1
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
2
|
Wibowo S, Pramadhani A, Subandiyah K, Poeranto S, Handono K. Vitamin D3 induces stem cell activation via Lgr5-Bmi1 expression and improving mouse colitis histology index. NARRA J 2023; 3:e430. [PMID: 38455625 PMCID: PMC10919439 DOI: 10.52225/narra.v3i3.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024]
Abstract
Conventional therapy for inflammatory bowel disease using long-term anti-inflammatory drugs does not seem to provide optimal results. Adjuvant therapy using vitamin D3 is believed to have an essential role in repairing the colonic mucosa through the activation of colonic stem cells. The aim of this study was to demonstrate the effect of vitamin D3 in mucosal repair through stem cell activation, marked by leucin-rich repeat-containing G protein-coupled receptor 5 (Lgr5) and B lymphoma Mo-MLV insertion region 1 (Bmi1) expression and decrease the mouse colitis histology index (MCHI) score. In this study, 50 Mus musculus strain BALB/c were divided into five groups: negative control group, colitis group, and colitis groups with vitamin D3 administration of 0.2 mcg, 0.4 mcg, and 0.6 mcg per 25 g body weight for seven days. Dextran sulfate sodium (DSS) 5% was used to induce colitis. Lgr5-Bmi1 expression was measured using immunodoublestain fluorescent labeling method. Our data suggested that administration of vitamin D3 significantly increased expression of Lgr5-Bmi1 in the colonic mucosa. The colitis group treated with the highest dose of vitamin D3 (0.6 mcg/25 gram) showed the lowest MCHI score (3.60±0.64) while the lowest dose of vitamin D3 had the highest MCHI score (12.60±1.47). In conclusion, by stimulating stem cells, vitamin D3 administration stimulates mucosal regeneration, as demonstrated by upregulated expression of Lgr5-Bmi-1.
Collapse
Affiliation(s)
- Satrio Wibowo
- Department of Pediatrics, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | | | - Krisni Subandiyah
- Department of Pediatrics, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sri Poeranto
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
3
|
Song WX, Yu ZH, Ren XF, Chen JH, Chen X. Role of micronutrients in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2023; 31:711-731. [DOI: 10.11569/wcjd.v31.i17.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an autoimmune intestinal disease that includes ulcerative colitis, Crohn's disease, and indeterminate colitis. Patients with IBD are often at risk for malnutrition, including micronutrient deficiencies, due to dietary restrictions and poor intestinal absorption. Micronutrients, including vitamins and minerals, play an important role in the human body's metabolism and maintenance of tissue functions. This article reviews the role of micronutrients in IBD. Micronutrients can affect the occurrence and progression of IBD by regulating immunity, intestinal flora, oxidative stress, intestinal barrier function, and other aspects. Monitoring and timely supplementation of micronutrients are important to delay progression and improve clinical symptoms in IBD patients.
Collapse
Affiliation(s)
- Wen-Xuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zi-Han Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiang-Feng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ji-Hua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Ghaseminejad-Raeini A, Ghaderi A, Sharafi A, Nematollahi-Sani B, Moossavi M, Derakhshani A, Sarab GA. Immunomodulatory actions of vitamin D in various immune-related disorders: a comprehensive review. Front Immunol 2023; 14:950465. [PMID: 37520529 PMCID: PMC10379649 DOI: 10.3389/fimmu.2023.950465] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
For many years, vitamin D has been acknowledged for its role in maintaining calcium and phosphate balance. However, in recent years, research has assessed its immunomodulatory role and come up with conflicting conclusions. Because the vitamin D receptor is expressed in a variety of immune cell types, study into the precise role of this molecule in diseases, notably autoimmune disorders, has been made possible. The physiologically activated version of vitamin D also promotes a tolerogenic immunological condition in addition to modulating innate and acquired immune cell responses. According to a number of recent studies, this important micronutrient plays a complex role in numerous biochemical pathways in the immune system and disorders that are associated with them. Research in this field is still relatively new, and some studies claim that patients with severe autoimmune illnesses frequently have vitamin D deficiencies or insufficiencies. This review seeks to clarify the most recent research on vitamin D's immune system-related roles, including the pathophysiology of major disorders.
Collapse
Affiliation(s)
| | - Ali Ghaderi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Sharafi
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Moossavi
- Nanobiology and Nanomedicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Gholamreza Anani Sarab
- Cellular and Molecular Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
5
|
Chanchlani N, Lin S, Smith R, Roberts C, Nice R, McDonald TJ, Hamilton B, Bishara M, Bewshea C, Kennedy NA, Goodhand JR, Ahmad T. Pretreatment Vitamin D Concentrations Do Not Predict Therapeutic Outcome to Anti-TNF Therapies in Biologic-Naïve Patients With Active Luminal Crohn's Disease. CROHN'S & COLITIS 360 2023; 5:otad026. [PMID: 37265586 PMCID: PMC10231451 DOI: 10.1093/crocol/otad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/03/2023] Open
Abstract
Background and Aims Vitamin D has a regulatory role in innate and adaptive immune processes. Previous studies have reported that low pretreatment vitamin D concentrations are associated with primary non-response (PNR) and non-remission to anti-TNF therapy. This study aimed to assess whether pretreatment 25-hydroxyvitamin D concentrations predicted PNR and non-remission to infliximab and adalimumab in patients with active luminal Crohn's disease. Methods 25-Hydroxyvitamin D concentrations were measured in stored baseline samples from 659 infliximab- and 448 adalimumab-treated patients in the Personalised Anti-TNF Therapy in Crohn's disease (PANTS) study. Cut-offs for vitamin D were deficiency <25 nmol/L, insufficiency 25-50 nmol/L, and adequacy/sufficiency >50 nmol/L. Results About 17.1% (189/1107; 95% CI, 15.0-19.4) and 47.7% (528/1107; 95% CI, 44.8-50.6) of patients had vitamin D deficiency and insufficiency, respectively. 22.2% (246/1107) of patients were receiving vitamin D supplementation. Multivariable analysis confirmed that sampling during non-summer months, South Asian ethnicity, lower serum albumin concentrations, and non-treatment with vitamin D supplementation were independently associated with lower vitamin D concentrations. Pretreatment vitamin D status did not predict response or remission to anti-TNF therapy at week 14 (infliximab Ppnr = .89, adalimumab Ppnr = .18) or non-remission at week 54 (infliximab P = .13, adalimumab P = .58). Vitamin D deficiency was, however, associated with a longer time to immunogenicity in patients treated with infliximab, but not adalimumab. Conclusions Vitamin D deficiency is common in patients with active Crohn's disease. Unlike previous studies, pretreatment vitamin D concentration did not predict PNR to anti-TNF treatment at week 14 or nonremission at week 54.
Collapse
Affiliation(s)
| | | | - Rebecca Smith
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Christopher Roberts
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Rachel Nice
- Biochemistry, Exeter Clinical Laboratory International, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Timothy J McDonald
- Biochemistry, Exeter Clinical Laboratory International, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Benjamin Hamilton
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Maria Bishara
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Claire Bewshea
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Nicholas A Kennedy
- Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | | | - Tariq Ahmad
- Address correspondence to: Tariq Ahmad, DPhil, Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, RILD building, Barrack Road, Exeter EX2 5DW, UK ()
| |
Collapse
|
6
|
Tamang MK, Ali A, Pertile RN, Cui X, Alexander S, Nitert MD, Palmieri C, Eyles D. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl Psychiatry 2023; 13:204. [PMID: 37316481 PMCID: PMC10267107 DOI: 10.1038/s41398-023-02513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-deficiency on a broad range of autism-relevant behavioural phenotypes and gut health. Vitamin D deficient rat dams exhibited altered maternal care, DVD-deficient pups showed increased ultrasonic vocalizations and as adolescents, social behaviour impairments and increased repetitive self-grooming behaviour. There were significant impacts of DVD-deficiency on gut health demonstrated by alterations to the microbiome, decreased villi length and increased ileal propionate levels. Overall, our animal model of this epidemiologically validated risk exposure for autism shows an expanded range of autism-related behavioural phenotypes and now alterations in gut microbiome that correlate with social behavioural deficits raising the possibility that DVD-deficiency induced ASD-like behaviours are due to alterations in gut health.
Collapse
Affiliation(s)
- Man Kumar Tamang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Centre for Mental Health Research, Wacol, Australia.
| |
Collapse
|
7
|
Limpert R, Pan P, Wang LS, Chen X. From support to therapy: rethinking the role of nutrition in acute graft-versus-host disease. Front Immunol 2023; 14:1192084. [PMID: 37359550 PMCID: PMC10285162 DOI: 10.3389/fimmu.2023.1192084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Collapse
|
8
|
Cantorna MT, Arora J. Two lineages of immune cells that differentially express the vitamin D receptor. J Steroid Biochem Mol Biol 2023; 228:106253. [PMID: 36657728 PMCID: PMC10006341 DOI: 10.1016/j.jsbmb.2023.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
Since 1983 it has been known that monocytes and activated T and B cells expressed the vitamin D receptor (VDR) and are therefore vitamin D targets. New data identified two lineages of immune cells that can be differentiated by the expression of the VDR. Monocytes, macrophages, neutrophils, and hematopoietic stem cells were mostly from VDR positive lineages. T cells, ILC1 and ILC3 were also largely VDR positive, which is consistent with the known effects of vitamin D as regulators of type-1 and type-3 immunity. Activation of the VDR negative T cells did not induce the expression of the VDR reporter, suggesting that perhaps only a subset of the T cells in the periphery express the VDR. When activated, the VDR negative T cells responded as if they were VDR knockout T cells in that they made more IFN-γ and proliferated faster than the VDR positive T cells. The ability of vitamin D to regulate immune function will depend on which cells express the VDR and a better understanding of the signals that regulate VDR expression in immune cells.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
9
|
Al-Khaldy NS, Al-Musharaf S, Aljazairy EA, Hussain SD, Alnaami AM, Al-Daghri N, Aljuraiban G. Serum Vitamin D Level and Gut Microbiota in Women. Healthcare (Basel) 2023; 11:healthcare11030351. [PMID: 36766926 PMCID: PMC9914434 DOI: 10.3390/healthcare11030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity and vitamin D deficiency are two major public health concerns. Evidence suggests that alteration in gut microbiota composition is a possible risk factor for obesity. Additionally, altered vitamin D status has a potential role in shaping the gut microbial community. Further, the prevalence of obesity has been rising in the Middle East, especially among women of reproductive age, which is of specific concern due to its adverse effects on the health of their offspring. To date, limited evidence is available on the association between gut microbiota composition and vitamin D levels in Arab women. This study aims to identify the associations between serum vitamin D, gut microbiota, and obesity among Saudi females. The current study is a case-control study including 92 women aged 18 to 25 years, (n = 48) with normal weight and (n = 44) with obesity. Anthropometric, biochemical, lifestyle data, and fecal samples were collected and analyzed. We used shotgun metagenomic sequencing to characterize microbial communities of stool samples. Vitamin D levels were significantly associated with alpha and beta diversities. Serum vitamin D levels were positively associated with bacteria known to regulate immunological responses; Bacteroides thetaiotaomicron in the normal weight group (r = 0.34, p = 0.03) and Bifidobacterium adolescentis in the obesity group (r = 0.33, p = 0.04). In conclusion, the findings suggest that vitamin D status may play a role in regulating the gut microbiota composition by inhibiting the growth of pathogenic bacteria while nourishing the beneficial strains.
