1
|
Andrillon T, Oudiette D. What is sleep exactly? Global and local modulations of sleep oscillations all around the clock. Neurosci Biobehav Rev 2023; 155:105465. [PMID: 37972882 DOI: 10.1016/j.neubiorev.2023.105465] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Wakefulness, non-rapid eye-movement (NREM) and rapid eye-movement (REM) sleep differ from each other along three dimensions: behavioral, phenomenological, physiological. Although these dimensions often fluctuate in step, they can also dissociate. The current paradigm that views sleep as made of global NREM and REM states fail to account for these dissociations. This conundrum can be dissolved by stressing the existence and significance of the local regulation of sleep. We will review the evidence in animals and humans, healthy and pathological brains, showing different forms of local sleep and the consequences on behavior, cognition, and subjective experience. Altogether, we argue that the notion of local sleep provides a unified account for a host of phenomena: dreaming in REM and NREM sleep, NREM and REM parasomnias, intrasleep responsiveness, inattention and mind wandering in wakefulness. Yet, the physiological origins of local sleep or its putative functions remain unclear. Exploring further local sleep could provide a unique and novel perspective on how and why we sleep.
Collapse
Affiliation(s)
- Thomas Andrillon
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France; Monash Centre for Consciousness & Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia.
| | - Delphine Oudiette
- Paris Brain Institute, Sorbonne Université, Inserm-CNRS, Paris 75013, France
| |
Collapse
|
2
|
Kung YC, Li CW, Hsiao FC, Tsai PJ, Chen S, Li MK, Lee HC, Chang CY, Wu CW, Lin CP. Cross-Scale Dynamicity of Entropy and Connectivity in the Sleeping Brain. Brain Connect 2022; 12:835-845. [PMID: 35343241 PMCID: PMC9839343 DOI: 10.1089/brain.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction: The concept of local sleep refers to the phenomenon of local brain activity that modifies neural networks during unresponsive global sleep. Such network rewiring may differ across spatial scales; however, the global and local alterations in brain systems remain elusive in human sleep. Materials and Methods: We examined cross-scale changes of brain networks in sleep. Functional magnetic resonance imaging data were acquired from 28 healthy participants during nocturnal sleep. We adopted both metrics of connectivity (functional connectivity [FC] and regional homogeneity [ReHo]) and complexity (multiscale entropy) to explore the global and local functionality of the neural assembly across nonrapid eye movement sleep stages. Results: Long-range FC decreased with sleep depth, whereas local ReHo peaked at the N2 stage and reached its lowest level at the N3 stage. Entropy exhibited a general decline at the local scale (Scale 1) as sleep deepened, whereas the coarse-scale entropy (Scale 3) was consistent across stages. Discussion: The negative correlation between Scale-1 entropy and ReHo reflects the enhanced signal regularity and synchronization in sleep, identifying the information exchange at the local scale. The N2 stage showed a distinctive pattern toward local information processing with scrambled long-distance information exchange, indicating a specific time window for network reorganization. Collectively, the multidimensional metrics indicated an imbalanced global-local relationship among brain functional networks across sleep-wake stages.
