1
|
Li Y, Ong JWX, See YM, Yee JY, Tang C, Zheng S, Ng BT, Lee BTK, Rotzschke O, Andiappan AK, Lee J. Immunophenotyping schizophrenia subtypes stratified by antipsychotic response. Brain Behav Immun 2024; 123:656-671. [PMID: 39414177 DOI: 10.1016/j.bbi.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/02/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024] Open
Abstract
Immune dysfunction has been proposed to play a role in the pathophysiology behind the development and persistence of psychosis. Current immunophenotyping studies are limited by small sample sizes and the number of immune markers investigated. Pharmacological subtypes in schizophrenia based on antipsychotic response have been proposed, but few studies have investigated immunophenotypes in treatment-resistant schizophrenia. In this study, we perform comprehensive immunophenotyping on 196 subjects comprising 147 schizophrenia patients stratified by antipsychotic response (49 antipsychotic-responsive, 70 clozapine-responsive, 28 clozapine-resistant) and 49 healthy controls. We aim to identify significant immune cell populations associated with schizophrenia and increasing treatment resistance, as potential modulators of underlying psychosis and/or treatment response. Patients with schizophrenia were recruited and assessed on the Clinical Global Impression - Schizophrenia (CGI-SCH). Treatment response was defined as a rating of three (mild severity) or less on the CGI-SCH positive symptom item after at least 8 weeks of adequate antipsychotic or clozapine treatment. Peripheral blood mononuclear cells were collected and flow cytometry was performed to identify 66 immune cell populations. Differences in cell population proportions were compared between schizophrenia cases and controls, and across all 4 groups, with post-hoc pairwise comparisons. Mucosal-associated invariant T (MAIT) cells (specifically CD8 + and DN double-negative subsets), total, exhausted and memory CD8 + T cells, VD1 + ϒδ T cells, plasmablasts, IgG + B cells and conventional dendritic cells 2 (cDC2) were among the top cell populations downregulated in schizophrenia. We observed increased downregulation with increasing treatment resistance. Conversely, naïve and exhausted CD4 + T cells, CD4/CD8 ratio and CCR5 + CCR2 + HLA DR + Myeloid cells were found to be upregulated in schizophrenia - we observed increased upregulation with increasing treatment resistance. We show significant immunophenotypic differences between schizophrenia cases and healthy controls, and consistent trend differences across varying degrees of antipsychotic resistance. We also examined immune cell populations not previously reported in schizophrenia. Future studies may explore immune markers identified as potential biomarkers of treatment resistance, and clarify on the relationship between immunological changes and pharmacological subtypes in schizophrenia.
Collapse
Affiliation(s)
- Yanhui Li
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Jocelyn Wen Xin Ong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Yuen Mei See
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Jie Yin Yee
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Charmaine Tang
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Shushan Zheng
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Boon Tat Ng
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore
| | - Bernett Teck Kwong Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 1 Mandalay Rd, Singapore 308232, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Anand Kumar Andiappan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore. 8A Biomedical Grove Level 3 & 4. Immunos Building Singapore 138648, Singapore
| | - Jimmy Lee
- Institute of Mental Health, Singapore. 10 Buangkok View, Buangkok Green Medical Park, Singapore 539747, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore. 1 Mandalay Rd, Singapore 308232, Singapore.
| |
Collapse
|
2
|
Gębka-Kępińska B, Adamczyk B, Adamczyk J, Czuba Z, Gębka-Adamczyk N, Szczygieł J, Wierzbicki K, Adamczyk-Sowa M. Immunologic analysis of CSF in patients with de novo diagnosed RRMS. The role of chemokines in the early phase of the disease. Mult Scler Relat Disord 2024; 90:105800. [PMID: 39197352 DOI: 10.1016/j.msard.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by demyelination and neurodegeneration. Chemokines regulate leukocyte migration and inflammation in MS. In the present study, we evaluated selected chemokine levels in the cerebrospinal fluid of patients with multiple sclerosis diagnosed de novo compared to healthy controls. METHODS We measured EOTAXIN, IP-10, MCP-1, MIP-1a, MIP-1b and RANTES in the cerebrospinal fluid of 118 patients with de novo RRMS and 112 controls, analyzing correlations with time from symptom onset to diagnosis and changes in MRI. RESULTS Higher levels of EOTAXIN, IP-10, MIP-1B and RANTES, and lower MCP-1 were observed in MS patients compared to controls. MIP-1A did not show statistical significance. EOTAXIN and IP-10 concentrations increased with time. RANTES concentration correlated positively with T2 changes in MRI of the cervical spine, and EOTAXIN concentration correlated negatively with gadolinium (Gd+) changes in the cervical spine. There was no correlation with changes in the thoracic spine or brain. CONCLUSIONS Chemokines play a significant role in the early phase of MS by influencing inflammatory activity. They may represent potential therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Barbara Gębka-Kępińska
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland.
| | - Bożena Adamczyk
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Jakub Adamczyk
- Department of Dental Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Natalia Gębka-Adamczyk
- Department of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice 41-800, Poland
| |
Collapse
|
3
|
Chaves AR, Tremblay S, Pilutti L, Ploughman M. Lowered ratio of corticospinal excitation to inhibition predicts greater disability, poorer motor and cognitive function in multiple sclerosis. Heliyon 2024; 10:e35834. [PMID: 39170378 PMCID: PMC11337054 DOI: 10.1016/j.heliyon.2024.e35834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Investigate excitatory-inhibitory (E/I) (im)balance using transcranial magnetic stimulation (TMS) in individuals with Multiple Sclerosis (MS) and determine its validity as a neurophysiological biomarker of disability. Methods Participants with MS (n = 83) underwent TMS, cognitive, and motor function assessments. TMS-induced motor evoked potential amplitudes (excitability) and cortical silent periods (inhibition) were assessed bilaterally through recruitment curves. The E/I ratio was calculated as the ratio of excitation to inhibition. Results Participants with greater disability (Expanded Disability Status Scale, EDSS≥3) exhibited lower excitability and increased inhibition compared to those with lower disability (EDSS<3). This resulted in lower E/I ratios in the higher disability group. Individuals with higher disability presented with asymmetrical E/I ratios between brain hemispheres, a pattern not present in the group with lower disability. In regression analyses controlling for demographics, lowered TMS-probed E/I ratio predicted variance in disability (R2 = 0.37, p < 0.001), upper extremity function (R2 = 0.35, p < 0.001), walking speed (R2 = 0.22, p = 0.005), and cognitive performance (R2 = 0.25, p = 0.007). Receiver Operating Characteristic curve analysis confirmed 'excellent' discriminative ability of the E/I ratio in distinguishing high and low disability. Finally, excitation superiorly correlated with the E/I ratio than overall inhibition in both hemispheres (p ≤ 0.01). Conclusion The E/I ratio is a potential neurophysiological biomarker of disability level in MS, especially when assessed in the hemisphere corresponding to the weaker body side. Interventions aimed at increasing cortical excitation or reducing inhibition may restore E/I balance potentially stalling progression or improving function in MS.
