1
|
Tali A, Lekouch N, Ahboucha S. Lambda-cyhalothrin alters locomotion, mood and memory abilities in Swiss mice. Food Chem Toxicol 2024; 188:114680. [PMID: 38677402 DOI: 10.1016/j.fct.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Lambda-cyhalothrin (LCT) is a type II pyrethroid widely used in agriculture for plant protection against pests. However, pyrethroids represents a risk for rural female farmworkers, and few studies addressed LCT-behavioural alterations in mice. The present study evaluates the effect of LCT on behaviour of eight weeks aged female mice. Mice were divided into three groups including treated mice that received through gavage (i) 0.5 mg/kg bw and (ii) 2 mg/kg of LCT dissolved in corn oil, and (iii) the vehicle controls. Behavioural tests assess the locomotor activity using open field test, the anxiety by the dark-light box test, the learning memory with novel object recognition test, the memory retention by the elevated plus maze test, and the spatial working memory using the Y-maze test. Subacute treatment with low doses of LCT decreases total distance travelled, induces anxiogenic effect by reducing the time spent in the enlightened compartment, alters memory retention by increasing the latency time, and also affects learning memory by reducing the recognition index parameter. However, LCT does not significantly alter spatial working memory. In conclusion, LCT-treated female mice show an alteration in locomotor activity, mood state and memory abilities probably related to oxidative stress and altered neurotransmission.
Collapse
Affiliation(s)
- Assmaa Tali
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Research Team: Technological Applications, Environmental Resources and Health, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, PB, 145-25000, Morocco
| | - Nadra Lekouch
- Laboratory of Water, Biodiversity and Climate Change, Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd: Moulay Abdellah, BP, 2390-40001, Marrakech, Morocco
| | - Samir Ahboucha
- Multidisciplinary Laboratory of Research and Innovation (MLRI), Research Team: Technological Applications, Environmental Resources and Health, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, PB, 145-25000, Morocco.
| |
Collapse
|
2
|
Paz-Trejo C, Arenas-Huertero F, Gómez-Arroyo S. Nano fraction of pesticide induces genotoxicity and oxidative stress-dependent reticulum stress. ENVIRONMENTAL TOXICOLOGY 2024; 39:1072-1085. [PMID: 37800474 DOI: 10.1002/tox.23991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/10/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The implementation of nanotechnology in different sectors has generated expectations as a new source of use due to the novel characteristics that it will bring. Particularly, nano pesticides promise to be more sustainable and less harmful to the ecosystem and human health; however, most studies continue to focus on their efficacy in the field, leaving aside the effect on humans. This project aimed to evaluate the genotoxic effect of a nano-encapsulated pesticide on bronchial epithelial cells (NL-20) in vitro and elucidate the mechanism through which they induce damage. The nano fraction (NF) of the pesticide Karate Zeon® 5 CS was characterized and isolated, and the uptake into the cell and the changes induced in the cellular ultrastructure were evaluated. In addition, the primary markers of oxidative stress, reticulum stress, and genotoxicity were assessed using the micronucleus test. A 700 nm fraction with a Z potential of -40 mV was obtained, whose main component is polyurea formaldehyde; this allows the capsules to enter the cell through macropinocytosis and clathrin-mediated endocytosis. Inside, they induce oxidative stress activating a reticulum stress response via the BIP protein and the IRE-1 sensor, triggering an inflammatory response. Likewise, stress reduces cell proliferation, increasing genotoxic damage through micronuclei; however, this damage is mainly induced by direct contact of the capsules with the nucleus. This pioneering study uses a nanometric encapsulated commercial pesticide to evaluate the molecular mechanism of induced damage. It makes it the first step in analyzing whether these substances represent a contaminant or an emerging solution.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| |
Collapse
|
3
|
Wakil W, Kavallieratos NG, Eleftheriadou N, Haider SA, Qayyum MA, Tahir M, Rasool KG, Husain M, Aldawood AS. A winning formula: sustainable control of three stored-product insects through paired combinations of entomopathogenic fungus, diatomaceous earth, and lambda-cyhalothrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15364-15378. [PMID: 38294649 PMCID: PMC10884107 DOI: 10.1007/s11356-024-31824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
This research aimed to assess the effectiveness of Metarhizium robertsii, diatomaceous earth (Protect-It), and lambda-cyhalothrin, for the long-term protection of stored wheat against three destructive grain insect pests, Rhyzopertha dominica, Tribolium castaneum, and Trogoderma granarium. Different treatments were applied, both alone and in paired combinations in laboratory and persistence trials. Single treatments exhibited significantly lower mortality rates in comparison to the paired treatments for all tested insect species. Among the single treatments, lambda-cyhalothrin (Lamb) resulted in significantly higher mortality rates in laboratory trials, followed by diatomaceous earth (DE) and M. robertsii (Mr), with insignificant differences between Mr and DE. Evidently, DE exhibited the highest persistence after 120 days of storage for all insect species and initial exposures, although variations in mortality rates among treatments were mostly insignificant. Overall, the most effective treatment in terms of mortality in laboratory, and persistence trials, and progeny production was DE + Lamb, followed by Mr + Lamb, and Mr + DE for all tested insect species. In general, the most susceptible insect species was R. dominica, followed by T. castaneum and T. granarium. This research highlights the effectiveness of M. robertsii, DE, and lambda-cyhalothrin in providing prolonged protection of stored wheat against all the examined grain insect species.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
- Senckenberg German Entomological Institute, 15374, Müncheberg, Germany
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Athens, Greece.