Collapse
Affiliation(s)
- Noorah S. Al-Khaldy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sara Al-Musharaf
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: ; Tel.: +966-55-424-3033
| | - Esra’a A. Aljazairy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Danish Hussain
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Al-Daghri
- Biomarkers of Chronic Diseases, Riyadh Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghadeer Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol 2022; 12:1059825. [PMID: 36590579 PMCID: PMC9800796 DOI: 10.3389/fcimb.2022.1059825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Every year, millions of women are affected by genital tract disorders, such as bacterial vaginosis (BV), endometrial cancer, polycystic ovary syndrome (PCOS), endometriosis, and uterine fibroids (UFs). These disorders pose a significant economic burden on healthcare systems and have serious implications for health and fertility outcomes. This review explores the relationships between gut, vaginal, and uterine dysbiosis and the pathogenesis of various diseases of the female genital tract. In recent years, reproductive health clinicians and scientists have focused on the microbiome to investigate its role in the pathogenesis and prevention of such diseases. Recent studies of the gut, vaginal, and uterine microbiomes have identified patterns in bacterial composition and changes across individuals' lives associated with specific healthy and diseased states, particularly regarding the effects of the estrogen-gut microbiome axis on estrogen-driven disorders (such as endometrial cancer, endometriosis, and UFs) and disorders associated with estrogen deficiency (such as PCOS). Furthermore, this review discusses the contribution of vitamin D deficiency to gut dysbiosis and altered estrogen metabolism as well as how these changes play key roles in the pathogenesis of UFs. More research on the microbiome influences on reproductive health and fertility is vital.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority [EDA; formerly The National Organization for Drug Control and Research (NODCAR)], Cairo, Egypt
| | - Melinique Walls
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| | - Nahed Ismail
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Hazan S, Dave S, Papoutsis AJ, Deshpande N, Howell MC, Martin LM. Vitamin C improves gut Bifidobacteria in humans. Future Microbiol 2022. [PMID: 36475828 DOI: 10.2217/fmb-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims: Numerous beneficial effects of vitamin C (ascorbic acid) supplementation have been reported in the literature. However, data on its effects toward the gut microbiome are limited. We assessed the effect of vitamin C supplementation on the abundance of beneficial bacterial species in the gut microbiome. Materials and methods: Stool samples were analyzed for relative abundance of gut microbiome bacteria using next-generation sequencing-based profiling and metagenomic shotgun analysis. Results: Supplementation with vitamin C increased the abundance of bacteria of the genus Bifidobacterium (p = 0.0001) and affected various species. Conclusion: The beneficial effects of vitamin C supplementation may be attributed to modulation of the gut microbiome and the consequent health benefits thereof.
Collapse
Affiliation(s)
- Sabine Hazan
- ProgenaBIome, LLC, Ventura, CA 93003, USA
- Mcrobiome Research Foundation, Ventura, CA 93003, USA
| | - Sonya Dave
- Mcrobiome Research Foundation, Ventura, CA 93003, USA
| | | | | | | | - Leisha Ma Martin
- Texas A&M University - Corpus Christi, Department of Life Sciences, Corpus Christi, TX 78412, USA
| |
Collapse
|
12
|
Bouazza A, Tahar A, AitAbderrhmane S, Saidani M, Koceir EA. Modulation of cardiometabolic risk and CardioRenal syndrome by oral vitamin D 3 supplementation in Black and White Southern Sahara residents with chronic kidney disease Stage 3: focus on racial and ethnic disparities. Ren Fail 2022; 44:1243-1262. [PMID: 35930297 PMCID: PMC9359195 DOI: 10.1080/0886022x.2022.2106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Several studies have shown that cholecalciferol supplementation (25OHD-S) in chronic kidney disease (CKD) improves kidney injury by reducing fibrosis-related vascular calcification and declining apoptosis-linked nephron damage. METHODS The oral 25OHD-S was evaluated in 60,000 IU/month/36 weeks versus in 2000 IU/d/24 weeks in CKD Stage 3 with serum 25OHD level < 20 ng/mL. The study was undertaken on 156 black subjects and 150 white subjects Southern Sahara (SS). All biomarkers of cardiometabolic (CMet) and cardiorenal (CRenal) syndrome, Renin-angiotensin-aldosterone system (RAAS) profile, secondary hyperparathyroidism (SHPT), N-terminal pro B-type natriuretic peptide (NT-proBNP), Troponin T (cTnT) and atherogenicity risk were assessed by biochemical methods. Estimate glomerular filtration rate (eGFR) by chronic CKD-EPI equation formula. Total serum vitamin D by liquid chromatography-tandem mass spectrometry (MS). RESULTS Vitamin D deficiency alters in the same manner CMet, CRenal, and others biomarkers in both groups SS; however, these disorders are more acute in blacks compared to whites SS. Oral 25OHD-S a highlighted improvement of eGFR drop, SHPT decrease, decline proteinuria, and cardiac failure risk (NT-proBNP and cTnT) attenuation. Concomitantly, 25OHD-S normalizes Renin, Aldosterone, and Angiotensin System (RAAS) activity. Nevertheless, homocysteine and Lp (a) do not modulate by 25OHD-S. CONCLUSIONS The oral vitamin D3 supplementation, according the dose, and the treatment duration does not like in black-skinned people versus to white-skinned inhabitants, while the 02 groups are native to the same Saharan environment. It emerge that a high intermittent dose through an extensive supplementation (60,000 IU/36 weeks) was more effective in black subjects. At opposite, a lower dose during a short period supplementation is sufficient (2000 IU/24 weeks) in white subjects.
Collapse
Affiliation(s)
- Asma Bouazza
- Nutrition and Dietetics in Human Pathologies Post Graduate School, Bioenergetics, Intermediary Metabolism team, Biology and Organisms Physiology laboratory, USTHB, Algiers, Algeria
| | - Amina Tahar
- Nutrition and Dietetics in Human Pathologies Post Graduate School, Bioenergetics, Intermediary Metabolism team, Biology and Organisms Physiology laboratory, USTHB, Algiers, Algeria
| | | | - Messaoud Saidani
- Clinical Nephrology Exploration Unit, Dialysis and Kidney Transplantation Unit, University Hospital Center of Beni Messous, Algiers, Algeria
| | - Elhadj-Ahmed Koceir
- Nutrition and Dietetics in Human Pathologies Post Graduate School, Bioenergetics, Intermediary Metabolism team, Biology and Organisms Physiology laboratory, USTHB, Algiers, Algeria
| |
Collapse
|
13
|
Grozić A, Coker K, Dussik CM, Sabir MS, Sabir Z, Bradley A, Zhang L, Park J, Yale S, Kaneko I, Hockley M, Harris LA, Lunsford TN, Sandrin TR, Jurutka PW. Identification of putative transcriptomic biomarkers in irritable bowel syndrome (IBS): Differential gene expression and regulation of TPH1 and SERT by vitamin D. PLoS One 2022; 17:e0275683. [PMID: 36264926 PMCID: PMC9584396 DOI: 10.1371/journal.pone.0275683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders and affects approximately 4% of the global population. The diagnosis of IBS can be made based on symptoms using the validated Rome criteria and ruling out commonly occurring organic diseases. Although biomarkers exist for "IBS mimickers" such as celiac disease and inflammatory bowel disease (IBD), no such test exists for IBS. DNA microarrays of colonic tissue have been used to identify disease-associated variants in other gastrointestinal (GI) disorders. In this study, our objective was to identify biomarkers and unique gene expression patterns that may define the pathological state of IBS. Mucosal tissue samples were collected from the sigmoid colon of 29 participants (11 IBS and 18 healthy controls). DNA microarray analysis was used to assess gene expression profiling. Extraction and purification of RNA were then performed and used to synthesize cDNA. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was employed to identify differentially expressed genes in patients diagnosed with IBS compared to healthy, non-IBS patient-derived cDNA. Additional testing probed vitamin D-mediated regulation of select genes associated with serotonergic metabolism. DNA microarray analyses led to the identification of 858 differentially expressed genes that may characterize the IBS pathological state. After screening a series of genes using a combination of gene ontological analysis and RT-qPCR, this spectrum of potential IBS biomarkers was narrowed to 23 genes, some of which are regulated by vitamin D. Seven putative IBS biomarkers, including genes involved in serotonin metabolism, were identified. This work further supports the hypothesis that IBS pathophysiology is evident within the human transcriptome and that vitamin D modulates differential expression of genes in IBS patients. This suggests that IBS pathophysiology may also involve vitamin D deficiency and/or an irregularity in serotonin metabolism.
