1
|
Amaral-Silva L, Santin J. Neural Processing without O 2 and Glucose Delivery: Lessons from the Pond to the Clinic. Physiology (Bethesda) 2024; 39:0. [PMID: 38624246 DOI: 10.1152/physiol.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Neuronal activity requires a large amount of ATP, leading to a rapid collapse of brain function when aerobic respiration fails. Here, we summarize how rhythmic motor circuits in the brain stem of adult frogs, which normally have high metabolic demands, transform to produce proper output during severe hypoxia associated with emergence from hibernation. We suggest that general principles underlying plasticity in brain bioenergetics may be uncovered by studying nonmammalian models that face extreme environments, yielding new insights to combat neurological disorders involving dysfunctional energy metabolism.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| | - Joseph Santin
- Division of Biology, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
2
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
3
|
Liu J, Guo Y, Zhang Y, Zhao X, Fu R, Hua S, Xu S. Astrocytes in ischemic stroke: Crosstalk in central nervous system and therapeutic potential. Neuropathology 2024; 44:3-20. [PMID: 37345225 DOI: 10.1111/neup.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
In the central nervous system (CNS), a large group of glial cells called astrocytes play important roles in both physiological and disease conditions. Astrocytes participate in the formation of neurovascular units and interact closely with other cells of the CNS, such as microglia and neurons. Stroke is a global disease with high mortality and disability rate, most of which are ischemic stroke. Significant strides in understanding astrocytes have been made over the past few decades. Astrocytes respond strongly to ischemic stroke through a process known as activation or reactivity. Given the important role played by reactive astrocytes (RAs) in different spatial and temporal aspects of ischemic stroke, there is a growing interest in the potential therapeutic role of astrocytes. Currently, interventions targeting astrocytes, such as mediating astrocyte polarization, reducing edema, regulating glial scar formation, and reprogramming astrocytes, have been proven in modulating the progression of ischemic stroke. The aforementioned potential interventions on astrocytes and the crosstalk between astrocytes and other cells of the CNS will be summarized in this review.
Collapse
Affiliation(s)
- Jueling Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
4
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Szrok-Jurga S, Turyn J, Hebanowska A, Swierczynski J, Czumaj A, Sledzinski T, Stelmanska E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13977. [PMID: 37762279 PMCID: PMC10531288 DOI: 10.3390/ijms241813977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
This review highlights the complex role of fatty acid β-oxidation in brain metabolism. It demonstrates the fundamental importance of fatty acid degradation as a fuel in energy balance and as an essential component in lipid homeostasis, brain aging, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.C.); (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (J.T.); (A.H.)
| |
Collapse
|
7
|
Collyer E, Blanco-Suarez E. Astrocytes in stroke-induced neurodegeneration: a timeline. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1240862. [PMID: 39086680 PMCID: PMC11285566 DOI: 10.3389/fmmed.2023.1240862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 08/02/2024]
Abstract
Stroke is a condition characterized by sudden deprivation of blood flow to a brain region and defined by different post-injury phases, which involve various molecular and cellular cascades. At an early stage during the acute phase, fast initial cell death occurs, followed by inflammation and scarring. This is followed by a sub-acute or recovery phase when endogenous plasticity mechanisms may promote spontaneous recovery, depending on various factors that are yet to be completely understood. At later time points, stroke leads to greater neurodegeneration compared to healthy controls in both clinical and preclinical studies, this is evident during the chronic phase when recovery slows down and neurodegenerative signatures appear. Astrocytes have been studied in the context of ischemic stroke due to their role in glutamate re-uptake, as components of the neurovascular unit, as building blocks of the glial scar, and synaptic plasticity regulators. All these roles render astrocytes interesting, yet understudied players in the context of stroke-induced neurodegeneration. With this review, we provide a summary of previous research, highlight astrocytes as potential therapeutic targets, and formulate questions about the role of astrocytes in the mechanisms during the acute, sub-acute, and chronic post-stroke phases that may lead to neurorestoration or neurodegeneration.
