1
|
Beilleau G, Stalder H, Almeida L, Oliveira Esteves BI, Alves MP, Schweizer M. The Pestivirus RNase E rns Tames the Interferon Response of the Respiratory Epithelium. Viruses 2024; 16:1908. [PMID: 39772215 PMCID: PMC11680131 DOI: 10.3390/v16121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus in the family Flaviviridae, is a major livestock pathogen. Horizontal transmission leads to acute transient infections via the oronasal route, whereas vertical transmission might lead to the birth of immunotolerant, persistently infected animals. In both cases, BVDV exerts an immunosuppressive effect, predisposing infected animals to secondary infections. Erns, an immunomodulatory viral protein, is present on the envelope of the virus and is released as a soluble protein. In this form, it is taken up by cells and, with its RNase activity, degrades single- and double-stranded (ds) RNA, thus preventing activation of the host's interferon system. Here, we show that Erns of the pestiviruses BVDV and Bungowannah virus effectively inhibit dsRNA-induced IFN synthesis in well-differentiated airway epithelial cells cultured at the air-liquid interface. This activity was observed independently of the side of entry, apical or basolateral, of the pseudostratified, polarized cell layer. Virus infection was successful from both surfaces but was inefficient, requiring several days of incubation. Virus release was almost exclusively restricted to the apical side. This confirms that primary, well-differentiated respiratory epithelial cells cultured at the air-liquid interface are an appropriate model to study viral infection and innate immunotolerance in the bovine respiratory tract. Furthermore, evidence is presented that Erns might contribute to the immunosuppressive effect observed after BVDV infections, especially in persistently infected animals.
Collapse
Affiliation(s)
- Guillaume Beilleau
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Lea Almeida
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Blandina I. Oliveira Esteves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Marco P. Alves
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, CH-3001 Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| |
Collapse
|
2
|
Cui H, Ren B, Wang L, Chen J, Li J, Hu W, Yang Y. Enhanced pathogenicity and synergistic effects of co-infection with bovine viral diarrhea virus 1 and HoBi-like virus in cattle and guinea pigs. Front Vet Sci 2024; 11:1464745. [PMID: 39600877 PMCID: PMC11589818 DOI: 10.3389/fvets.2024.1464745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction The Bovine Viral Diarrhea Virus 1 (BVDV1) and HoBi-like virus (BVDV3), both within the same genus, share genomic homology and exhibit low antigenic cross-reactivity despite presenting similar clinical manifestations. In 2021, a bovine respiratory disease complex (BRDC) outbreak on two cattle farms in the Inner Mongolia Autonomous Region of China resulted in ten fatalities. Methods Metagenomic and metatranscriptomic analyses were used to identify viral agents, including a co-infection case. A genetic evolution analysis assessed the relationships with related strains. Experimental infections in guinea pigs and calves evaluated the pathogenicity of the viruses. Results Phylogenetic analysis of the BVDV3 isolate IM2201 revealed close relatedness to Brazilian strains, with 97.06% nucleotide homology to the highly virulent strain SV478/07. Experimental co-infection in guinea pigs resulted in more severe clinical signs, including fever, cough, diarrhea, and significant pathological changes, and led to a higher mortality rate (40%) compared to no mortality from single-virus infections with BVDV1 or BVDV3. Similarly, co-infected cattle exhibited more severe clinical signs, including bloody diarrhea and rectal temperatures exceeding 40°C, along with persistent viremia and nasal viral shedding from 7 to 21 days post-infection. Blood analysis revealed significant reductions in white blood cell counts, particularly in co-infected cattle. Discussion This study highlights the enhanced pathogenicity and synergistic effects of BVDV1 and BVDV3 co-infection, exacerbating disease severity.
