurs, pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) infusion caused sustained vasodilation of the middle meningeal artery (MMA) and an immediate as well as a delayed headache. All the study subjects experienced facial flushing. Mast cells (MCs) might have a role in the long-lasting effect of PACAP-38 infusion. We hypothesized that in mast cell-depleted (MCD) rats the vascular responses to PACAP-38 would be lesser than in control rats because of a lack of vasodilatory products released during MC degranulation. METHODS MCs were depleted by chronic treatment with compound 48/80. The effect of 20 minutes' intravenous (i.v.) infusion of calcitonin gene-related peptide (CGRP), PACAP-38, PACAP(6-38) (PAC-1 receptor antagonist) and PACAP-27 on the diameter of the MMA and on mean arterial blood pressure (MABP) in control and MCD rats was recorded by using the genuine closed-cranial window (CCW) model. Vasoactive intestinal polypeptide (VIP) infusion was given only in control rats. A combination of the histamine H1 receptor antagonist mepyramine (4 mg kg(-1) i.v.) and the H2 receptor antagonist famotidine (1 mg kg(-1) i.v.) was given 10 minutes prior to PACAP-38 infusion. Increasing doses of PACAP-38, PACAP-27 and VIP were infused through the intracarotid artery (i.c.) in control and MCD rats to see the direct effects of these peptides on MMA diameter change. RESULTS There was no significant change in CGRP-induced MMA diameter increase in control and MCD rats, and the dilated MMA immediately returned back to baseline after stopping the infusion. The delayed MMA dilation induced by PACAP-38 was abolished in MCD and antihistamine (AH)-pretreated rats. Compared to PACAP-38, the PACAP-27 i.v. infusion gave smaller peak dilation of MMA in control rats. In MCD rats, PACAP-27 did not induce any significant dilation. VIP i.v. infusion reduced MABP but did not dilate MMA significantly. PACAP(6-38), which is a potent MC degranulator, also gave a significant delayed dilation of MMA. PACAP-38 i.c. responses (direct receptor mediated response) were not affected by MC depletion. Only the maximum response (% E max) value of PACAP-27 (i.c.) was significantly lower in MCD rats compared to control rats. CONCLUSIONS The delayed MMA dilatory responses to PACAP-38 infusion were attenuated in MCD and AH-pretreated rats, indicating a role of the MC mediator-histamine in PACAP-38-induced delayed dilation of MA.
Collapse
Affiliation(s)
- Deepak K Bhatt
- Danish Headache Center, Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Saurabh Gupta
- Danish Headache Center, Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
38
|
Abstract
Migraine is a common and highly disabling neurological disorder. Despite the complexity of its pathophysiology, substantial advances have been achieved over the past 20 years in its understanding, as well as the development of pharmacological treatment options. The development of serotonin 5-HT(1B/1D) receptor agonists ("triptans") substantially improved the acute treatment of migraine attacks. However, many migraineurs do not respond satisfactorily to triptans and cardiovascular co-morbidities limit their use in a significant number of patients. As migraine is increasingly considered to be a disorder of the brain, and preclinical and clinical data indicate that the observed vasodilation is merely an epiphenomenon, research has recently focused on the development of neurally acting compounds that lack vasoconstrictor properties. This review highlights the most important pharmacological targets for which compounds have been developed that are highly likely to enter or have already advanced into clinical trials for the acute and preventive treatment of migraine. In this context, preclinical and clinical data on compounds acting on calcitonin gene-related peptide or its receptor, the 5-HT(1F) receptor, nitric oxide synthase, and acid-sensing ion channel blockers are discussed.
Collapse
Affiliation(s)
- Jan Hoffmann
- Headache Group, Department of Neurology, University of California, San Francisco, 1701 Divisadero St, San Francisco, CA, 94115, USA
| | | |
Collapse
|
39
|
González-Hernández A, Condés-Lara M. The Multitarget Drug Approach in Migraine Treatment: The New Challenge to Conquer. Headache 2013; 54:197-9. [DOI: 10.1111/head.12237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Queretaro Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Queretaro Mexico
| |
Collapse
|
40
|
Ramírez Rosas MB, Labruijere S, Villalón CM, Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs. Expert Opin Pharmacother 2013; 14:1599-610. [PMID: 23815106 DOI: 10.1517/14656566.2013.806487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The introduction of the triptans (5-hydroxytryptamine (5-HT)1B/1D receptor agonists) was a great improvement in the acute treatment of migraine. However, shortcomings of the triptans have prompted research on novel serotonergic targets for the treatment of migraine. AREAS COVERED In this review the different types of antimigraine drugs acting at 5-HT receptors, their discovery and development are discussed. The first specific antimigraine drugs were the ergot alkaloids, consisting of ergotamine, dihydroergotamine and methysergide, which are agonists at 5-HT receptors, but can also bind α-adrenoceptors and dopamine receptors. In the 1990s, the triptans became available on the market. They are 5-HT1B/1D receptor agonists, showing fewer side effects due to their receptor specificity. In the last years, compounds that bind specifically to 5-HT1D, 5-HT1F and 5-HT7 receptors have been explored for their antimigraine potential. Furthermore, the serotonergic system seems to act in tight connection with the glutamatergic as well as the CGRP-ergic systems, which may open novel therapeutic avenues. EXPERT OPINION Although the triptans are very effective in treating migraine attacks, their shortcomings have stimulated the search for novel drugs. Currently, the focus is on 5-HT1F receptor agonists, which seem devoid of vascular side effects. Moreover, novel compounds that affect multiple transmitter and/or neuropeptide systems that are involved in migraine could be of therapeutic relevance.
Collapse
Affiliation(s)
- Martha B Ramírez Rosas
- Erasmus Medical Centre, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|