1
|
Kapusniak K, Wojcik M, Rosicka-Kaczmarek J, Miśkiewicz K, Pacholczyk-Sienicka B, Juszczak L. Molecular Structure and Properties of Resistant Dextrins from Potato Starch Prepared by Microwave Heating. Int J Mol Sci 2024; 25:11202. [PMID: 39456986 PMCID: PMC11508830 DOI: 10.3390/ijms252011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The dextrinization of potato starch was performed using a sophisticated single-mode microwave reactor with temperature and pressure control using 10 cycles of heating with stirring between cycles. Microwave power from 150 to 250 W, a cycle time from 15 to 25 s, and two types of vessels with different internal diameters (12 and 24 mm) and therefore different thicknesses of the heated starch layer were used in order to estimate the impact of vessel size used for microwave dextrinization. The characteristics of resistant dextrins (RD) including solubility in water, total dietary fiber (TDF) content, color parameters, the share of various glycosidic bonds, and pasting and rheological properties were carried out. The applied conditions allowed us to obtain RDs with water solubility up to 74% at 20 °C, as well as TDF content up to 47%, with a predominance of low-molecular-weight soluble fiber fraction, with increased content of non-starch glycosidic bonds, negligible viscosity, and a slightly beige color. The geometry of the reaction vessel influenced the properties of dextrins obtained under the same heating power, time, and repetition amounts. Among the conditions used, the most favorable conditions were heating 10 times for 20 s at 200 W in a 10 mL vessel and the least favorable were 15 s cycles.
Collapse
Affiliation(s)
- Kamila Kapusniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Malwina Wojcik
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland;
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (J.R.-K.); (K.M.)
| | - Barbara Pacholczyk-Sienicka
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Leslaw Juszczak
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
2
|
Śliżewska K, Włodarczyk M, Barczyńska R, Kapuśniak J, Socha P, Wierzbicka-Rucińska A, Kotowska A. Impact of a Fruit-Vegetable Preparation Fortified with Potato Starch Resistant Dextrin on Selected Health Indicators in Overweight Children. Nutrients 2024; 16:2321. [PMID: 39064763 PMCID: PMC11279421 DOI: 10.3390/nu16142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Developing modified dietary fibers that maintain prebiotic benefits without significantly affecting meal taste is of high importance in the midst of the obesity pandemic. These benefits include regulating the composition of gut microbiota, increasing feelings of fullness, and improving human metabolic parameters. This study investigated the use of a resistant dextrin (RD) derived from potato starch, which possesses prebiotic properties, as a potential additive in vegetable-fruit preparations that aid weight loss and improve health markers in overweight children. HPLC was employed to examine metabolites like lactic acid, short-chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acids), and branched-chain fatty acids (BCFAs; isobutyric and isovaleric acids). The activities of α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, and β-glucuronidase enzymes in fecal samples were measured using spectrophotometric analysis at a wavelength of 400 nm. Incorporating the RD into vegetable-fruit preparations yielded favorable outcomes in terms of increased concentrations of the tested metabolites (SCFAs and BCFAs) and enhanced fecal enzyme activities after 6 months of consuming the preparations. Furthermore, these effects were found to last for an extended period of 3 months even after discontinuing the treatment. The study has shown that including RD into vegetable-fruit preparations enhances the metabolic parameters of obese and overweight children, hence providing a strong rationale for the widespread usage of these preparations in the industry.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Technical University of Lodz, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Michał Włodarczyk
- Institute of Fermentation Technology and Microbiology, Department of Biotechnology and Food Sciences, Technical University of Lodz, Wolczanska 171/173, 90-924 Lodz, Poland;
| | - Renata Barczyńska
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University, Armi Krajowej 13/15, 42-200 Czestochowa, Poland; (R.B.); (J.K.)
| | - Janusz Kapuśniak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University, Armi Krajowej 13/15, 42-200 Czestochowa, Poland; (R.B.); (J.K.)
| | - Piotr Socha
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| | - Aldona Wierzbicka-Rucińska
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| | - Aneta Kotowska
- The Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-736 Warsaw, Poland; (P.S.); (A.W.-R.); (A.K.)
| |
Collapse
|
3
|
Li F, Muhmood A, Akhter M, Gao X, Sun J, Du Z, Wei Y, Zhang T, Wei Y. Characterization, health benefits, and food applications of enzymatic digestion- resistant dextrin: A review. Int J Biol Macromol 2023; 253:126970. [PMID: 37730002 DOI: 10.1016/j.ijbiomac.2023.126970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Resistant dextrin or resistant maltodextrin (RD), a short-chain glucose polymer that is highly resistant to hydrolysis by human digestive enzymes, has shown broad developmental prospects in the food industry and has gained substantial attention owing to its lack of undesirable effects on the sensory features of food or the digestive system. However, comprehensive fundamental and application information on RD and how RD improves anti-diabetes and obesity have not yet been received. Therefore, the characterization, health benefits and application of RD in various fields are summarized and discussed in the current study. Typically, RD is prepared by the acid thermal method and possesses excellent physicochemical properties, including low viscosity, high solubility, storage stability, and low retro-gradation, which are correlated with its low molecular weight (Mw) and non-digestible glycosidic linkages. In contrast, RD prepared by the simultaneous debranching and crystallization method has low solubility and high crystallinity. The ingestion of RD can positively affect metabolic diseases (diabetes and obesity) in animals and humans by producing short-chain fatty acids (SCFAs), and facilitating the inflammatory response. Moreover, RD has been widely used in the beverage, dairy products, and dessert industries due to its nutritional value and textural properties without unacceptable quality loss. More studies are required to further explore RD application potential in the food industry and its role in the management of different chronic metabolic disorders.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, Denmark.
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Huatao Food Co., Ltd., Weifang 262100, China.
| | - Jie Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Ting Zhang
- Henan University of Technology, Grain College, Zhengzhou 450000, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
4
|
Chen X, Hou Y, Wang Z, Liao A, Pan L, Zhang M, Xue Y, Wang J, Liu Y, Huang J. A Comparative Study of Resistant Dextrins and Resistant Maltodextrins from Different Tuber Crop Starches. Polymers (Basel) 2023; 15:4545. [PMID: 38231993 PMCID: PMC10708145 DOI: 10.3390/polym15234545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
The anti-digestibility of resistant dextrin (RD) and resistant maltodextrin (RMD) is usually significantly affected by processing techniques, reaction conditions, and starch sources. The objective of this investigation is to elucidate the similarities and differences in the anti-digestive properties of RD and RMD prepared from three different tuber crop starches, namely, potato, cassava, and sweet potato, and to reveal the associated mechanisms. The results show that all RMDs have a microstructure characterized by irregular fragmentation and porous surfaces, no longer maintaining the original crystalline structure of starches. Conversely, RDs preserve the structural morphology of starches, featuring rough surfaces and similar crystalline structures. RDs exhibite hydrolysis rates of approximately 40%, whereas RMDs displaye rates lower than 8%. This disparity can be attributed to the reduction of α-1,4 and α-1,6 bonds and the development of a highly branched spatial structure in RMDs. The indigestible components of the three types of RDs range from 34% to 37%, whereas RMDs vary from 80% to 85%, with potato resistant maltodextrin displaying the highest content (84.96%, p < 0.05). In conclusion, there are significant differences in the processing performances between different tuber crop starches. For the preparation of RMDs, potato starch seems to be superior to sweet potato and cassava starches. These attributes lay the foundation for considering RDs and RMDs as suitable components for liquid beverages, solid dietary fiber supplements, and low glycemic index (low-GI) products.
Collapse
Affiliation(s)
- Xinyang Chen
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinchen Hou
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhen Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Aimei Liao
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Long Pan
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Mingyi Zhang
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yingchun Xue
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jingjing Wang
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yingying Liu
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jihong Huang
- Henan Key Laboratory of Wheat Bioprocessing and Nutritional Function, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.C.); (Y.X.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
- School of Food and Pharmacy, Xuchang University, Xuchang 461000, China
| |
Collapse
|
5
|
Perreau C, Thabuis C, Verstrepen L, Ghyselinck J, Marzorati M. Ex Vivo Colonic Fermentation of NUTRIOSE ® Exerts Immuno-Modulatory Properties and Strong Anti-Inflammatory Effects. Nutrients 2023; 15:4229. [PMID: 37836513 PMCID: PMC10574048 DOI: 10.3390/nu15194229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
NUTRIOSE® (Roquette, Lestrem, France) is a resistant dextrin with well-established prebiotic effects. This study evaluated the indirect effects of pre-digested NUTRIOSE® on host immune response and gut barrier integrity. Fecal samples from eight healthy donors were inoculated in a Colon-on-a-plate® system (ProDigest, Ghent, Belgium) with or without NUTRIOSE® supplementation. Following 48 h fermentation, colonic suspensions were tested in a Caco-2/THP1-Blue™ co-culture system to determine their effects on gut barrier activity (transepithelial electrical resistance) and immune response following lipopolysaccharide stimulation. Additionally, changes in short-chain fatty acid levels (SCFA) and microbial community composition following a 48 h fermentation in the Colon-on-a-plate® system were measured. Across all donors, immune-mediated intestinal barrier damage was significantly reduced with NUTRIOSE®-supplemented colonic suspensions versus blank. Additionally, IL-6 and IL-10 levels were significantly increased, and the level of the neutrophil chemoattractant IL-8 was significantly decreased with NUTRIOSE®-supplemented colonic suspensions versus blank in the co-culture models following lipopolysaccharide stimulation. These beneficial effects of NUTRIOSE® supplementation were likely due to increased acetate and propionate levels and the enrichment of SCFA-producing bacteria. NUTRIOSE® was well fermented by the colonic bacteria of all eight donors and had protective effects on inflammation-induced disruption of the intestinal epithelial barrier and strong anti-inflammatory effects.