Collapse
Affiliation(s)
- Arthur R. Chaves
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
| | - Sara Tremblay
- Neuromodulation Research Clinic, The Royal's Institute of Mental Health Research, ON, Canada
- Département de Psychoéducation et de Psychologie, Université Du Québec en Outaouais, QC, Canada
- Faculty of Social Sciences, School of Psychology, University of Ottawa, ON, Canada
- Department of Molecular and Cellular Medicine, University of Ottawa, ON, Canada
| | - Lara Pilutti
- Faculty of Health Sciences, Interdisciplinary School of Health Sciences, University of Ottawa, ON, Canada
| | | |
Collapse
|
4
|
Vasconcelos e Cruz J, Notter F, Schick F, Lechner J. Comparison of Cytokine RANTES/CCL5 Inflammation in Apical Periodontitis and in Jawbone Cavitations - Retrospective Clinical Study. J Inflamm Res 2024; 17:67-80. [PMID: 38197033 PMCID: PMC10775705 DOI: 10.2147/jir.s442693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Background Apical periodontitis (AP) is one of the most common endodontic diseases associated with osteo destructive cytokine production. The literature also reports cytokine studies in fatty degenerative osteonecrotic bone marrow defects (BMDJ/FDOJ) independent of AP. Objective We compare the RANTES/CCL5 (R/C) chemokine production between AP and BMDJ/FDOJ. For both pathologies, the R/C expression was also compared to radiographic diagnosis in 2D-OPG, 3D-CBCT/DVT. Material and Methods Postoperative samples were collected and divided in three different groups: HB (healthy jawbone) (n=19), APs (n=19), and BMDJ/FDOJ (n=7). The R/C expression was evaluated using multiplex analysis. In addition, two clinical cases from AP and BMDJ/FDOJ groups were randomly selected and radiographic diagnosis in 2D-OPG and 3D-CBCT/DVT was compared to TAU measurements and R/C expression in AP and in BMDJ/FDOJ. Results BMDJ/FDOJ showed the highest R/C expression (2498.71 pg/mL), followed by AP (841.85 pg/mL) and HB (149.85 pg/mL) (AP vs BMDJ/FDOJ = p=0.01; AP vs HB = p=<0.01; BMDJ/FDOJ vs HB = p=<0.01). In both clinical cases, the radiographic findings depict the AP areas in OPG and CBCT/DVT, in contrast to the BMDJ/FDOJ areas. Conversely, the systemic immunological R/C expressions are threefold and fivefold excessive in both cases. Discussion AP is recognized as a pathology requiring treatment, while the pathogenesis of BMDJ/FDOJ is controversially discussed in the literature, despite stronger potential systemic immunological effects (breast cancer (case 1) and multiple sclerosis (case 2)). The inadequate radiographic representation of reduced bone density in BMDJ/FDOJ areas could be a reason for this contradiction. Conclusion The data presented provide the first quantitative analysis of R/C expression in AP and BMDJ/FDOJ. BMDJ/FDOJ showed high R/C expression than AP, besides the diagnostic through radiographs being extremely poor. To cover this imprecision, a radiation-free TAU device is available.
Collapse
Affiliation(s)
- Joana Vasconcelos e Cruz
- Dental Materials, Egas Moniz School of Health & Science, Caparica, Portugal
- Dental Materials, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Caparica, Portugal
| | - Florian Notter
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | | |
Collapse
|
5
|
Wolszczak-Biedrzycka B, Dorf J, Wojewódzka-Żelezniakowicz M, Żendzian-Piotrowska M, Dymicka-Piekarska V, Matowicka-Karna J, Maciejczyk M. Changes in chemokine and growth factor levels may be useful biomarkers for monitoring disease severity in COVID-19 patients; a pilot study. Front Immunol 2024; 14:1320362. [PMID: 38239363 PMCID: PMC10794366 DOI: 10.3389/fimmu.2023.1320362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Aim The aim of the present study was to assess differences in the serum levels of chemokines and growth factors (GFs) between COVID-19 patients and healthy controls. The diagnostic utility of the analyzed proteins for monitoring the severity of the SARS-CoV- 2 infection based on the patients' MEWS scores was also assessed. Materials and methods The serum levels of chemokines and growth factors were analyzed in hospitalized COVID-19 patients (50 women, 50 men) with the use of the Bio-Plex Pro™ Human Cytokine Screening Panel (Biorad) and the Bio-Plex Multiplex system. Results The study demonstrated that serum levels of MIP-1α, RANTES, Eotaxin, CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, SCGF-β, G-CSF, M-CSF, SCF, MIF, LIF, and TRAIL were significant higher in COVID-19 patients than in the control group. The concentrations of CTACK, GRO-α, IP-10, MIG, basic-FGF, HGF, PDGF- BB, GM-CSF, SCF, LIF, and TRAIL were higher in asymptomatic/mildly symptomatic COVID-19 patients (stage 1) and COVID-19 patients with pneumonia without respiratory failure (stage 2). The receiver operating characteristic (ROC) analysis revealed that IP-10, MIF, MIG, and basic-FGF differentiated patients with COVID-19 from healthy controls with the highest sensitivity and specificity, whereas GM-CSF, basic-FGF, and MIG differentiated asymptomatic/mildly symptomatic COVID-19 patients (stage 1) from COVID-19 patients with pneumonia without respiratory failure (stage 2) with the highest sensitivity and specificity. Conclusions MIG, basic-FGF, and GM-CSF can be useful biomarkers for monitoring disease severity in patients with COVID-19.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Bruno A, Buttari F, Dolcetti E, Azzolini F, Borrelli A, Lauritano G, Di Caprio V, Rizzo FR, Gilio L, Galifi G, Furlan R, Finardi A, Guadalupi L, Musella A, Mandolesi G, Centonze D, Stampanoni Bassi M. Distinct intrathecal inflammatory signatures following relapse and anti-COVID-19 mRNA vaccination in multiple sclerosis. Mult Scler 2023; 29:1383-1392. [PMID: 37698019 DOI: 10.1177/13524585231197928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND The role of vaccine-mediated inflammation in exacerbating multiple sclerosis (MS) is a matter of debate. OBJECTIVE In this cross-sectional study, we compared the cerebrospinal fluid (CSF) inflammation associated with MS relapses or anti-COVID-19 mRNA vaccinations in relapsing-remitting multiple sclerosis (RRMS). METHODS We dosed CSF cytokines in 97 unvaccinated RRMS patients with clinical relapse within the last 100 days. In addition, we enrolled 29 stable RRMS and 24 control patients receiving COVID-19 vaccine within the last 100 days. RESULTS In RRMS patients, a negative association was found between relapse distance and the CSF concentrations of the pro-inflammatory cytokines interleukin (IL)-2 (beta = -0.265, p = 0.016), IL-6 (beta = -0.284, p = 0.01), and IL-17 (beta = -0.224, p = 0.044). Conversely, vaccine distance positively correlated with a different set of cytokines including IL-12 (beta = 0.576, p = 0.002), IL-13 (beta = 0.432, p = 0.027), and IL-1ra (beta = 0.387, p = 0.05). These associations were significant also considering other clinical characteristics. No significant associations emerged between vaccine distance and CSF molecules in the control group. CONCLUSION Vaccine for COVID-19 induces a central inflammatory response in RRMS patients that is qualitatively different from that associated with disease relapse.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | | | | | - Gianluca Lauritano
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Veronica Di Caprio
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy Faculty of Psychology Uninettuno Telematic International University, Rome, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | |
Collapse
|
7
|
Grabarczyk M, Ksiazek-Winiarek D, Glabinski A, Szpakowski P. Dietary Polyphenols Decrease Chemokine Release by Human Primary Astrocytes Responding to Pro-Inflammatory Cytokines. Pharmaceutics 2023; 15:2294. [PMID: 37765263 PMCID: PMC10537369 DOI: 10.3390/pharmaceutics15092294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are considered to be the dominant cell fraction of the central nervous system. They play a supportive and protective role towards neurons, and regulate inflammatory processes; they thus make suitable targets for drugs and supplements, such as polyphenolic compounds. However, due to their wide range, knowledge of their anti-inflammatory potential remains relatively incomplete. The aim of this study was therefore to determine whether myricetin and chrysin are able to decrease chemokine release in reactive astrocytes. To assess the antioxidant and anti-inflammatory potential of polyphenols, human primary astrocytes were cultured in the presence of a reactive and neurotoxic astrocyte-inducing cytokine mixture (TNF-α, IL-1a, C1q), either alone or in the presence of myricetin or chrysin. The examined polyphenols were able to modify the secretion of chemokines by human cortical astrocytes, especially CCL5 (chrysin), CCL1 (myricetin) and CCL2 (both), while cell viability was not affected. Surprisingly, the compounds did not demonstrate any antioxidant properties in the astrocyte cultures.