Collapse
Affiliation(s)
- Aleksandra Grozić
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Keaton Coker
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Christopher M. Dussik
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Marya S. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Zhela Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Arianna Bradley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Jin Park
- Biodesign Institute, Arizona State University, Tempe, AZ, United States of America
| | - Steven Yale
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL, United States of America
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
| | - Maryam Hockley
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
| | - Lucinda A. Harris
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Tisha N. Lunsford
- Mayo Clinic Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, United States of America
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ, United States of America
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, United States of America
- * E-mail:
| |
Collapse
|
14
|
Seijo M, Bonanno MN, Bryk G, Zeni Coronel ME, Pita Martin de Portela ML, Zeni SN. Does Vitamin D Insufficiency Influence Prebiotic Effect on Calcium Absorption and Bone Retention? Calcif Tissue Int 2022; 111:300-312. [PMID: 35505249 DOI: 10.1007/s00223-022-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Higher calcium (Ca) absorption would partially compensate for Ca intake below requirements for bone health. Previously, we found that GOS/FOS prebiotic mixture (PM) increases Ca absorption in the colon and retention in bone. Ca absorption and retention are regulated by vitamin D (VD). Hence, it is relevant to explore whether VD insufficiency influences the effect of the PM in the colon. The effect of the PM on Ca, phosphate (IP), and magnesium (Mg) absorption and retention under conditions of VD sufficiency and insufficiency (VDInsuff) was compared using a preclinical model of VDInsuff and low bone mass. Ovariectomized rats were fed isocaloric semisynthetic diets according to AIN-93 M. The diets varied in Ca (0.5% or 0.3%), VD [100 IU% (+ D) or 0 IU% (- D)], and PM (2.5% or 0%) content. The following eight groups were studied: + D0.5; + D0.3; + DPM0.5; + DPM0.3; - D0.5; - D0.3; - DPM0.5; and - DPM0.3. Irrespective of Ca content, VDInsuff did not affect the prebiotic effect of the PM on caecum pH, lactobacillus colony growth, or Mg absorption but significantly decreased its effect on colonic crypt length and cell/crypt and Ca and IP absorption. The PM failed to counterbalance the pro-inflammatory effect of VDInsuff. Moreover, bone retention i.e., bone mineral content and density, bone volume, and bone quality parameters were significantly lower (p < 0.05) and bone turnover significantly was higher (p < 0.05). Although the PM is a useful tool to improve mineral absorption and bone retention, it would seem important to monitor VD nutritional status to ensure the full prebiotic effect in the large intestine.
Collapse
Affiliation(s)
- Mariana Seijo
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
| | - Marina N Bonanno
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Embryology and Histology, School of Dentistry, UBA, Buenos Aires, Argentina
| | - Gabriel Bryk
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Laboratory Division, Assuta Ashdod Medical Center, Faculty of Health Sciences, Ben-Gurion University, Ashdod, Israel
| | - Magali E Zeni Coronel
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina
- Department of Biostatistics, School of Veterinary Sciences (FVet), UBA, Buenos Aires, Argentina
| | | | - Susana N Zeni
- Laboratory of Metabolic Bone Diseases, School of Pharmacy and Biochemistry (FFyB), Clinical Hospital "José de San Martín", Institute of Immunology, Genetics and Metabolism (INIGEM), National Council for Scientific and Technological Research (CONICET), Buenos Aires University (UBA), Buenos Aires, Argentina.
- , Cordoba Ave 2351, 8th floor, Zip Code 1120, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Triantos C, Aggeletopoulou I, Mantzaris GJ, Mouzaki Α. Molecular basis of vitamin D action in inflammatory bowel disease. Autoimmun Rev 2022; 21:103136. [DOI: 10.1016/j.autrev.2022.103136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022]
|
16
|
de Sire A, Ferrillo M, Lippi L, Agostini F, de Sire R, Ferrara PE, Raguso G, Riso S, Roccuzzo A, Ronconi G, Invernizzi M, Migliario M. Sarcopenic Dysphagia, Malnutrition, and Oral Frailty in Elderly: A Comprehensive Review. Nutrients 2022; 14:nu14050982. [PMID: 35267957 PMCID: PMC8912303 DOI: 10.3390/nu14050982] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a highly prevalent condition in the elderly that has been increasingly considered as a crucial public health issue, due to the strict correlation with a higher risk of fragility fractures, hospitalization, and mortality. Among the age-related diseases, sarcopenia and dysphagia are two common pathological conditions in frail older people and could coexist leading to dehydration and malnutrition in these subjects. “Sarcopenic dysphagia” is a complex condition characterized by deglutition impairment due to the loss of mass and strength of swallowing muscles and might be also related to poor oral health status. Moreover, the aging process is strictly related to poor oral health status due to direct impairment of the immune system and wound healing and physical and cognitive impairment might indirectly influence older people’s ability to carry out adequate oral hygiene. Therefore, poor oral health might affect nutrient intake, leading to malnutrition and, consequently, to frailty. In this scenario, sarcopenia, dysphagia, and oral health are closely linked sharing common pathophysiological pathways, disabling sequelae, and frailty. Thus, the aim of the present comprehensive review is to describe the correlation among sarcopenic dysphagia, malnutrition, and oral frailty, characterizing their phenotypically overlapping features, to propose a comprehensive and effective management of elderly frail subjects.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (M.F.)
| | - Martina Ferrillo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (M.F.)
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy;
| | - Roberto de Sire
- Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy;
| | - Paola Emilia Ferrara
- University Polyclinic Foundation Agostino Gemelli IRCSS, Catholic University of Sacred Heart, 00168 Rome, Italy; (P.E.F.); (G.R.)
| | - Giuseppe Raguso
- Department of Otolaryngology-Head and Neck Surgery, University of Verona, 37129 Verona, Italy;
| | - Sergio Riso
- Dietetic and Clinical Nutrition Unit, Maggiore della Carità Hospital, 28100 Novara, Italy;
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland;
- Department of Oral and Maxillofacial Surgery, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Gianpaolo Ronconi
- University Polyclinic Foundation Agostino Gemelli IRCSS, Catholic University of Sacred Heart, 00168 Rome, Italy; (P.E.F.); (G.R.)
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mario Migliario
- Dental Clinic, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| |
Collapse
|
17
|
Matos C, Renner K, Peuker A, Schoenhammer G, Schreiber L, Bruss C, Eder R, Bruns H, Flamann C, Hoffmann P, Gebhard C, Herr W, Rehli M, Peter K, Kreutz M. Physiological levels of 25-hydroxyvitamin D 3 induce a suppressive CD4 + T cell phenotype not reflected in the epigenetic landscape. Scand J Immunol 2022; 95:e13146. [PMID: 35073416 DOI: 10.1111/sji.13146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analyzed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg polarization conditions using TGF-β. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-β further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.
Collapse
Affiliation(s)
- Carina Matos
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Alice Peuker
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Gabriele Schoenhammer
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Laura Schreiber
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Christina Bruss
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Ruediger Eder
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Cindy Flamann
- Department of Internal Medicine 5 - Hematology/Oncology, University Hospital of Erlangen, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Claudia Gebhard
- Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Katrin Peter
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Medical Oncology, University Medical Center of Regensburg, Germany.,Regensburg Centre for Interventional Immunology, University Hospital Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
18
|
Vernia F, Valvano M, Longo S, Cesaro N, Viscido A, Latella G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients 2022; 14:269. [PMID: 35057450 PMCID: PMC8779654 DOI: 10.3390/nu14020269] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Vitamin D is an immunoregulatory factor influencing intestinal homeostasis. Recent evidence supports a central role of this micronutrient in the course of Inflammatory Bowel Diseases (IBD). This narrative review aims to provide a general overview of the possible biological mechanisms of action of vitamin D and its therapeutic implications in IBD. (2) Methods: A systematic electronic search of the English literature up to October 2021 was performed using Medline and the Cochrane Library. Only papers written in English that analyzed the role of vitamin D in IBD were included. (3) Results: In vitro and animal studies reported that vitamin D signaling improves epithelial barrier integrity regulating the expression of several junctional proteins, defensins, and mucins, modulates the inflammatory response, and affects gut microbiome composition. Recent studies also suggest that vitamin D deficiency is highly prevalent among IBD patients and that low serum levels correlate with disease activity and, less clearly, with disease course. (4) Conclusions: An increasing body of evidence suggests some role of vitamin D in the pathophysiology of IBD, nonetheless the underlying mechanisms have been so far only partially elucidated. A strong correlation with disease activity has been reported but its implication in the treatment is still undefined. Thus, studies focused on this issue, the definition of vitamin D levels responsible for clinical effects, and the potential role of vitamin D as a therapeutic agent are strongly encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanni Latella
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, Piazza S. Tommasi, Coppito, 67100 L’Aquila, Italy; (F.V.); (M.V.); (S.L.); (N.C.); (A.V.)
| |
Collapse
|
19
|
Hussein HM, Elyamany MF, Rashed LA, Sallam NA. Vitamin D mitigates diabetes-associated metabolic and cognitive dysfunction by modulating gut microbiota and colonic cannabinoid receptor 1. Eur J Pharm Sci 2021; 170:106105. [PMID: 34942358 DOI: 10.1016/j.ejps.2021.106105] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Obesity is associated with elevated endocannabinoid tone, gut dysbiosis, and inflammation predisposing to diabetes. The endocannabinoid system mediates the effects of gut microbiota and regulates the gut barrier integrity. We examined the effects of vitamin D (VD) on colonic cannabinoid receptor 1(CB1R), tight junction proteins, gut dysbiosis, metabolic and cognitive dysfunction in a model of type 2 diabetes compared with metformin. METHODS Rats received high-fat, high-sucrose diet (HFSD) and either VD (500 IU/kg/day; p.o.), or metformin (200 mg/kg/day; p.o.) for 8 weeks. After 6 weeks, streptozotocin (STZ) (40 mg/kg; i.p) was injected. Behavioral, cognitive, and metabolic assessments were carried out. Finally, fecal, blood, and tissue samples were collected to examine Bacteroidetes/Firmicutes ratio, colonic CB1R, zonula occludens-1 (ZO-1), occludin, and Toll-like receptor 4 (TLR4); serum lipopolysaccharides (LPS), peptidoglycan (PGN), tumor necrosis factor-alpha (TNF-ɑ), glucagon-like peptide-1 (GLP-1), lipids, and VD; hippocampal brain-derived neurotrophic factor (BDNF) and inflammatory markers. RESULTS VD ameliorated HFSD/STZ-induced dysbiosis/gut barrier dysfunction as indicated by lower circulating LPS, PGN and TNF-ɑ levels, likely by downregulating colonic CB1R and upregulating ZO-1 and occludin expressions. Additionally, VD suppressed HFSD/STZ-induced hyperglycemia, hyperinsulinemia, dyslipidemia, and hippocampal neuroinflammation. These changes culminated in improved glycemic control and cognitive function. VD was more effective than metformin in decreasing serum LPS and TNF-ɑ levels; whereas metformin resulted in better glycemic control. CONCLUSION Targeting gut microbiota by VD could be a successful strategy in the treatment of diabetes and associated cognitive deficit. The crosstalk between VD axis and the endocannabinoid system needs further exploration.