Collapse
Affiliation(s)
- Caroline Perreau
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Clementine Thabuis
- Nutrition and Health R&D, Roquette, 1 rue de la Haute Loge, 62136 Lestrem, France; (C.P.); (C.T.)
| | - Lynn Verstrepen
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Jonas Ghyselinck
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
| | - Massimo Marzorati
- ProDigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (L.V.); (J.G.)
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Vily-Petit J, Soty M, Silva M, Micoud M, Bron C, Guérin-Deremaux L, Mithieux G. Improvement of energy metabolism associated with NUTRIOSE® soluble fiber, a dietary ingredient exhibiting prebiotic properties, requires intestinal gluconeogenesis. Food Res Int 2023; 167:112723. [PMID: 37087279 DOI: 10.1016/j.foodres.2023.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 03/29/2023]
Abstract
While the prevalence of obesity progresses worldwide, the consumption of sugars and dietary fiber increases and decreases, respectively. In this context, NUTRIOSE® soluble fiber is a plant-based food ingredient with beneficial effects in Humans. Here, we studied in mice the mechanisms involved, particularly the involvement of intestinal gluconeogenesis (IGN), the essential function in the beneficial effects of dietary fibers. To determine whether NUTRIOSE® exerts its beneficial effects via the activation of IGN, we studied the effects of dietary NUTRIOSE® on the development of obesity, diabetes and non-alcoholic fatty liver disease (NAFLD), which IGN is able to prevent. To assert the role of IGN in the observed effects, we studied wild-type (WT) and IGN-deficient mice. In line with our hypothesis, NUTRIOSE® exerts metabolic benefits in WT mice, but not in IGN-deficient mice. Indeed, WT mice are protected from body weight gain and NAFLD induced by a high calorie diet. In addition, our data suggests that NUTRIOSE® may improve energy balance by activating a browning process in subcutaneous white adipose tissue. While the gut microbiota composition changes with NUTRIOSE®, this is not sufficient in itself to account for the benefits observed. On the contrary, IGN is obligatory in the NUTRIOSE® benefits, since no benefit take place in absence of IGN. In conclusion, IGN plays a crucial and essential role in the set-up of the beneficial effects of NUTRIOSE®, highlighting the interest of the supplementation of food with healthy ingredients in the context of the current obesity epidemic.
Collapse
Affiliation(s)
- Justine Vily-Petit
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France
| | - Maud Soty
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France
| | - Marine Silva
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France
| | - Manon Micoud
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France
| | - Clara Bron
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France
| | | | - Gilles Mithieux
- Institut de la Santé et de la Recherche Médicale, U1213 Lyon, France; Université Claude Bernard Lyon1, Villeurbanne, France; Université de Lyon, Lyon, France.
| |
Collapse
|
7
|
Van den Abbeele P, Deyaert S, Thabuis C, Perreau C, Bajic D, Wintergerst E, Joossens M, Firrman J, Walsh D, Baudot A. Bridging preclinical and clinical gut microbiota research using the ex vivo SIFR ® technology. Front Microbiol 2023; 14:1131662. [PMID: 37187538 PMCID: PMC10178071 DOI: 10.3389/fmicb.2023.1131662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction While modulation of the human adult gut microbiota is a trending strategy to improve health, the underlying mechanisms are poorly understood. Methods This study aimed to assess the predictive value of the ex vivo, reactor-based, high-throughput SIFR® (Systemic Intestinal Fermentation Research) technology for clinical findings using three structurally different prebiotics [inulin (IN), resistant dextrin (RD) and 2'-fucosyllactose (2'FL)]. Results The key finding was that data obtained within 1-2 days were predictive for clinical findings upon repeated prebiotic intake over weeks: among hundreds of microbes, IN stimulated Bifidobacteriaceae, RD boosted Parabacteroides distasonis, while 2'FL specifically increased Bifidobacterium adolescentis and Anaerobutyricum hallii. In line with metabolic capabilities of these taxa, specific SCFA (short-chain fatty acids) were produced thus providing insights that cannot be obtained in vivo where such metabolites are rapidly absorbed. Further, in contrast to using single or pooled fecal microbiota (approaches used to circumvent low throughput of conventional models), working with 6 individual fecal microbiota enabled correlations that support mechanistic insights. Moreover, quantitative sequencing removed the noise caused by markedly increased cell densities upon prebiotic treatment, thus allowing to even rectify conclusions of previous clinical trials related to the tentative selectivity by which prebiotics modulate the gut microbiota. Counterintuitively, not the high but rather the low selectivity of IN caused only a limited number of taxa to be significantly affected. Finally, while a mucosal microbiota (enriched with Lachnospiraceae) can be integrated, other technical aspects of the SIFR® technology are a high technical reproducibility, and most importantly, a sustained similarity between the ex vivo and original in vivo microbiota. Discussion By accurately predicting in vivo results within days, the SIFR® technology can help bridge the so-called "Valley of Death" between preclinical and clinical research. Facilitating development of test products with better understanding of their mode of action could dramatically increase success rate of microbiome modulating clinical trials.Graphical Abstract.
Collapse
Affiliation(s)
| | | | | | | | - Danica Bajic
- Glycom A/S-DSM Nutritional Products Ltd., Hørsholm, Denmark
| | | | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | | | | |
Collapse
|
8
|
Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022; 10:microorganisms10122507. [PMID: 36557760 PMCID: PMC9787832 DOI: 10.3390/microorganisms10122507] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Dietary fiber is fermented by the human gut microbiota, producing beneficial microbial metabolites, such as short-chain fatty acids. Over the last few centuries, dietary fiber intake has decreased tremendously, leading to detrimental alternations in the gut microbiota. Such changes in dietary fiber consumption have contributed to the global epidemic of obesity, type 2 diabetes, and other metabolic disorders. The responses of the gut microbiota to the dietary changes are specific to the type, amount, and duration of dietary fiber intake. The intricate interplay between dietary fiber and the gut microbiota may provide clues for optimal intervention strategies for patients with type 2 diabetes and other noncommunicable diseases. In this review, we summarize current evidence regarding dietary fiber intake, gut microbiota modulation, and modification in human health, highlighting the type-specific cutoff thresholds of dietary fiber for gut microbiota and metabolic outcomes.
Collapse
|
9
|
The Roles of a Native Starch and a Resistant Dextrin in Texture Improvement and Low Glycemic Index of Biscuits. Processes (Basel) 2022. [DOI: 10.3390/pr10112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low-GI biscuits are commonly produced using whole-grain flour, bran, or soluble dietary fibers, giving an undesirable texture. New low-GI biscuits containing dietary fibers and with improved palatability were formulated by substituting 60% of wheat flour (WF) with a native starch (ST) and 15% of WF with a resistant dextrin (RD), a source of dietary fibers. The botanical source of ST was common buckwheat (Fagopyrum esculentum Moench). Biscuits were also made with a single substitution by ST or by RD at the same level for comparison. The firmness of the biscuits was increased with the single substitution by RD due to its small average molecular size and high hygroscopicity, while it was decreased with the single substitution by ST. The double substitution by ST and RD not only produced the texture with the lowest firmness and brittleness, but also led to the lowest in vitro starch digestion rate and total starch digestibility. The human trial confirmed that the biscuits with the double substitution had a low GI of 47. The results indicated the additive or synergistic effects of ST and RD on the properties of the biscuits, demonstrating that low-GI biscuits can be produced with a substantial dietary fiber content without jeopardizing their palatability.
Collapse
|
10
|
Barber C, Sabater C, Ávila-Gálvez MÁ, Vallejo F, Bendezu RA, Guérin-Deremaux L, Guarner F, Espín JC, Margolles A, Azpiroz F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients 2022; 14:4611. [PMID: 36364873 PMCID: PMC9654059 DOI: 10.3390/nu14214611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 07/31/2023] Open
Abstract
Previous studies have shown that a resistant dextrin soluble fibre has prebiotic properties with related health benefits on blood glucose management and satiety. Our aim was to demonstrate the effects of continuous administration of resistant dextrin on intestinal gas production, digestive sensations, and gut microbiota metabolism and composition. Healthy subjects (n = 20) were given resistant dextrin (14 g/d NUTRIOSE®, Roquette Frères, Lestrem, France) for four weeks. Outcomes were measured before, at the beginning, end, and two weeks after administration: anal evacuations of gas during daytime; digestive perception, girth, and gas production in response to a standard meal; sensory and digestive responses to a comfort meal; volume of colonic biomass by magnetic resonance; taxonomy and metabolic functions of fecal microbiota by shotgun sequencing; metabolomics in urine. Dextrin administration produced an initial increase in intestinal gas production and gas-related sensations, followed by a subsequent decrease, which magnified after discontinuation. Dextrin enlarged the volume of colonic biomass, inducing changes in microbial metabolism and composition with an increase in short chain fatty acids-producing species and modulation of bile acids and biotin metabolism. These data indicate that consumption of a soluble fibre induces an adaptative response of gut microbiota towards fermentative pathways with lower gas production.