Collapse
Affiliation(s)
- Hongliang Cui
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Baoru Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Linglong Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Jinyu Biotechnology Co., Ltd., Hohhot, China
| | - Jie Li
- Jinyu Biotechnology Co., Ltd., Hohhot, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Huang J, Hu Y, Niu Z, Hao W, Ketema H, Wang Z, Xu J, Sheng L, Cai Y, Yu Z, Cai Y, Zhang W. Preclinical Efficacy of Cap-Dependent and Independent mRNA Vaccines against Bovine Viral Diarrhea Virus-1. Vet Sci 2024; 11:373. [PMID: 39195827 PMCID: PMC11359904 DOI: 10.3390/vetsci11080373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an RNA virus associated with severe economic losses in animal production. Effective vaccination and viral surveillance are urgent for the prevention and control of BVDV infection. However, the application of traditional modified live vaccines and inactivated vaccines is faced with tremendous challenges. In the present study, we describe the preclinical efficacy of two BVDV mRNA vaccines tested in mice and guinea pigs, followed by a field trial in goats, where they were compared to a commercial vaccine (formaldehyde inactivated). The two mRNAs were engineered to express the envelope protein E2 of BVDV-1, the most prevalent subtype across the world, through a 5' cap-dependent or independent fashion. Better titers of neutralizing antibodies against BVDV-1 were achieved using the capped RNA in the sera of mice and guinea pigs, with maximum values reaching 9.4 and 13.7 (by -log2), respectively, on the 35th day post-vaccination. At the same time point, the antibody levels in goats were 9.1 and 10.2 for the capped and capless RNAs, respectively, and there were no significant differences compared to the commercial vaccine. The animals remained healthy throughout the experiment, as reflected by their normal leukogram profiles. Collectively, our findings demonstrate that mRNA vaccines have good safety and immunogenicity, and we laid a strong foundation for the further exploitation of efficient and safe BVDV vaccines.
Collapse
Affiliation(s)
- Jing Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yaping Hu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Hao
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Hirpha Ketema
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Zhipeng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Junjie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Yuze Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210002, China;
| | - Zhenghong Yu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210002, China; (Y.H.); (W.H.); (Z.Y.)
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.H.); (Z.N.); (H.K.); (Z.W.); (J.X.); (L.S.)
| |
Collapse
|
4
|
Yilmaz SG, Aydin O, Tali HE, Karadag G, Sonmez K, Bayraktar E, Yilmaz A, Turan N, Mutlu Z, Iqbal M, Richt JA, Yilmaz H. Brain invasion of bovine coronavirus: molecular analysis of bovine coronavirus infection in calves with severe pneumonia and neurological signs. J Vet Sci 2024; 25:e45. [PMID: 38910307 PMCID: PMC11291437 DOI: 10.4142/jvs.23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/25/2024] Open
Abstract
IMPORTANCE Although the role of bovine coronavirus (BCoV) in calf diarrhea and respiratory disorders is well documented, its contribution to neurological diseases is unclear. OBJECTIVE This study conducted virological investigations of calves showing diarrhea and respiratory and neurological signs. METHODS An outbreak of diarrhea, respiratory, and neurological disorders occurred among the 12 calves in July 2022 in Istanbul, Türkiye. Two of these calves exhibited neurological signs and died a few days after the appearance of symptoms. One of these calves was necropsied and analyzed using molecular and histopathological tests. RESULTS BCoV RNA was detected in the brain, lung, spleen, liver, and intestine of the calf that had neurological signs by real-time reverse transcription polymerase chain reaction. Immunostaining was also observed in the intestine and brain. A 622 bp S1 gene product was noted on gel electrophoresis only in the brain. Phylogenetic analysis indicated that the BCoV detected in this study had a high proximity to the BCoV strain GIb with 99.19% nucleotide sequence homology to the strains detected in Poland, Israel, Türkiye, and France. No distinct genetic lineages were observed when the brain isolate was compared with the respiratory and enteric strains reported to GenBank. In addition, the highest identity (98,72%) was obtained with the HECV 4408 and L07748 strains of human coronaviruses. CONCLUSIONS AND RELEVANCE The strain detected in a calf brain belongs to the GIb-European lineage and shares high sequence homology with BCoV strains detected in Europe and Israel. In addition, the similarity between the human coronaviruses (4408 and L07748) raises questions about the zoonotic potential of the strains detected in this study.