Collapse
|
8
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
9
|
Seybert C, Cotovio G, Rodrigues da Silva D, Faro Viana F, Pereira P, Oliveira-Maia AJ. Replicability of motor cortex-excitability modulation by intermittent theta burst stimulation. Clin Neurophysiol 2023; 152:22-33. [PMID: 37269770 DOI: 10.1016/j.clinph.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Transcranial Magnetic Stimulation (TMS) allows for cortical-excitability (CE) assessment and its modulation has been associated with neuroplasticity-like phenomena, thought to be impaired in neuropsychiatric disorders. However, the stability of these measures has been challenged, defying their potential as biomarkers. This study aimed to test the temporal stability of cortical-excitability modulation and study the impact of individual and methodological factors in determining within- and between-subject variability. METHODS We recruited healthy-subjects to assess motor cortex (MC) excitability modulation, collecting motor evoked potentials (MEP) from both hemispheres, before and after left-sided intermittent theta burst stimulation (iTBS), to obtain a measure of MEPs change (delta-MEPs). To assess stability across-time, the protocol was repeated after 6 weeks. Socio-demographic and psychological variables were collected to test association with delta-MEPs. RESULTS We found modulatory effects on left MC and not on right hemisphere following iTBS of left MC. Left delta-MEP was stable across-time when performed immediately after iTBS (ICC = 0.69), only when obtained first in left hemisphere. We discovered similar results in a replication cohort testing only left MC (ICC = 0.68). No meaningful associations were found between demographic and psychological factors and delta-MEPs. CONCLUSIONS Delta-MEP is stable immediately after modulation and not impacted by different individual factors, including expectation about TMS-effect. SIGNIFICANCE Motor cortex excitability modulation immediately after iTBS should be further explored as a potential biomarker for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Carolina Seybert
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Gonçalo Cotovio
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | | | - Francisco Faro Viana
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Department of Physics, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Pereira
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; Portuguese Red Cross Health School, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Foundation, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
11
|
Guerrero S, Sánchez-Tirado E, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM. Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple Sclerosis. BIOSENSORS 2022; 12:bios12080610. [PMID: 36005006 PMCID: PMC9406078 DOI: 10.3390/bios12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Serum level of CCL5 chemokine is considered an emerging biomarker for multiple sclerosis (MS). Due to the lack of specific assays for this disease, the development of a point-of-care test for rapid detection of MS could lead to avoiding diagnostics delays. In this paper, we report the first electrochemical immunoplatform for quantification of the CCL5 biomarker at the clinically required levels, able to discriminate between patients diagnosed with MS and healthy individuals. The immunosensing device involves protein capture from biological samples by complexation with biotinylated specific antibodies immobilized onto neutravidin-functionalized microparticles and sandwich assay with anti-CCL5 antibody and IgG labelled with horseradish peroxidase (HRP) for the enzyme-catalyzed amperometric detection of H2O2 using hydroquinone (HQ) as the redox mediator. The method shows excellent analytical performance for clinical application with a wide linear range of concentrations (0.1–300 ng·mL−1 CCL5, R2 = 0.998) and a low detection limit (40 pg·mL−1 CCL5). The biosensing platform was applied to the determination of the CCL5 endogenous content in 100-fold diluted sera both from healthy individuals and patients diagnosed with MS, with no further sample treatment in just two hours. The results were successfully compared with those obtained by the ELISA methodology.
Collapse
|
12
|
Fu CC, Huang L, Xu LF, Jiang LH, Li HL, Liao S, Yue J, Lian C, Yang XG, Long YM. Serological biomarkers in autoimmune GFAP astrocytopathy. Front Immunol 2022; 13:957361. [PMID: 35983033 PMCID: PMC9378990 DOI: 10.3389/fimmu.2022.957361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A) is a newly defined meningoencephalomyelitis. The pathogenesis of GFAP-A is not well understood. The present study measured the expression levels of 200 serological cytokines in GFAP-A patients, NMOSD patients and healthy controls (HCs). The correlations between serum cytokine levels and clinical information in GFAP-A patients were analyzed. A total of 147 serological proteins were differentially expressed in GFAP-A patients compared to HCs, and 33 of these proteins were not observed in NMOSD patients. Serum levels of EG-VEGF negatively correlated with GFAP antibody titers, MIP-3 alpha positively correlated with clinical severity in GFAP-A patients, and LIGHT positively correlated with WBC counts and protein levels in the CSF of GFAP-A patients. These results suggest that GFAP and AQP4 astrocytopathy share some common pathology related to TNF signaling. Serum MIP 3 alpha may be a biomarker to assess clinical severity and a potential target for therapy of autoimmune GFAP astrocytopathy.
Collapse
Affiliation(s)
- Cong-Cong Fu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lu Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lu-Fen Xu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li-Hong Jiang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui-Lu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sha Liao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiajia Yue
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chun Lian
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Guang Yang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: You-Ming Long, ; Xin-Guang Yang,
| | - You-Ming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: You-Ming Long, ; Xin-Guang Yang,
| |
Collapse
|
13
|
Biodetection Techniques for Quantification of Chemokines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines are a class of cytokine whose special properties, together with their involvement and relevant role in various diseases, make them a restricted group of biomarkers suitable for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the selective determination of one or more chemokines are very scarce. For some years now, the critical diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has had a strong impact on the development of multiple detection platforms. However, it would be desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to provide more precise information. In addition, better development of biosensor technology applied to this specific field would make it possible to address the main challenges of detection methods for several diseases with a high incidence in the population, avoiding high costs and low sensitivity. Taking this into account, this review aims to present the state of the art of chemokine biodetection techniques and emphasize the role of these systems in the prevention, monitoring and treatment of various diseases associated with chemokines as a starting point for future developments that are also analyzed throughout the article.
Collapse
|
14
|
Pappas A, Shankaran S, McDonald SA, Carlo WA, Laptook AR, Tyson JE, Das A, Skogstrand K, Hougaard DM, Higgins RD. Blood Biomarkers and 6- to 7-Year Childhood Outcomes Following Neonatal Encephalopathy. Am J Perinatol 2022; 39:732-749. [PMID: 33038899 PMCID: PMC8765716 DOI: 10.1055/s-0040-1717072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE This study aimed to profile the cytokine/chemokine response from day 0 to 7 in infants (≥36 weeks of gestational age) with neonatal encephalopathy (NE) and to explore the association with long-term outcomes. STUDY DESIGN This was a secondary study of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Neonatal Research Network randomized controlled trial of whole body hypothermia for NE. Eligible infants with moderate-severe NE were randomized to cooling or normothermia. Blood spots were collected on days 0 to 1, 2 to 4, and 6 to 7. Twenty-four cytokines/chemokines were measured using a multiplex platform. Surviving infants underwent neurodevelopmental assessment at 6 to 7 years. Primary outcome was death or moderate-severe impairment defined by any of the following: intelligence quotient <70, moderate-severe cerebral palsy (CP), blindness, hearing impairment, or epilepsy. RESULTS Cytokine blood spots were collected from 109 participants. In total 99 of 109 (91%) were assessed at 6 to 7 years; 54 of 99 (55%) developed death/impairment. Neonates who died or were impaired had lower early regulated upon activation normal T cell expressed and secreted (RANTES) and higher day 7 monocyte chemotactic protein (MCP)-1 levels than neonates who survived without impairment. Though TNF-α levels had no association with death/impairment, higher day 0 to 1 levels were observed among neonates who died/developed CP. On multiple regression analysis adjusted for center, treatment group, sex, race, and level of hypoxic ischemic encephalopathy, higher RANTES was inversely associated with death/impairment (odds ratio (OR): 0.31, 95% confidence interval [CI]: 0.13-0.74), while day seven MCP-1 level was directly associated with death/impairment (OR: 3.70, 95% CI: 1.42-9.61). Targeted cytokine/chemokine levels demonstrated little variation with hypothermia treatment. CONCLUSION RANTES and MCP-1 levels in the first week of life may provide potential targets for future therapies among neonates with encephalopathy. KEY POINTS · Elevation of specific cytokines and chemokines in neonates with encephalopathy has been noted along with increased risk of neurodevelopmental impairment in infancy.. · Cytokine/chemokines at <7 days were assessed among neonates in a trial of hypothermia for HIE.. · Neonates who died or were impaired at 6 to 7 years following hypoxic-ischemic encephalopathy had lower RANTES and higher MCP-1 levels than those who survived without impairment..