Collapse
Affiliation(s)
- Claudia Barber
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry, IPLA-CSIC, 33300 Asturias, Spain
- Health Research Institute of Asturias, ISPA, 33011 Asturias, Spain
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Fernando Vallejo
- Metabolomics Service, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | - Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, IPLA-CSIC, 33300 Asturias, Spain
- Health Research Institute of Asturias, ISPA, 33011 Asturias, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), 28029 Madrid, Spain
| |
Collapse
|
11
|
Saleh-Ghadimi S, Dehghan P, Sarmadi B, Maleki P. Improvement of sleep by resistant dextrin prebiotic in type 2 diabetic women coincides with attenuation of metabolic endotoxemia: involvement of gut-brain axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5229-5237. [PMID: 35306660 DOI: 10.1002/jsfa.11876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Resistant dextrin, as a prebiotic and functional food, may possess favorable effects in type 2 diabetes. This study was conducted to assess whether supplementation with resistant dextrin can improve sleep and quality of life in obese type 2 diabetic women. RESULTS In this randomized controlled trial, female obese type 2 diabetic patients (n = 76) were randomly assigned into intervention group (n = 38) and placebo group (n = 38), and received 10 g day-1 of resistant dextrin or maltodextrin for a period of 8 weeks, respectively. Sleep quality and quality of life (QOL) were assessed by Pittsburgh Sleep Quality Index (PSQI) and SF-36 health survey, respectively. Fasting blood samples were driven to measure serum bacterial endotoxin, fasting blood sugar, glycosylated hemoglobin (HbA1c), pro-inflammatory/anti-inflammatory biomarkers (IL-18, IL-6, IL-10, TNF-α), and biomarkers of hypothalamic-pituitary-adrenal (HPA) axis function [tryptophan (TRP), adrenocorticotropic hormone (ACTH), kynurenine (KYN), cortisol]. Supplementation with resistant dextrin improved sleep (P < 0.001) and QOL (P < 0.001) significantly. It also caused a significant decrease in levels of endotoxin, HbA1c, IL-18, IL-6, TNF-α and a significant increase in IL-10 levels. Significant and positive correlations were found between endotoxin (r = 0.488, P = 0.003), IL-6 (r = 0.436, P = 0.008), IL-18 (r = 0.475, P = 0.003), cortisol (r = 0.545, P = 0.048), KYN/TRP (r = 0.527, P = 0.001), and PSQI scores. CONCLUSIONS It is concluded that resistant dextrin improves sleep and QOL in obese women with type 2 diabetes. Its beneficial effects may be attributed in part to modulation of glycemia, metabolic endotoxemia and subsequently a decrease in biomarkers of inflammation and HPA axis activity. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Sarmadi
- Department of Nutrition Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Parham Maleki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T, Nikoloudaki O, Calabrese FM, Turroni S, Taverniti V, Unión Caballero A, Andrés-Lacueva C, Porrini M, Gobbetti M, De Angelis M, Brigidi P, Pinart M, Nimptsch K, Guglielmetti S, Riso P. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022; 14:nu14132559. [PMID: 35807739 PMCID: PMC9268559 DOI: 10.3390/nu14132559] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers.
Collapse
Affiliation(s)
- Valentina Vinelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Paola Biscotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Francesco Maria Calabrese
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Andrea Unión Caballero
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Maria De Angelis
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Mariona Pinart
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Katharina Nimptsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
- Correspondence:
| |
Collapse
|
13
|
Thirion F, Da Silva K, Plaza Oñate F, Alvarez A, Thabuis C, Pons N, Berland M, Le Chatelier E, Galleron N, Levenez F, Vergara C, Chevallier H, Guérin‐Deremaux L, Doré J, Ehrlich SD. Diet Supplementation with NUTRIOSE, a Resistant Dextrin, Increases the Abundance of Parabacteroides distasonis in the Human Gut. Mol Nutr Food Res 2022; 66:e2101091. [PMID: 35312171 PMCID: PMC9287035 DOI: 10.1002/mnfr.202101091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/25/2022] [Indexed: 12/18/2022]
Abstract
SCOPE An imbalance of the gut microbiota ("dysbiosis") is associated with numerous chronic diseases, and its modulation is a promising novel therapeutic approach. Dietary supplementation with soluble fiber is one of several proposed modulation strategies. This study aims at confirming the impact of the resistant dextrin NUTRIOSE (RD), a soluble fiber with demonstrated beneficial health effects, on the gut microbiota of healthy individuals. METHODS AND RESULTS Fifty healthy women are enrolled and supplemented daily with either RD (n = 24) or a control product (n = 26) during 6 weeks. Characterization of the fecal metagenome with shotgun sequencing reveals that RD intake dramatically increases the abundance of the commensal bacterium Parabacteroides distasonis. Furthermore, presence in metagenomes of accessory genes from P. distasonis, coding for susCD (a starch-binding membrane protein complex) is associated with a greater increase of the species. This suggests that response to RD might be strain-dependent. CONCLUSION Supplementation with RD can be used to specifically increase P. distasonis in gut microbiota of healthy women. The magnitude of the response may be associated with fiber-metabolizing capabilities of strains carried by subjects. Further research will seek to confirm that P. distasonis directly modulates the clinical effects observed in other studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicolas Pons
- INRAEMGPUniversité Paris‐SaclayJouy‐en‐Josas78350France
| | | | | | | | | | | | | | | | - Joël Doré
- INRAEMGPUniversité Paris‐SaclayJouy‐en‐Josas78350France
- INRAEAgroParisTechMicalis InstituteUniversité Paris‐SaclayJouy‐en‐Josas78350France
| | | |
Collapse
|
14
|
Effects of Resistant Dextrin from Potato Starch on the Growth Dynamics of Selected Co-Cultured Strains of Gastrointestinal Bacteria and the Activity of Fecal Enzymes. Nutrients 2022; 14:nu14102158. [PMID: 35631299 PMCID: PMC9144799 DOI: 10.3390/nu14102158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Preparations of resistant dextrins have become an interesting topic of research due to their properties, which bear resemblance those of prebiotics, e.g., the improvement of metabolic parameters, increased efficiency of the immune system and induction of vitamin production. The aim of this study was to investigate the effects of the resistant dextrin produced from potato starch on the growth dynamics of typical gastrointestinal microbiota and the activity of fecal enzymes in order to assess a possible exhibition of prebiotic properties. In the study, in vitro cultivation of co-cultures of Lactobacillus, Bifidobacterium, E. coli, Enterococcus, Clostridium and Bacteroides spp. was conducted on media enriched with the resistant dextrin. The CFU/mL for each strain was measured in time periods of 24, 48, 72, 96 and 168 h. Furthermore, the activities of α-glucosidase, α-galactosidase, β-glucosidase, β-galactosidase and β-glucuronidase were determined using spectrophotometric methods at a wavelength of 400 nm. The results show that the resistant dextrin can be utilized as a source of carbon for the growth of intestinal bacteria. Moreover, the results revealed that, after 168 h of cultivation, it enhances the viability of probiotic strains of Lactobacillus and Bifidobacterium spp. and decreases the growth of other intestinal strains (Clostridium, Escherichia coli, Enterococcus and Bacteroides), which is demonstrated by a high Prebiotic Index (p < 0.05). Furthermore, there was no significant change in the pH of the cultures; however, the pace of the pH decrease during the cultivation was slower in the case of culture with resistant dextrin. Furthermore, it was revealed that usage of the resistant dextrin as a medium additive noticeably lowered the activities of β-glucosidase and β-glucuronidase compared to the control (p < 0.05), whereas the activities of the other fecal enzymes were affected to a lesser degree. The resistant dextrins derived from potato starch are a suitable prebiotic candidate as they promote the growth of beneficial strains of gut bacteria and improve health markers, such as the activity of fecal enzymes. Nevertheless, additional in vivo research is necessary to further assess the suspected health-promoting properties.