Collapse
Affiliation(s)
- Semaha Gul Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Hasan Emre Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Gizem Karadag
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Kivilcim Sonmez
- Department of Pathology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | | | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye
| | - Zihni Mutlu
- Department of Surgery, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye
| | - Munir Iqbal
- The Pirbright Institute, Surrey GU24 0NF, UK
| | - Jurgen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul 34500, Türkiye.
| |
Collapse
|
5
|
Bellido D, Gumina ER, Rodríguez Senes GJ, Chiariotti FM, Audrito M, Sueldo PM, Sueldo GM, Wigdorovitz A. First evaluation of the impact of a targeted subunit vaccine against bovine viral diarrhea virus in feedlot cattle. Transl Anim Sci 2024; 8:txae046. [PMID: 38665216 PMCID: PMC11044702 DOI: 10.1093/tas/txae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Bovine respiratory disease (BRD) is a serious health and economic problem in the beef industry, which is often associated with transportation and caused by different pathogens. In this study, we evaluated the effect of a novel subunit targeted vaccine against bovine viral diarrhea virus (BVDV) in feedlot cattle, a major viral agent of BRD. The core of this novel vaccine is the fusion of the BVDV structural glycoprotein, E2, to a single-chain antibody, APCH, together termed, APCH-E2. The APCH antibody targets the E2 antigen to the major histocompatibility type II molecule (MHC-II) present in antigen-presenting cells. To evaluate the vaccine, 2,992 animals were randomly allocated into two groups, control group (N = 1,491) and treatment group (N = 1,501). Animals of both groups received the routine sanitary plan: two doses of clostridial, respiratory, and rabies vaccines. Animals within the treatment group also received two doses of a targeted subunit vaccine against BVDV. Serum samples were taken on the day of the first inoculation (T0) and 90 d later (T90). Viral circulation was monitored using an anti-P80 ELISA (virus-specific) and immune response was evaluated by anti-E2 ELISA (detects virus and vaccine immune responses). Only animals treated for respiratory disease were considered positive cases of BRD. Results demonstrate that the control group had significantly more animals treated for BRD cases compared to the treatment group (5.9% vs. 3.7%, P = 0.02). The control group had a greater number of animals positive for anti-P80 antibodies and significantly fewer animals positive for anti-E2 antibodies compared to the treatment group (69% vs. 61% and 71% vs. 99%, respectively, P = 0.003), consistent with natural viral circulation within this group. The treatment group, conversely, had fewer animals positive for anti-P80 antibodies and a greater number of animals positive for anti-E2 antibodies, consistent with a robust vaccine-induced antibody response and a reduction of the BVDV circulation within this group. The data indicate the new subunit targeted vaccine induced greater anti-E2 antibodies and reduced the amount of BVD virus circulation within the treatment group leading to a fewer number of animals needing to be treated for BRD.
Collapse
Affiliation(s)
- Demian Bellido
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Bioinnovo SA, Dr Nicolas Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| | - Emanuel R Gumina
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | | | | | | | - Pedro M Sueldo
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
| | - Gustavo M Sueldo
- Agro sin Fronteras, JJ Paso 452, Marcos Juarez, Córdoba, ArgentinaX2580DML
| | - Andrés Wigdorovitz
- Vetanco SA, Chile 33, Villa Martelli, Buenos Aires, ArgentinaB1603CMA
- Incuinta, IVIT INTA, Dr N. Repetto y Los Reseros S/N, Hurlingham, Buenos Aires, ArgentinaB1681FUU
| |
Collapse
|
6
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
7
|
Vicosa Bauermann F, Falkenberg S, Rudd JM, Peter CM, Merchioratto I, Ritchey JW, Gilliam J, Taylor J, Ma H, Maggioli MF. Immune Responses to Influenza D Virus in Calves Previously Infected with Bovine Viral Diarrhea Virus 2. Viruses 2023; 15:2442. [PMID: 38140683 PMCID: PMC10747992 DOI: 10.3390/v15122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) induces immunosuppression and thymus depletion in calves. This study explores the impact of prior BVDV-2 exposure on the subsequent immune response to influenza D virus (IDV). Twenty 3-week-old calves were divided into four groups. Calves in G1 and G3 were mock-treated on day 0, while calves in G2 and G4 received BVDV. Calves in G1 (mock) and G2 (BVDV) were necropsied on day 13 post-infection. IDV was inoculated on day 21 in G3 calves (mock + IDV) and G4 (BVDV + IDV) and necropsy was conducted on day 42. Pre-exposed BVDV calves exhibited prolonged and increased IDV shedding in nasal secretions. An approximate 50% reduction in the thymus was observed in acutely infected BVDV calves (G2) compared to controls (G1). On day 42, thymus depletion was observed in two calves in G4, while three had normal weight. BVDV-2-exposed calves had impaired CD8 T cell proliferation after IDV recall stimulation, and the α/β T cell impairment was particularly evident in those with persistent thymic atrophy. Conversely, no difference in antibody levels against IDV was noted. BVDV-induced thymus depletion varied from transient to persistent. Persistent thymus atrophy was correlated with weaker T cell proliferation, suggesting correlation between persistent thymus atrophy and impaired T cell immune response to subsequent infections.