Collapse
Affiliation(s)
- Hebatallah M Hussein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Mohammed F Elyamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Laila A Rashed
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
20
|
Bahrami A, Farjami Z, Ferns GA, Hanachi P, Mobarhan MG. Evaluation of the knowledge regarding vitamin D, and sunscreen use of female adolescents in Iran. BMC Public Health 2021; 21:2059. [PMID: 34758788 PMCID: PMC8579675 DOI: 10.1186/s12889-021-12133-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/29/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vitamin D (Vit D) deficiency/insufficiency is an important risk factor for several chronic conditions. We aimed to evaluate the knowledge and behavior of female adolescents with respect to the association between sunlight exposure, sunscreen use, and Vit D status. METHODS This cross-sectional survey was performed in northeastern Iran, among 940 female adolescents in January 2015. Each subject completed a questionnaire containing items about demographic characteristics, knowledge about Vit D and their use of sunscreen. Serum Vit D levels were measured using an electrochemiluminescence method and dietary intake of Vit D was assessed using a Food Frequency Questionnaire. Statistical analyses were conducted using SPSS software. A P value < 0.05 was considered statistically significant. RESULTS Few of the participants were aware of the biological functions of Vit D (8.8%), the causes of Vit D deficiency (16.7%), and the sources of Vit D (9.3%). Less than half of the participants used sunscreen during the day. The serum levels of Vit D in subjects who used sunscreen were significantly lower than those who did not (p = 0.004). However, there was no significant association between their knowledge about Vit D and serum Vit D, or dietary intake of Vit D. CONCLUSION There appears to be a lack of coherence between lifestyle, behavior and knowledge that may affect the Vit D status of adolescent girls in northeastern Iran. This information provides a basis for developing public health planning (workshops or training at the college level) for the prevention of Vit D deficiency especially in adolescent girls.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Parichehr Hanachi
- Department of Biology, Biochemistry Unit, Al Zahra University, Tehran, IR, Iran.
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
21
|
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021; 95:35-53. [PMID: 34798467 DOI: 10.1016/j.nutres.2021.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays important roles in the maintenance of host health and the pathogenesis of many diseases. Diet is a key modulator of the gut microbiome. There is increasing evidence that nutrients other than fermentable fiber affect the gut microbial composition. In this review, we discuss the effects of vitamins on the gut microbiome, and related gastrointestinal health, based on in vitro, animal and human studies. Some vitamins, when provided in large doses or when delivered to the large intestine, have been shown to beneficially modulate the gut microbiome by increasing the abundance of presumed commensals (vitamins A, B2, D, E, and beta-carotene), increasing or maintaining microbial diversity (vitamins A, B2, B3, C, K) and richness (vitamin D), increasing short chain fatty acid production (vitamin C), or increasing the abundance of short chain fatty acid producers (vitamins B2, E). Others, such as vitamins A and D, modulate the gut immune response or barrier function, thus, indirectly influencing gastrointestinal health or the microbiome. Future research is needed to explore these potential effects and to elucidate the underlying mechanisms and host health benefits.
Collapse
Affiliation(s)
- Van T Pham
- DSM Nutritional Products, Kaiseraugst, Switzerland.
| | - Susanne Dold
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Goswami S, Flores J, Balasubramanian I, Bandyopadhyay S, Joseph I, Bianchi-Smak J, Dhawan P, Mücahit DM, Yu S, Christakos S, Gao N. 1,25-Dihydroxyvitamin D 3 and dietary vitamin D reduce inflammation in mice lacking intestinal epithelial cell Rab11a. J Cell Physiol 2021; 236:8148-8159. [PMID: 34192357 PMCID: PMC9161497 DOI: 10.1002/jcp.30486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/18/2021] [Accepted: 06/15/2021] [Indexed: 12/23/2022]
Abstract
A number of studies have examined the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC-specific Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL-6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell-originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH)2 D3 or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC-specific Rab11a knockout mice (Rab11aΔIEC ). 1,25(OH)2 D3 administered at 25 ng, two doses per mouse, by intraperitoneal injection, reduced inflammatory cytokine production in knockout mice compared to vehicle-injected mice. Remarkably, feeding mice with dietary vitamin D supplementation at 20,000 IU/kg spanning fetal and postnatal developmental stages led to improved bodyweights, reduced immune cell infiltration, and decreased inflammatory cytokines. We found that these vitamin D effects were accompanied by decreased NF-κB (p65) in the knockout intestinal epithelia, reduced tissue-resident macrophages, and partial restoration of epithelial morphology. Our study suggests that dietary vitamin D supplementation may prevent and limit intestinal inflammation in hosts with high susceptibility to chronic inflammation.
Collapse
Affiliation(s)
- Sayantani Goswami
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Iyshwarya Balasubramanian
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sheila Bandyopadhyay
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ivor Joseph
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Jared Bianchi-Smak
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Derya M Mücahit
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| |
Collapse
|
23
|
Wu CT, Huang YC, Chen WC, Chen MF. Effect of 1α,25-Dihydroxyvitamin D3 on the Radiation Response in Prostate Cancer: Association With IL-6 Signaling. Front Oncol 2021; 11:619365. [PMID: 34109109 PMCID: PMC8181126 DOI: 10.3389/fonc.2021.619365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy (RT) is the main treatment modality for prostate cancer (PCa). This study investigated the role of IL-6 in biological sequelae following irradiation and highlighted the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on the radiation response of PCa and its relationship with IL-6 signaling. Human and murine PCa cell lines were used to examine the response to irradiation in vitro and in vivo. The relationship of IL-6 expression with clinicopathologic characteristics in 104 PCa patients treated with definite RT was also examined. We also investigated the changes in radiation response after calcitriol supplementation and the relationship between calcitriol and IL-6 signaling by conducting cellular and animal experiments. Based on clinical samples, the positivity of IL-6 staining is a significant predictor of biochemical failure-free survival for PCa patients treated with definite RT. Data from preclinical models showed that inhibition of IL-6 increased the response of PCa to radiation, which was associated with increased oxidative DNA damage, attenuated EMT and MDSC recruitment, and decreased tumor regrowth. Moreover, increased vitamin D3 levels by calcitriol supplementation or induction by UVB-radiation was associated with inhibited IL-6 signaling and increased the response to irradiation observed in animal models. These data demonstrate that IL-6 play a critical role in the radiation response of PCa, which involved tumor cell killing and altering the tumor microenvironment. Directly targeting IL-6 signaling or vitamin D3 supplement with oral or light treatment could be a promising strategy to increase the response of PCa to radiation.
Collapse
Affiliation(s)
- Chun-Te Wu
- Department of Urology, Chang Gung Memorial Hospital at KeeLung, KeeLung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Ching Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Urology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Wen-Cheng Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Miao-Fen Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| |
Collapse
|
24
|
Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr 2021; 8:644138. [PMID: 34041257 PMCID: PMC8141808 DOI: 10.3389/fnut.2021.644138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
There is a growing recognition that a good diet can help people maintain mental and physical health, while a bad one will cause the disorder of body function, and even lead to several diseases. A lot of attentions have been devoted to analyze every possible health-related factor in the daily diet, including food ingredients, additives, and cooking process. With the support of high-throughput sequencing technology, there is accumulating evidence gradually clarifying that most of these factors are mainly through the interactions with gut microbiome to trigger downstream effects. The gut microbiome may be able to act as a very sensitive mirror in response to human daily diet. A complex network of interactions among diet, gut microbiome, and health has been gradually depicted, but it is rarely discussed from a more comprehensive perspective. To this end, this review summarized the latest updates in diet-gut microbiome interactions, analyzed most identified factors involved in this process, showed the possibility of maintaining health or alleviating diseases by diet intervention, aiming to help people choose a suitable recipe more accurately.
Collapse
Affiliation(s)
| | - Qin Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Lotfi F, Akbarzadeh-Khiavi M, Lotfi Z, Rahbarnia L, Safary A, Zarredar H, Baghbanzadeh A, Naghili B, Baradaran B. Micronutrient therapy and effective immune response: a promising approach for management of COVID-19. Infection 2021; 49:1133-1147. [PMID: 34160789 PMCID: PMC8220424 DOI: 10.1007/s15010-021-01644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The escalating prevalence of coronavirus disease 2019 (COVID-19) worldwide, with an increased rate of morbidity and mortality, highlights an urgent need to develop more effective therapeutic interventions. Despite the authorized treatment against COVID-19 by the European Union (EU), the safety and effectiveness of this therapeutic strategy for a wide variety of patients have remained a significant challenge. In this respect, micronutrients such as vitamins and minerals, as essential factors, can be considered for improving the function of the immune system and accelerating the treatment procedure. Dietary supplements can attenuate vascular and inflammatory manifestations related to infectious diseases in large part due to their anti-inflammatory and antioxidant properties. Recently, it has been revealed that poor nutritional status may be one of the notable risk factors in severe COVID-19 infections. In the current review, we focus on the micronutrient therapy of COVID-19 patients and provide a comprehensive insight into the essential vitamins/minerals and their role in controlling the severity of the COVID-19 infection. We also discuss the recent advancements, challenges, negative and positive outcomes in relevance to this approach.