Collapse
|
15
|
Crommen S, Rheinwalt KP, Plamper A, Simon MC, Rösler D, Fimmers R, Egert S, Metzner C. A Specifically Tailored Multistrain Probiotic and Micronutrient Mixture Affects Nonalcoholic Fatty Liver Disease-Related Markers in Patients with Obesity after Mini Gastric Bypass Surgery. J Nutr 2022; 152:408-418. [PMID: 34919684 DOI: 10.1093/jn/nxab392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is frequent among patients undergoing bariatric surgery. Beyond weight reduction, dietary supplements like micronutrients or probiotics that modify insulin resistance and lipotoxicity can be used to prevent or delay the progression of liver disease. OBJECTIVES We evaluated the effect of a dietary approach with a specifically tailored multistrain probiotic and micronutrient mixture compared with a basic care micronutrient supplement on serum alanine aminotransferase (ALAT) in obese patients after mini gastric bypass (MGB) surgery. METHODS This randomized, double-blind, controlled trial included 60 obese patients (age: 40 ± 10 y; BMI: 44 ± 3 kg/m²). Patients received a combination of specifically tailored multistrain probiotic powder and a specific micronutrient mixture (Pro+SM) or a control treatment consisting of a placebo and a basic care micronutrient mixture (Con+BM), with some micronutrients in lower doses than SM, for 12 wk after hospital discharge. Primary (serum ALAT) and secondary outcomes [serum aspartate aminotransferase (ASAT), fatty liver index, NAFLD fibrosis score, glucose metabolism, blood pressure (BP), heart rate] were assessed at week 0 and week 12. Data were analyzed using unpaired Student's t-tests or Mann-Whitney U tests to compare the changes due to each treatment to one another. RESULTS A total of 48 patients were included in the analyses. Changes in serum ALAT concentrations did not differ between groups. Compared with Con+BM, Pro+SM improved serum ASAT (difference: -8.0 U/L, 95% CI: -17.0, -4.0; P = 0.043), NAFLD fibrosis score (difference: -0.39; 95% CI: -0.78, 0; P = 0.048), serum triglycerides (difference: -22.8 mg/dL; 95% CI: -45.6, -0.1; P = 0.049) and the visceral adiposity index (difference: -0.70; 95% CI: -1.31, -0.08; P = 0.027). CONCLUSION Supplementation with a specifically tailored probiotic and micronutrient mixture improved NAFLD-related markers more than a basic micronutrient mixture in obese patients following MGB surgery. The trial was registered under clinicaltrials.gov as NCT03585413.
Collapse
Affiliation(s)
- Silke Crommen
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany
| | - Karl Peter Rheinwalt
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus Hospital, Cologne, Germany
| | - Andreas Plamper
- Department of Bariatric, Metabolic and Plastic Surgery, St. Franziskus Hospital, Cologne, Germany
| | - Marie-Christine Simon
- Department of Nutrition and Food Science, Nutrition and Microbiome, University of Bonn, Bonn, Germany
| | - Daniela Rösler
- Bonn Education Association for Dietetics r.A., Cologne, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sarah Egert
- Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany.,Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christine Metzner
- Bonn Education Association for Dietetics r.A., Cologne, Germany.,Department of Gastroenterology, Metabolic Disorders and Internal Intensive Care (Department of Medicine III), University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
16
|
Samborska K, Edris A, Jedlińska A, Barańska A. The production of white mulberry molasses powders with prebiotic carrier by dehumidified air‐assisted spray drying. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Katarzyna Samborska
- Department of Food Engineering and Process Management Institute of Food Sciences, Warsaw University of Life Sciences (WULS‐SGGW) Warsaw Poland
| | - Amr Edris
- Food Industry and Nutrition Research Division, Department of Chemistry of Flavor and Aroma National Research Center Cairo Egypt
| | - Aleksandra Jedlińska
- Department of Food Engineering and Process Management Institute of Food Sciences, Warsaw University of Life Sciences (WULS‐SGGW) Warsaw Poland
| | - Alicja Barańska
- Department of Food Engineering and Process Management Institute of Food Sciences, Warsaw University of Life Sciences (WULS‐SGGW) Warsaw Poland
| |
Collapse
|
17
|
Włodarczyk M, Śliżewska K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021; 13:nu13113808. [PMID: 34836063 PMCID: PMC8621223 DOI: 10.3390/nu13113808] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
In well-developed countries, people have started to pay additional attention to preserving healthy dietary habits, as it has become common knowledge that neglecting them may easily lead to severe health impairments, namely obesity, malnutrition, several cardiovascular diseases, type-2 diabetes, cancers, hypertensions, and inflammations. Various types of functional foods were developed that are enriched with vitamins, probiotics, prebiotics, and dietary fibers in order to develop a healthy balanced diet and to improve the general health of consumers. Numerous kinds of fiber are easily found in nature, but they often have a noticeable undesired impact on the sensory features of foods or on the digestive system. This led to development of modified dietary fibers, which have little to no impact on taste of foods they are added to. At the same time, they possess all the benefits similar to those of prebiotics, such as regulating gastrointestinal microbiota composition, increasing satiety, and improving the metabolic parameters of a human. In the following review, the evidence supporting prebiotic properties of modified starches, particularly resistant starches and their derivatives, resistant dextrins, was assessed and deliberated, which allowed drawing an interesting conclusion on the subject.
Collapse
Affiliation(s)
- Michał Włodarczyk
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| | - Katarzyna Śliżewska
- Correspondence: (M.W.); (K.Ś.); Tel.: +48-783149289 (M.W.); +48-501742326 (K.Ś.)
| |
Collapse
|
18
|
Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021; 13:nu13103470. [PMID: 34684471 PMCID: PMC8537956 DOI: 10.3390/nu13103470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Obesity is due in part to increased consumption of a Western diet that is low in dietary fiber. Conversely, an increase in fiber supplementation to a diet can have various beneficial effects on metabolic homeostasis including weight loss and reduced adiposity. Fibers are extremely diverse in source and composition, such as high-amylose maize, β-glucan, wheat fiber, pectin, inulin-type fructans, and soluble corn fiber. Despite the heterogeneity of dietary fiber, most have been shown to play a role in alleviating obesity-related health issues, mainly by targeting and utilizing the properties of the gut microbiome. Reductions in body weight, adiposity, food intake, and markers of inflammation have all been reported with the consumption of various fibers, making them a promising treatment option for the obesity epidemic. This review will highlight the current findings on different plant-based fibers as a therapeutic dietary supplement to improve energy homeostasis via mechanisms of gut microbiota.
Collapse
|
19
|
Romero Marcia AD, Yao T, Chen MH, Oles RE, Lindemann SR. Fine Carbohydrate Structure of Dietary Resistant Glucans Governs the Structure and Function of Human Gut Microbiota. Nutrients 2021; 13:nu13092924. [PMID: 34578800 PMCID: PMC8467459 DOI: 10.3390/nu13092924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/01/2023] Open
Abstract
Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.
Collapse
Affiliation(s)
- Arianna D. Romero Marcia
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Ming-Hsu Chen
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Renee E. Oles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
| | - Stephen R. Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (A.D.R.M.); (T.Y.); (M.-H.C.); (R.E.O.)
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-9207
| |
Collapse
|
20
|
Impact of dietary supplementation with resistant dextrin (NUTRIOSE ®) on satiety, glycaemia, and related endpoints, in healthy adults. Eur J Nutr 2021; 60:4635-4643. [PMID: 34170392 PMCID: PMC8572182 DOI: 10.1007/s00394-021-02618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/09/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION NCT02041975 (22/01/2014).
Collapse
|
21
|
Mateo-Gallego R, Moreno-Indias I, Bea AM, Sánchez-Alcoholado L, Fumanal AJ, Quesada-Molina M, Prieto-Martín A, Gutiérrez-Repiso C, Civeira F, Tinahones FJ. An alcohol-free beer enriched with isomaltulose and a resistant dextrin modulates gut microbiome in subjects with type 2 diabetes mellitus and overweight or obesity: a pilot study. Food Funct 2021; 12:3635-3646. [PMID: 33900319 DOI: 10.1039/d0fo03160g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We aimed to study the effect of consuming an alcohol-free beer with modified carbohydrates composition (almost completely eliminating maltose and adding isomaltulose (16.5 g day-1) and resistant maltodextrin (5.28 g day-1)) in gut microbiome, compared to regular alcohol-free beer in subjects with T2DM or prediabetes and overweight/obesity. This is a pilot, randomized, double-blinded, crossover study including a sub-sample of a global study with 14 subjects: (a) consuming 66 cl day-1 of regular alcohol-free beer for the first 10 weeks and 66 cl day-1 of modified alcohol-free beer for the next 10 weeks; (b) the same described intervention in opposite order. BMI homogeneously decreased after both interventions. Glucose and HOMA-IR significantly decreased just after the participants consumed modified alcohol-free beer. These findings were in the same line as those reported in the global study. Dominant bacteria at baseline were Bacteroidetes, Firmicutes, Proteobacteria and Tenericutes. Parabacteroides, from the Porphymonadaceae family, resulted as the feature with the greatest difference between beers (ANCOM analysis, W = 15). Feature-volatility analysis confirmed the importance of Parabacteroides within the model. Alcohol-free beers consumption resulted in an enhancement of pathways related to metabolism according to PICRUSt analysis, including terpenoid-quinone, lipopolysaccharides and N-glycan biosynthesis. Thus, an alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and the addition of maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity. This could, at least partially, explain the improvement in insulin resistance previously found after taking modified alcohol-free alcohol.Clinical Trial Registration: Registered under ClinicalTrials.gov identifier no. NCT03337828.