Collapse
Affiliation(s)
- Fernando Vicosa Bauermann
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Shollie Falkenberg
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Jennifer M. Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Cristina Mendes Peter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Center for Medical Bioinformatics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04039-032, Brazil
| | - Ingryd Merchioratto
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Jerry W. Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - John Gilliam
- Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jared Taylor
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| | - Hao Ma
- Animal Research Services, National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Mayara Fernanda Maggioli
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University (OSU), Stillwater, OK 74078, USA
| |
Collapse
|
8
|
Werid GM, Hemmatzadeh F, Miller D, Reichel MP, Messele YE, Petrovski K. Comparative Analysis of the Prevalence of Bovine Viral Diarrhea Virus in Cattle Populations Based on Detection Methods: A Systematic Review and Meta-Analysis. Pathogens 2023; 12:1067. [PMID: 37624027 PMCID: PMC10459101 DOI: 10.3390/pathogens12081067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
Infectious diseases of cattle, including bovine viral diarrhea (BVD), pose a significant health threat to the global livestock industry. This study aimed to investigate the prevalence and risk factors associated with bovine viral diarrhea virus (BVDV) infections in cattle populations through a systematic review and meta-analysis. PubMed, Web of Science, and Scopus were systematically searched for relevant articles reporting the prevalence of and associated risk factors in studies published between 1 January 2000 and 3 February 2023. From a total of 5111 studies screened, 318 studies were included in the final analysis. BVDV prevalence in cattle populations was estimated using various detection methods. The analysis detected heterogeneity in prevalence, attributed to detection techniques and associated risk factors. Antibody detection methods exhibited a higher prevalence of 0.43, reflecting the cumulative effect of detecting both active and past infections. Antigen detection methods showed a prevalence of 0.05, which was lower than antibody methods. A prevalence of 0.08 was observed using nucleic acid detection methods. The health status of the examined cattle significantly influenced the prevalence of BVDV. Cattle with bovine respiratory disease complex (BRDC) exhibited higher antibody (prevalence of 0.67) and antigen (prevalence 0.23) levels compared to cattle with reproductive problems (prevalence 0.13) or diarrhea (prevalence 0.01). Nucleic acid detection methods demonstrated consistent rates across different health conditions. Age of cattle influenced prevalence, with higher rates in adults compared to calves. Risk factors related to breeding and reproduction, such as natural or extensive breeding and a history of abortion, were associated with increased prevalence. Coinfections with pathogens like bovine herpesvirus-1 or Neospora caninum were linked to higher BVDV prevalence. Management practices, such as commingling, introducing new cattle, and direct contact with neighboring farms, also influenced prevalence. Herd attributes, including larger herd size, and the presence of persistently infected cattle, were associated with higher prevalence. These findings indicated the importance of detection methods and risk factors in BVDV epidemiological studies.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (G.M.W.); (D.M.); (Y.E.M.)
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (G.M.W.); (D.M.); (Y.E.M.)
| | - Michael P. Reichel
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA;
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (G.M.W.); (D.M.); (Y.E.M.)
| | - Kiro Petrovski
- Davies Livestock Research Centre, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia; (G.M.W.); (D.M.); (Y.E.M.)