Collapse
Affiliation(s)
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Li K, Wang WH, Wu JB, Xiao WH. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases. Biomed Pharmacother 2023; 165:115191. [PMID: 37487440 DOI: 10.1016/j.biopha.2023.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
β-hydroxybutyrate (β-HB), the most abundant ketone body, is produced primarily in the liver and acts as a substitute energy fuel to provide energy to extrahepatic tissues in the event of hypoglycemia or glycogen depletion. We now have an improved understanding of β-HB as a signal molecule and epigenetic regulatory factor as a result of intensive research over the last ten years. Because β-HB regulates various physiological and pathological processes, it may have a potential role in the treatment of metabolic diseases. The liver is the most significant metabolic organ, and the part that β-HB plays in liver disorders is receiving increasing attention. In this review, we summarize the therapeutic effects of β-HB on liver diseases and its underlying mechanisms of action. Moreover, we explore the prospects of exogenous supplements and endogenous ketosis including fasting, caloric restriction (CR), ketogenic diet (KD), and exercise as adjuvant nutritional therapies to protect the liver from damage and provide insights and strategies for exploring the treatment of various liver diseases.
Collapse
Affiliation(s)
- Ke Li
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wen-Hong Wang
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Jia-Bin Wu
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei-Hua Xiao
- Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
9
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
10
|
Wang Y, Wang Y. Palmitic Acid Upregulates CD96 Expression to Mediate Maternal-Foetal Interface Immune Tolerance by Inhibiting Cytotoxic Activity and Promoting Adhesion Function in Human Decidual Natural Killer Cells. Bioengineering (Basel) 2023; 10:1008. [PMID: 37760110 PMCID: PMC10525720 DOI: 10.3390/bioengineering10091008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Decidual natural killer cells (dNK cells) are an essential component of the immune cells present at the maternal-foetal interface during early pregnancy, and they play a vital role in various physiological processes. Abnormalities in the ratio or function of dNK cells have been linked to recurrent miscarriages. CD96 has been previously shown to regulate NK cell function in the tumour microenvironment; however, its role and mechanism at the maternal-foetal interface remains unclear. The present study aimed to investigate the immunomodulatory role of CD96 in dNK cells and its function at the maternal-foetal interface. Immunofluorescence staining and flow cytometry were used to detect the expression of cellular markers such as CD96. Furthermore, the secretory function, adhesion-function-related molecules, and cell proliferation markers of CD96+ and CD96- dNK cells were detected using flow cytometry. In addition, we performed cell culture experiments via the magnetic bead sorting of NK cells to detect changes in the expression of the aforementioned functional molecules in dNK cells after the CD96 blockade. Furthermore, we examined the functional characteristics of dNK cells after palmitic acid treatment at a concentration of 10 μM. We also examined the changes in dNK cell function when subjected to the combined effect of palmitic acid and CD96 antagonists. The results indicated that CD96, TIGIT, CD155, and CD112 were highly expressed at the maternal-foetal interface, with dNK cells predominantly expressing CD96, whereas TIGIT was mainly expressed on T cells, and CD155 and CD112 were mainly present in metaphase stromal and trophoblast cells. CD96+ dNK cells displayed low cytotoxic activity and a high adhesion phenotype, which mediated the immunosuppressive effect on dNK cells at the maternal-foetal interface. Palmitic acid upregulated CD96 expression on the surface of dNK cells in the coculture system, inhibiting dNK cell activity and increasing their adhesion molecule expression. CD96 antagonist treatment blocked the inhibitory effect of trophoblasts on dNK cells, resulting in enhanced cytokine secretion and reduced adhesion. The results of this study provide valuable insight into the immunomodulatory role of CD96 in dNK cells and its mechanism at the maternal-foetal interface, particularly in metaphase NK cells. This study sheds light on the mechanisms of immune regulation at the maternal-foetal interface and their implications for the study of recurrent miscarriages of unknown origin.
Collapse
Affiliation(s)
| | - Yun Wang
- Department of Assisted Reproduction, School of Medicine, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, No. 500 Zhizaoju Road, Huangpu District, Shanghai 200025, China;
| |
Collapse
|
11
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
12
|
Pieróg M, Socała K, Nieoczym D, Wyska E, Samorek-Pieróg M, Wlaź P. Anticonvulsant Profile of Selected Medium-Chain Fatty Acids (MCFAs) Co-Administered with Metformin in Mice in Acute and Chronic Treatment. Molecules 2023; 28:molecules28093810. [PMID: 37175220 PMCID: PMC10179922 DOI: 10.3390/molecules28093810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.