Collapse
Affiliation(s)
- Athina Pappas
- Department of Pediatrics, Wayne State University, Detroit, MI
| | | | - Scott A. McDonald
- Social, Statistical and Environmental Sciences Unit, RTI International, Research Triangle Park, NC
| | - Waldemar A. Carlo
- Department of Pediatrics, University of Alabama at Birmingham and Children’s Hospital of Alabama, Birmingham, AL
| | - Abbot R. Laptook
- Department of Pediatrics, Women & Infant’s Hospital, Brown University, Providence, RI
| | - Jon E. Tyson
- Department of Pediatrics, University of Texas Medical School at Houston, Houston, TX
| | - Abhik Das
- Social, Statistical and Environmental Sciences Unit, RTI International, Rockville, MD
| | - Kristin Skogstrand
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen
| | - David M. Hougaard
- Department for Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen
| | - Rosemary D. Higgins
- Department of Global and Community Health, George Mason University, Fairfax, Virginia
| | | |
Collapse
|
15
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
16
|
Stampanoni Bassi M, Iezzi E, Centonze D. Multiple sclerosis: Inflammation, autoimmunity and plasticity. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:457-470. [PMID: 35034754 DOI: 10.1016/b978-0-12-819410-2.00024-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, experimental studies have clarified that immune system influences the functioning of the central nervous system (CNS) in both physiologic and pathologic conditions. The neuro-immune crosstalk plays a crucial role in neuronal development and may be critically involved in mediating CNS response to neuronal damage. Multiple sclerosis (MS) represents a good model to investigate how the immune system regulates neuronal activity. Accordingly, a growing body of evidence has demonstrated that increased levels of pro-inflammatory mediators may significantly impact synaptic mechanisms, influencing overall neuronal excitability and synaptic plasticity expression. In this chapter, we provide an overview of preclinical data and clinical studies exploring synaptic functioning noninvasively with transcranial magnetic stimulation (TMS) in patients with MS. Moreover, we examine how inflammation-driven synaptic dysfunction could affect synaptic plasticity expression, negatively influencing the MS course. Contrasting CSF inflammation together with pharmacologic enhancement of synaptic plasticity and application of noninvasive brain stimulation, alone or in combination with rehabilitative treatments, could improve the clinical compensation and prevent the accumulating deterioration in MS.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy; Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy.
| |
Collapse
|
17
|
Chaves AR, Kenny HM, Snow NJ, Pretty RW, Ploughman M. Sex-specific disruption in corticospinal excitability and hemispheric (a)symmetry in multiple sclerosis. Brain Res 2021; 1773:147687. [PMID: 34634288 DOI: 10.1016/j.brainres.2021.147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease in which pathophysiology and symptom progression presents differently between the sexes. In a cohort of people with MS (n = 110), we used transcranial magnetic stimulation (TMS) to investigate sex differences in corticospinal excitability (CSE) and sex-specific relationships between CSE and cognitive function. Although demographics and disease characteristics did not differ between sexes, males were more likely to have cognitive impairment as measured by the Montreal Cognitive Assessment (MoCA); 53.3% compared to females at 26.3%. Greater CSE asymmetry was noted in females compared to males. Females demonstrated higher active motor thresholds and longer silent periods in the hemisphere corresponding to the weaker hand which was more typical of hand dominance patterns in healthy individuals. Males, but not females, exhibited asymmetry of nerve conduction latency (delayed MEP latency in the hemisphere corresponding to the weaker hand). In males, there was also a relationship between delayed onset of ipsilateral silent period (measured in the hemisphere corresponding to the weaker hand) and MoCA, suggestive of cross-callosal disruption. Our findings support that a sex-specific disruption in CSE exists in MS, pointing to interhemispheric disruption as a potential biomarker of cognitive impairment and target for neuromodulating therapies.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Hannah M Kenny
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Nicholas J Snow
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
18
|
Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help? Brain Commun 2021; 3:fcab237. [PMID: 34729480 PMCID: PMC8557667 DOI: 10.1093/braincomms/fcab237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory demyelination characterizes the initial stages of multiple sclerosis, while progressive axonal and neuronal loss are coexisting and significantly contribute to the long-term physical and cognitive impairment. There is an unmet need for a conceptual shift from a dualistic view of multiple sclerosis pathology, involving either inflammatory demyelination or neurodegeneration, to integrative dynamic models of brain reorganization, where, glia-neuron interactions, synaptic alterations and grey matter pathology are longitudinally envisaged at the whole-brain level. Functional and structural MRI can delineate network hallmarks for relapses, remissions or disease progression, which can be linked to the pathophysiology behind inflammatory attacks, repair and neurodegeneration. Here, we aim to unify recent findings of grey matter circuits dynamics in multiple sclerosis within the framework of molecular and pathophysiological hallmarks combined with disease-related network reorganization, while highlighting advances from animal models (in vivo and ex vivo) and human clinical data (imaging and histological). We propose that MRI-based brain networks characterization is essential for better delineating ongoing pathology and elaboration of particular mechanisms that may serve for accurate modelling and prediction of disease courses throughout disease stages.
Collapse
Affiliation(s)
- Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Gabriel Gonzalez-Escamilla
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Arman Eshaghi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK.,Department of Computer Science, Centre for Medical Image Computing (CMIC), University College London, London WC1E 6BT, UK
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Lechner J, von Baehr V, Schick F. RANTES/CCL5 Signaling from Jawbone Cavitations to Epistemology of Multiple Sclerosis - Research and Case Studies. Degener Neurol Neuromuscul Dis 2021; 11:41-50. [PMID: 34262389 PMCID: PMC8275106 DOI: 10.2147/dnnd.s315321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The role played by signaling pathways in the cell-cell communication associated with multiple sclerosis (MS) progression has become a critical area in research. Chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted), also named chemokine C-C motif ligand 5 (CCL5; R/C), is a protein that has been investigated in neuroinflammatory research due to its link to MS development. OBJECTIVE Research on bone marrow defects in the jawbone (BMDJ), which morphologically presents as fatty-degenerative osteonecrosis of the jawbone (FDOJ), presents overexpression of R/C signaling in affected areas. Here, we try to elucidate the potential link between jawbone-derived R/C and MS. METHODS Seventeen BMDJ/FDOJ samples extracted from 17 MS patients, as well as samples from 19 healthy controls, were analyzed for R/C expression using bead-based Luminex® analysis. The serum R/C levels from 10 MS patients were examined. Further, bone density, histology, and R/C expression were analyzed in two clinical case studies. RESULTS High R/C overexpression was found in all BMDJ/FDOJ samples obtained from the MS group. Serum R/C levels were also upregulated in the MS group. R/C serum levels in the MS cohort were higher than in the healthy controls. In contrast, the histology of BMDJ/FDOJ samples showed no inflammatory cells. DISCUSSION R/C-induced "silent inflammation" in MS is widely discussed in the scientific literature, along with R/C triggering of inflammation in the central nervous system, which might be key in the development of MS. CONCLUSION The authors suspect that BMDJ/FDOJ may serve as a trigger of MS progression via R/C overexpression. As such, the dental and medical communities should be made aware of BMDJ/FDOJ in cases of MS.
Collapse
|
20
|
A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes (Basel) 2020; 11:genes11101152. [PMID: 33007809 PMCID: PMC7601054 DOI: 10.3390/genes11101152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
In multiple sclerosis (MS), activated T and B lymphocytes and microglial cells release various proinflammatory cytokines, promoting neuroinflammation and negatively affecting the course of the disease. The immune response homeostasis is crucially regulated by the activity of the enzyme adenosine deaminase (ADA), as evidenced in patients with genetic ADA deficiency and in those treated with cladribine tablets. We investigated in a group of patients with MS the associations of a single nucleotide polymorphism (SNP) of ADA gene with disease characteristics and cerebrospinal fluid (CSF) inflammation. The SNP rs244072 of the ADA gene was determined in 561 patients with MS. Disease characteristics were assessed at the time of diagnosis; furthermore, in 258 patients, proinflammatory and anti-inflammatory molecules were measured in the CSF. We found a significant association between rs244072 and both clinical characteristics and central inflammation. In C-carriers, significantly enhanced disability and increased CSF levels of TNF, IL-5 and RANTES was observed. In addition, lower CSF levels of the anti-inflammatory cytokine IL-10 were found. Finally, the presence of the C allele was associated with a tendency of increased lymphocyte count. In MS patients, ADA SNP rs244072 is associated with CSF inflammation and disability. The selective targeting of the ADA pathway through cladribine tablet therapy could be effective in MS by acting on a pathogenically relevant biological mechanism.