Collapse
Affiliation(s)
- Yi-Chia Kung
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Fan-Chi Hsiao
- Department of Counseling and Industrial/Organizational Psychology, Ming Chuan University, Taoyuan, Taiwan
| | - Pei-Jung Tsai
- Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, Maryland, USA
| | - Shuo Chen
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Ming-Kang Li
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Chien Lee
- Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yen Chang
- Science Education Center, National Taiwan Normal University, Taipei, Taiwan
| | - Changwei W. Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Center, Shuang-Ho Hospital,Taipei Medical University, New Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Dastgheib M, Kulanayagam A, Dringenberg HC. Is the role of sleep in memory consolidation overrated? Neurosci Biobehav Rev 2022; 140:104799. [PMID: 35905801 DOI: 10.1016/j.neubiorev.2022.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Substantial empirical evidence suggests that sleep benefits the consolidation and reorganization of learned information. Consequently, the concept of "sleep-dependent memory consolidation" is now widely accepted by the scientific community, in addition to influencing public perceptions regarding the functions of sleep. There are, however, numerous studies that have presented findings inconsistent with the sleep-memory hypothesis. Here, we challenge the notion of "sleep-dependency" by summarizing evidence for effective memory consolidation independent of sleep. Plasticity mechanisms thought to mediate or facilitate consolidation during sleep (e.g., neuronal replay, reactivation, slow oscillations, neurochemical milieu) also operate during non-sleep states, particularly quiet wakefulness, thus allowing for the stabilization of new memories. We propose that it is not sleep per se, but the engagement of plasticity mechanisms, active during both sleep and (at least some) waking states, that constitutes the critical factor determining memory formation. Thus, rather than playing a "critical" role, sleep falls along a continuum of behavioral states that vary in their effectiveness to support memory consolidation at the neural and behavioral level.
Collapse
Affiliation(s)
| | | | - Hans C Dringenberg
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
Thomas CW, Blanco-Duque C, Bréant BJ, Goodwin GM, Sharp T, Bannerman DM, Vyazovskiy VV. Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl Psychiatry 2022; 12:77. [PMID: 35197453 PMCID: PMC8866416 DOI: 10.1038/s41398-022-01846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Serotonergic psychedelic drugs, such as psilocin (4-hydroxy-N,N-dimethyltryptamine), profoundly alter the quality of consciousness through mechanisms which are incompletely understood. Growing evidence suggests that a single psychedelic experience can positively impact long-term psychological well-being, with relevance for the treatment of psychiatric disorders, including depression. A prominent factor associated with psychiatric disorders is disturbed sleep, and the sleep-wake cycle is implicated in the homeostatic regulation of neuronal activity and synaptic plasticity. However, it remains largely unknown to what extent psychedelic agents directly affect sleep, in terms of both acute arousal and homeostatic sleep regulation. Here, chronic electrophysiological recordings were obtained in mice to track sleep-wake architecture and cortical activity after psilocin injection. Administration of psilocin led to delayed REM sleep onset and reduced NREM sleep maintenance for up to approximately 3 h after dosing, and the acute EEG response was associated primarily with an enhanced oscillation around 4 Hz. No long-term changes in sleep-wake quantity were found. When combined with sleep deprivation, psilocin did not alter the dynamics of homeostatic sleep rebound during the subsequent recovery period, as reflected in both sleep amount and EEG slow-wave activity. However, psilocin decreased the recovery rate of sleep slow-wave activity following sleep deprivation in the local field potentials of electrodes targeting the medial prefrontal and surrounding cortex. It is concluded that psilocin affects both global vigilance state control and local sleep homeostasis, an effect which may be relevant for its antidepressant efficacy.
Collapse
Affiliation(s)
- Christopher W. Thomas
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Cristina Blanco-Duque
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Benjamin J. Bréant
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Guy M. Goodwin
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Trevor Sharp
- grid.4991.50000 0004 1936 8948Department of Pharmacology, University of Oxford, Oxford, UK
| | - David M. Bannerman
- grid.4991.50000 0004 1936 8948Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Vladyslav V. Vyazovskiy
- grid.4991.50000 0004 1936 8948Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Scarpa JR, Jiang P, Gao VD, Vitaterna MH, Turek FW, Kasarskis A. NREM delta power and AD-relevant tauopathy are associated with shared cortical gene networks. Sci Rep 2021; 11:7797. [PMID: 33833255 PMCID: PMC8032807 DOI: 10.1038/s41598-021-86255-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD. We integrate multi-omics data from two extensive public resources, a human Alzheimer's disease cohort from the Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse population in which NREM delta power was measured (N = 98). Two cortical gene networks, including a CLOCK-dependent circadian network, are associated with NREM delta power and AD tauopathy progression. These networks were validated in independent mouse and human cohorts. Identifying gene networks related to preclinical AD elucidate possible mechanisms associated with the early disease phase and potential targets to alter the disease course.