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia;
| |
Collapse
|
9
|
Occurrence of Bovine Coronavirus and other Major Respiratory Viruses in Cattle in Poland. J Vet Res 2022; 66:479-486. [PMID: 36846034 PMCID: PMC9945004 DOI: 10.2478/jvetres-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory diseases in cattle. Despite its importance for animal health, no data is available on its prevalence in Poland. The aim of the study was to determine the virus' seroprevalence, identify risk factors of BCoV exposure in selected cattle farms and investigate the genetic variability of circulating strains. Material and Methods Serum and nasal swab samples were collected from 296 individuals from 51 cattle herds. Serum samples were tested with ELISA for the presence of BCoV-, bovine herpesvirus-1 (BoHV-1)- and bovine viral diarrhoea virus (BVDV)-specific antibodies. The presence of those viruses in nasal swabs was tested by real-time PCR assays. Phylogenetic analysis was performed using fragments of the BCoV S gene. Results Antibodies specific to BCoV were found in 215 (72.6%) animals. Seropositivity for BCoV was more frequent (P>0.05) in calves under 6 months of age, animals with respiratory signs coinfected with BoHV-1 and BVDV and increased with herd size. In the final model, age and herd size were established as risk factors for BCoV-seropositivity. Genetic material of BCoV was found in 31 (10.5%) animals. The probability of BCoV detection was the highest in medium-sized herds. Polish BCoVs showed high genetic homology (98.3-100%) and close relatedness to European strains. Conclusion Infections with BCoV were more common than infections with BoHV-1 and BVDV. Bovine coronavirus exposure and shedding show age- and herd density-dependence.
Collapse
|
10
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
11
|
Zhu Q, Li B, Sun D. Advances in Bovine Coronavirus Epidemiology. Viruses 2022; 14:v14051109. [PMID: 35632850 PMCID: PMC9147158 DOI: 10.3390/v14051109] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-045-9681-9121 (D.S.)
| |
Collapse
|
12
|
Rahe MC, Magstadt DR, Groeltz-Thrush J, Gauger PC, Zhang J, Schwartz KJ, Siepker CL. Bovine coronavirus in the lower respiratory tract of cattle with respiratory disease. J Vet Diagn Invest 2022; 34:482-488. [PMID: 35168437 PMCID: PMC9254051 DOI: 10.1177/10406387221078583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bovine coronavirus (BCoV) is a known cause of enteric disease in cattle; however, its role in bovine respiratory disease (BRD) is poorly understood, with a dearth of evidence of the detection of the virus in respiratory tract lesions. We coupled histologic evaluation of tracheal and lower airway tissues from 104 calves with BRD in which BCoV was detected in the lungs via PCR followed by direct detection of BCoV by immunohistochemistry and an RNA in situ hybridization assay (ISH; RNAscope technology). RNAscope ISH detected BCoV in respiratory epithelium in more cases than did IHC. Using both methods of direct detection, tracheal epithelial attenuation and identification of the virus within lesions were observed commonly. Our results confirm a role of BCoV in respiratory tract infection and pathology, and show that the virus likely plays a role in the development of BRD.
Collapse
Affiliation(s)
- Michael C. Rahe
- Michael C. Rahe, Department
of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary
Medicine, Iowa State University, 1800 Christensen Dr, Ames, IA 50011, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Soules KR, Rahe MC, Purtle L, Moeckly C, Stark P, Samson C, Knittel JP. Bovine Coronavirus Infects the Respiratory Tract of Cattle Challenged Intranasally. Front Vet Sci 2022; 9:878240. [PMID: 35573402 PMCID: PMC9100586 DOI: 10.3389/fvets.2022.878240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine Coronavirus (BCoV) is a member of a family of viruses associated with both enteric and respiratory diseases in a wide range of hosts. BCoV has been well-established as a causative agent of diarrhea in cattle, however, its role as a respiratory pathogen is controversial. In this study, fifteen calves were challenged intranasally with virulent BCoV in order to observe the clinical manifestation of the BCoV infection for up to 8 days after initial challenge, looking specifically for indication of symptoms, pathology, and presence of viral infection in the respiratory tract, as compared to six unchallenged control calves. Throughout the study, clinical signs of disease were recorded and nasal swabs were collected daily. Additionally, bronchoalveolar lavage (BAL) was performed at 4 days Post-challenge, and blood and tissue samples were collected from calves at 4, 6, or 8 days Post-challenge to be tested for the presence of BCoV and disease pathology. The data collected support that this BCoV challenge resulted in respiratory infections as evidenced by the isolation of BCoV in BAL fluids and positive qPCR, immunohistochemistry (IHC), and histopathologic lesions in the upper and lower respiratory tissues. This study can thus be added to a growing body of data supporting that BCoV is a respiratory pathogen and contributor to respiratory disease in cattle.