Collapse
|
21
|
Stampanoni Bassi M, Buttari F, Gilio L, De Paolis N, Fresegna D, Centonze D, Iezzi E. Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Front Neurol 2020; 11:566. [PMID: 32733354 PMCID: PMC7358546 DOI: 10.3389/fneur.2020.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS) to assess the integrity of the corticospinal tract and the corpus callosum and to explore some physiological properties of the motor cortex. Specific alterations of TMS measures have been strongly associated to different pathophysiological mechanisms, particularly to demyelination and neuronal loss. Moreover, TMS has contributed to investigate the neurophysiological basis of MS symptoms, particularly those not completely explained by conventional structural damage, such as fatigue. However, variability existing between studies suggests that alternative mechanisms should be involved. Knowledge of MS pathophysiology has been enriched by experimental studies in animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that inflammation alters synaptic transmission, promoting hyperexcitability and neuronal damage. Accordingly, TMS studies have demonstrated an imbalance between cortical excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different proinflammatory and anti-inflammatory molecules have been associated to corticospinal hyperexcitability, highlighting that inflammatory synaptopathy may represent a key pathophysiological mechanism in MS. In this perspective article, we discuss whether corticospinal excitability alterations assessed with TMS in MS patients could be useful to explain the pathophysiological correlates and their relationships with specific MS clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that, in MS patients, inflammatory synaptopathy could be present since the early phases, could specifically characterize relapses, and could progressively increase during the disease course.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Nicla De Paolis
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
22
|
Barbour AJ, Hauser KF, McQuiston AR, Knapp PE. HIV and opiates dysregulate K +- Cl - cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis 2020; 141:104878. [PMID: 32344154 PMCID: PMC7685173 DOI: 10.1016/j.nbd.2020.104878] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately half of people infected with HIV (PWH) exhibit HIV-associated neuropathology (neuroHIV), even when receiving combined antiretroviral therapy. Opiate use is widespread in PWH and exacerbates neuroHIV. While neurons themselves are not infected, they incur sublethal damage and GABAergic disruption is selectively vulnerable to viral and inflammatory factors released by infected/affected glia. Here, we demonstrate diminished K+-Cl- cotransporter 2 (KCC2) levels in primary human neurons after exposure to HIV-1 or HIV-1 proteins ± morphine. Resulting disruption of GABAAR-mediated hyperpolarization/inhibition was shown using genetically-encoded voltage (Archon1) and calcium (GCaMP6f) indicators. The HIV proteins Tat (acting through NMDA receptors) and R5-gp120 (acting via CCR5) but not X4-tropic gp120 (acting via CXCR4), and morphine (acting through μ-opioid receptors) all induced KCC2 loss. We demonstrate that modifying KCC2 levels or function, or antagonizing NMDAR, CCR5 or MOR rescues KCC2 and GABAAR-mediated hyperpolarization/inhibition in HIV, Tat, or gp120 ± morphine-exposed neurons. Using an inducible, Tat-transgenic mouse neuroHIV model, we found that chronic exposure to Tat also reduces KCC2. Our results identify KCC2 as a novel therapeutic target for ameliorating the pathobiology of neuroHIV, including PWH exposed to opiates.
Collapse
Affiliation(s)
- Aaron J Barbour
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Kurt F Hauser
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - A Rory McQuiston
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Departments of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
23
|
Stampanoni Bassi M, Iezzi E, Drulovic J, Pekmezovic T, Gilio L, Furlan R, Finardi A, Marfia GA, Sica F, Centonze D, Buttari F. IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Front Cell Neurosci 2020; 14:120. [PMID: 32655367 PMCID: PMC7324533 DOI: 10.3389/fncel.2020.00120] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
Specific proinflammatory and anti-inflammatory molecules could represent useful cerebrospinal fluid (CSF) biomarkers to predict the clinical course of multiple sclerosis (MS). The proinflammatory molecule interleukin (IL)-6 has been investigated in the pathophysiology of MS and has been associated in previous smaller studies to increased disability and disease activity. Here, we wanted to further address IL-6 as a possible CSF biomarker of MS by investigating its detectability in a large cohort of 534 MS patients and in 103 individuals with other non-inflammatory neurological diseases. In these newly diagnosed patients, we also explored correlations between IL-6 detectability, MS phenotypes, and disease characteristics. We found that IL-6 was more frequently detectable in the CSF of MS patients compared with their control counterparts as significant differences emerged between patients with Clinically isolated syndrome (CIS), Relapsing–remitting (RR), and secondary progressive and primary progressive MS compared to non-inflammatory controls. IL-6 was equally present in the CSF of all MS phenotypes. In RR MS patients, IL-6 detectability was found to signal clinically and/or radiologically defined disease activity, among all other clinical characteristics. Our results add further evidence that CSF proinflammatory cytokines could be useful for the identification of those MS patients who are prone to increased disease activity. In particular, IL-6 could represent an interesting prognostic biomarker of MS, as also demonstrated in other diseases where CSF IL-6 was found to identify patients with worse disease severity.
Collapse
Affiliation(s)
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, Belgrade, Serbia
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Girolama Alessandra Marfia
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Sica
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
24
|
Chaves AR, Devasahayam AJ, Riemenschneider M, Pretty RW, Ploughman M. Walking Training Enhances Corticospinal Excitability in Progressive Multiple Sclerosis-A Pilot Study. Front Neurol 2020; 11:422. [PMID: 32581998 PMCID: PMC7287174 DOI: 10.3389/fneur.2020.00422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Inflammatory lesions and neurodegeneration lead to motor, cognitive, and sensory impairments in people with multiple sclerosis (MS). Accumulation of disability is at least partially due to diminished capacity for neuroplasticity within the central nervous system. Aerobic exercise is a potentially important intervention to enhance neuroplasticity since it causes upregulation of neurotrophins and enhances corticospinal excitability, which can be probed using single-pulse transcranial magnetic stimulation (TMS). Whether people with progressive MS who have accumulated substantial disability could benefit from walking rehabilitative training to enhance neuroplasticity is not known. Objective: We aimed to determine whether 10 weeks of task-specific walking training would affect corticospinal excitability over time (pre, post, and 3-month follow-up) among people with progressive MS who required walking aids. Results: Eight people with progressive MS (seven female; 29–74 years old) with an Expanded Disability Status Scale of 6–6.5 underwent harness-supported treadmill walking training in a temperature controlled room at 16°C (10 weeks; three times/week; 40 min at 40–65% heart rate reserve). After training, there was significantly higher corticospinal excitability in both brain hemispheres, reductions in TMS active motor thresholds, and increases in motor-evoked potential amplitudes and slope of the recruitment curve (REC). Decreased intracortical inhibition (shorter cortical silent period) after training was noted in the hemisphere corresponding to the stronger hand only. These effects were not sustained at follow-up. There was a significant relationship between increases in corticospinal excitability (REC, area under the curve) in the hemisphere corresponding to the stronger hand and lessening of both intensity and impact of fatigue on activities of daily living (Fatigue Severity Scale and Modified Fatigue Impact Scale, respectively). Conclusion: Our pilot results support that vigorous treadmill training can potentially improve neuroplastic potential and mitigate symptoms of the disease even among people who have accumulated substantial disability due to MS.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Augustine J Devasahayam
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Morten Riemenschneider
- Section for Sports Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L. A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
25
|
Comparison of the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic pain-related symptoms in rodents: behavioral and biochemical analyses. Int Immunopharmacol 2020; 84:106540. [PMID: 32402949 DOI: 10.1016/j.intimp.2020.106540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.
Collapse
|
26
|
Cui LY, Chu SF, Chen NH. The role of chemokines and chemokine receptors in multiple sclerosis. Int Immunopharmacol 2020; 83:106314. [PMID: 32197226 PMCID: PMC7156228 DOI: 10.1016/j.intimp.2020.106314] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 01/13/2023]
Abstract
Summarize the study of the role of chemokines and their receptors in multiple sclerosis (MS) patients and MS animal models. Discuss their potential significance in inflammatory injury and repair of MS. Summarize the progress in the research of MS antagonists in recent years with chemokine receptors as targets.