Collapse
Affiliation(s)
- Fariba Lotfi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, P.O. Box 5165665811, Tabriz, Iran
| | - Ziba Lotfi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Kamalova AA, Safina ER, Nizamova RA, Zaynetdinova MS, Kvitko EM. Nutrition of children with inflammatory bowel disease. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2020. [DOI: 10.21508/1027-4065-2020-65-5-145-151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Sang H, Xie Y, Su X, Zhang M, Zhang Y, Liu K, Wang J. Mushroom Bulgaria inquinans Modulates Host Immunological Response and Gut Microbiota in Mice. Front Nutr 2020; 7:144. [PMID: 33134305 PMCID: PMC7578393 DOI: 10.3389/fnut.2020.00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023] Open
Abstract
We aimed to determine the prebiotic impact of Mushroom Bulgaria inquinans (BI) on the host immune response and gut microbiota. Male C57BL/6 mice were fed a diet supplemented with 0, 1, or 2% BI for 4 wks. Compared to mice fed with a control diet (0% BI), mice fed with 1 or 2% BI had an increase of T cell proliferation from the spleen, but such change was not found between 1 and 2% BI treated mice. Also, BI at 2% increased the production of IL-2 of splenocytes stimulated with T-cell mitogens, but BI at 1 and 2% did not affect productions of other splenic-T cell cytokines including IL-4, IL-10, and IFN-γ. Interestingly, BI at 1 or 2% inhibited T cell proliferation of mesenteric lymph node (mLN) but this effect was not found between 1 and 2% BI treated mice. Furthermore, BI inhibited the production of IL-2 in anti-CD3/CD28-stimulated T cells from mLN in a dose-dependent manner. Meanwhile, BI at 2%, not 1% inhibited the production of IL-4, IL-10, and IFN-γ of mLN. Since BI at 2% produced a more significant effect on the immune response, we further used BI at 2% to evaluate the effect of BI on gut microbiota. Of note, BI reduced the diversity of gut microbiota and resulted in an increase of Faecalibaculum and Parabacteroides abundance and the decrease of Allobaculum, Candidatus_Saccharimonas, and Rikenella abundance at the genus level. Finally, the correlation was observed between specific bacteria genera and the productions of T-cell cytokines from mesenteric lymphocytes: Rikenella and Candidatus_Saccharimonas correlated positively with IL-2, IL-4, IL-10, and IFN-γ; Bacteroides and Parabacteroides correlated negatively with IL-2 and IL-4; Faecalibaculum correlated negatively with IFN-γ and IL-4 and Bacteroides and Bifidobacterium correlated negatively with IFN-γ. The specific role of each intestinal microbiota observed is still unclear, but BI might exert a prebiotic effect on gut microbiota by increasing the abundance of potentially beneficial bacteria (Faecalibaculum). This is helpful for further demonstrating the healthy-promotion mechanism of B. inquinans.
Collapse
Affiliation(s)
- Hongzhen Sang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China.,School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yu Xie
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China.,School of Physical Education, Henan University, Kaifeng, China
| | - Xing Su
- Department of Respiration, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Kun Liu
- College of Biology Science and Engineering, Hebei University of Economics and Business, Shijiazhuang, China
| | - Junpeng Wang
- Institute of Infection and Immunity and Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
28
|
Stacchiotti V, Rezzi S, Eggersdorfer M, Galli F. Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Crit Rev Food Sci Nutr 2020; 61:3211-3232. [PMID: 32715724 DOI: 10.1080/10408398.2020.1793728] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is a complex ecosystem seen as an extension of human genome. It represents a major metabolic interface of interaction with food components and xenobiotics in the gastrointestinal (GI) environment. In this context, the advent of modern bacterial genome sequencing technology has enabled the identification of dietary nutrients as key determinants of gut microbial ecosystem able to modulate the host-microbiome symbiotic relationship and its effects on human health. This article provides a literature review on functional and molecular interactions between a specific group of lipids and essential nutrients, e.g., fat-soluble vitamins (FSVs), and the gut microbiota. A two-way relationship appears to emerge from the available literature with important effects on human metabolism, nutrition, GI physiology and immune function. First, FSV directly or indirectly modify the microbial composition involving for example immune system-mediated and/or metabolic mechanisms of bacterial growth or inhibition. Second, the gut microbiota influences at different levels the synthesis, metabolism and transport of FSV including their bioactive metabolites that are either introduced with the diet or released in the gut via entero-hepatic circulation. A better understanding of these interactions, and of their impact on intestinal and metabolic homeostasis, will be pivotal to design new and more efficient strategies of disease prevention and therapy, and personalized nutrition.
Collapse
Affiliation(s)
- Valentina Stacchiotti
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Serge Rezzi
- Swiss Vitamin Institute, Epalinges, Switzerland
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Francesco Galli
- Micronutrient Vitamins and Lipidomics Lab, Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Shi Y, Liu Z, Cui X, Zhao Q, Liu T. Intestinal vitamin D receptor knockout protects from oxazolone-induced colitis. Cell Death Dis 2020; 11:461. [PMID: 32541827 PMCID: PMC7296018 DOI: 10.1038/s41419-020-2653-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) actually had different pathological mechanisms, as the former was mainly induced by Th1 and Th17 response and the latter by Th2 response. Our previous study found that oxazolone-induced Th2-mediated colitis could not be attenuated by vitamin D supplementation. This study investigated the influence of intestinal vitamin D receptor (VDR) knockout on oxazolone-induced colitis and explored the possible immunological mechanism. Intestinal VDR knockout mice had milder oxazolone-induced colitis than wildtype controls, as demonstrated by less body weight decrease and faster recovery, more intact local structure, reduced cell apoptosis, and better preserved barrier function. Th2-mediated inflammation was significantly inhibited by VDR deficiency. Meanwhile, the percentage of invariant natural killer T (iNKT) cells did not increase as much in intestinal VDR knockout mice as in wild-type controls, nor did the iNKT cells develop normally as in the controls. Intestinal VDR knockout protected against oxazolone-induced colitis in mice by blocking Th2 cell response and reducing the function of intestinal iNKT cells. Vitamin D status had no influence on the severity of colitis. This study may explain the diverse outcomes after vitamin D supplementation in literature and add some clue to the targeted therapy of IBD.
Collapse
Affiliation(s)
- Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, USA
| | - Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qun Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China. .,Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, USA. .,Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Zhou X, Chen C, Zhong YN, Zhao F, Hao Z, Xu Y, Lai R, Shen G, Yin X. Effect and mechanism of vitamin D on the development of colorectal cancer based on intestinal flora disorder. J Gastroenterol Hepatol 2020; 35:1023-1031. [PMID: 31788852 DOI: 10.1111/jgh.14949] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate the correlation between the level of circulating vitamin D and the development of colorectal cancer (CRC) and to clarify the effect and mechanism of vitamin D on the development of CRC. METHODS Serum samples from 63 patients with CRC (CRC group) and 61 healthy volunteers (normal group) were collected. Azoxymethane + dextran sodium sulfate-induced CRC mouse model and dietary models with different doses of vitamin D were established to verify whether vitamin D supplementation could reverse the occurrence and development of CRC at the overall animal level. Intestinal barrier integrity and microbial defense response were evaluated by detection of intestinal flora and expression of related genes. RESULTS In the clinical serum samples, compared with the normal group, the level of 25 (OH) D3 in the CRC group was relatively low (P < 0.01), which was consistent with the clinical situation in mice. Vitamin D deficiency aggravated the deterioration of enteritis and intestinal cancer in CRC mice, whereas the overall condition of CRC mice improved after vitamin D supplementation. Vitamin D has a significant regulatory effect on the homeostasis of the intestinal flora, particularly in the regulation of intestinal probiotics, Akkermansia muciniphila-mediated colon barrier integrity. CONCLUSIONS Vitamin D deficiency is closely related to the high incidence of CRC, and vitamin D supplementation can inhibit the occurrence and development of CRC. Vitamin D plays a role in the reversal of CRC mainly through the regulation of intestinal flora, especially the regulation of A. muciniphila-mediated colon barrier integrity.
Collapse
Affiliation(s)
- Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chunxia Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ya' Nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Feng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yinxue Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ran Lai
- Department of pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guifang Shen
- Health Screening Center, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Khalighi Sikaroudi M, Mokhtare M, Shidfar F, Janani L, Faghihi Kashani A, Masoodi M, Agah S, Dehnad A, Shidfar S. Effects of vitamin D3 supplementation on clinical symptoms, quality of life, serum serotonin (5-hydroxytryptamine), 5-hydroxy-indole acetic acid, and ratio of 5-HIAA/5-HT in patients with diarrhea-predominant irritable bowel syndrome: A randomized clinical trial. EXCLI JOURNAL 2020; 19:652-667. [PMID: 33013260 PMCID: PMC7527498 DOI: 10.17179/excli2020-2247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D deficiency, common in the population with irritable bowel syndrome (IBS), can induce the main factors that lead to IBS clinical symptoms, such as depression, anxiety, and inflammation. Serotonin (5-HT) plays an important role in the pathophysiology of IBS, and its production and secretion are increased from the lumen due to stress and inflammation. The aim of this study was to evaluate the effect of vitamin D3 supplementation on the pathogenesis of diarrhea-predominant IBS (IBS-D). Seventy-four IBS-D patients (age: 18-65 y) participated in a randomized, double-blind, placebo-controlled trial study from February 2017 to May 2018, at Rasoul-e-Akram Hospital, Tehran, Iran. Subjects were allocated into two groups receiving 50,000 IU/week of vitamin D3 or placebo for 9 weeks. IBS severity score system (IBS-SSS), IBS-quality of life questionnaire (QoL), hospital anxiety and depression Scale (HADs), visceral sensitivity index (VSI) and serum 25(OH) vitamin D3, serotonin, 5-hydroxy-indole acetic acid and ratio of 5-HIAA/5-HT were evaluated before and after the interventions. Symptoms severity, QoL, HADs-depression, and VSI score improved significantly in the vitamin D group as compared to the placebo group (P-values: <0.001, 0.049, 0.023, and 0.008; respectively). There were no significant differences in abdominal bloating, HADs-anxiety, serum 5-HT, 5-HIAA, and 5-HIAA/5-HT between the two groups at the end of the study. Based on our results, we recommend serum vitamin D be evaluated in the process of treatment of these patients to ameliorate symptoms and quality life of IBS-D patients with vitamin D deficiency and/or insufficiency.