Collapse
Affiliation(s)
- Rocío Mateo-Gallego
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rezende ESV, Lima GC, Naves MMV. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 2021; 89:111217. [PMID: 33838493 DOI: 10.1016/j.nut.2021.111217] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Dietary fiber is a group of heterogeneous substances that are neither digested nor absorbed in the small intestine. Some fibers can be classified as prebiotics if they are metabolized by beneficial bacteria present in the hindgut microbiota. The aim of this review was to specify the prebiotic properties of different subgroups of dietary fibers (resistant oligosaccharides, non-starch polysaccharides, resistant starches, and associated substances) to classify them by prebiotic categories. Currently, only resistant oligosaccharides (fructans [fructooligosaccharides, oligofructose, and inulin] and galactans) are well documented as prebiotics in the literature. Other fibers are considered candidates to prebiotics or have prebiotic potential, and apparently some have no prebiotic effect on humans. This dietary fiber classification by the prebiotic categories contributes to a better understanding of these concepts in the literature, to the stimulation of the processing and consumption of foods rich in fiber and other products with prebiotic properties, and to the development of protocols and guidelines on food sources of prebiotics.
Collapse
Affiliation(s)
| | - Glaucia Carielo Lima
- School of Nutrition, Federal University of Goiás, St. Leste Universitário, Goiânia, Goiás, Brazil
| | | |
Collapse
|
23
|
Quality Assessment of Honey Powders Obtained by High- and Low-Temperature Spray Drying. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The paper aimed to compare the quality of rapeseed and honeydew honey powders, obtained by two methods of spray drying—traditional at a high temperature (inlet air 180 °C) and innovative low-temperature spray drying with the use of dehumidified air as a drying medium (inlet air 75 °C). Total polyphenol content, antioxidant activity, and the content and types of aromatic compounds were determined. In addition, Fourier-transform infrared spectroscopy (FTIR) coupled with chemometrics analyses was done. Powders obtained by the low-temperature spray drying method (with dehumidified air) were characterized by a higher content of polyphenols, antioxidant activity, and aromatic compounds, compared to powders obtained by the traditional method. Honeydew honey compared to rapeseed honey was characterized by a higher content of polyphenols, antioxidant activity, and composition of aromatic compounds. The results proved that the production method had a higher impact on the final properties of powders than the type of honey.
Collapse
|
24
|
Yuan C, Zhan W, Cui B, Yu B, Liu P, Wu Z. Influence of two functional dextrins on the gel properties of kappa-carrageenan. Food Res Int 2020; 138:109666. [PMID: 33292956 DOI: 10.1016/j.foodres.2020.109666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
The physicochemical properties of κ-carrageenan (KC) can be improved by incorporation with small-molecule cosolvents. The texture and rheological properties, micromorphology, and crystallinity of KC incorporating indigestible dextrin (IDD) and beta-limit dextrin (BLD) were investigated. The rheological properties and sol-gel transition temperatures of the gels were slightly improved and the hardness of KC gels was significantly increased after the two dextrins were mixed in. Fourier transform infrared spectroscopy results indicated hydrogen-bonding interactions were strengthened in the presence of the dextrins. Confocal laser scanning microscope images revealed that a more homogenous structure was formed of the KC gel after the addition of dextrins. Moreover, X-ray diffraction patterns indicated the crystallinity of KC gel decreased upon dextrin addition. At the same dextrin content, IDD exerted a greater influence than BLD. IDD contents exceeding 3% (w/w) led to undesirable effects, whereas up to 5% (w/w) of BLD could be added. The two dextrins affected the rearrangement of the KC random coils in the sol state, and facilitated aggregation of the KC chains during cooling to form gel network structures after gelation. Therefore, the appropriate addition of these two dextrins can improve the texture and stability of KC gels and expand their application in functional foods.
Collapse
Affiliation(s)
- Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wei Zhan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
25
|
Ashaolu TJ, Ashaolu JO, Adeyeye SAO. Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. J Appl Microbiol 2020; 130:677-687. [PMID: 32892434 DOI: 10.1111/jam.14843] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Prebiotics are known for their health benefits to man, including reducing cardiovascular disease and improving gut health. This review takes a critical assessment of the impact of dietary fibres and prebiotics on the gastrointestinal microbiota in vitro. The roles of colonic organisms, slow fermentation of prebiotics, production of high butyric and propionic acids and positive modulation of the host health were taken into cognizance. Also, the short-chain fatty acids (SCFAs) molecular signalling mechanisms associated with their prebiotic substrate structural conformations and the phenotypic responses related to the gut microbes composition were discussed. Furthermore, common dietary fibres such as resistant starch, pectin, hemicelluloses, β-glucan and fructan in context of their prebiotic potentials for human health were also explained. Finally, the in vitro human colonic fermentation depends on prebiotic type and its physicochemical characteristics, which will then affect the rate of fermentation, selectivity of micro-organisms to multiply, and SCFAs concentrations and compositions.
Collapse
Affiliation(s)
- T J Ashaolu
- Smart Agriculture Research and Application Team, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - J O Ashaolu
- International Health Programme, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - S A O Adeyeye
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
26
|
Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota. J Ginseng Res 2020; 45:334-343. [PMID: 33841014 PMCID: PMC8020290 DOI: 10.1016/j.jgr.2020.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 08/02/2020] [Indexed: 12/02/2022] Open
Abstract
Background Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.
Collapse
Key Words
- ANOVA, analysis of variance
- AUC, area under the concentration-time curve
- Bioavailability
- Biotransformation
- CAT, CAZymes Analysis Toolkit
- CAZymes, carbohydrate active enzymes
- CK, compound K
- Cmax, peak plasma concentration
- FDR, false discovery rate
- FOS, fructooligosaccharide
- GOS, galactooligosaccharide
- Ginsenoside
- Gut microbiota
- IS, internal standard
- KEGG, the Kyoto Encyclopaedia of Genes and Genomes
- LCA, lowest common ancestor
- LDA, linear discriminant analysis
- LEfSe, LDA effect size
- LLOQs, lower limits of quantifications
- MANOVA, multivariate ANOVA
- MRM, multiple reaction monitoring
- NMDS, non-metric multidimensional scaling
- PCA, principal component analysis
- PCoA, principal coordinates analysis
- Prebiotic
- SD, Sprague Dawley
- SRA, Sequence Read Archive
- Tmax, time of maximum plasma concentration
- UPLC-ESI-QqQ-MS/MS, ultra-high pressure liquid chromatography coupled to an electrospray ionization source and a triple-quadrupole mass spectrometer
Collapse
|
27
|
Farhangi MA, Dehghan P, Namazi N. Prebiotic supplementation modulates advanced glycation end-products (AGEs), soluble receptor for AGEs (sRAGE), and cardiometabolic risk factors through improving metabolic endotoxemia: a randomized-controlled clinical trial. Eur J Nutr 2019; 59:3009-3021. [PMID: 31728681 DOI: 10.1007/s00394-019-02140-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 11/04/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE The oxidative stress plays a key role in the initiation, propagation, and development of the complications of type 2 diabetes mellitus (T2DM). This trial aimed to evaluate the effects of resistant dextrin as a prebiotic on the cardiometabolic risk factors and the status of oxidative stress in patients with T2DM. METHODS Sixty-five female subjects with T2DM were assigned to either the intervention (n = 33) or control (n = 32) groups receiving 10 g/day of resistant dextrin or placebo, respectively, for 8 weeks. Fasting blood samples were collected at baseline and post-intervention to determine the serum levels of glycemic indices, lipid profile, atherogenic indices, and soluble receptor for AGEs (sRAGE), carboxymethyl lysine (CML), pentosidine, malondialdehyde (MDA), 8-iso-prostaglandin F2α (8-iso-PGF2α), total antioxidant capacity (TAC), antioxidant enzymes activity, and uric acid. Data were analyzed using SPSS software 17. Paired, unpaired Student's t tests, and analysis of covariance were used to compare the quantitative variables. RESULTS Resistant dextrin caused a significant decrease in FPG (- 17.43 mg/dl, 9.80%), TG (- 40.25 mg/dl, 23.01%), TC/HDL (- 0.80, 21.87%), LDL-c/HDL-c (- 0.80, 17.85%), Atherogenic index (- 0.40, 15.80%), LPS (- 6.5 EU/ml, 23.40%) and hs-CRP (- 8.02 ng/ml, 54.00%), MDA (- 1.21 nmol/mL, 25.58%), CML (- 93.40 ng/ml, 26.30%), 8-iso-PGF2α (- 4.65 pg/ml, 15.00%), and a significant increase in TAC (0.33 mmol/L, 36.25%) and s-RAGE (2.10 ng/ml, 28.90%) in the intervention group compared with the control group. No significant changes were observed in glycosylated hemoglobin, total cholesterol, LDL-c, HDL-c, superoxide dismutase, glutathione peroxidase and catalase, pentosidine, and uric acid in the intervention group compared with the control group. CONCLUSIONS Supplementation with resistant dextrin may improve the advanced glycation end-products, sRAGE, and cardiometabolic risk factors in women with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mahdieh Abbasalizad Farhangi
- Drug Applied Research Center, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Immunology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Öztürk Y, Öztürk N. Plant- and Nutraceutical-based Approach for the Management of Diabetes and its Neurological Complications: A Narrative Review. Curr Pharm Des 2019; 25:3536-3549. [PMID: 31612820 DOI: 10.2174/1381612825666191014165633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Diabetes is an important metabolic disease affecting many organs and systems in the body. The nervous system is one of the body systems affected by diabetes and neuropathic complications are troublesome in diabetic patients with many consequences. As diabetes has deleterious influences almost on bodily systems, an integrative approach seems to be necessary accepting the body as a whole and integrating body systems with lifestyle and living environment. Like some traditional health systems such as Ayurveda, integrative approach includes additional modalities to overcome both diabetes and diabetic complications. In general, these modalities consist of nutraceuticals and plant products. Prebiotics and probiotics are two types of nutraceuticals having active ingredients, such as antioxidants, nutrient factors, microorganisms, etc. Many plants are indicated for the cure of diabetes. All of these may be employed in the prevention and in the non-pharmacological management of mildto- moderate diabetes. Severe diabetes should require appropriate drug selection. Being complementary, prebiotics, probiotics, plants and exercise may be additive for the drug therapy of diabetes. Similarly, there are complementary approaches to prevent and cure neurological and/or behavioral manifestations of diabetes, which may be included in therapy and prevention plans. A scheme is given for the prevention and therapy of comorbid depression, which is one of the most common behavioral complications of diabetes. Within this scheme, the main criterion for the selection of modalities is the severity of diseases, so that personalized management may be developed for diabetic patients using prebiotics and probiotics in their diets, plants and drugs avoiding possible interactions.