Multiple sclerosis (MS) is a chronic inflammatory disease that is characterized by leukocyte infiltration and subsequent axonal damage, demyelinating inflammation, and formation of sclerosing plaques in brain tissue. The results of various studies in patients indicate that autoimmunity and inflammation make an important impact on the pathogenesis of MS. Chemokines are key mediators of inflammation development and cell migration, mediating various immune cell responses, including chemotaxis and immune activation, and are important in immunity and inflammation, therefore we focus on chemokines and their receptors in multiple sclerosis. In this article, we summarize the study of the role of prominent chemokines and their receptors in MS patients and MS animal modelsand discuss their potential significance in inflammatory injury and repair of MS. We have also summarized the progress in the treatment of multiple sclerosis antagonists in recent years with chemokine receptors as targets.
Collapse
Affiliation(s)
- Li-Yuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
27
|
Baione V, Belvisi D, Cortese A, Cetta I, Tartaglia M, Millefiorini E, Berardelli A, Conte A. Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 38:101494. [DOI: 10.1016/j.msard.2019.101494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
|
28
|
Fantuzzi L, Tagliamonte M, Gauzzi MC, Lopalco L. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell Mol Life Sci 2019; 76:4869-4886. [PMID: 31377844 PMCID: PMC6892368 DOI: 10.1007/s00018-019-03255-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The chemokine system mediates acute inflammation by driving leukocyte migration to damaged or infected tissues. However, elevated expression of chemokines and their receptors can contribute to chronic inflammation and malignancy. Thus, great effort has been taken to target these molecules. The first hint of the druggability of the chemokine system was derived from the role of chemokine receptors in HIV infection. CCR5 and CXCR4 function as essential co-receptors for HIV entry, with the former accounting for most new HIV infections worldwide. Not by chance, an anti-CCR5 compound, maraviroc, was the first FDA-approved chemokine receptor-targeting drug. CCR5, by directing leukocytes to sites of inflammation and regulating their activation, also represents an important player in the inflammatory response. This function is shared with CCR2 and its selective ligand CCL2, which constitute the primary chemokine axis driving the recruitment of monocytes/macrophages to inflammatory sites. Both receptors are indeed involved in the pathogenesis of several immune-mediated diseases, and dual CCR5/CCR2 targeting is emerging as a more efficacious strategy than targeting either receptor alone in the treatment of complex human disorders. In this review, we focus on the distinctive and complementary contributions of CCR5 and CCR2/CCL2 in HIV infection, multiple sclerosis, liver fibrosis and associated hepatocellular carcinoma. The emerging therapeutic approaches based on the inhibition of these chemokine axes are highlighted.
Collapse
Affiliation(s)
- Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori- IRCCS-"Fond G. Pascale", Naples, Italy
| | | | - Lucia Lopalco
- Immunobiology of HIV Unit, Division Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
29
|
Lepennetier G, Hracsko Z, Unger M, Van Griensven M, Grummel V, Krumbholz M, Berthele A, Hemmer B, Kowarik MC. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuro-inflammatory diseases. J Neuroinflammation 2019; 16:219. [PMID: 31727097 PMCID: PMC6857241 DOI: 10.1186/s12974-019-1601-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytokines play multiple roles during neuro-inflammatory processes and several cytokines have been studied in the context of specific diseases. This study provides a comprehensive picture of cerebrospinal fluid (CSF) changes during neuro-inflammation by analyzing multiple cytokines in combination with immune cell subsets and standard CSF parameters. METHODS Using multiplex assays, we simultaneously measured 36 cytokines (CCL1-3, CCL7, CCL8, CCL11, CCL13, CCL19, CCL20, CCL22-27, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8, CXCL9, CXCL11-13, CXCL16, CX3CL1, IL2, IL4, IL6, IL10, IL16, GM-CSF, IFNγ, MIF, TNFα, and MIB1β) in the CSF and serum of 75 subjects. Diagnoses included clinically isolated syndrome and relapsing-remitting multiple sclerosis (MS, n = 18), secondary progressive MS (n = 8), neuro-syphilis (n = 6), Lyme neuro-borreliosis (n = 13), bacterial and viral meningitis (n = 20), and patients with non-inflammatory neurological diseases (NIND, n = 10). Cytokine concentrations were correlated with CSF standard parameters and CSF immune cell subsets (CD4 and CD8 T cells, B cells, plasmablasts, monocytes, and NK cells) quantified by flow cytometry. RESULTS We observed increased levels of multiple cytokines (26/36) in patients with neuro-inflammatory diseases when compared to NIND that consistently correlated with CSF cell count and QAlbumin. Most CSF cytokine concentrations correlated with each other, but correlations between CSF and serum values were scarce (3/36). Within the CSF compartment, CXCL13 showed a strong association with B cells when analyzing all patients, as well as patients with an intact blood-brain barrier (BBB). NK cells positively correlated with CSF concentrations of multiple cytokines (22/36) when analyzing all patients. These correlations were maintained when looking at patients with a disrupted BBB but not detectable in patients with an intact BBB. CONCLUSIONS Under conditions of neuro-inflammation, multiple CSF cytokines are regulated in parallel and most likely produced locally. A combined increase of CSF CXCL13 levels and B cells occurs under conditions of an intact BBB. Under conditions of a disrupted BBB, CSF NK cells show significantly increased values and seem to have a major contribution to overall inflammatory processes, reflected by a strong correlation with multiple cytokines. Future studies are necessary to address the exact kinetics of these cytokines during neuro-inflammation and their relation to specific diseases phenotypes.
Collapse
Affiliation(s)
- Gildas Lepennetier
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zsuzsanna Hracsko
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Unger
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Krumbholz
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karl University, Tübingen, Germany
| | - Achim Berthele
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus C Kowarik
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karl University, Tübingen, Germany.
| |
Collapse
|
30
|
Banerjee PP, Pang L, Soldan SS, Miah SM, Eisenberg A, Maru S, Waldman A, Smith EA, Rosenberg-Hasson Y, Hirschberg D, Smith A, Ablashi DV, Campbell KS, Orange JS. KIR2DL4-HLAG interaction at human NK cell-oligodendrocyte interfaces regulates IFN-γ-mediated effects. Mol Immunol 2019; 115:39-55. [PMID: 30482463 PMCID: PMC6543535 DOI: 10.1016/j.molimm.2018.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
Abstract
Interactions between germline-encoded natural killer (NK) cell receptors and their respective ligands on tumorigenic or virus-infected cells determine NK cell cytotoxic activity and/or cytokine secretion. NK cell cytokine responses can be augmented in and can potentially contribute to multiple sclerosis (MS), an inflammatory disease of the central nervous system focused upon the oligodendrocytes (OLs). To investigate mechanisms by which NK cells may contribute to MS pathogenesis, we developed an in vitro human model of OL-NK cell interaction. We found that activated, but not resting human NK cells form conjugates with, and mediate cytotoxicity against, human oligodendrocytes. NK cells, when in conjugate with OLs, rapidly synthesize and polarize IFN-γ toward the OLs. IFN-γ is capable of reducing myelin oligodendrocyte and myelin associated glycoproteins (MOG and MAG) content. This activity is independent of MHC class-I mediated inhibition via KIR2DL1, but dependent upon the interaction between NK cell-expressed KIR2DL4 and its oligodendrocyte-expressed ligand, HLA-G. NK cells from patients with MS express higher levels of IFN-γ following conjugation to OLs, more actively promote in vitro reduction of MOG and MAG and have higher frequencies of the KIR2DL4 positive population. These data collectively suggest a mechanism by which NK cells can promote pathogenic effects upon OLs.