Collapse
Affiliation(s)
- Joseph R Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Vance D Gao
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Martha H Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Andrew Kasarskis
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Thomas CW, Guillaumin MCC, McKillop LE, Achermann P, Vyazovskiy VV. Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity. eLife 2020; 9:e54148. [PMID: 32614324 PMCID: PMC7332296 DOI: 10.7554/elife.54148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space.
Collapse
Affiliation(s)
- Christopher W Thomas
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | | | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of ZurichZurichSwitzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of PsychiatryZurichSwitzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
7
|
Krueger JM. Sleep and circadian rhythms: Evolutionary entanglement and local regulation. Neurobiol Sleep Circadian Rhythms 2020; 9:100052. [PMID: 32529121 PMCID: PMC7281830 DOI: 10.1016/j.nbscr.2020.100052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022] Open
Abstract
Circadian rhythms evolved within single cell organisms and serve to regulate rest-activity cycles in most single-cell and multiple-cell organisms. In contrast, sleep is a network emergent property found in animals with a nervous system. Rhythms and sleep are much entangled involving shared regulatory molecules such as adenosine, ATP, cytokines, neurotrophins, and nitric oxide. These molecules are activity-dependent and act locally to initiate regulatory events involved in rhythms, sleep, and plasticity.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, Washington State University, Spokane, United States
| |
Collapse
|
8
|
Song C, Tagliazucchi E. Linking the nature and functions of sleep: insights from multimodal imaging of the sleeping brain. CURRENT OPINION IN PHYSIOLOGY 2020; 15:29-36. [PMID: 32715184 PMCID: PMC7374576 DOI: 10.1016/j.cophys.2019.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sleep and wakefulness are traditionally considered as two mutually exclusive states with contrasting behavioural manifestations and complementary neurobiological functions. However, the discoveries of local sleep in global wakefulness and local wakefulness in global sleep have challenged this classical view and raised questions about the nature and functions of sleep. Here, we review the contributions from recent multimodal imaging studies of human sleep towards understanding the relationship between the nature and functions of sleep. Through simultaneous tracking of brain state and mapping of brain activity, these studies revealed that the sleeping brain can carry out covert cognitive processing that was thought to be wake-specific (wake-like function in the sleeping brain). Conversely, the awake brain can perform housekeeping functions through local sleep of neural populations (sleep-like function in the awake brain). We discuss how the blurred boundary between sleep and wakefulness highlights the need to radically rethink the definition of brain states, and how the recently discovered fMRI signatures of global and local sleep can help to address these outstanding questions.
Collapse
Affiliation(s)
- Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| |
Collapse
|
9
|
Oles V, Koh KMS, Dykstra-Aiello CJ, Savenkova M, Gibbons CM, Nguyen JT, Karatsoreos I, Panchenko A, Krueger JM. Sleep- and time of day-linked RNA transcript expression in wild-type and IL1 receptor accessory protein-null mice. J Appl Physiol (1985) 2020; 128:1506-1522. [PMID: 32324480 DOI: 10.1152/japplphysiol.00839.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sleep regulation involves interleukin-1β (IL1) family members, TNF, and circadian clock genes. Previously, we characterized spontaneous sleep and sleep after 8 h of sleep deprivation (SD) ending at zeitgeber time (ZT)4 and ZT16 in wild-type (WT) and IL1 receptor accessory protein (AcP)- and brain-specific AcP (AcPb)-knockout (KO) mice. Here, we applied quantitative reverse transcriptase polymerase chain reaction and Spearman gene pair expression correlation methods to characterize IL1, IL1 receptor 1 (IL1R1), AcP, AcPb, Period 1 (Per1), Clock, adenosine deaminase (Ada), peptidoglycan recognition protein 1 (Pglyrp1), and TNF mRNA expressions under conditions with distinct sleep phenotypes. In WT mice, IL1, IL1R1, AcP, Ada, and Clock mRNAs were higher at ZT4 (mid-sleep period) than at ZT16. mRNA expressions differed substantially in AcP and AcPb KO mice at those times. After SD ending at ZT4, only WT mice had a non-rapid eye movement sleep (NREMS) rebound, and AcPb and IL1R1 mRNA increases were unique to WT mice. In AcPb KO mice, which have spontaneous high EEG slow wave power, AcP and Pglyrp1 mRNAs were elevated relative to WT mice at ZT4. At ZT4, the AcPb KO - WT Spearman correlation difference networks showed high positive correlations between IL1R1 and IL1, Per1, and Clock and high negative correlations between TNF and Pglyrp1 and Ada. At ZT16, the WT mice gene pair expression network was mostly negative, whereas in AcP KO mice, which have substantially more rapid eye movement sleep than WT mice, it was all positive. We conclude that gene pair expression correlations depend on the presence of AcP and AcPb.NEW & NOTEWORTHY Spearman gene pair expression correlations depend upon the presence or absence of interleukin-1 receptor accessory protein and upon sleep phenotype.