Collapse
Affiliation(s)
- Yusuf Öztürk
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Tepebasi 26120, Eskisehir, Turkey
| | - Nilgün Öztürk
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26120, Tepebasi, Eskisehir, Turkey
| |
Collapse
|
29
|
Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bcdf.2019.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Noce A, Marrone G, Di Daniele F, Ottaviani E, Wilson Jones G, Bernini R, Romani A, Rovella V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients 2019; 11:nu11051073. [PMID: 31091761 PMCID: PMC6567014 DOI: 10.3390/nu11051073] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, mounting scientific evidence has emerged regarding the evaluation of the putative correlation between the gut microbiota composition and the presence of chronic non-communicable diseases (NCDs), such as diabetes mellitus, chronic kidney disease, and arterial hypertension. The aim of this narrative review is to examine the current literature with respect to the relationship between intestinal dysbiosis and the insurgence/progression of chronic NCDs, analyzing the physiopathological mechanisms that can induce microbiota modification in the course of these pathologies, and the possible effect induced by microbiota alteration upon disease onset. Therapy based on probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplant can represent a useful therapeutic tool, as has been highlighted on animal studies. To this moment, clinical studies that intended to demonstrate the beneficial effect induced by this kind of oral supplementation on the gut microbiota composition, and subsequent amelioration of signs and symptoms of chronic NCDs have been conducted on limited sample populations for a limited follow-up period. Therefore, to fully evaluate the therapeutic value of this kind of intervention, it would be ideal to design ample population; randomized clinical trials with a lengthy follow up period.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
- PhD School of Applied Medical- Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Eleonora Ottaviani
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Georgia Wilson Jones
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy.
| | - Annalisa Romani
- PHYTOLAB-DISIA-Department of Informatics, Statistics and Applications G. Parenti, University of Florence, Viale Morgagni, 59-50134 Florence, Italy and QuMAP-PIN-Piazza Giovanni Ciardi, 25, 59100 Prato (PO), Italy.
| | - Valentina Rovella
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome, via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
31
|
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019; 8:E92. [PMID: 30857316 PMCID: PMC6463098 DOI: 10.3390/foods8030092] [Citation(s) in RCA: 661] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.
Collapse
Affiliation(s)
- Dorna Davani-Davari
- Pharmaceutical Biotechnology Incubator, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Mostafa Seifan
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Milad Mohkam
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Seyed Jalil Masoumi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| | - Aydin Berenjian
- Faculty of Science and Engineering, University of Waikato, Hamilton 3216, New Zealand.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran.
| |
Collapse
|
32
|
The application of dehumidified air in rapeseed and honeydew honey spray drying - Process performance and powders properties considerations. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Low amounts of dietary fibre increase in vitro production of short-chain fatty acids without changing human colonic microbiota structure. Sci Rep 2018; 8:435. [PMID: 29323180 PMCID: PMC5765155 DOI: 10.1038/s41598-017-18877-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effect of various prebiotics (indigestible dextrin, α-cyclodextrin, and dextran) on human colonic microbiota at a dosage corresponding to a daily intake of 6 g of prebiotics per person (0.2% of dietary intake). We used an in vitro human colonic microbiota model based on batch fermentation starting from a faecal inoculum. Bacterial 16S rRNA gene sequence analysis showed that addition of 0.2% prebiotics did not change the diversity and composition of colonic microbiota. This finding coincided with results from a clinical study showing that the microbiota composition of human faecal samples remained unchanged following administration of 6 g of prebiotics over seven days. However, compared to absence of prebiotics, their addition reduced the pH and increased the generation of acetate and propionate in the in vitro system. Thus, even at such relatively low amounts, prebiotics appear capable of activating the metabolism of colonic microbiota.
Collapse
|
34
|
Shortt C, Hasselwander O, Meynier A, Nauta A, Fernández EN, Putz P, Rowland I, Swann J, Türk J, Vermeiren J, Antoine JM. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 2017; 57:25-49. [PMID: 29086061 PMCID: PMC5847024 DOI: 10.1007/s00394-017-1546-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE There is considerable interest in the effects of the intestinal microbiota (IM) composition, its activities in relation with the metabolism of dietary substrates and the impact these effects may have in the development and prevention of certain non-communicable diseases. It is acknowledged that a complex interdependence exists between the IM and the mammalian host and that the IM possesses a far greater diversity of genes and repertoire of metabolic and enzymatic capabilities than their hosts. However, full knowledge of the metabolic activities and interactions of the IM and the functional redundancy that may exist are lacking. Thus, the current review aims to assess recent literature relating to the role played by the IM in the absorption and metabolism of key nutrients and non-nutrients. METHODS A systematic review (PROSPERO registration: CRD42015019087) was carried out focussing on energy and the following candidate dietary substrates: protein, carbohydrate, fat, fibre, resistant starch (RS), and polyphenols to further understand the effect of the IM on the dietary substrates and the resulting by-products and host impacts. Particular attention was paid to the characterisation of the IM which are predominantly implicated in each case, changes in metabolites, and indirect markers and any potential impacts on the host. RESULTS Studies show that the IM plays a key role in the metabolism of the substrates studied. However, with the exception of studies focusing on fibre and polyphenols, there have been relatively few recent human studies specifically evaluating microbial metabolism. In addition, comparison of the effects of the IM across studies was difficult due to lack of specific analysis/description of the bacteria involved. Considerable animal-derived data exist, but experience suggests that care must be taken when extrapolating these results to humans. Nevertheless, it appears that the IM plays a role in energy homeostasis and that protein microbial breakdown and fermentation produced ammonia, amines, phenols and branch chain fatty acids, and a greater diversity in the microbes present. Few recent studies appear to have evaluated the effect of the IM composition and metabolism per se in relation with digestible dietary carbohydrate or fat in humans. Intakes of RS and prebiotics altered levels of specific taxa that selectively metabolised specific prebiotic/carbohydrate-type substances and levels of bifidobacteria and lactobacilli were observed to increase. In controlled human studies, consistent data exist that show a correlation between the intake of fibre and an increase in bifidobacteria and short-chain fatty acids, in particular butyrate, which leads to lower intestinal pH. Dietary polyphenols rely on modification either by host digestive enzymes or those derived from the IM for absorption to occur. In the polyphenol-related studies, a large amount of inter-individual variation was observed in the microbial metabolism and absorption of certain polyphenols. CONCLUSIONS The systematic review demonstrates that the IM plays a major role in the breakdown and transformation of the dietary substrates examined. However, recent human data are limited with the exception of data from studies examining fibres and polyphenols. Results observed in relation with dietary substrates were not always consistent or coherent across studies and methodological limitations and differences in IM analyses made comparisons difficult. Moreover, non-digestible components likely to reach the colon are often not well defined or characterised in studies making comparisons between studies difficult if not impossible. Going forward, further rigorously controlled randomised human trials with well-defined dietary substrates and utilizing omic-based technologies to characterise and measure the IM and their functional activities will advance the field. Current evidence suggests that more detailed knowledge of the metabolic activities and interactions of the IM hold considerable promise in relation with host health.
Collapse
Affiliation(s)
- Colette Shortt
- Johnson & Johnson EAME, Foundation Park, Maidenhead, SL6 3UG, UK.
| | - Oliver Hasselwander
- DuPont Nutrition and Health, c/o Danisco (UK) Ltd., 43 London Road, Reigate, Surrey, RH2 9PW, UK
| | | | - Arjen Nauta
- FrieslandCampina, Stationsplein 4, 3818 LE, Amersfoort, The Netherlands
| | | | - Peter Putz
- University of Applied Sciences, FH Campus Wien, 1100, Vienna, Austria
| | - Ian Rowland
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Jonathan Swann
- Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jessica Türk
- Yakult Germany, Forumstraße 2, 41468, Neuss, Germany
| | - Joan Vermeiren
- Cargill R&D Centre Europe, Havenstraat 84, 1800, Vilvoorde, Belgium
| | | |
Collapse
|
35
|
Khor CM, Ng WK, Chan KP, Dong Y. Preparation and characterization of quercetin/dietary fiber nanoformulations. Carbohydr Polym 2016; 161:109-117. [PMID: 28189219 DOI: 10.1016/j.carbpol.2016.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/18/2022]
Abstract
Quercetin is well known for its beneficial health effects on the human body. However, the slow dissolution rate leading to poor bioavailability constitutes a barrier to being further developed for nutritional products. In this work, quercetin was co-precipitated with dietary fibers into a fast-dissolving nanoformulation via antisolvent precipitation, followed by spray drying. With the help of cellulose fiber, resistant starch or resistant maltodextrin, a high dissolution rate and good storage stability was achieved for quercetin nanoformulations. In addition, nanoformulations exhibited higher level of antioxidant activities in contrast to raw quercetin. The developed quercetin/dietary fiber nanoformulations could be used as supplements or functional ingredients for food development.