Collapse
Affiliation(s)
- P P Banerjee
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA.
| | - L Pang
- Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - S S Soldan
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | - S M Miah
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - A Eisenberg
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - S Maru
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - A Waldman
- The Children's Hospital of Philadelphia Research Institute, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - E A Smith
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - Y Rosenberg-Hasson
- Human Immune Monitoring Center, Stanford School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - D Hirschberg
- Human Immune Monitoring Center, Stanford School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - A Smith
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| | - D V Ablashi
- Human Herpes Virus 6 Foundation, 1482 East Valley Road, Suite 619 Santa Barbara, CA 93108, USA
| | - K S Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - J S Orange
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX-77030, USA; Center for Human Immunobiology, Texas Children's Hospital, 1102 Bates St, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Prolonged cortical silent period is related to poor fitness and fatigue, but not tumor necrosis factor, in Multiple Sclerosis. Clin Neurophysiol 2019; 130:474-483. [PMID: 30771724 DOI: 10.1016/j.clinph.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Poor fitness among people with Multiple Sclerosis (MS) aggravates disease symptoms. Whether low fitness levels accompany brain functioning changes is unknown. METHODS MS patients (n = 82) completed a graded maximal exercise test, blood was drawn, and transcranial magnetic stimulation determined resting and active motor thresholds, motor evoked potential latency, and cortical silent period (CSP). RESULTS Sixty-two percent of participants had fitness levels ranked below 10th percentile. Fitness was not associated with disability measured using the Expanded Disability Status Scale (EDSS). Regression analyses revealed that, cardiorespiratory fitness, when controlling for disease demographics, contributed 23.7% (p < 0.001) to the model explaining variance in CSP. Regression analysis using cardiorespiratory fitness and CSP as predictors showed that CSP alone explained 19.9% of variance in subjective fatigue (p = 0.002). Tumor necrosis factor was not associated with any variable. CONCLUSION Low fitness was associated with longer CSP in MS. Longer CSP was, in turn, related to greater MS fatigue. SIGNIFICANCE MS patients had extremely low levels of cardiorespiratory fitness. Poor fitness predicted longer CSP, a marker of greater intracortical inhibition, which was linked to MS fatigue. Future research should examine whether aerobic training could shorten CSP and potentially lessen inhibition of cortical networks.
Collapse
|
32
|
Chaves AR, Wallack EM, Kelly LP, Pretty RW, Wiseman HD, Chen A, Moore CS, Stefanelli M, Ploughman M. Asymmetry of Brain Excitability: A New Biomarker that Predicts Objective and Subjective Symptoms in Multiple Sclerosis. Behav Brain Res 2019; 359:281-291. [DOI: 10.1016/j.bbr.2018.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
|
33
|
Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324:54-75. [PMID: 30243185 DOI: 10.1016/j.jneuroim.2018.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is characterized by chronic inflammatory response-induced demyelination of the neurons and degeneration of the axons within the central nervous system (CNS). A complex network of immunopathological-, inflammatory- and oxidative parameters involve in the development and advancement of MS. The anti-inflammatory, immunomodulatory and anti-oxidative characteristics of the ginger and several of its components have been indicated in some of experimental and clinical investigations. The possible therapeutic potentials of ginger and its ingredients in the treatment of MS may exert mainly through the regulation of the Th1-, Th2-, Th9-, Th17-, Th22- and Treg cell-related immune responses, down-regulation of the B cell-related immune responses, modulation of the macrophages-related responses, modulation of the production of pro- and anti-inflammatory cytokines, down-regulation of the arachidonic acid-derived mediators, interfering with the toll like receptor-related signaling pathways, suppression of the inflammasomes, down-regulation of the oxidative stress, reduction of the adhesion molecules expression, and down-regulation of the expression of the chemokines and chemokine receptors. This review aimed to provide a comprehensive knowledge regarding the immunomodulatory-, anti-inflammatory and anti-oxidative properties of ginger and its components, and highlight novel insights into the possible therapeutic potentials of this plant for treatment of MS. The review encourages more investigations to consider the therapeutic potentials of ginger and its effective components for managing of MS.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
34
|
Weinberg RP, Koledova VV, Schneider K, Sambandan TG, Grayson A, Zeidman G, Artamonova A, Sambanthamurthi R, Fairus S, Sinskey AJ, Rha C. Palm Fruit Bioactives modulate human astrocyte activity in vitro altering the cytokine secretome reducing levels of TNFα, RANTES and IP-10. Sci Rep 2018; 8:16423. [PMID: 30401897 PMCID: PMC6219577 DOI: 10.1038/s41598-018-34763-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, are becoming more prevalent and an increasing burden on society. Neurodegenerative diseases often arise in the milieu of neuro-inflammation of the brain. Reactive astrocytes are key regulators in the development of neuro-inflammation. This study describes the effects of Palm Fruit Bioactives (PFB) on the behavior of human astrocytes which have been activated by IL-1β. When activated, the astrocytes proliferate, release numerous cytokines/chemokines including TNFα, RANTES (CCL5), IP-10 (CXCL10), generate reactive oxygen species (ROS), and express specific cell surface biomarkers such as the Intercellular Adhesion Molecule (ICAM), Vascular Cellular Adhesion Molecule (VCAM) and the Neuronal Cellular Adhesion Molecule (NCAM). Interleukin 1-beta (IL-1β) causes activation of human astrocytes with marked upregulation of pro-inflammatory genes. We show significant inhibition of these pro-inflammatory processes when IL-1β-activated astrocytes are exposed to PFB. PFB causes a dose-dependent and time-dependent reduction in specific cytokines: TNFα, RANTES, and IP-10. We also show that PFB significantly reduces ROS production by IL-1β-activated astrocytes. Furthermore, PFB also reduces the expression of ICAM and VCAM, both in activated and naïve human astrocytes in vitro. Since reactive astrocytes play an essential role in the neuroinflammatory state preceding neurodegenerative diseases, this study suggests that PFB may have a potential role in their prevention and/or treatment.
Collapse
Affiliation(s)
- Robert P Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Vera V Koledova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kirsten Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - T G Sambandan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Adlai Grayson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gal Zeidman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anastasia Artamonova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - ChoKyun Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Chandran R, Capone M, Matzelle D, Polcyn R, Kau E, Haque A, Banik NL. Distinct Cytokine and Chemokine Expression in Plasma and Calpeptin-Treated PBMCs of a Relapsing-Remitting Multiple Sclerosis Patient: A Case Report. Neurochem Res 2018; 43:2224-2231. [PMID: 30291537 DOI: 10.1007/s11064-018-2655-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
The cytokine/chemokine expression signature of a 60-year-old African American male with relapsing-remitting multiple sclerosis (RRMS) was analyzed using patient blood samples obtained from two separate visits to the clinic. Thirty-six different cytokines, chemokines, and growth factors were detected in the plasma of the RRMS patient using a multiplexed bead-based immunoassay. Results indicated that at least ten of these factors with a concentration of > 100 pg/mL are identified as pro-inflammatory. Calpain inhibition led to an anti-inflammatory effect, as indicated by a decrease in expression of pro-inflammatory cytokines/chemokines such as GM-CSF, IFNγ, and IL-17A, and a relative increase in two of the anti-inflammatory cytokines (IL-13 and IL-4) in the peripheral blood mononuclear cells activated with anti-CD3/CD28. Overall, these results suggest that the unique cytokine/chemokine pattern observed in the plasma of the RRMS patient can be used as a prognostic marker and calpain inhibition may be used as a novel therapeutic strategy for treating excessive inflammatory response specific to RRMS patients.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St. MSC606 Suite 301, Charleston, SC, 29425, USA
| | - Mollie Capone
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St. MSC606 Suite 301, Charleston, SC, 29425, USA.,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St. MSC606 Suite 301, Charleston, SC, 29425, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Rachel Polcyn
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth Kau
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Naren L Banik
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St. MSC606 Suite 301, Charleston, SC, 29425, USA. .,Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA.
| |
Collapse
|
36
|
Wen J, Maxwell RR, Wolf AJ, Spira M, Gulinello ME, Cole PD. Methotrexate causes persistent deficits in memory and executive function in a juvenile animal model. Neuropharmacology 2018; 139:76-84. [PMID: 29990472 PMCID: PMC6089371 DOI: 10.1016/j.neuropharm.2018.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
Abstract
Methotrexate is a dihydrofolate reductase inhibitor widely employed in curative treatment for children with acute lymphoblastic leukemia (ALL). However, methotrexate administration is also associated with persistent cognitive deficits among long-term childhood cancer survivors. Animal models of methotrexate-induced cognitive deficits have primarily utilized adult animals. The purpose of present study is to investigate the neurotoxicity of methotrexate in juvenile rats and its relevant mechanisms. The doses and schedule of systemic and intrathecal methotrexate, given from post-natal age 3-7 weeks, were chosen to model the effects of repeated methotrexate dosing on the developing brains of young children with ALL. This methotrexate regimen had no visible acute toxicity and no effect on growth. At 15 weeks of age (8 weeks after the last methotrexate dose) both spatial pattern memory and visual recognition memory were impaired. In addition, methotrexate-treated animals demonstrated impaired performance in the set-shifting assay, indicating decreased cognitive flexibility. Histopathological analysis demonstrated decreased cell proliferation in methotrexate-treated animals compared to controls, as well as changes in length and thickness of the corpus callosum. Moreover, methotrexate suppressed microglia activation and RANTES production. In conclusion, our study demonstrated that a clinically relevant regimen of systemic and intrathecal methotrexate induces persistent deficits in spatial pattern memory, visual recognition memory and executive function, lasting at least 8 weeks after the last injection. The mechanisms behind methotrexate-induced deficits are likely multifactorial and may relate to suppression of neurogenesis, alterations in neuroinflammation and microglial activation, and structural changes in the corpus callosum.