Collapse
Affiliation(s)
| | - Marjan Mokhtare
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Janani
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Masoodi
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Dehnad
- Department of English Language, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shidfar
- Worcester Memorial Hospital, University of Massachusetts, Worcester, U.S.A
| |
Collapse
|
32
|
Yang F, Sun M, Sun C, Li J, Yang X, Bi C, Wang M, Pu L, Wang J, Wang C, Xie M, Yao Y, Jin L. Associations of C-reactive Protein with 25-hydroxyvitamin D in 24 Specific Diseases: A Cross-sectional Study from NHANES. Sci Rep 2020; 10:5883. [PMID: 32246038 PMCID: PMC7125216 DOI: 10.1038/s41598-020-62754-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
Most diseases might be associated with acute or chronic inflammation, and the role of vitamin D in diseases has been extensively explored in recent years. Thus, we examined the associations of one of the best markers for inflammation ― C-reactive protein (CRP) with 25-hydroxyvitamin D [25(OH)D] in 24 specific diseases. We performed cross-sectional analyses among 9,809 subjects aged ≥18 years who participated in the U.S. National Health and Nutrition Examination Survey (NHANES) in 2007~2010. The generalized additive model (GAM) was used to explore the associations of CRP with 25(OH)D in different diseases, adjusted for the age, gender, examination period and race. Distributions of CRP were significantly different (P < 0.05) in gender, examination period and race, and distributions of 25(OH)D were different (P < 0.05) in the examination period and race. Generally, CRP was negatively associated with 25(OH)D for majority diseases. 25(OH)D was negatively associated with CRP generally, and the associations were disease-specific and disease category-specific. In respiratory, gastrointestinal and mental diseases, the associations tended to be approximately linear. While in metabolic diseases, the associations were nonlinear, and the slope of the nonlinear curve decreased with 25(OH)D, especially when 25(OH)D < 30 μg/L.
Collapse
Affiliation(s)
- Fang Yang
- Department of Health Management Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Mengzi Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Chong Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jiagen Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xiuning Yang
- Department of Hepatobiliary Surgery, Affiliated hospital of Beihua University, Jilin, Jilin, 132011, China
| | - Chunli Bi
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Min Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Liyuan Pu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jianmeng Wang
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Chunxiao Wang
- Department of Clinical Medicine, School of Clinical Medicine, Changchun, Jilin, 130021, China
| | - Meizhen Xie
- Department of Clinical Medicine, School of Clinical Medicine, Changchun, Jilin, 130021, China
| | - Yan Yao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Lina Jin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
33
|
Ghaly S, Kaakoush NO, Hart PH. Effects of UVR exposure on the gut microbiota of mice and humans. Photochem Photobiol Sci 2020; 19:20-28. [PMID: 31930250 DOI: 10.1039/c9pp00443b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many alterations to the skin microbiome by exposure to UV radiation (UVR) have been postulated and may contribute to the ability of UVR phototherapy to regulate skin inflammatory diseases. Very recently, an effect of sub-erythemal narrowband UVB radiation (311 nm) on the gut microbiome of healthy individuals was reported. The relative abundance of Firmicutes and Proteobacteria increased in faecal samples of those receiving three exposures to narrowband UVB radiation; the Bacteroidetes phyla were reduced by UVB. In mice chronically exposed to sub-erythemal broadband UVR, similar faecal changes in Firmicutes and Bacteroidetes have been reported. Murine studies have allowed a further dissection of the relative ability of UVR and dietary vitamin D to modulate the gut microbiome by analysis of relative bacterial abundance in mice with similar 25-hydroxy vitamin D levels obtained by UVR exposure or from their diet, respectively. The studies of mice recovering from colitis suggested that dietary vitamin D could stimulate greater faecal abundance of Rikenellaceae, whilst exposure to UVR was necessary for changes to the abundance of Lachnospiraceae and Desulfovibrionaceae. Both human and murine studies report that multiple exposures to sub-erythemal UVR can increase the diversity of the gut microbiome, which in turn may be beneficial to the health of the host.
Collapse
Affiliation(s)
- Simon Ghaly
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Department of Gastroenterology and Hepatology, St. Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | | | - Prue H Hart
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
34
|
Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients 2020; 12:E236. [PMID: 31963293 PMCID: PMC7019735 DOI: 10.3390/nu12010236] [Citation(s) in RCA: 594] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Immune support by micronutrients is historically based on vitamin C deficiency and supplementation in scurvy in early times. It has since been established that the complex, integrated immune system needs multiple specific micronutrients, including vitamins A, D, C, E, B6, and B12, folate, zinc, iron, copper, and selenium, which play vital, often synergistic roles at every stage of the immune response. Adequate amounts are essential to ensure the proper function of physical barriers and immune cells; however, daily micronutrient intakes necessary to support immune function may be higher than current recommended dietary allowances. Certain populations have inadequate dietary micronutrient intakes, and situations with increased requirements (e.g., infection, stress, and pollution) further decrease stores within the body. Several micronutrients may be deficient, and even marginal deficiency may impair immunity. Although contradictory data exist, available evidence indicates that supplementation with multiple micronutrients with immune-supporting roles may modulate immune function and reduce the risk of infection. Micronutrients with the strongest evidence for immune support are vitamins C and D and zinc. Better design of human clinical studies addressing dosage and combinations of micronutrients in different populations are required to substantiate the benefits of micronutrient supplementation against infection.
Collapse
Affiliation(s)
- Adrian F. Gombart
- Linus Pauling Institute, Department of Biochemistry and Biophysics, Oregon State University, 307 Linus Pauling Science Center, Corvallis, OR 97331, USA;
| | | | | |
Collapse
|
35
|
Boulkrane MS, Fedotova J, Kolodyaznaya V, Micale V, Drago F, van den Tol AJM, Baranenko D. Vitamin D and Depression in Women: A Mini-review. Curr Neuropharmacol 2020; 18:288-300. [PMID: 31701847 PMCID: PMC7327938 DOI: 10.2174/1570159x17666191108111120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/01/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Affective-related disorders, including depression, are constantly rising, complicating people's personal lifestyle increasing disqualification and hospital care. Because of the high intensity of urbanization, our lifestyle and food have altered dramatically in the last twenty years. These food modifications have been associated with scores of depression and other affective-related disorders in urbanized countries with high economic levels. Nutrients imbalance is considered as one of the critical causes enabling the pathophysiological mechanisms for the development of psychiatric disorders. The application of additional nutritional interventions for treatment of mood deteriorations can be beneficial for both the prophylaxis and therapy of affective-related disorders. This paper will review recent research on the relation of Vitamin D levels and the epidemiology of depression in women. In this paper, we will provide an overview of the results of a variety of different studies taking into account research which both suggests and refutes an association. Based on these findings we will propose important directions for future research in relation to this topic.
Collapse
Affiliation(s)
| | - Julia Fedotova
- Address correspondence to this author at the International Research Centre “Biotechnologies of the Third Millennium”, ITMO University, 9 Lomonosova Str. St. Petersburg 191002, Russia; Laboratory of Neuroendocrinology, I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Emb. Makarova, St. Petersburg 199034, Russia; Tel: +7 911 287 92 73; Fax: +7 812 328 05 01; E-mail:
| | | | | | | | | | | |
Collapse
|
36
|
Ni C, Gan X, Li X, Sun H, Chen Z, Lu H. Vitamin D alleviates acute graft-versus-host disease through promoting the generation of Foxp3 + T cells. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:748. [PMID: 32042764 DOI: 10.21037/atm.2019.11.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Acute graft-versus-host disease (aGVHD) is a medical complication which may result in significant morbidity and mortality after transplantation. The aim of this study investigated the therapeutic effect and underlying mechanism of 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3) in the treatment of aGVHD. Method An aGVHD model was built by transferring splenocytes of B6 mice into B6D2F1 mice. 1α,25(OH)2D3 was added to evaluate the protective function to aGVHD; the phenotype and cytokine expression profile of spleen cells from the aGVHD model were determined using flow cytometry 2 weeks after the model is established. Result Administration of 1α,25(OH)2D3 significantly slowed aGVHD progression and improved survival of B6D2F1 recipients of grafted B6 splenocytes. 1α,25(OH)2D3 treatment also resulted in an increased number of CD4+Foxp3+ regulatory T cells (Tregs) but decreased the number of CD4+IL-4+ cells. In vitro analysis demonstrated that 1α,25(OH)2D3 directly increased forkhead box P3 (Foxp3) and IL-10 expression and enhanced the function of induced Tregs (iTregs). Conclusions This analysis indicated that the effect of 1α,25(OH)2D3 is mediated in part by improving the number of Tregs. 1α,25(OH)2D3 administration thus represents a viable approach for treating aGVHD.
Collapse
Affiliation(s)
- Chuangye Ni
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xiaojie Gan
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xu Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Han Sun
- Department of Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhen Chen
- Department of Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
37
|
Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B. Effect of Vitamin D Supplementation on Faecal Microbiota: A Randomised Clinical Trial. Nutrients 2019; 11:nu11122888. [PMID: 31783602 PMCID: PMC6950585 DOI: 10.3390/nu11122888] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
In animal studies, vitamin D supplementation has been shown to improve gut microbiota and intestinal inflammation. However, limited evidence exists on the effect of vitamin D supplementation on the human gut microbiota. We examined the effect of vitamin D supplementation on faecal microbiota in 26 vitamin D-deficient (25-hydroxyvitamin D (25(OH)D) ≤50 nmol/L), overweight or obese (BMI ≥25 kg/m2) otherwise healthy adults. Our study was ancillary to a community based double-blind randomised clinical trial, conducted between 2014 and 2016. The participants provided stool samples at baseline and after 100,000 international units (IU) loading dose of cholecalciferol followed by 4000 IU daily or matching placebo for 16 weeks. Faecal microbiota was analysed using 16S rRNA sequencing; V6-8 region. There was no significant difference in microbiome α-diversity between vitamin D and placebo groups at baseline and follow-up (all p > 0.05). In addition, no clustering was found based on vitamin D supplementation at follow-up (p = 0.3). However, there was a significant association between community composition and vitamin D supplementation at the genus level (p = 0.04). The vitamin D group had a higher abundance of genus Lachnospira, and lower abundance of genus Blautia (linear discriminate analysis >3.0). Moreover, individuals with 25(OH)D >75 nmol/L had a higher abundance of genus Coprococcus and lower abundance of genus Ruminococcus compared to those with 25(OH)D <50 nmol/L. Our findings suggest that vitamin D supplementation has some distinct effects on faecal microbiota. Future studies need to explore whether these effects would translate into improved clinical outcomes.