Collapse
Affiliation(s)
- Chia Miang Khor
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wai Kiong Ng
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Kok Ping Chan
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Yuancai Dong
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, 627833, Singapore.
| |
Collapse
|
36
|
Dos Santos Ferreira R, de Cássia Avellaneda Guimarães R, Jardim Cury Pontes ER, Aragão do Nascimento V, Aiko Hiane P. The Effectiveness of a Bioactive Food Compound in the Lipid Control of Individuals with HIV/AIDS. Nutrients 2016; 8:nu8100598. [PMID: 27740592 PMCID: PMC5083986 DOI: 10.3390/nu8100598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular events due to decompensated lipid metabolism are commonly found in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) patients using anti-retroviral therapy (HAART). Thus, the aim of this study was to identify the effect of a bioactive food compound (BFC) containing functional foods on individuals with HIV undergoing HAART. Particularly, this study aims to verify the clinical outcome in the change of the lipid profile due to the use of this compound. This study includes 115 individuals with HIV on HAART. All patients received dietary guidelines; however, sixty-one consumed BFC while fifty-one did not (NO BFC). Biochemical examinations and socio-demographic and clinical profiles were evaluated. As result, in patients using hypolipidemic and/or hypoglycemic drugs, there was 28.6% decrease in triglyceride levels (p < 0.001) in the NO BFC group, and 18.3% reduction in low density lipoprotein cholesterol (LDL-C) (p < 0.001) in the BFC group. In patients who did not use hypolipidemic and/or hypoglycemic drugs in the NO BFC group, there was 30.6% increase in triglycerides, 11.3% total cholesterol and 15.3% LDL-C levels (p < 0.001) while for the BFC group there was 4.5% reduction in total cholesterol (p < 0.001). In conclusion, this study evidenced that the dietary intervention containing BFC positively affected in lipid control, since these HIV/AIDS patients using HAART are more vulnerable to lipid disorders.
Collapse
Affiliation(s)
- Rosângela Dos Santos Ferreira
- Nutrition Service, University Hospital, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil.
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil.
| | - Elenir Rose Jardim Cury Pontes
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil.
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil.
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil.
| |
Collapse
|
37
|
Butel M, Waligora‐Dupriet A. Probiotics and prebiotics. THE HUMAN MICROBIOTA AND CHRONIC DISEASE 2016:467-481. [DOI: 10.1002/9781118982907.ch30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Collins S, Reid G. Distant Site Effects of Ingested Prebiotics. Nutrients 2016; 8:E523. [PMID: 27571098 PMCID: PMC5037510 DOI: 10.3390/nu8090523] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/12/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022] Open
Abstract
The gut microbiome is being more widely recognized for its association with positive health outcomes, including those distant to the gastrointestinal system. This has given the ability to maintain and restore microbial homeostasis a new significance. Prebiotic compounds are appealing for this purpose as they are generally food-grade substances only degraded by microbes, such as bifidobacteria and lactobacilli, from which beneficial short-chain fatty acids are produced. Saccharides such as inulin and other fructo-oligosaccharides, galactooligosaccharides, and polydextrose have been widely used to improve gastrointestinal outcomes, but they appear to also influence distant sites. This review examined the effects of prebiotics on bone strength, neural and cognitive processes, immune functioning, skin, and serum lipid profile. The mode of action is in part affected by intestinal permeability and by fermentation products reaching target cells. As the types of prebiotics available diversify, so too will our understanding of the range of microbes able to degrade them, and the extent to which body sites can be impacted by their consumption.
Collapse
Affiliation(s)
- Stephanie Collins
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Gregor Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, 268 Grosvenor St., London, ON N6A 4V2, Canada.
| |
Collapse
|
39
|
Resistant potato starches (type 4 RS) exhibit varying effects on laxation with and without phylum level changes in microbiota: A randomised trial in young adults. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
40
|
Biomarkers for nutrient intake with focus on alternative sampling techniques. GENES AND NUTRITION 2016; 11:12. [PMID: 27551313 PMCID: PMC4968438 DOI: 10.1186/s12263-016-0527-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Biomarkers of nutrient intake or nutrient status are important objective measures of foods/nutrients as one of the most important environmental factors people are exposed to. It is very difficult to obtain accurate data on individual food intake, and there is a large variation of nutrient composition of foods consumed in a population. Thus, it is difficult to obtain precise measures of exposure to different nutrients and thereby be able to understand the relationship between diet, health, and disease. This is the background for investing considerable resources in studying biomarkers of nutrients believed to be important in our foods. Modern technology with high sensitivity and specificity concerning many nutrient biomarkers has allowed an interesting development with analyses of very small amounts of blood or tissue material. In combination with non-professional collection of blood by finger-pricking and collection on filters or sticks, this may make collection of samples and analyses of biomarkers much more available for scientists as well as health professionals and even lay people in particular in relation to the marked trend of self-monitoring of body functions linked to mobile phone technology. Assuming standard operating procedures are used for collection, drying, transport, extraction, and analysis of samples, it turns out that many analytes of nutritional interest can be measured like metabolites, drugs, lipids, vitamins, minerals, and many types of peptides and proteins. The advantage of this alternative sampling technology is that non-professionals can collect, dry, and mail the samples; the samples can often be stored under room temperature in a dry atmosphere, requiring small amounts of blood. Another promising area is the potential relation between the microbiome and biomarkers that may be measured in feces as well as in blood.
Collapse
|
41
|
Allaert FA, Guérin-Deremaux L, Mauray-Soulier A, Saniez-Degrave MH. Evaluation of adherence by elderly nursing home patients to regular consumption of apple compote enriched with protein and soluble fiber. Aging Clin Exp Res 2016; 28:189-95. [PMID: 26240032 PMCID: PMC4794522 DOI: 10.1007/s40520-015-0415-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/03/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND An increase in daily doses of protein and fiber for the elderly is relevant in preventing sarcopenia and preserving intestinal balance. However, such intake of supplements is often compromised by the lack of adherence among the elderly. OBJECTIVES The main objective was to evaluate the perception of the hedonic qualities of compote enriched with NUTRALYS(®) pea protein, NUTRALYS(®)W hydrolyzed wheat gluten and NUTRIOSE(®) soluble fiber and the changes in that perception due to repeated consumption. The secondary objectives were to evaluate the evolution in the quantity of compote eaten, satisfaction with consumption and any changes in fatigue, digestive comfort and digestive tolerance when eating compote every other day for 3 weeks. METHOD An observational study was conducted in nursing homes on volunteers aged 70-90 years. The compote was proposed as a lunchtime dessert every two days for a period of three consecutive weeks. All criteria were evaluated at days D0 and/or D1, D7, D15 and D21, except for the amount of compote eaten, evaluated after each meal at which it was served. RESULTS When first tasted, the compote was judged 'rather pleasant' to 'very pleasant' by 91.6 % and this rating held up at 79.2 % (p = 0.1797) after 1 week, 83.3 % (p = 0.3173) after 2 weeks and 79.2 % (p = 0.2568) after 3 weeks. Average consumption of compote was stable and varied between a maximum of 79.5 % of the total quantity at inclusion to a minimum of 61.5 % recorded on D17. The other parameters did not change significantly. CONCLUSION Pea protein, hydrolyzed wheat gluten and soluble fiber seem to provide an appropriate form of protein and fiber supplementation in the diets of elderly people in nursing homes.
Collapse
Affiliation(s)
- F A Allaert
- CEN Nutriment, impasse Françoise Dolto, 21000, Dijon, France.
| | | | | | | |
Collapse
|
42
|
Fuller S, Beck E, Salman H, Tapsell L. New Horizons for the Study of Dietary Fiber and Health: A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:1-12. [PMID: 26847187 DOI: 10.1007/s11130-016-0529-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dietary fibre has been consumed for centuries with known health benefits, but defining dietary fibre is a real challenge. From a functional perspective, dietary fibre is described as supporting laxation, attenuating blood glucose responses and assisting with cholesterol lowering. The problem is different types of dietary fibre have different effects, and new effects are increasingly observed, such as the influence on gut microbiota. Thus, a single definition may need to be described in more generic terms. Rather than being bound by a few functional definitions, we may need to embrace the possibilities of new horizons, and derive a working definition of dietary fibre based on a set of conceptual principles, rather than the limited definitions we have to date. To begin this process, a review of individual fibre types and their physiological effects would be helpful. Dietary fibre is a complex group of substances, and there is a growing interest in specific effects linked to fibre type. Different fractions of dietary fibre have different physiological properties, yet there is a paucity of literature covering the effects of all fibres. This paper describes a range of individual fibre types and identifies gaps in the literature which may expose new directions for a working definition of dietary fibre.