| | - Nikoleta Eleftheriadou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Athens, Greece
| | - Syed Adnan Haider
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mirza Abdul Qayyum
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Tahir
- National Agricultural Research Centre, Ministry of National Food Security and Research, Islamabad, 44000, Pakistan
| | - Khawaja G Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mureed Husain
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Abdulrahman S Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Xu X, Yu Y, Ling M, Ares I, Martínez M, Lopez-Torres B, Maximiliano JE, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress and mitochondrial damage in lambda-cyhalothrin toxicity: A comprehensive review of antioxidant mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122694. [PMID: 37802283 DOI: 10.1016/j.envpol.2023.122694] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Lambda-cyhalothrin, also known as cyhalothrin, is an efficient, broad-spectrum, quick-acting pyrethroid insecticide and acaricide and the most powerful pyrethroid insecticide in the world. However, there is increasing evidence that lambda-cyhalothrin is closely related to a variety of toxicity drawbacks (hepatotoxicity, nephrotoxicity, neurotoxicity and reproductive toxicity, among others) in non-target organisms, and oxidative stress seems to be the main mechanism of toxicity. This manuscript reviews the oxidative and mitochondrial damage induced by lambda-cyhalothrin and the signalling pathways involved in this process, indicating that oxidative stress occupies an important position in lambda-cyhalothrin toxicity. The mechanism of antioxidants to alleviate the toxicity of lambda-cyhalothrin is also discussed. In addition, the metabolites of lambda-cyhalothrin and the major metabolic enzymes involved in metabolic reactions are summarized. This review article reveals a key mechanism of lambda-cyhalothrin toxicity-oxidative damage and suggests that the use of antioxidants seems to be an effective method for preventing toxicity.
Collapse
Affiliation(s)
- Xiaoqing Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yixin Yu
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Ling
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Jorge-Enrique Maximiliano
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain.
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), 28040, Madrid, Spain
| |
Collapse
|
5
|
Laborde MRR, Larramendy ML, Soloneski S. Cytotoxic and genotoxic profiles of the pyrethroid insecticide lambda-cyhalothrin and its microformulation Karate® in CHO-K1 cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503682. [PMID: 37770139 DOI: 10.1016/j.mrgentox.2023.503682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Lambda-cyhalothrin (LCT) and its microformulation Karate® (25 % a.i.) were analysed for its genotoxicity and cytotoxicity on Chinese hamster ovary (CHO-K1) cells. Cytokinesis-block micronucleus cytome (CBMN-cyt) and alkaline single-cell gel electrophoresis (SCGE) bioassays were selected to test genotoxicity. Neutral red uptake (NRU), succinic dehydrogenase activity (MTT) and apoptogenic induction were employed for estimating cytotoxicity. Both compounds were analysed within a concentration range of 0.1-100 µg/mL. Only LCT produced a significant augment in the frequency of micronuclei (MNs) when the cultures were exposed to highest concentrations of 10 and 100 µg LCT/mL. A noticeable decrease in NDI was observed for cultures treated with LCT at 10 and 100 µg/mL. Karate® induced the inhibition of both the proportion of viable cells and succinic dehydrogenase activity and triggered apoptosis 24 h of exposition. Whilst an increased GDI in CHO-K1 cells was observed in the treatments with 1-100 µg Karate®/mL, the GDI was not modified in the treatments employing LCT at equivalent doses. SCGE showed that Karate® was more prone to induce genotoxic effects than LCT. Only 50 µg/mL of Karate® was able to increase apoptosis. Our results demonstrate the genomic instability and cytotoxic effects induced by this pyrethroid insecticide, confirming that LCT exposure can result in a severe drawback for the ecological equilibrium of the environment.
Collapse
Affiliation(s)
- Milagros R R Laborde
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
6
|
Sakr S, Rashad WA. Lambda-cyhalothrin-induced pancreatic toxicity in adult albino rats. Sci Rep 2023; 13:11562. [PMID: 37463968 DOI: 10.1038/s41598-023-38661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Lambda-cyhalothrin (LCT) is one of the most frequently utilized pyrethroids. This study aimed to explore the toxic effects of subacute exposure to LCT on the pancreas and the hepatic glucose metabolism in adult male albino rats. 20 rats were equally grouped into; Control group and LCT group. The latter received LCT (61.2 mg/kg b.wt.), orally on a daily basis for 28 days. At the end of experiment, blood samples were collected for the determination of serum glucose and insulin levels. Pancreases were harvested and levels of malondialdehyde (MDA); catalase (CAT); superoxide dismutase (SOD); reduced glutathione (GSH); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); nuclear factor erythroid 2-related factor 2 (Nrf2); heme oxygenase 1 (HO-1); and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were assessed. Also, liver samples were analyzed for the activity of glucose metabolism enzymes, glycogen content, and pyruvate and lactate concentrations. Histopathological and immunohistochemical examinations of pancreatic tissues were undertaken as well. Results revealed hyperglycemia, hypoinsulinemia, increased MDA, TNF-α, IL-6, and NF-κB levels, in association with reduced CAT, SOD, GSH, Nrf2, and HO-1 levels in LCT group. Liver analyses demonstrated a clear disturbance in the hepatic enzymes of glucose metabolism, diminished glycogen content, decreased pyruvate, and increased lactate concentrations. Besides, pancreatic islets displayed degenerative changes and β-cells loss. Immunohistochemistry revealed diminished area percentage (%) of insulin and Nrf2 and increased TNF-α immunoreaction. In conclusion, subacute exposure to LCT induces pancreatic toxicity, mostly via oxidative and inflammatory mechanisms, and dysregulates hepatic glucose metabolism in albino rats.
Collapse
Affiliation(s)
- Samar Sakr
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Walaa A Rashad
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Paz-Trejo C, Flores-Márquez AR, Gómez-Arroyo S. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66473-66485. [PMID: 37115444 PMCID: PMC10203029 DOI: 10.1007/s11356-023-26848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Agriculture has been and still is one of the most influential primary operations in economic history worldwide. Its social, cultural, and political impact allows the progression and survival of humanity. Sustaining the supply of primary resources is crucial for the future. Therefore, the development of new technologies applied to agrochemicals is growing to obtain better food quality faster. Recently, nanotechnology has gained strength in this field in the last decade, mainly because of the presumed benefits that will carry with it compared with the current commercial presentations, like the decrease of risk in non-target organisms. The harm of pesticides is commonly associated with unwanted effects on human health, some with long-term genotoxic effects. Therefore, it would be relevant to set the existence of a risk or a benefit of the nanopesticides from a genotoxic point of view, comparing against those without this technology. Although some studies are concerned with its genotoxicity in live aquatic organisms, few focus on human in vitro models. Several studies conclude that some of them can induce oxidative stress, leading to DNA damage or cell death. However, there is still much to investigate to establish an accurate and complete assessment. In this review, we aim to give an overview of the genotoxic effect caused by nanopesticides in animal cells and a guide to the evolution of this topic, offering a base and critical review to facilitate future research.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México.