Collapse
Affiliation(s)
| | - Michael C. Rahe
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Lisa Purtle
- Merck Animal Health, De Soto, KS, United States
| | | | - Paul Stark
- Merck Animal Health, De Soto, KS, United States
| | - Clay Samson
- Merck Animal Health, De Soto, KS, United States
| | | |
Collapse
|
14
|
Deepak, Aly SS, Love WJ, Blanchard PC, Crossley B, Van Eenennaam AL, Lehenbauer TW. Etiology and risk factors for bovine respiratory disease in pre-weaned calves on California dairies and calf ranches. Prev Vet Med 2021; 197:105506. [PMID: 34740025 DOI: 10.1016/j.prevetmed.2021.105506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Our study objective was to estimate the magnitude of association of BRD risk factors including failure of passive immunity transfer, sex, age, and the detection of suspected BRD etiological pathogens in pre-weaned dairy calves in California. A conditional logistic regression model and a mixed-effects logistic regression model were used to estimate the association of these potential risk factors with BRD from a matched and nested case-control studies, respectively. For each exposure covariate, the odds ratio (OR) is the ratio of odds of an exposure in a BRD calf (case) to that in a non-BRD calf (control). In the matched case-control study, an interaction term between failure of transfer of passive immunity and sex of calf showed that female calves were more negatively impacted by failure of transfer of passive immunity compared to male calves. The odds ratios comparing failure of transfer of passive immunity in BRD score positive calves versus controls for male calves was 1.34 (95 % CI: 0.87, 2.06) and was 2.47 (95 % CI: 1.54, 3.96) for female calves. The model odds ratios varied from 1.74 (95 % CI: 1.26, 2.42) for Mycoplasma spp. to 9.18 (95 % CI: 2.60, 32.40) for Histophilus somni, with Mannheimia haemolytica and Pasteurella multocida having an OR of 6.64 (95 % CI: 4.39, 10.03) and 6.53 (95 % CI: 4.44, 9.59), respectively. For bovine respiratory syncytial virus positive calves, the OR was 4.60 (95 % CI: 3.04, 6.97). Findings from the nested case-control study showed that based on thoracic ultrasonography findings consistent with BRD, the odds of a calf being 1 day older compared to a day younger were 1.01 (95 % CI: 1.00, 1.02) among BRD cases. For the bacterial and viral pathogens, the OR for Mycoplasma spp. and Pasteurella multocida were 1.85 (95 % CI: 1.24, 2.75) and 1.86 (95 % CI: 1.28, 2.71), respectively. The OR values for these pathogens were similar when both thoracic auscultation and ultrasound findings were used to detect cases of BRD. Based on positive scores for BRD using the California BRD scoring system, the OR for facility type, calf ranch versus dairy farm, was 3.17 (95 % CI: 1.43, 7.01), Mannheimia haemolytica was 3.50 (95 % CI: 2.00, 6.11), Pasteurella multocida was 1.78 (95 % CI: 1.21, 2.60), and bovine coronavirus was 2.61 (95 % CI: 1.85, 3.70). Results from both study designs showed the difference in relative contributions of age, sex, immune status, and pathogens in BRD occurrence between cases and controls in pre-weaned dairy calves.
Collapse
Affiliation(s)
- Deepak
- Veterinary Medicine Teaching and Research Centre, School of Veterinary Medicine, University of California, Davis, Tulare, CA, 93274, United States
| | - Sharif S Aly
- Veterinary Medicine Teaching and Research Centre, School of Veterinary Medicine, University of California, Davis, Tulare, CA, 93274, United States; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, United States.
| | - William J Love
- Veterinary Medicine Teaching and Research Centre, School of Veterinary Medicine, University of California, Davis, Tulare, CA, 93274, United States
| | - Patricia C Blanchard
- California Animal Health and Food Safety Laboratory, Tulare Branch, Tulare, 93274, United States
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory, Davis Branch, Davis, 95616, United States
| | - Alison L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, 95616, United States
| | - Terry W Lehenbauer
- Veterinary Medicine Teaching and Research Centre, School of Veterinary Medicine, University of California, Davis, Tulare, CA, 93274, United States; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, United States.