Collapse
Affiliation(s)
- Negar Naderpoor
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3168 Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC 3168, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3168 Australia
| | | | - Helen L. Barrett
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Endocrinology, Mater Health, South Brisbane, QLD 4101, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4101, Australia
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3168 Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-3-857-22651; Fax: +61-3-9594-7554
| |
Collapse
|
38
|
Bosman ES, Albert AY, Lui H, Dutz JP, Vallance BA. Skin Exposure to Narrow Band Ultraviolet (UVB) Light Modulates the Human Intestinal Microbiome. Front Microbiol 2019; 10:2410. [PMID: 31708890 PMCID: PMC6821880 DOI: 10.3389/fmicb.2019.02410] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
The recent worldwide rise in idiopathic immune and inflammatory diseases such as multiple sclerosis (MS) and inflammatory bowel diseases (IBD) has been linked to Western society-based changes in lifestyle and environment. These include decreased exposure to sunlight/UVB light and subsequent impairment in the production of vitamin D, as well as dysbiotic changes in the makeup of the gut microbiome. Despite their association, it is unclear if there are any direct links between UVB light and the gut microbiome. In this study we investigated whether exposing the skin to Narrow Band Ultraviolet B (NB-UVB) light to increase serum vitamin D levels would also modulate the makeup of the human intestinal microbiota. The effects of NB-UVB light were studied in a clinical pilot study using a healthy human female cohort (n = 21). Participants were divided into those that took vitamin D supplements throughout the winter prior to the start of the study (VDS+) and those who did not (VDS−). After three NB-UVB light exposures within the same week, the serum 25(OH)D levels of participants increased on average 7.3 nmol/L. The serum response was negatively correlated to the starting 25-hydroxy vitamin D [25(OH)D] serum concentration. Fecal microbiota composition analysis using 16S rRNA sequencing showed that exposure to NB-UVB significantly increased alpha and beta diversity in the VDS− group whereas there were no changes in the VDS+ group. Bacteria from several families were enriched in the VDS− group after the UVB exposures according to a Linear Discriminant Analysis (LDA) prediction, including Lachnospiracheae, Rikenellaceae, Desulfobacteraceae, Clostridiales vadinBB60 group, Clostridia Family XIII, Coriobacteriaceae, Marinifilaceae, and Ruminococcus. The serum 25(OH)D concentrations showed a correlation with the relative abundance of the Lachnospiraceae, specifically members of the Lachnopsira and Fusicatenibacter genera. This is the first study to show that humans with low 25(OH)D serum levels display overt changes in their intestinal microbiome in response to NB-UVB skin exposure and increases in 25(OH)D levels, suggesting the existence of a novel skin-gut axis that could be used to promote intestinal homeostasis and health. Clinical Trial Registration:clinicaltrials.gov, NCT03962673. Registered 23 May 2019 – Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03962673?term=NCT03962673&rank=1.
Collapse
Affiliation(s)
- Else S Bosman
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y Albert
- BC Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Harvey Lui
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada.,British Columbia Cancer Agency, Departments of Cancer Control Research and Integrative Oncology, Vancouver, BC, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,BC Women's Hospital and Health Centre, Women's Health Research Institute, Vancouver, BC, Canada
| |
Collapse
|
39
|
Mousavi S, Lobo de Sá FD, Schulzke JD, Bücker R, Bereswill S, Heimesaat MM. Vitamin D in Acute Campylobacteriosis-Results From an Intervention Study Applying a Clinical Campylobacter jejuni Induced Enterocolitis Model. Front Immunol 2019; 10:2094. [PMID: 31552040 PMCID: PMC6735268 DOI: 10.3389/fimmu.2019.02094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Human Campylobacter infections are progressively rising and of high socioeconomic impact. In the present preclinical intervention study we investigated anti-pathogenic, immuno-modulatory, and intestinal epithelial barrier preserving properties of vitamin D applying an acute campylobacteriosis model. Therefore, secondary abiotic IL-10−/− mice were perorally treated with synthetic 25-OH-cholecalciferol starting 4 days before peroral Campylobacter jejuni infection. Whereas, 25-OH-cholecalciferol application did not affect gastrointestinal pathogen loads, 25-OH-cholecalciferol treated mice suffered less frequently from diarrhea in the midst of infection as compared to placebo control mice. Moreover, 25-OH-cholecalciferol application dampened C. jejuni induced apoptotic cell responses in colonic epithelia and promoted cell-regenerative measures. At day 6 post-infection, 25-OH-cholecalciferol treated mice displayed lower numbers of colonic innate and adaptive immune cell populations as compared to placebo controls that were accompanied by lower intestinal concentrations of pro-inflammatory mediators including IL-6, MCP1, and IFN-γ. Remarkably, as compared to placebo application synthetic 25-OH-cholecalciferol treatment of C. jejuni infected mice resulted in lower cumulative translocation rates of viable pathogens from the inflamed intestines to extra-intestinal including systemic compartments such as the kidneys and spleen, respectively, which was accompanied by less compromised colonic epithelial barrier function in the 25-OH-cholecalciferol as compared to the placebo cohort. In conclusion, our preclinical intervention study provides evidence that peroral synthetic 25-OH-cholecalciferol application exerts inflammation-dampening effects during acute campylobacteriosis.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
40
|
Hassanshahi M, Anderson PH, Sylvester CL, Stringer AM. Current evidence for vitamin D in intestinal function and disease. Exp Biol Med (Maywood) 2019; 244:1040-1052. [PMID: 31366237 DOI: 10.1177/1535370219867262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vitamin D activity is associated with the modulation of a wide variety of biological systems, in addition to its roles in calcium homeostatic mechanisms. While vitamin D is well known to promote gastrointestinal calcium absorption, vitamin D also plays a role in attenuating and/or preventing the progression of several gastrointestinal diseases including Crohn’s disease, ulcerative colitis, and colorectal cancer, and may also play a role in chemotherapy-induced intestinal mucositis. The pro-differentiation, immunomodulatory, and anti-inflammatory effects of vitamin D, which has been reported in numerous circumstances, are key potential mechanisms of action in the prevention of gastrointestinal disorders. While the debate of the effectiveness of vitamin D to treat bone pathologies continues, the clinical importance of vitamin D therapy to prevent gastrointestinal disorders should be investigated given current evidence, using both nutritional and pharmaceutical intervention approaches.Impact statementThe non-skeletal functions of vitamin D play an important role in health and disease. The anti-inflammatory properties and maintenance of intestinal function fulfilled by vitamin D impact other systems in the body though downstream processing. This review provides insight into the mechanisms underpinning the potential benefits of vitamin D in both maintaining intestinal homeostasis and associated diseased states.
Collapse
Affiliation(s)
| | - Paul H Anderson
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Cyan L Sylvester
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia
| | - Andrea M Stringer
- 1 School of Pharmacy and Medical Sciences, University of South Australia, Adelaide 5000, Australia.,2 Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
41
|
Cantorna MT, Lin YD, Arora J, Bora S, Tian Y, Nichols RG, Patterson AD. Vitamin D Regulates the Microbiota to Control the Numbers of RORγt/FoxP3+ Regulatory T Cells in the Colon. Front Immunol 2019; 10:1772. [PMID: 31417552 PMCID: PMC6682671 DOI: 10.3389/fimmu.2019.01772] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
The active form of vitamin D (1,25(OH)2D) suppresses experimental models of inflammatory bowel disease in part by regulating the microbiota. In this study, the role of vitamin D in the regulation of microbe induced RORγt/FoxP3+ T regulatory (reg) cells in the colon was determined. Vitamin D sufficient (D+) mice had significantly higher frequencies of FoxP3+ and RORγt/FoxP3+ T reg cells in the colon compared to vitamin D deficient (D-) mice. The higher frequency of RORγt/FoxP3+ T reg cells in D+ colon correlated with higher numbers of bacteria from the Clostridium XIVa and Bacteroides in D+ compared to D- cecum. D- mice with fewer RORγt/FoxP3+ T reg cells were significantly more susceptible to colitis than D+ mice. Transfer of the cecal bacteria from D+ or D- mice to germfree recipients phenocopied the higher numbers of RORγt/FoxP3+ cells and reduced susceptibility to colitis in D+ vs. D- recipient mice. 1,25(OH)2D treatment of the D- mice beginning at 3 weeks of age did not completely recover RORγt/FoxP3+ T reg cells or the Bacteriodes, Bacteriodes thetaiotaomicron, and Clostridium XIVa numbers to D+ values. Early vitamin D status shapes the microbiota to optimize the population of colonic RORγt/FoxP3+ T reg cells important for resistance to colitis.
Collapse
Affiliation(s)
- Margherita T. Cantorna
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Yang-Ding Lin
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Juhi Arora
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Stephanie Bora
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
| | - Yuan Tian
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, United States
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, China
| | - Robert G. Nichols
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
42
|
Does Irritable Bowel Syndrome Exist? Identifiable and Treatable Causes of Associated Symptoms Suggest It May Not. GASTROINTESTINAL DISORDERS 2019. [DOI: 10.3390/gidisord1030027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significant shortcomings in irritable bowel syndrome (IBS) diagnosis and treatment may arise from IBS being an “umbrella” diagnosis that clusters several underlying identifiable and treatable causes for the same symptom presentation into one classification. This view is compatible with the emerging understanding that the pathophysiology of IBS is heterogeneous with varied disease mechanisms responsible for the central pathological features. Collectively, these converging views of the pathophysiology, assessment and management of IBS render the traditional diagnosis and treatment of IBS less relevant; in fact, they suggest that IBS is not a disease entity per se and posit the question “does IBS exist?” The aim of this narrative review is to explore identifiable and treatable causes of digestive symptoms, including lifestyle, environmental and nutritional factors, as well as underlying functional imbalances, that may be misinterpreted as being IBS.