| |
Collapse
|
8
|
Kumari A, Srivastava A, Jagdale P, Ayanur A, Khanna VK. Lambda-cyhalothrin enhances inflammation in nigrostriatal region in rats: Regulatory role of NF-κβ and JAK-STAT signaling. Neurotoxicology 2023; 96:101-117. [PMID: 37060950 DOI: 10.1016/j.neuro.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The risk to develop neurobehavioural abnormalities in humans on exposure to lambda-cyhalothrin (LCT) - a type II synthetic pyrethroid has enhanced significantly due to its extensive uses in agriculture, homes, veterinary practices and public health programs. Earlier, we found that the brain dopaminergic system is vulnerable to LCT and affects motor functions in rats. In continuation to this, the present study is focused to unravel the role of neuroinflammation in LCT-induced neurotoxicity in substantia nigra and corpus striatum in rats. Increase in the mRNA expression of proinflammatory cytokines (TNF- α, IL-1β, IL-6) and iNOS whereas decrease in anti-inflammatory cytokine (IL-10) was distinct both in substantia nigra and corpus striatum of rats treated with LCT (0.5, 1.0, 3.0 mg/kg body weight, p.o, for 45 days) as compared to control rats. Further, LCT-treated rats exhibited increased levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba-1), the glial marker proteins both in substantia nigra and corpus striatum as compared to controls. Exposure of rats to LCT also caused alterations in the levels of heat shock protein 60 (HSP60) and mRNA expression of toll-like receptors (TLR2 and TLR4) in the substantia nigra and corpus striatum. An increase in the phosphorylation of key proteins involved in NF-kβ (P65, Iκβ, IKKα, IKKβ) and JAK/STAT (STAT1, STAT3) signaling and alteration in the protein levels of JAK1 and JAK2 was prominent in LCT-treated rats. Histological studies revealed damage of dopaminergic neurons and reactive gliosis as evidenced by the presence of darkly stained pyknotic neurons and decrease in Nissl substance and an increase in infiltration of immune cells both in substantia nigra and corpus striatum of LCT-treated rats. Presence of reactive microglia and astrocytes in LCT-treated rats was also distinct in ultrastructural studies. The results exhibit that LCT may damage dopaminergic neurons in the substantia nigra and corpus striatum by inducing inflammation as a result of stimulation of neuroglial cells involving activation of NF-κβ and JAK/STAT signaling.
Collapse
Affiliation(s)
- Anima Kumari
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anugya Srivastava
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Jagdale
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, Area - Regulatory Toxicology, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Vinay Kumar Khanna
- Developmental Toxicology Laboratory, Area - Systems Toxicology & Health Risk Assessment, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Ileriturk M, Kandemir FM. Carvacrol protects against λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity by modulating oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36947485 DOI: 10.1002/tox.23784] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
λ-Cyhalothrin, a type II synthetic pyrethroid, has been widely used in households, agriculture, public health, and gardening to control insect pests. Despite its widespread usage, it is known to induce a variety of adverse effects, including hepatotoxicity and nephrotoxicity. The goal of this study was to investigate the protective effect of carvacrol, which has antioxidant, anti-inflammatory, anti-apoptotic, and some other properties, on λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity 35 male Sprague-Dawley rats were randomly divided into five groups for this purpose: I-Control group: II-CRV group (50 mg/kg carvacrol), III-LCT group (6.23 mg/kg LCT), IV-LCT + CRV 25 group (6.23 mg/kg LCT + 25 mg/kg carvacrol), and V-LCT + CRV 50 group (6.23 mg/kg LCT + 50 mg/kg carvacrol). Using biochemical, real-time PCR, and western blotting methods, the collected tissues were analyzed. While λ-Cyhalothrin treatment increased MDA levels, which are indicated of lipid peroxidation, but reduced SOD, CAT, GPx activities, and GSH levels. After receiving carvacrol therapy, the degree of oxidative stress reduced as the values of these parameters approached those of the control group. Increased inflammation, apoptosis, endoplasmic reticulum stress, and autophagy with λ-Cyhalothrin administration reduced with carvacrol co-administration, and liver and kidney tissues were protected from damage, depending on the degree of oxidative stress. After considering all of these data, it was discovered that λ-Cyhalothrin-induced oxidative stress, inflammation, apoptosis, endoplasmic reticulum stress, and autophagy in the liver and kidneys; however, carvacrol protected the tissues from damage. Our findings indicate that carvacrol may be a promising protective agent in λ-Cyhalothrin-induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mustafa Ileriturk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
10
|
Yang D, Sun X, Wei X, Zhang B, Fan X, Du H, Zhu R, Oh Y, Gu N. Lambda-cyhalothrin induces lipid accumulation in mouse liver is associated with AMPK inactivation. Food Chem Toxicol 2023; 172:113563. [PMID: 36529352 DOI: 10.1016/j.fct.2022.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lambda-cyhalothrin (LCT) is a critical synthetic Type II pyrethroid insecticide widely applied. Several studies suggest pyrethroids could induce fat accumulation, promote adipogenesis, and impair liver function. Now, the influences of LCT on the hepatic lipid metabolism and the cellular mechanism is still unknown. AMPK has important function in regulating cellular energy balance. To indicate the potential pathogenesis of liver injury caused by LCT exposure, ICR mice were orally administrated with LCT at a dose of 0.4 mg/kg and 2 mg/kg. The results suggest that LCT induced obesity, dyslipidemia and hepatic steatosis. In addition, LCT also induced oxidative stress, liver function injury, and disorganized structure of the liver. Furthermore, upregulation of PPARγ, FASN, and SREBP1c expression, as well as reduction of PPARα and FGF21 expression, bringing with decreases of phosphorylated ratios of AMPK and ACC were found in LCT-L group. These results indicate that LCT at 0.4 mg/kg could result in dyslipidemia and hepatic steatosis in mice. In addition, activation of AMPK in hepatocytes effectively attenuated the effects of LCT. The detailed mechanism of LCT-induced hepatic steatosis is associated with AMPK and its downsteam genes. Activation of AMPK might be a novel protection against the progression of hepatic steatosis induced by LCT.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaotong Sun