Collapse
Affiliation(s)
- Jing Wen
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rochelle R Maxwell
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander J Wolf
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Menachem Spira
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter D Cole
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA; Rutgers Cancer Institute of New Jersey, Division of Pediatric Hematology/Oncology, New Brunswick, NJ, USA.
| |
Collapse
|
37
|
Increased CCL18 plasma levels are associated with neurodegenerative MRI outcomes in multiple sclerosis patients. Mult Scler Relat Disord 2018; 25:37-42. [PMID: 30031282 DOI: 10.1016/j.msard.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Chemokine ligands and co-stimulatory factors are involved in macrophage activation and differentiation processes that could contribute to multiple sclerosis (MS) pathogenesis. OBJECTIVE To investigate associations of C-C motif Ligand 18 (CCL18), C-C motif ligand 5 (CCL5) and soluble Cluster of Differentiation 86 (sCD86) with clinical and MRI measures in MS patients. METHODS Plasma levels of CCL18, CCL5 and sCD86 were evaluated in 138 MS patients (85 relapsing-remitting, RR-MS; 53 progressive, P-MS), and in 42 age- and sex-matched healthy individuals (HI). All subjects underwent standardized 3T MRI and clinical examinations. Multiple regression analysis of MRI outcomes as dependent variables was performed with age, gender, having P-MS, and plasma proteins as predictor variables. RESULTS Higher CCL18 plasma levels were found in P-MS (median = 51.5, IQR = 41.0-63.6 ng/mL) compared to RR-MS (median = 43.0, IQR = 29.1-55.0 ng/mL, p = 0.014) and to HI (median = 41.3, IQR = 30.9-54.1 ng/mL, p = 0.009). Disease-modifying treatments altered CCL5 (p = 0.036) and sCD86 (p < 0.001) levels. Higher CCL18 levels were associated with increased lateral ventricular volume (p = 0.006) and T2 lesion volume (LV) (p = 0.034), and decreased grey matter (p = 0.006), thalamic (p = 0.007) and cortical (p = 0.01) volumes. CONCLUSIONS Our results provide evidence that higher CCL18 plasma levels are associated with more severe inflammatory and neurodegenerative brain MRI outcomes in MS.
Collapse
|
38
|
Stampanoni Bassi M, Garofalo S, Marfia GA, Gilio L, Simonelli I, Finardi A, Furlan R, Sancesario GM, Di Giandomenico J, Storto M, Mori F, Centonze D, Iezzi E. Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Front Mol Neurosci 2017; 10:390. [PMID: 29209169 PMCID: PMC5702294 DOI: 10.3389/fnmol.2017.00390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
Cognitive deficits are frequently observed in multiple sclerosis (MS), mainly involving processing speed and episodic memory. Both demyelination and gray matter atrophy can contribute to cognitive deficits in MS. In recent years, neuroinflammation is emerging as a new factor influencing clinical course in MS. Inflammatory cytokines induce synaptic dysfunction in MS. Synaptic plasticity occurring within hippocampal structures is considered as one of the basic physiological mechanisms of learning and memory. In experimental models of MS, hippocampal plasticity is profoundly altered by proinflammatory cytokines. Although mechanisms of inflammation-induced hippocampal pathology in MS are not completely understood, alteration of Amyloid-β (Aβ) metabolism is emerging as a key factor linking together inflammation, synaptic plasticity and neurodegeneration in different neurological diseases. We explored the correlation between concentrations of Aβ1–42 and the levels of some proinflammatory and anti-inflammatory cytokines (interleukin-1β (IL-1β), IL1-ra, IL-8, IL-10, IL-12, tumor necrosis factor α (TNFα), interferon γ (IFNγ)) in the cerebrospinal fluid (CSF) of 103 remitting MS patients. CSF levels of Aβ1–42 were negatively correlated with the proinflammatory cytokine IL-8 and positively correlated with the anti-inflammatory molecules IL-10 and interleukin-1 receptor antagonist (IL-1ra). Other correlations, although noticeable, were either borderline or not significant. Our data show that an imbalance between proinflammatory and anti-inflammatory cytokines may lead to altered Aβ homeostasis, representing a key factor linking together inflammation, synaptic plasticity and cognitive dysfunction in MS. This could be relevant to identify novel therapeutic approaches to hinder the progression of cognitive dysfunction in MS.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sara Garofalo
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Girolama A Marfia
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luana Gilio
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ilaria Simonelli
- Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Service of Medical Statistics & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Rome, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia M Sancesario
- Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jonny Di Giandomenico
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Marianna Storto
- Clinical Pathology Unit, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| | - Francesco Mori
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli, Italy
| |
Collapse
|
39
|
Pittaluga A. CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis. Front Immunol 2017; 8:1079. [PMID: 28928746 PMCID: PMC5591427 DOI: 10.3389/fimmu.2017.01079] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
40
|
Stampanoni Bassi M, Mori F, Buttari F, Marfia GA, Sancesario A, Centonze D, Iezzi E. Neurophysiology of synaptic functioning in multiple sclerosis. Clin Neurophysiol 2017; 128:1148-1157. [DOI: 10.1016/j.clinph.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 01/16/2023]
|
41
|
5-Fluorouracil chemotherapy upregulates cytokines and alters hippocampal dendritic complexity in aged mice. Behav Brain Res 2016; 316:215-224. [PMID: 27599618 DOI: 10.1016/j.bbr.2016.08.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 01/12/2023]
Abstract
5-Fluorouracil (5-Fu) is commonly used chemotherapy drug, but it can lead to the impairment of cognitive function. The pathogenesis of this injury is unknown but may involve modifications to dendritic structure and/or alterations in dendritic spine density and morphology. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and dendrite morphology are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. A total of 28 one-year-old C57BL6/J male mice were used in this study; 14 mice received 5-Fu treatment and 14 were given saline injections. One month post treatment, 14 cytokines were measured at the same time Golgi samples were taken. 8 analytes were significantly elevated in mice treated with 5-Fu. 5-Fu significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal tri-synaptic network. The present data provide the evidence that 5-Fu has deleterious effects on mature neurons associated with hippocampal learning and memory.
Collapse
|
42
|
Gentile A, Musella A, Bullitta S, Fresegna D, De Vito F, Fantozzi R, Piras E, Gargano F, Borsellino G, Battistini L, Schubart A, Mandolesi G, Centonze D. Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. J Neuroinflammation 2016; 13:207. [PMID: 27566665 PMCID: PMC5002118 DOI: 10.1186/s12974-016-0686-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. Methods Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. Results Siponimod administration (0.45 μg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. Conclusions Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.
Collapse
Affiliation(s)
- Antonietta Gentile
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy
| | - Diego Fresegna
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Francesca De Vito
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| | - Eleonora Piras
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Francesca Gargano
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia-CERC, 00143, Rome, Italy
| | - Anna Schubart
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Transmission, IRCCS Fondazione Santa Lucia, Centro Europeo di Ricerca sul Cervello (CERC), 00143, Rome, Italy.
| | - Diego Centonze
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, 00133, Rome, Italy.,Unit of Neurology and Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077, Pozzilli, IS, Italy
| |
Collapse
|