Collapse
|
43
|
Cantorna MT, Rogers CJ, Arora J. Aligning the Paradoxical Role of Vitamin D in Gastrointestinal Immunity. Trends Endocrinol Metab 2019; 30:459-466. [PMID: 31122825 PMCID: PMC6588413 DOI: 10.1016/j.tem.2019.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by inflammation of the gastrointestinal tract and an immune-mediated attack against the commensal microbiota. Vitamin D is an essential vitamin that not only promotes calcium and phosphate absorption but also regulates immune function. The active form of vitamin D [1,25(OH)2D] has been shown to suppress symptoms of IBD by inhibiting T cell responses. Host protection from gastrointestinal infection depends on T cells. Paradoxically, vitamin D deficiency increases susceptibility to IBD and gastrointestinal infection. Here we review the roles of vitamin D in immune cells using a kinetic model of the vitamin D-mediated effects on infection to explain the sometimes paradoxical effects of vitamin D on gastrointestinal immunity.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Connie J Rogers
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA; Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juhi Arora
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
44
|
Zuo K, Li J, Xu Q, Hu C, Gao Y, Chen M, Hu R, Liu Y, Chi H, Yin Q, Cao Y, Wang P, Qin Y, Liu X, Zhong J, Cai J, Li K, Yang X. Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 2019; 42:710-719. [PMID: 31099039 PMCID: PMC6672427 DOI: 10.1002/clc.23195] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background Accumulating studies have suggested that gut microbiota (GM) dysbiosis and vitamin D3 deficiency each play an important role during the progression of hypertension (HTN). However, few studies have characterized the underlying interaction between GM shift and vitamin D3 deficiency in HTN patients. Hypothesis This study aimed to evaluate the possible crosstalk between GM dysbiosis and vitamin D deficiency in the pathogenesis of HTN. Methods In a cohort of 34 HTN patients and 15 healthy controls, we analyzed the fecal microbiota products, GM composition, and the interaction between GM and vitamin D3. Results Vitamin D3 was significantly decreased in feces of HTN patients (P = .006, vs controls) and was correlated with altered GM, including decreased Shannon index (R2 = 0.1296, P = .0111) and Pielou evenness (R2 = 0.1509, P = .0058). Moreover, vitamin D3 positively correlated with HTN‐reduced bacterial genera, including Subdoligranulum (R2 = 0.181, P = .0023), Ruminiclostridium (R2 = 0.1217, P = .014), Intestinimonas (R2 = 0.2036, P = .0011), Pseudoflavonifractor (R2 = 0.1014, P = .0257), Paenibacillus (R2 = 0.089, P = .0373), and Marvinbryantia (R2 = 0.08173, P = .0464). Partial least squares structural equation modeling showed that 27.7% of the total effect of gut microbiome on HTN was mediated by limiting vitamin D production. Finally, receiver operating characteristic curve analysis revealed the predictive capacity of differential gut microbiome signatures and decreased vitamin D3 to distinguish HTN patients (AUC = 0.749, P = .006). Conclusions Our findings suggest that the GM dysbiosis contributing to the development of HTN might be partially mediated by vitamin D3 deficiency. Future studies involving the underlying mechanism and intervention strategies targeting microbiome composition and vitamin D3 to counteract the progression of HTN are warranted.
Collapse
Affiliation(s)
- Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiuhua Xu
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chaowei Hu
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yuanfeng Gao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Roumu Hu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ye Liu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qing Yin
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yudan Cao
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuibao Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Jalili M, Vahedi H, Poustchi H, Hekmatdoost A. Effects of Vitamin D Supplementation in Patients with Irritable Bowel Syndrome: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Int J Prev Med 2019; 10:16. [PMID: 30820303 PMCID: PMC6390425 DOI: 10.4103/ijpvm.ijpvm_512_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: There are some evidence that Vitamin D supplementation may be beneficial for patients with irritable bowel syndrome (IBS). The aim of this study was to evaluate the effects of Vitamin D supplementation on symptoms and quality of life (QOL) in patients with IBS. Methods: In a randomized, double-blind, placebo-controlled clinical trial, 116 patients with IBS were supplemented weekly with either a pearl of 50,000 IU Vitamin D or an identical pearl of placebo containing medium chain triglyceride for 6 weeks. Results: Mean age of patients was 42.24 ± 12.26, and 40.06 ± 13.37 in Vitamin D and placebo groups, respectively. Dietary intakes were similar between and within groups. Serum concentration of 25-hydroxy Vitamin D increased significantly from 21.10 ± 5.23 to 36.43 ± 12.34 in the Vitamin D group (P < 0.001), while it was not significantly different before and after the trial in placebo group. The IBS symptoms severity scores (SSSs), disease-specific QOL, and total score were evaluated at weeks 0 and 6. IBS-SSS, IBS-QOL, and the total score were improved significantly more in Vitamin D group in comparison to the placebo group (P < 0.05). Conclusions: This study indicates that Vitamin D therapy can improve the severity of symptoms and QOL in patients with IBS; however, the long-term effects remained to be elucidated. Trial registration at IRCT: IRCT201402234010N11 IRB Number: 116/3976
Collapse
Affiliation(s)
- Mahsa Jalili
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Homayoon Vahedi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Poustchi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Litonjua AA. Vitamin D Levels, Asthma, and Lung Function: Time to Act on Deficiency? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 5:797-798. [PMID: 28483321 DOI: 10.1016/j.jaip.2016.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
47
|
Vitamin D: is it important in haematopoietic stem cell transplantation? A review. Bone Marrow Transplant 2018; 54:810-820. [PMID: 30401967 DOI: 10.1038/s41409-018-0377-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/28/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Vitamin D has effects on several body systems, from well-established role in bone metabolism to emerging effects on the immune system. Increasing evidence supports an immunomodulatory effect including inhibition of the pro-inflammatory lymphocyte subsets while enhancing their anti-inflammatory counterpart, in favour of a more tolerogenic status. Vitamin D deficiency is increasingly recognised in association with autoimmune and inflammatory diseases, also with evidence from the field of asthma where vitamin D supplementation may overcome steroid resistance. In the HSCT setting, vitamin D deficiency has been variably associated with increased complications, including graft-versus-host disease (GvHD), with a potential impact on survival outcomes. In this review we provide an overview and critical appraisal of the current literature of the role of vitamin D (and its deficiency) in relation to immunity in both allogeneic and autologous HSCT settings. We conclude that the evidence base is mixed, but a greater understanding of the role of vitamin D in relation to immune reconstitution following HSCT is warranted. Given its potential benefits, its inexpensive cost and favourable side effect profile, consideration of vitamin D levels and its supplementation could be easily incorporated into prospective studies in GvHD, including clinical trials of novel therapeutics, supportive care and biomarkers.
Collapse
|
48
|
Sandgren AM, Brummer RJ. ADHD-originating in the gut? The emergence of a new explanatory model. Med Hypotheses 2018; 120:135-145. [DOI: 10.1016/j.mehy.2018.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
|
49
|
Waterhouse M, Hope B, Krause L, Morrison M, Protani MM, Zakrzewski M, Neale RE. Vitamin D and the gut microbiome: a systematic review of in vivo studies. Eur J Nutr 2018; 58:2895-2910. [PMID: 30324342 DOI: 10.1007/s00394-018-1842-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Variation in the human microbiome has been linked with a variety of physiological functions, including immune regulation and metabolism and biosynthesis of vitamins, hormones, and neurotransmitters. Evidence for extraskeletal effects of vitamin D has been accruing and it has been suggested that the effect of vitamin D on health is partially mediated through the microbiome. We aimed to critically evaluate the evidence linking vitamin D and the gastrointestinal microbiome. METHODS We systematically searched the Embase, Web of Science, PubMed and CINAHL databases, including peer-reviewed publications that reported an association between a measure of vitamin D and the gastrointestinal microbiome in humans or experimental animals. RESULTS We included 10 mouse and 14 human studies. Mouse studies compared mice fed diets containing different levels of vitamin D (usually high versus low), or vitamin D receptor knockout or Cyp27B1 knockout with wild-type mice. Five mouse studies reported an increase in Bacteroidetes (or taxa within that phylum) in the low vitamin D diet or gene knockout group. Human studies were predominantly observational; all but two of the included studies found some association between vitamin D and the gut microbiome, but the nature of differences observed varied across studies. CONCLUSIONS Despite substantial heterogeneity, we found evidence to support the hypothesis that vitamin D influences the composition of the gastrointestinal microbiome. However, the research is limited, having been conducted either in mice or in mostly small, selected human populations. Future research in larger population-based studies is needed to fully understand the extent to which vitamin D modulates the microbiome.
Collapse
Affiliation(s)
- Mary Waterhouse
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bronwyn Hope
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lutz Krause
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Instititute, Brisbane, Australia
| | - Mark Morrison
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Instititute, Brisbane, Australia
| | - Melinda M Protani
- School of Public Health, The University of Queensland, Brisbane, Australia
| | - Martha Zakrzewski
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
50
|
Laing B, Barnett MPG, Marlow G, Nasef NA, Ferguson LR. An update on the role of gut microbiota in chronic inflammatory diseases, and potential therapeutic targets. Expert Rev Gastroenterol Hepatol 2018; 12:969-983. [PMID: 30052094 DOI: 10.1080/17474124.2018.1505497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human microbiome plays a critical role in human health, having metabolic, protective, and trophic functions, depending upon its' exact composition. This composition is affected by a number of factors, including the genetic background of the individual, early life factors (including method of birth, length of breastfeeding) and nature of the diet and other environmental exposures (including cigarette smoking) and general life habits. It plays a key role in the control of inflammation, and in turn, its' composition is significantly influenced by inflammation. Areas covered: We consider metabolic, protective, and trophic functions of the microbiome and influences through the lifespan from post-partum effects, to diet later in life in healthy older adults, the effects of aging on both its' composition, and influence on health and potential therapeutic targets that may have anti-inflammatory effects. Expert commentary: The future will see the growth of more effective therapies targeting the microbiome particularly with respect to the use of specific nutrients and diets personalized to the individual.
Collapse
Affiliation(s)
- Bobbi Laing
- a Discipline of Nutrition and Dietetics, Faculty of Medical Health Sciences , The University of Auckland , Auckland , New Zealand.,b School of Nursing, Faculty of Medical and Health Sciences , The University of Auckland , Auckland , New Zealand
| | - Matthew P G Barnett
- c Food Nutrition & Health Team, Food & Bio-Based Products Group , AgResearch Limited , Palmerston North , New Zealand.,d Liggins Institute , The High-Value Nutrition National Science Challenge , Auckland , New Zealand.,e Riddet Institute , Massey University , Palmerston North , New Zealand
| | - Gareth Marlow
- f Institute of Medical Genetics , Cardiff University , Cardiff , Wales , UK
| | - Noha Ahmed Nasef
- e Riddet Institute , Massey University , Palmerston North , New Zealand.,g College of Health, Massey Institute of Food Science and Technology , Palmerston North , New Zealand
| | - Lynnette R Ferguson
- a Discipline of Nutrition and Dietetics, Faculty of Medical Health Sciences , The University of Auckland , Auckland , New Zealand.,h Auckland Cancer Research Society, Faculty of Medical and Health Sciences, Grafton Campus , The University of Auckland , Auckland , New Zealand
| |
Collapse
|