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - Khia Min Sabrina Koh
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | | | - Marina Savenkova
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Cody M Gibbons
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.,University of Washington School of Medicine, Seattle, Washington
| | - Joseph T Nguyen
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Ilia Karatsoreos
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Alexander Panchenko
- Department of Mathematics and Statistics, Washington State University, Pullman, Washington
| | - James M Krueger
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
10
|
Abstract
For many decades, sleep researchers have sought to determine which species 'have' rapid eye movement (REM) sleep. In doing so, they relied predominantly on a template derived from the expression of REM sleep in the adults of a small number of mammalian species. Here, we argue for a different approach that focuses less on a binary decision about haves and have nots, and more on the diverse expression of REM sleep components over development and across species. By focusing on the components of REM sleep and discouraging continued reliance on a restricted template, we aim to promote a richer and more biologically grounded developmental-comparative approach that spans behavioral, physiological, neural, and ecological domains.
Collapse
Affiliation(s)
- Mark S Blumberg
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| | - John A Lesku
- School of Life Sciences, La Trobe University, Melbourne 3086, Australia
| | - Paul-Antoine Libourel
- Neurosciences Research Center of Lyon, CNRS UMR5292, INSERM U1028, University Claude Bernard Lyon 1 Neurocampus, 95 Boulevard Pinel, 69675 BRON, France
| | - Markus H Schmidt
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland; Ohio Sleep Medicine Institute, 4975 Bradenton Avenue, Dublin, OH 43017, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Haus 5, Seewiesen 82319, Germany.
| |
Collapse
|
11
|
van der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Intra-"cortical" activity during avian non-REM and REM sleep: variant and invariant traits between birds and mammals. Sleep 2019; 42:5195213. [PMID: 30462347 DOI: 10.1093/sleep/zsy230] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 01/23/2023] Open
Abstract
Several mammalian-based theories propose that the varying patterns of neuronal activity occurring in wakefulness and sleep reflect different modes of information processing. Neocortical slow-waves, hippocampal sharp-wave ripples, and thalamocortical spindles occurring during mammalian non-rapid eye-movement (NREM) sleep are proposed to play a role in systems-level memory consolidation. Birds show similar NREM and REM (rapid eye-movement) sleep stages to mammals; however, it is unclear whether all neurophysiological rhythms implicated in mammalian memory consolidation are also present. Moreover, it is unknown whether the propagation of slow-waves described in the mammalian neocortex occurs in the avian "cortex" during natural NREM sleep. We used a 32-channel silicon probe connected to a transmitter to make intracerebral recordings of the visual hyperpallium and thalamus in naturally sleeping pigeons (Columba livia). As in the mammalian neocortex, slow-waves during NREM sleep propagated through the hyperpallium. Propagation primarily occurred in the thalamic input layers of the hyperpallium, regions that also showed the greatest slow-wave activity (SWA). Spindles were not detected in both the visual hyperpallium, including regions receiving thalamic input, and thalamus, using a recording method that readily detects spindles in mammals. Interestingly, during REM sleep fast gamma bursts in the hyperpallium (when present) were restricted to the thalamic input layers. In addition, unlike mice, the decrease in SWA from NREM to REM sleep was the greatest in these layers. Taken together, these variant and invariant neurophysiological aspects of avian and mammalian sleep suggest that there may be associated mechanistic and functional similarities and differences between avian and mammalian sleep.