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
11
|
Paz-Trejo C, Jiménez-García LF, Arenas-Huertero F, Gómez-Arroyo S. Comparison of the genotoxicity of two commercial pesticides by their micro and nano size capsules. Toxicol Ind Health 2022; 38:675-686. [PMID: 36045123 DOI: 10.1177/07482337221122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of nanotechnology in the agrochemical industry has become increasingly popular over the past decade, raising the question of whether these products may represent a risk or benefit compared to their conventional presentations. In this study, we aimed to evaluate the different genotoxic effects of the Complete encapsulated presentation (CEP), the micro encapsulated fraction (MEF), and the nano encapsulated fraction (NEF) of two pesticides (Karate® and Ampligo®) in lymphocytes from human peripheral blood. To test the different fractions, the pesticides were separated by centrifugations by the average size of the capsule, then were characterized by the general composition of the capsule by RAMAN and FTIR spectroscopy and the active ingredient of both pesticides by gas chromatography-mass spectrometry. Each fraction was tested separately and analyzed by comet assay through the tail moment and the percentage of DNA in the tail and the cytokinesis-block micronucleus through their frequency of micronucleus, nucleoplasmic bridges, and nuclear buds. The nuclear division index and the Nuclear Division Cytotoxicity Index were also measured. For both pesticides, the CEP increased the genetic damage observed in the tail moment and percentage of DNA in the tail at all concentrations for both pesticides. However, in the micronucleus test, NEF induced more micronuclei than MEF and CEP in all treatments reducing cell proliferation as the concentration decreased for both pesticides. These results suggested that NEF had more genotoxic effects in both pesticides, increasing the damage to the cells.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, 7180Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México
| | - Luis Felipe Jiménez-García
- Laboratorio de Microscopía Electrónica, Edificio Tlahuizcalpan, Facultad de Ciencias, 98804Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, 61670Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología y Mutagénesis Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, 7180Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México
| |
Collapse
|
12
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
13
|
Davidović-Plavšić B, Kukavica B, Škondrić S, Jimenez-Gallardo C, Žabić M. Wild garlic extract reduces lipid peroxidation in terbuthylazine-treated human erythrocytes. Biomarkers 2021; 26:617-624. [PMID: 34253103 DOI: 10.1080/1354750x.2021.1953598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Among other negative effects, herbicides induce oxidative stress, leading to lipid peroxidation and protein oxidation. Therefore, there is a growing need to identify natural compounds with sufficient antioxidant capacity and mitigate the negative effects of herbicides without side effects.Objective: Our study aimed to examine the protective effect of the phenolic extract of wild garlic (WG) leaves on terbuthylazine-treated erythrocytes.Material and methods: In human erythrocytes treated with the herbicide terbuthylazine (4.5 mg/L) alone and a combination of terbuthylazine and WG extract, we measured malondialdehyde (MDA) and haemoglobin (Hb) concentrations and the antioxidant activities of CuZn superoxide dismutase (SOD1; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) in vitro.Results: In comparison with terbuthylazine, WG extract reduced the concentrations of MDA and Hb from 59.69 to 43.45 nmol/gHb (27%, p < 0.001) and 165.08 to 128.64 g/L (22%, p < 0.05), respectively. Catalase activity was induced for samples treated with both WG extract and terbuthylazine compared with terbuthylazine alone (p < 0.05).Conclusions: The results demonstrated that WG may reduce the toxicity of terbuthylazine, and the erythrocyte membrane may be the primary site of phenolic action. Therefore, the lipid peroxidation intensity could be a biomarker of oxidative damage caused by terbuthylazine and the protective effect of WG.
Collapse
Affiliation(s)
- Biljana Davidović-Plavšić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Siniša Škondrić
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | | | - Mirjana Žabić
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
14
|
Effect of Lambda-Cyhalothrin - An Insecticide from the Group of Synthetic Pyrethroids - on the Concentrations of NF-ĸB and VEGFR2 in the Liver of Albino Swiss Mice as Markers of its Damage. POLISH HYPERBARIC RESEARCH 2021. [DOI: 10.2478/phr-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract
Background: Lambda-cyhalothrin (LCH) is a one of the type II synthetic pyrethroids which is widely used in veterinary medicine and in agriculture to protect crops from pest insects. In previous studies, there are few reports about the influence of pyrethroids on the liver and its damage. Analyzing numerous publications, nuclear factor-ĸB (NF-ĸB) and vascular endothelial growth factor 2 (VEGFR2) seem to be sensitive indicators of microdamages occurring at the cellular level in the liver. The aim of the study was to investigate the effect of subacute poisoning with LCH on the concentration of NFĸB and VEGFR2 in the livers.
Methods: The experiment was carried on 32 Albino Swiss mice (16 females and 16 males). The animals were divided into 4 groups. Controls received canola oil, the rest received LCH orally in oil at a dose of 2 mg/kg bw for 7 days. The NF-ĸB and VEGFR2 were mesuredin mice livers with ELISA kits. Results: The mean NF-ĸB concektration in control femals’ livers was 3.27ng/mL and after LCH it was 6.12ng/mL (p<0.05). In control males it was 5.49ng/mL and it did not significantly differ after LCH when it was 5.27ng/mL. The mean VEGFR2 in control females was 84.28ng/mL and after LCH it was 173.81ng/mL (p<0.05). In control males it was 170.61ng/mL and after LCH 170.06ng/mL.
Conclusion:The NF-ĸB and VEGFR2 can be used as markers of liver damage after subacute poisoning with LCH on female mice. Females are more sensitive to LCH than males.