Collapse
Affiliation(s)
- Stacey Fuller
- School of Medicine, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Eleanor Beck
- School of Medicine, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | - Linda Tapsell
- School of Medicine, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
43
|
Miravet G, Alacid M, Obón JM, Fernández-López JA. Spray-drying of pomegranate juice with prebiotic dietary fibre. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.13021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gracia Miravet
- Departamento de Ingeniería Química y Ambiental; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 52 E-30203 Cartagena (Murcia) Spain
| | - Mercedes Alacid
- Departamento de Ingeniería Química y Ambiental; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 52 E-30203 Cartagena (Murcia) Spain
| | - José María Obón
- Departamento de Ingeniería Química y Ambiental; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 52 E-30203 Cartagena (Murcia) Spain
| | - José Antonio Fernández-López
- Departamento de Ingeniería Química y Ambiental; Universidad Politécnica de Cartagena; Paseo Alfonso XIII, 52 E-30203 Cartagena (Murcia) Spain
| |
Collapse
|
44
|
Resistant maltodextrin as a shell material for encapsulation of naringin: Production and physicochemical characterization. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Carlson J, Hospattankar A, Deng P, Swanson K, Slavin J. Prebiotic Effects and Fermentation Kinetics of Wheat Dextrin and Partially Hydrolyzed Guar Gum in an In Vitro Batch Fermentation System. Foods 2015; 4:349-358. [PMID: 28231210 PMCID: PMC5224541 DOI: 10.3390/foods4030349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 12/02/2022] Open
Abstract
Scientific research demonstrates that two indigenous gut bacteria, Lactobacillus and Bifidobacterium can contribute to human health. Although these bacteria can be consumed as probiotics, they can also be produced in the gut by bacteria, and are then called prebiotics. The primary objective of this in vitro study was to quantitatively analyze at the genus level how two dietary fibers, wheat dextrin (WD) and partially hydrolyzed guar gum (PHGG) changed the levels of these two gut bacteria at 12 and 24 h, via real time qualitative polymerase chain reaction (qPCR). Secondary objectives were changes in fecal pH, short chain fatty acids (SCFAs) and total gas volume produced. At 12 h WD was more bifidogenic (9.50 CFU log10/mL) than PHGG (9.30 CFU log10/mL) (p = 0.052), and also at 24 h WD (9.41 CFU log10/mL) compared with PHGG (9.27 CFU log10/mL) (p = 0.043). WD produced less total SCFAs at both 12 and 24 h than PHGG, and produced significantly lower amounts of gas at 12 and 24 h (p < 0.001). Both PHGG and WD also promoted growth of Lactobacilli when measured at 12 and 24 h compared with the 0 h analysis, indicating that both fibers are lactogenic. These results demonstrate the prebiotic effect of WD and PHGG. Based on fermentation kinetics, PHGG is more rapidly fermented than WD, and both fibers show prebiotic effects as early as 12 h.
Collapse
Affiliation(s)
- Justin Carlson
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities 1334 Eckles Ave St. Paul, MN 55108, USA.
| | - Ashok Hospattankar
- Novartis Consumer Health, Inc. 200 Kimball Drive Parsippany, NJ 07054-0622, USA.
| | - Ping Deng
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois-Urbana-Champaign 1207 West Gregory Drive Urbana, IL 61801, USA.
| | - Kelly Swanson
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois-Urbana-Champaign 1207 West Gregory Drive Urbana, IL 61801, USA.
| | - Joanne Slavin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities 1334 Eckles Ave St. Paul, MN 55108, USA.
| |
Collapse
|
46
|
Panasevich MR, Kerr KR, Serao MCR, de Godoy MRC, Guérin-Deremaux L, Lynch GL, Wils D, Dowd SE, Fahey GC, Swanson KS, Dilger RN. Evaluation of soluble corn fiber on chemical composition and nitrogen-corrected true metabolizable energy and its effects on in vitro fermentation and in vivo responses in dogs. J Anim Sci 2015; 93:2191-200. [DOI: 10.2527/jas.2014-8425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
47
|
Abstract
This chapter describes the various compounds that can act as prebiotic fibers: their structure, occurrence, production, and physiological effects (health effects) will be presented. The basis for the description is the latest definitions for dietary fibers and for prebiotics. Using as much as possible data from human studies, both the fiber and the prebiotic properties will be described of a variety of compounds. Based on the presented data the latest developments in the area of prebiotics, fibers and gut and immune health will be discussed in more detail as they show best what the potential impact of prebiotics on health of the human host might be.
Collapse
|
48
|
Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. J Ginseng Res 2014; 39:183-7. [PMID: 26045693 PMCID: PMC4452535 DOI: 10.1016/j.jgr.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022] Open
Abstract
Background Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. Methods Male Sprague–Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography–tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. Results When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration (Cmax) and area under the plasma concentration–time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. Conclusion These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.
Collapse
Affiliation(s)
- Kyung-Ah Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea ; Department of Food Science and Nutrition, College of Natural Science, Songwon University, 73, Songamro, Nam-gu, Gwangju 503-742, Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Wan Gu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| | - Dae-Hyung Yu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| | - Ming Ji Jin
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Korea
| | - Hae-Lim Choi
- Roquette Korea Ltd, 12th, FL. SamHeungYeokSam Bldg. Teheran-ro 14-gil 5, Gangnam-gu, Seoul 135-923, Korea
| | - Kathy Yuan
- Roquette Management (Shanghai) Co., Ltd, Room 501 K. Wah Centre, 1010 HuaiHaiZhong Road, Shanghai 200031, China
| | | | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
49
|
Abstract
The human gastrointestinal tract hosts a large number of microbial cells which exceed their mammalian counterparts by approximately 3-fold. The genes expressed by these microorganisms constitute the gut microbiome and may participate in diverse functions that are essential to the host, including digestion, regulation of energy metabolism, and modulation of inflammation and immunity. The gut microbiome can be modulated by dietary changes, antibiotic use, or disease. Different ailments have distinct associated microbiomes in which certain species or genes are present in different relative quantities. Thus, identifying specific disease-associated signatures in the microbiome as well as the factors that alter microbial populations and gene expression will lead to the development of new products such as prebiotics, probiotics, antimicrobials, live biotherapeutic products, or more traditional drugs to treat these disorders. Gained knowledge on the microbiome may result in molecular lab tests that may serve as personalized tools to guide the use of the aforementioned products and monitor interventional progress.
Collapse
Affiliation(s)
| | | | | | | | - Satya Prakash
- Micropharma Limited; Montreal, QC Canada; Biomedical Technology and Cell Therapy Research Laboratory; Department of Biomedical Engineering; Faculty of Medicine; McGill University; Montreal, QC Canada
| |
Collapse
|
50
|
Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng. J Ginseng Res 2014; 38:203-7. [PMID: 25378995 PMCID: PMC4213839 DOI: 10.1016/j.jgr.2014.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 12/03/2022] Open
Abstract
Background There is limited understanding of the effect of dietary components on the absorption of ginsenosides and their metabolites into the blood. Methods This study investigated the pharmacokinetics of the ginseng extract and its main constituent ginsenoside Rb1 in rats with or without pretreatment with a prebiotic fiber, NUTRIOSE, by liquid chromatography tandem mass spectrometry. When ginsenoside Rb1 was incubated with rat feces, its main metabolite was ginsenoside Rd. Results When the intestinal microbiota of rat feces were cultured in vitro, their ginsenoside Rd-forming activities were significantly induced by NUTRIOSE. When ginsenoside Rb1 was orally administered to rats, the maximum plasma concentration (Cmax) and area under the plasma drug concentration–time curve (AUC) for the main metabolite, ginsenoside Rd, were 72.4 ± 31.6 ng/mL and 663.9 ± 285.3 μg·h/mL, respectively. When the ginseng extract (2,000 mg/kg) was orally administered, Cmax and AUC for ginsenoside Rd were 906.5 ± 330.2 ng/mL and 11,377.3 ± 4,470.2 μg·h/mL, respectively. When ginseng extract was orally administered to rats fed NUTRIOSE containing diets (2.5%, 5%, or 10%), Cmax and AUC were increased in the NUTRIOSE receiving groups in a dose-dependent manner. Conclusion These findings reveal that intestinal microflora promote metabolic conversion of ginsenoside Rb1 and ginseng extract to ginsenoside Rd and promote its absorption into the blood in rats. Its conversion may be induced by prebiotic diets such as NUTRIOSE.
Collapse
Affiliation(s)
- Kyung-Ah Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Hye Hyun Yoo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Wan Gu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Dae-Hyung Yu
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Ming Ji Jin
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hae-Lim Choi
- Roquette Korea Ltd, Teheran-ro, Gangnam-gu, Seoul, Korea
| | - Kathy Yuan
- Roquette Management (Shanghai) Co., Ltd, K. Wah Centre, Shanghai, China
| | | | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| |
Collapse
|