Collapse
Affiliation(s)
- Jacqueline van der Meij
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Dolores Martinez-Gonzalez
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Yalelaan, CM Utrecht, The Netherlands
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse, Seewiesen, Germany
| |
Collapse
|
12
|
Rattenborg NC, van der Meij J, Beckers GJL, Lesku JA. Local Aspects of Avian Non-REM and REM Sleep. Front Neurosci 2019; 13:567. [PMID: 31231182 PMCID: PMC6560081 DOI: 10.3389/fnins.2019.00567] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Birds exhibit two types of sleep that are in many respects similar to mammalian rapid eye movement (REM) and non-REM (NREM) sleep. As in mammals, several aspects of avian sleep can occur in a local manner within the brain. Electrophysiological evidence of NREM sleep occurring more deeply in one hemisphere, or only in one hemisphere - the latter being a phenomenon most pronounced in dolphins - was actually first described in birds. Such asymmetric or unihemispheric NREM sleep occurs with one eye open, enabling birds to visually monitor their environment for predators. Frigatebirds primarily engage in this form of sleep in flight, perhaps to avoid collisions with other birds. In addition to interhemispheric differences in NREM sleep intensity, the intensity of NREM sleep is homeostatically regulated in a local, use-depended manner within each hemisphere. Furthermore, the intensity and temporo-spatial distribution of NREM sleep-related slow waves varies across layers of the avian hyperpallium - a primary visual area - with the slow waves occurring first in, and propagating through and outward from, thalamic input layers. Slow waves also have the greatest amplitude in these layers. Although most research has focused on NREM sleep, there are also local aspects to avian REM sleep. REM sleep-related reductions in skeletal muscle tone appear largely restricted to muscles involved in maintaining head posture. Other local aspects of sleep manifest as a mixture of features of NREM and REM sleep occurring simultaneously in different parts of the neuroaxis. Like monotreme mammals, ostriches often exhibit brainstem-mediated features of REM sleep (muscle atonia and REMs) while the hyperpallium shows EEG slow waves typical of NREM sleep. Finally, although mice show slow waves in thalamic input layers of primary sensory cortices during REM sleep, this is not the case in the hyperpallium of pigeons, suggesting that this phenomenon is not a universal feature of REM sleep. Collectively, the local aspects of sleep described in birds and mammals reveal that wakefulness, NREM sleep, and REM sleep are not always discrete states.
Collapse
Affiliation(s)
| | | | - Gabriël J. L. Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, Netherlands
| | - John A. Lesku
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P. Local sleep. Sleep Med Rev 2018; 43:14-21. [PMID: 30502497 DOI: 10.1016/j.smrv.2018.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
The historic sleep regulatory paradigm invokes "top-down" imposition of sleep on the brain by sleep regulatory circuits. While remaining conceptually useful, many sleep phenomena are difficult to explain using that paradigm, including, unilateral sleep, sleep-walking, and poor performance after sleep deprivation. Further, all animals sleep after non-lethal brain lesions, regardless of whether the lesion includes sleep regulatory circuits, suggesting that sleep is a fundamental property of small viable neuronal/glial networks. That small areas of the brain can exhibit non-rapid eye movement sleep-like states is summarized. Further, sleep-like states in neuronal/glial cultures are described. The local sleep states, whether in vivo or in vitro, share electrophysiological properties and molecular regulatory components with whole animal sleep and exhibit sleep homeostasis. The molecular regulatory components of sleep are also involved in plasticity and inflammation. Like sleep, these processes, are initiated by local cell-activity dependent events, yet have at higher levels of tissue organization whole body functions. While there are large literatures dealing with local initiation and regulation of plasticity and inflammation, the literature surrounding local sleep is in its infancy and clinical applications of the local sleep concept are absent. Regardless, the local use-dependent sleep paradigm can advise and advance future research and clinical applications.