Collapse
|
15
|
Ingham VA, Brown F, Ranson H. Transcriptomic analysis reveals pronounced changes in gene expression due to sub-lethal pyrethroid exposure and ageing in insecticide resistance Anopheles coluzzii. BMC Genomics 2021; 22:337. [PMID: 33971808 PMCID: PMC8111724 DOI: 10.1186/s12864-021-07646-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control is heavily reliant on the use of insecticides that target and kill the adult female Anopheline vector. The intensive use of insecticides of the pyrethroid class has led to widespread resistance in mosquito populations. The intensity of pyrethroid resistance in some settings in Africa means mosquitoes can contact bednets treated with this insecticide class multiple times with minimal mortality effects. Furthermore, both ageing and diel cycle have been shown to have large impacts on the resistance phenotype. Together, these traits may affect other aspects of vector biology controlling the vectorial capacity or fitness of the mosquito. RESULTS Here we show that sublethal exposure of a highly resistant Anopheles coluzzii population originally from Burkina Faso to the pyrethroid deltamethrin results in large and sustained changes to transcript expression. We identify five clear patterns in the data showing changes to transcripts relating to: DNA repair, respiration, translation, behaviour and oxioreductase processes. Further, we highlight differential regulation of transcripts from detoxification families previously linked with insecticide resistance, in addition to clear down-regulation of the oxidative phosphorylation pathway both indicative of changes in metabolism post-exposure. Finally, we show that both ageing and diel cycle have major effects on known insecticide resistance related transcripts. CONCLUSION Sub-lethal pyrethroid exposure, ageing and the diel cycle results in large-scale changes in the transcriptome of the major malaria vector Anopheles coluzzii. Our data strongly supports further phenotypic studies on how transcriptional changes such as reduced expression of the oxidative phosphorylation pathway or pyrethroid induced changes to redox state might impact key mosquito traits, such as vectorial capacity and life history traits.
Collapse
Affiliation(s)
- V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK. .,Present Address: Parasitology Unit, Centre for Infectious Diseases, Universitätsklinikum, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - F Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK.,Department of Epidemiology and Population Health, Institute of Infection and Global Health, Faculty of Health and Life Sciences, Leahurst Campus, University of Liverpool, Neston, CH647TE, UK
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
16
|
El-Saad AMA, Abdel-Wahab WM. Naringenin Attenuates Toxicity and Oxidative Stress Induced by Lambda-cyhalothrin in Liver of Male Rats. Pak J Biol Sci 2021; 23:510-517. [PMID: 32363836 DOI: 10.3923/pjbs.2020.510.517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Extensive use of Lambda-cyhalothrin (LTC), a synthetic pyrethroid insecticide, has been associated with serious health problems to the non-target organisms including mammals. The present study investigated the protective effect of naringenin (NGN), an antioxidant flavonoid, against the toxicity induced LTC in the liver of male rats. MATERIALS AND METHODS Five groups of rats were assigned as follows; control group, LTC group (6.12 mg kg-1, 1/10 LD50), LTC-NGN group (6.12 mg kg-1 LTC and 50 mg kg-1 NGN), NGN-LTC group (50 mg kg-1 NGN and 6.12 mg kg-1 LTC) and NGN group (50 mg kg-1). Doses were administrated orally for 21 consecutive days. RESULTS Administration of LTC induced liver damage as indicated by the increase in the activities of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase and in the level of total bilirubin in serum. LTC also induced a significant elevation in the levels of serum total lipids, total cholesterol, triglycerides and low-density lipoproteins while high-density lipoproteins decreased. Furthermore, LTC significantly disturbed the oxidant/antioxidant balance in the liver as shown by the elevation in lipid peroxidation, lipid hydroperoxides, protein carbonyl content and conjugated dienes with a concomitant inhibition in the major antioxidants such as reduced glutathione and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase. Both post-treatment and pre-treatment with NGN significantly modulated the LTC-induced hepatotoxicity and oxidative stress in rat's liver and pretreatment was found to be more effective in improving most of the studied parameters in both serum and liver tissue. CONCLUSION NGN could be used as a safe dietary supplement to protect against the toxicity and oxidative stress associated with the use of LTC.
Collapse
|
17
|
Gargouri B, Boukholda K, Kumar A, Benazzouz A, Fetoui H, Fiebich BL, Bouchard M. Bifenthrin insecticide promotes oxidative stress and increases inflammatory mediators in human neuroblastoma cells through NF-kappaB pathway. Toxicol In Vitro 2020; 65:104792. [PMID: 32061760 DOI: 10.1016/j.tiv.2020.104792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The extensive application of bifenthrin (BF) insecticide in agriculture has raised serious concerns with regard to increased risks of developing neurodegenerative diseases. Recently, our group showed that BF exposure in rodent models induced oxidative stress and inflammation markers in various regions of the brain (frontal cortex, striatum and hippocampus) and this was associated with behavioral changes. This study aimed to confirm such inflammatory and oxidative stress in an in vitro cell culture model of SK-N-SH human neuroblastoma cells. Markers of oxidative stress (ROS, NO, MDA, H2O2), antioxidant enzyme activities (CAT, GPx, SOD) and inflammatory response (TNF-α, IL-6, PGE2) were analyzed in SK-N-SH cells after 24 h of exposure to different concentrations of BF (1-20 μM). Protein synthesis and mRNA expression of the enzymes implicated in the synthesis of PGE2 were also measured (COX-2, mPGES-1) as well as nuclear factor κappaB (NF-κBp65) and antioxidant nuclear erythroid-2 like factor-2 (Nrf-2). Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Exposure of SK-N-SH cells to BF resulted in a concentration-dependent reduction in the number of viable cells (reduction of MTT and increase in LDH activity). There was also a BF concentration-dependent increase in oxidative stress markers (ROS release, NO, MDA and H2O2) and decrease in the activity of antioxidant enzymes (CAT and GPx activities). There was further a concentration-dependent increase in pro-inflammatory cytokines (TNF-α and IL-6) and inflammatory mediator PGE2, increase in protein synthesis and mRNA expression of inflammatory markers (COX-2, mPGES-1 and NF-κBp65) and decrease in protein synthesis and mRNA expression of antioxidant Nrf-2. Our data shows that BF induces various oxidative stress and inflammatory markers in SK-N-SH human neuroblastoma cells as well as the activation of NF-κBp65 signaling pathway. This is in line with prior results in brain regions of rodents exposed in vivo to BF showing increased oxidative stress in response to BF exposure, occurring in pro-inflammatory conditions and likely activating programmed cell death.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Asit Kumar
- Department of Neurology, Richard T Johnson Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdelhamid Benazzouz
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Haupt strasse 5, 79104 Freiburg, Germany.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec H3C 3J7, Canada.