| |
Collapse
|
15
|
Newcomer BW. 75 years of bovine viral diarrhea virus: Current status and future applications of the use of directed antivirals. Antiviral Res 2021; 196:105205. [PMID: 34742739 DOI: 10.1016/j.antiviral.2021.105205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023]
Abstract
Bovine viral diarrhea virus (BVDV) was first reported 75 years ago and remains a source of major financial and production losses in the North American cattle industry. Currently, control methods in North America primarily center around biosecurity and vaccination programs; however, despite high levels of vaccination, the virus persists in the cattle herd due at least in part to the often-insidious nature of disease and the constant viremia and viral shedding of persistently infected animals which act as a reservoir for the virus. Continued development of targeted antivirals represents an additional tool for the prevention of BVDV-associated losses. Currently, in vivo studies of BVDV antivirals are relatively limited and have primarily been directed at the RNA-dependent RNA polymerase which represents the viral target with the highest potential for commercial development. Additional live animal studies have explored the potential of exogenous interferon treatment. Future research of commercial antivirals must focus on the establishment and validation of in vivo efficacy for compounds with demonstrated antiviral potential. The areas which provide the most viable economic justification for the research and development of antivirals drugs are the fed cattle sector, outbreak control, and wildlife or animals of high genetic value. With further development, targeted antivirals represent an additional tool for the management and control of BVDV in North American cattle herds.
Collapse
Affiliation(s)
- Benjamin W Newcomer
- Veterinary Education, Research, & Outreach Program, Texas A&M and West Texas A&M Universities, Canyon, TX, 79016, USA.
| |
Collapse
|
16
|
Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG. Experimental Inoculation of Young Calves with SARS-CoV-2. Viruses 2021; 13:441. [PMID: 33803455 PMCID: PMC8000368 DOI: 10.3390/v13030441] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The host range of SARS-CoV-2 and the susceptibility of animal species to the virus are topics of great interest to the international scientific community. The angiotensin I converting enzyme 2 (ACE2) protein is the major receptor for the virus, and sequence and structural analysis of the protein has been performed to determine its cross-species conservation. Based on these analyses, cattle have been implicated as a potential susceptible species to SARS-CoV-2 and have been reported to have increased ACE2 receptor distribution in the liver and kidney, and lower levels in the lungs. The goal of the current study was to determine the susceptibility of cattle to SARS-CoV-2 utilizing inoculation routes that facilitated exposure to tissues with increased ACE2 receptor distribution. For this, colostrum-deprived calves approximately 6 weeks of age were inoculated via the intratracheal or intravenous routes. Nasal and rectal swab samples, as well as blood and urine samples, were collected over the course of the study to evaluate viral shedding, viremia, and seroconversion. Pyrexia was used as the primary criteria for euthanasia and tissue samples were collected during necropsy. Importantly, SARS-CoV-2 RNA was detected in only two nasal swab samples collected on days 3 and 10 post-inoculation (pi) in two calves; one calf in the intratracheal group and the other calf in the intravenous group, respectively. Additionally, the calf in the intratracheal group that was positive on the nasal swab on day 3 pi also had a positive tracheobronchial lymph node on day 9 pi. Viral nucleic acid load on these samples, based on PCR cycle threshold values, were low and infectious virus was not recovered from the samples. These results suggest that there was no productive replication of SARS-CoV-2 in calves following intratracheal and intravenous inoculation.
Collapse
Affiliation(s)
- Shollie Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA;
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| |
Collapse
|
17
|
Fulton RW. Viruses in Bovine Respiratory Disease in North America: Knowledge Advances Using Genomic Testing. Vet Clin North Am Food Anim Pract 2020; 36:321-332. [PMID: 32451028 PMCID: PMC7244414 DOI: 10.1016/j.cvfa.2020.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Advances in viral detection in bovine respiratory disease (BRD) have resulted from advances in viral sequencing of respiratory tract samples. New viruses detected include influenza D virus, bovine coronavirus, bovine rhinitis A, bovine rhinitis B virus, and others. Serosurveys demonstrate widespread presence of some of these viruses in North American cattle. These viruses sometimes cause disease after animal challenge, and some have been found in BRD cases more frequently than in healthy cattle. Continued work is needed to develop reagents for identification of new viruses, to confirm their pathogenicity, and to determine whether vaccines have a place in their control.
Collapse
Affiliation(s)
- Robert W Fulton
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|