Collapse
Affiliation(s)
- James M Krueger
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA.
| | - Joseph T Nguyen
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Cheryl J Dykstra-Aiello
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| | - Ping Taishi
- Department of Integrative Physiology and Neurobiology, College of Veterinary Medicine, Spokane, WA, USA
| |
Collapse
|
14
|
Tumor necrosis factor alpha in sleep regulation. Sleep Med Rev 2017; 40:69-78. [PMID: 29153862 DOI: 10.1016/j.smrv.2017.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
This review details tumor necrosis factor alpha (TNF) biology and its role in sleep, and describes how TNF medications influence sleep/wake activity. Substantial evidence from healthy young animals indicates acute enhancement or inhibition of endogenous brain TNF respectively promotes and inhibits sleep. In contrast, the role of TNF in sleep in most human studies involves pathological conditions associated with chronic elevations of systemic TNF and disrupted sleep. Normalization of TNF levels in such patients improves sleep. A few studies involving normal healthy humans and their TNF levels and sleep are consistent with the animal studies but are necessarily more limited in scope. TNF can act on established sleep regulatory circuits to promote sleep and on the cortex within small networks, such as cortical columns, to induce sleep-like states. TNF affects multiple synaptic functions, e.g., its role in synaptic scaling is firmly established. The TNF-plasticity actions, like its role in sleep, can be local network events suggesting that sleep and plasticity share biochemical regulatory mechanisms and thus may be inseparable from each other. We conclude that TNF is involved in sleep regulation acting within an extensive tightly orchestrated biochemical network to niche-adapt sleep in health and disease.
Collapse
|
15
|
Petit JM, Magistretti P. Regulation of neuron–astrocyte metabolic coupling across the sleep–wake cycle. Neuroscience 2016; 323:135-56. [DOI: 10.1016/j.neuroscience.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
|
16
|
Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016; 39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Dheeraj Pelluru
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Priyattam J Shiromani
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
17
|
Petit JM, Burlet-Godinot S, Magistretti PJ, Allaman I. Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis 2015; 30:263-79. [PMID: 25399336 PMCID: PMC4544655 DOI: 10.1007/s11011-014-9629-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Laboratory of Neuroenergetics and Cellular Dynamics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland,
| | | | | | | |
Collapse
|
18
|
Rattenborg NC, Martinez-Gonzalez D. Avian Versus Mammalian Sleep: the Fruits of Comparing Apples and Oranges. CURRENT SLEEP MEDICINE REPORTS 2014. [DOI: 10.1007/s40675-014-0001-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Michel M, Lyons LC. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research. Front Syst Neurosci 2014; 8:133. [PMID: 25136297 PMCID: PMC4120776 DOI: 10.3389/fnsys.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.