| |
Collapse
|
18
|
El-Bialy BES, Abd Eldaim MA, Hassan A, Abdel-Daim MM. Ginseng aqueous extract ameliorates lambda-cyhalothrin-acetamiprid insecticide mixture for hepatorenal toxicity in rats: Role of oxidative stress-mediated proinflammatory and proapoptotic protein expressions. ENVIRONMENTAL TOXICOLOGY 2020; 35:124-135. [PMID: 31566303 DOI: 10.1002/tox.22848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
This study was carried out to evaluate the protective effects of Panax ginseng aqueous extract (GAE) against hepatorenal toxicity induced by lambda-cyhalothrin-acetamiprid insecticide mixture in rats. A total of 32 male albino rats were assigned into four groups. Normal control group received distilled water. Insecticide control group intoxicated with the insecticide at a dose of 2.14 mg/kg b.wt orally day after day for 45 days. GAE control group was treated with GAE at a dose 200 mg/kg b.wt orally. GAE experimental group was administered GAE 1 hour before insecticide administration. Intoxication of rats with the insecticide caused a significant increase in serum aspartate aminotransferase and alanine aminotransferase activities and urea and creatinine levels as well as malondialdehyde concentration and proteins expression of caspase-3 and induced nitric oxide synthase in hepatic and renal tissues. However, it decreased the serum levels of total protein and globulin and reduced the glutathione content and catalase activity in hepatic and renal tissues. In addition, insecticide induced histopathological alterations in both hepatic and renal tissues. In contrast, GAE modulated insecticide-induced alterations in liver and kidney functions and structures as it ameliorated the effects of insecticide on the above mentioned parameters. These results indicated that GAE was a potent antioxidant agent that could protect rats against insecticide-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Badr E S El-Bialy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mabrouk A Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Sheben Elkom, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Safety of Natural Insecticides: Toxic Effects on Experimental Animals. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4308054. [PMID: 30410930 PMCID: PMC6206511 DOI: 10.1155/2018/4308054] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Long-term application and extensive use of synthetic insecticides have resulted in accumulating their residues in food, milk, water, and soil and cause adverse health effects to human and ecosystems. Therefore, application of natural insecticides in agriculture and public health sectors has been increased as alternative to synthetic insecticides. The question here is, are all natural insecticides safe. Therefore, the review presented here focuses on the safety of natural insecticides. Natural insecticides contain chemical, mineral, and biological materials and some products are available commercially, e.g., pyrethrum, neem, spinosad, rotenone, abamectin, Bacillus thuringiensis (Bt), garlic, cinnamon, pepper, and essential oil products. It can induce hepatotoxicity, renal toxicity, hematotoxicity, reproductive toxicity, neurotoxicity, and oxidative stress. It can induce mutagenicity, genotoxicity, and carcinogenicity in mammals. Some natural insecticides and active compounds from essential oils are classified in categories Ib (Highly hazardous) to U (unlikely toxic). Therefore, the selectivity and safety of natural insecticides not absolute and some natural compounds are toxic and induce adverse effects to experimental animals. In concussion, all natural insecticides are not safe and the term "natural" does not mean that compounds are safe. In this respect, the term "natural" is not synonymous with "organic" and not all-natural insecticide products are acceptable in organic farmers.
Collapse
|
20
|
Al-Amoudi WM. Toxic effects of Lambda-cyhalothrin, on the rat thyroid: Involvement of oxidative stress and ameliorative effect of ginger extract. Toxicol Rep 2018; 5:728-736. [PMID: 29922588 PMCID: PMC6005809 DOI: 10.1016/j.toxrep.2018.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/11/2023] Open
Abstract
Lambda-cyhalothrin leads to histpathological changes and DNA damage in thyroid gland. Lambda-cyhalothrin induces oxidative stress by decreasing the levels of thyroid hormones and antioxidant enzyme in erythrocytes. Ginger prevents the toxicity effect of Lambda-cyhalothrin and DNA damage in the thyroid gland. Ginger decreases the histopathological changes, abnormal level of thyroid hormones and antioxidant enzymes in the thyroid gland caused by LCT.
Lambda-cyhalothrin (LCT) is a synthetic pyrethroid that is widely used to control insecticide. Ginger is a traditional plant that is widely used as a spice or folk medicine. This study evaluates the antioxidant effect of ginger extract on thyroid toxicity induced by LCT in albino rats. Adult Rats were divided into 4 experimental groups: Group 1: control, Group 2: oral ginger treatment (24 mg/ml, 3 days/week for 4 weeks), Group 3: oral LCT treatment (1/100 LD50, 3 days/week for 4 weeks), Group 4: oral LCT and ginger mixture treatment. The histological results of LCT group showed degenerated follicles with reduced colloids, congestion of blood vessels and hyperaemia between the follicles. Histochemically, depletion of glycogen and proteins was recorded in follicular cells and colloids. The biochemical results of LCT treated group revealed a decrease in T3, T4, SOD and CAT, while TSH and MDA were increased. The comet assay showed that LCT significantly induced DNA damage in the thyroid gland. However, treating rats with LCT plus ginger led to an improvement in the histological structure of the thyroid, with noticeable increases in glycogen and protein deposition. Also, LCT plus ginger increase in T3, T4 and the antioxidant enzymes SOD and COT were detected concomitantly with a decrease in TSH and MDA as well as a significant reduction in DNA damage. LCT affected the thyroid function and structure. On the other hand, ginger has a preventative effect against the histological damage and biochemical toxicity caused by the (LCT) insecticide.
Collapse
Key Words
- AD, Alzheimer's disease
- ALK-P, alkaline phosphatase
- ALT, plasma alanine aminotransferase
- AST, aspartate aminotransferase
- Antioxidant
- CAT, catalase
- CC14, carbon tetrachloride
- DMA, lipid peroxidan marker
- DMBA, 7,12-dimethylbenz(a)anthracene
- GPx, glutathione peroxidase
- GR, glutathione reductase
- GSH, glutathione
- GST, glutathione-S-transferase
- Ginger
- Histochemistry
- LCT, Lambda-cyhalothrin
- Lambda-cyhalothrin
- MDA, malondialdehyde
- PAS, Periodic acid–Schiff
- PCO, protein carbonyl
- PD, Parkinson’s disease
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- T3, triiodothyronine, T4, thyroxine
- TI, percent of genomic DNA that migrated during electrophoresis from the nuclear core to the tail
- TL, distance of DNA migration from the center to the nuclear core
- TSH, thyroid-stimulating hormone
- Thyroid
Collapse
|
21
|
Gargouri B, Yousif NM, Bouchard M, Fetoui H, Fiebich BL. Inflammatory and cytotoxic effects of bifenthrin in primary microglia and organotypic hippocampal slice cultures. J Neuroinflammation 2018; 15:159. [PMID: 29793499 PMCID: PMC5968622 DOI: 10.1186/s12974-018-1198-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/10/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Pyrethroids, such as bifenthrin (BF), are among the most widely used class of insecticides that pose serious risks to human and wildlife health. Pyrethroids are proposed to affect astrocytic functions and to cause neuron injury in the central nervous system (CNS). Microglia are key cells involved in innate immune responses in the CNS, and microglia activation has been linked to inflammation and neurotoxicity. However, little information is known about the effects of BF-induced toxicity in primary microglial cells as well as in organotypic hippocampal slice cultures (OHSCs). METHODS Oxidative stress and inflammatory responses induced by BF were evaluated in primary microglial cells and OHSCs incubated with different concentrations of BF (1-20 μM) for 4 and 24 h. mRNA and protein synthesis of cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), nuclear erythroid-2 like factor-2 (Nrf-2), and microsomal prostaglandin synthase-1 (mPGES-1) was also studied by qPCR and Western blot. Cell viability was analyzed by MTT-tetrazolio (MTT) and lactate dehydrogenase (LDH) assays. Neurotoxicity in OHSCs was analyzed by propidium iodide (PI) staining and confocal microscopy. RESULTS Exposure of microglial cells to BF for 24 h resulted in a dose-dependent reduction in the number of viable cells. At sub-cytotoxic concentrations, BF increased reactive oxygen species (ROS), TNF-alpha synthesis, and prostaglandin E2 (PGE2) production, at both 4- and 24-h time points, respectively. Furthermore, BF incubation decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities and increased lipid peroxidation, protein oxidation, and H2O2 formation. In addition, BF significantly induced protein synthesis and mRNA expression of oxidative and inflammatory mediators after 4 and 24 h, including Nrf-2, COX-2, mPGES-1, and nuclear factor kappaB (NF-kappaB). A 24-h exposure of OHSCs to BF also increased neuronal death compared to untreated controls. Furthermore, depletion of microglia from OHSCs potently enhanced neuronal death induced by BF. CONCLUSIONS Overall, BF exhibited cytotoxic effects in primary microglial cells, accompanied by the induction of various inflammatory and oxidative stress markers including the Nrf-2/COX-2/mPGES-1/NF-kappaB pathways. Moreover, the study provided evidence that BF induced neuronal death in OHSCs and suggests that microglia exert a protective function against BF toxicity.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
- Laboratory of Translational Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Nizar M. Yousif
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, Main Station, Montreal, P.O. Box 6128, Montreal, Quebec H3C 3J7 Canada
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Syed F, Awasthi KK, Chandravanshi LP, Verma R, Rajawat NK, Khanna VK, John PJ, Soni I. Bifenthrin-induced neurotoxicity in rats: involvement of oxidative stress. Toxicol Res (Camb) 2017; 7:48-58. [PMID: 30090562 DOI: 10.1039/c7tx00205j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/04/2017] [Indexed: 11/21/2022] Open
Abstract
Extensive use of synthetic pyrethroids has resulted in serious human health issues. Induction of oxidative stress is an important mechanism of action of most pesticides including pyrethroids. In the present study, we have elucidated the possible role of oxidative stress in bifenthrin-induced neurotoxicity. Adult male Wistar rats were administered bifenthrin (3.5 and 7 mg per kg body weight p.o.) for 30 days. Behavioral studies were conducted on a set of randomly selected rats from each treatment group after completion of treatment. Neurochemical parameters were assessed 24 h after the last dose was administered. The selected behavioral and neurochemical endpoints were also assessed 15 days after cessation of exposure to reveal whether the neurobehavioral changes produced by bifenthrin were temporary or permanent. Deficits in motor activity, motor incoordination, and cognitive impairment were observed after exposure to bifenthrin. Levels of biogenic amines viz. dopamine (DA) and its metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), epinephrine (EPN), norepinephrine (NE), and serotonin (5-HT) altered in the frontal cortex, corpus striatum, and hippocampus of bifenthrin-treated rats. A decrease in the activity of acetylcholinesterase (AChE) occurred in all regions of the brain. Both doses of bifenthrin significantly induced lipid peroxidation (LPO) and increased protein carbonyl levels in the frontal cortex, corpus striatum, and hippocampus of rats. The activities of antioxidant enzymes, i.e. catalase, superoxide dismutase, and glutathione peroxidase, were also suppressed in all selected regions of the brain. A trend of recovery was, however, observed in all the behavioral and neurochemical endpoints 15 days after withdrawal of exposure. Oxidative stress seems to play an important role in bifenthrin-induced neurotoxicity. Our study suggests that long-term exposure to these compounds can produce detrimental effects.