Collapse
Affiliation(s)
- Maximilian Michel
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University Tallahassee, FL, USA
| |
Collapse
|
20
|
Abstract
In the last decades a substantial knowledge about sleep mechanisms has been accumulated. However, the function of sleep still remains elusive. The difficulty with unraveling sleep's function may arise from the lack of understanding of how the multitude of processes associated with waking and sleep-from gene expression and single neuron activity to the whole brain dynamics and behavior-functionally and mechanistically relate to each other. Therefore, novel conceptual frameworks, which integrate and take into account the variety of phenomena occurring during waking and sleep at different levels, will likely lead to advances in our understanding of the function of sleep, above and beyond what merely descriptive or correlative approaches can provide. One such framework, the synaptic homeostasis hypothesis, focuses on wake- and sleep-dependent changes in synaptic strength. The core claim of this hypothesis is that learning and experience during wakefulness are associated with a net increase in synaptic strength. In turn, the proposed function of sleep is to provide synaptic renormalization, which has important implications with respect to energy needs, intracranial space, metabolic supplies, and, importantly, enables further plastic changes. In this article we review the empirical evidence for this hypothesis, which was obtained at several levels-from gene expression and cellular excitability to structural synaptic modifications and behavioral outcomes. We conclude that although the mechanisms behind the proposed role of sleep in synaptic homeostasis are undoubtedly complex, this conceptual framework offers a unique opportunity to provide mechanistic and functional explanation for many previously disparate observations, and define future research strategies.
Collapse
|
21
|
Vyazovskiy VV, Harris KD. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 2013; 14:443-51. [PMID: 23635871 PMCID: PMC3972489 DOI: 10.1038/nrn3494] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sleep is universal in animals, but its specific functions remain elusive. We propose that sleep's primary function is to allow individual neurons to perform prophylactic cellular maintenance. Just as muscle cells must rest after strenuous exercise to prevent long-term damage, brain cells must rest after intense synaptic activity. We suggest that periods of reduced synaptic input ('off periods' or 'down states') are necessary for such maintenance. This in turn requires a state of globally synchronized neuronal activity, reduced sensory input and behavioural immobility - the well-known manifestations of sleep.
Collapse
Affiliation(s)
- Vladyslav V. Vyazovskiy
- University of Surrey, Faculty of Health and Medical Sciences, Department of Biochemistry and Physiology, Guildford, GU2 7XH, UK
| | - Kenneth D. Harris
- University College London (UCL) Institute of Neurology, UCL Department of Neuroscience, Physiology, and Pharmacology, London, WC1E 6DE, UK
| |
Collapse
|
22
|
Varshavsky A. Augmented generation of protein fragments during wakefulness as the molecular cause of sleep: a hypothesis. Protein Sci 2012; 21:1634-61. [PMID: 22930402 PMCID: PMC3527701 DOI: 10.1002/pro.2148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/21/2012] [Indexed: 02/05/2023]
Abstract
Despite extensive understanding of sleep regulation, the molecular-level cause and function of sleep are unknown. I suggest that they originate in individual neurons and stem from increased production of protein fragments during wakefulness. These fragments are transient parts of protein complexes in which the fragments were generated. Neuronal Ca²⁺ fluxes are higher during wakefulness than during sleep. Subunits of transmembrane channels and other proteins are cleaved by Ca²⁺-activated calpains and by other nonprocessive proteases, including caspases and secretases. In the proposed concept, termed the fragment generation (FG) hypothesis, sleep is a state during which the production of fragments is decreased (owing to lower Ca²⁺ transients) while fragment-destroying pathways are upregulated. These changes facilitate the elimination of fragments and the remodeling of protein complexes in which the fragments resided. The FG hypothesis posits that a proteolytic cleavage, which produces two fragments, can have both deleterious effects and fitness-increasing functions. This (previously not considered) dichotomy can explain both the conservation of cleavage sites in proteins and the evolutionary persistence of sleep, because sleep would counteract deleterious aspects of protein fragments. The FG hypothesis leads to new explanations of sleep phenomena, including a longer sleep after sleep deprivation. Studies in the 1970s showed that ethanol-induced sleep in mice can be strikingly prolonged by intracerebroventricular injections of either Ca²⁺ alone or Ca²⁺ and its ionophore (Erickson et al., Science 1978;199:1219-1221; Harris, Pharmacol Biochem Behav 1979;10:527-534; Erickson et al., Pharmacol Biochem Behav 1980;12:651-656). These results, which were never interpreted in connection to protein fragments or the function of sleep, may be accounted for by the FG hypothesis about molecular causation of sleep.
Collapse
Affiliation(s)
- Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|