Collapse
Affiliation(s)
- Farah Syed
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957.,Department of Zoology , Kanoria PG Mahila Mahavidyalaya , Jaipur , 302004 , India
| | - Kumud K Awasthi
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957.,National Institute of Animal Welfare , Ministry of Environment Forest and Climate Change , Ballabhgarh-121004 , India
| | - Lalit P Chandravanshi
- CSIR - Indian Institute of Toxicology Research , Post Box 80 , MG Marg , Lucknow , 226001 , India.,Biochemistry Section , Department of Zoology , Banaras Hindu University , Varanasi , 221005 , India
| | - Rajbala Verma
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957
| | - Neelu K Rajawat
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957
| | - Vinay K Khanna
- CSIR - Indian Institute of Toxicology Research , Post Box 80 , MG Marg , Lucknow , 226001 , India
| | - P J John
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957
| | - Inderpal Soni
- Environmental Toxicology Laboratory , Department of Zoology , University of Rajasthan , Jaipur , 302004 , India . ; ; Tel: +91-9413344957
| |
Collapse
|
23
|
Khan AM, Raina R, Dubey N, Verma PK. Effect of deltamethrin and fluoride co-exposure on the brain antioxidant status and cholinesterase activity in Wistar rats. Drug Chem Toxicol 2017; 41:123-127. [PMID: 28503953 DOI: 10.1080/01480545.2017.1321009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The study evaluated the effect of commercial preparation of deltamethrin, Butox®, and fluoride (F-) co-exposure on the brain antioxidant status and cholinesterase activity in rats. Group A was untreated. Group B was gavaged Butox®, providing deltamethrin at the dose rate of 1.28 mg per kg body weight per day. Group C was administered F-, as NaF, in drinking water providing 20 ppm F-. Group D received both deltamethrin and F- at the same dosages as groups B and C, respectively. Although, glutathione S-transferase activity was induced only in Butox® alone treated group, the activities of superoxide dismutase and catalase were inhibited in all treatment groups when compared to the control group. Elevated lipid peroxidation was observed in the groups exposed to F-. The activity of erythrocyte acetylcholinesterase (AChE) was inhibited in Butox® treated groups, whereas brain AChE activity was inhibited in all treatment groups. In conclusion, both deltamethrin (given as Butox®) and F- inhibit AChE activity and produce oxidative stress in brain with F- producing more oxidative damage. However, compared to the individual exposures, the co-exposure of these chemicals does not produce any exacerbated alteration in these biochemical parameters.
Collapse
Affiliation(s)
- Adil Mehraj Khan
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Rajinder Raina
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Nitin Dubey
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| | - Pawan Kumar Verma
- a Division of Veterinary Pharmacology and Toxicology , Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu , Jammu , India
| |
Collapse
|
24
|
Simone-Finstrom M, Li-Byarlay H, Huang MH, Strand MK, Rueppell O, Tarpy DR. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci Rep 2016; 6:32023. [PMID: 27554200 PMCID: PMC4995521 DOI: 10.1038/srep32023] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such "migratory management" causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees.
Collapse
Affiliation(s)
| | - Hongmei Li-Byarlay
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Ming H. Huang
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, Research Triangle Park, NC, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - David R. Tarpy
- Department of Entomology, North Carolina State University, Raleigh, NC, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
25
|
Pawar NN, Badgujar PC, Sharma LP, Telang AG, Singh KP. Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure. Toxicol Ind Health 2016; 33:277-286. [PMID: 26989158 DOI: 10.1177/0748233715627736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lambda cyhalothrin (LCT), a broad-spectrum type II (α-cyano) synthetic pyrethroid pesticide, is widely employed in various agricultural and animal husbandry practices for the control of pests. Acute and chronic exposure to LCT can elicit several adverse effects including oxidative stress. With the objective to investigate nephrotoxicity and neurotoxicity of LCT in mice, we evaluated oxidative stress parameters and histological changes in the kidney and brain of LCT exposed mice. Swiss albino mice were divided randomly into four groups ( n = 6 per group) as: (A) corn oil/vehicle control; (B) 0.5 mg/kg body weight (b.w.) LCT; (C) 1 mg/kg b.w. LCT; (D) 2 mg/kg b.w. LCT. Mice were treated orally for 28 days. LCT exposure significantly increased serum urea nitrogen, creatinine and urea levels. LCT exposure also increased lipid peroxidation, superoxide anion generation, nitrite level and decreased the level of reduced glutathione. The activities of superoxide dismutase, catalase and glutathione- S-transferase were depleted significantly in both kidney and brain. Histological examination revealed marked histopathological changes in the kidney and brain of mice that were more pronounced at high dose of LCT. Thus, results of the present study indicate that 28 days oral exposure of LCT causes oxidative damage to the kidney and brain of mice which in turn could be responsible for nephrotoxicity and neurotoxicity. Nevertheless, further detailed studies are required to prove these effects especially after long-term exposure.
Collapse
Affiliation(s)
- Nitin Nanasaheb Pawar
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Prarabdh Chandrakant Badgujar
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
- 2 Department of Food Science and Technology, Food Toxicology Section, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Laxman Prasad Sharma
- 1 Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, India
| | - Avinash Gopal Telang
- 3 Toxicology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| | - Karam P Singh
- 4 Pathology Laboratory, Centre for Animal Disease Research and Diagnosis, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
26
|
Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 2015; 5:8784. [PMID: 25740758 PMCID: PMC4350101 DOI: 10.1038/srep08784] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
Cyhalothrin is a common environmental pollutant which poses increased risks to non-target organisms including human beings. This study reported for the first time a newly isolated strain, Bacillus thuringiensis ZS-19 completely degraded cyhalothrin in minimal medium within 72 h. The bacterium transformed cyhalothrin by cleavage of both the ester linkage and diaryl bond to yield six intermediate products. Moreover, a novel degradation pathway of cyhalothrin in strain ZS-19 was proposed on the basis of the identified metabolites. In addition to degradation of cyhalothrin, this strain was found to be capable of degrading 3-phenoxybenzoic acid, a common metabolite of pyrethroids. Furthermore, strain ZS-19 participated in efficient degradation of a wide range of pyrethroids including cyhalothrin, fenpropathrinn, deltamethrin, beta-cypermethrin, cyfluthrin and bifenthrin. Taken together, our results provide insights into the mechanism of cyhalothrin degradation and also highlight the promising potentials of B.thuringiensis ZS-19 in bioremediation of pyrethroid-contaminated environment. This is the first report of (i) degradation of cyhalothrin and other pyrethroids by B.thuringiensis, (ii) identification of 3-phenoxyphenyl acetonitrile and N-(2-isoproxy-phenyl)-4-phenoxy-benzamide as the metabolites in the degradation pathway of pyrethroids, and (iii) a pathway of degradation of cyhalothrin by cleavage of both the ester linkage and diaryl bond in a microorganism.
Collapse
|
27
|
Gadhave PD, Brar RS, Banga HS, Dhawan A. λ-cyhalothrin induced genotoxicity in freshwater fish Labeo rohita. Vet World 2014. [DOI: 10.14202/vetworld.2014.412-415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|