Collapse
Affiliation(s)
- Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Samorek-Pieróg
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
13
|
Leitner DF, Siu Y, Korman A, Lin Z, Kanshin E, Friedman D, Devore S, Ueberheide B, Tsirigos A, Jones DR, Wisniewski T, Devinsky O. Metabolomic, proteomic, and transcriptomic changes in adults with epilepsy on modified Atkins diet. Epilepsia 2023; 64:1046-1060. [PMID: 36775798 PMCID: PMC10372873 DOI: 10.1111/epi.17540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
OBJECTIVE High-fat and low-carbohydrate diets can reduce seizure frequency in some treatment-resistant epilepsy patients, including the more flexible modified Atkins diet (MAD), which is more palatable, mimicking fasting and inducing high ketone body levels. Low-carbohydrate diets may shift brain energy production, particularly impacting neuron- and astrocyte-linked metabolism. METHODS We evaluated the effect of short-term MAD on molecular mechanisms in adult epilepsy patients from surgical brain tissue and plasma compared to control participants consuming a nonmodified higher carbohydrate diet (n = 6 MAD, mean age = 43.7 years, range = 21-53, diet for average 10 days; n = 10 control, mean age = 41.9 years, range = 28-64). RESULTS By metabolomics, there were 13 increased metabolites in plasma (n = 15 participants with available specimens), which included 4.10-fold increased ketone body 3-hydroxybutyric acid, decreased palmitic acid in cortex (n = 16), and 11 decreased metabolites in hippocampus (n = 6), which had top associations with mitochondrial functions. Cortex and plasma 3-hydroxybutyric acid levels had a positive correlation (p = .0088, R2 = .48). Brain proteomics and RNAseq identified few differences, including 2.75-fold increased hippocampal MT-ND3 and trends (p < .01, false discovery rate > 5%) in hippocampal nicotinamide adenine dinucleotide (NADH)-related signaling pathways (activated oxidative phosphorylation and inhibited sirtuin signaling). SIGNIFICANCE Short-term MAD was associated with metabolic differences in plasma and resected epilepsy brain tissue when compared to control participants, in combination with trending expression changes observed in hippocampal NADH-related signaling pathways. Future studies should evaluate how brain molecular mechanisms are altered with long-term MAD in a larger cohort of epilepsy patients, with correlations to seizure frequency, epilepsy syndrome, and other clinical variables. [Clinicaltrials.gov NCT02565966.].
Collapse
Affiliation(s)
- Dominique F. Leitner
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Yik Siu
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aryeh Korman
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Daniel Friedman
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Sasha Devore
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States of America
| |
Collapse
|
14
|
Sato S, Yu Z, Sakai M, Motoike IN, Saigusa D, Hirayama R, Kikuchi Y, Abe T, Kinoshita K, Koshiba S, Tomita H. Decreased β-hydroxybutyrate and ketogenic amino acid levels in depressed human adults. Eur J Neurosci 2023; 57:1018-1032. [PMID: 36750311 DOI: 10.1111/ejn.15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023]
Abstract
β-hydroxybutyrate (BHB) is a major ketone body synthesized mainly in the liver mitochondria and is associated with stress and severity of depression in humans. It is known to alleviate depressive-like behaviors in mouse models of depression. In this study, plasma BHB, ketogenic and glucogenic amino acids selected from the Tohoku Medical Megabank Project Community-Based Cohort Study were analysed and measured using nuclear magnetic resonance spectroscopy. The Center for Epidemiologic Studies Depression Scale (CES-D) was utilized to select adult participants with depressive symptoms (CES-D ≥ 16; n = 5722) and control participants (CES-D < 16; n = 18,150). We observed significantly reduced plasma BHB, leucine, and tryptophan levels in participants with depressive symptoms. Using social defeat stress (SDS) mice models, we found that BHB levels in mice sera increased after acute SDS, but showed no change after chronic SDS, which differed from human plasma results. Furthermore, acute SDS increased mitochondrial BHB levels in the prefrontal cortex at 6 h. In contrast, chronic SDS significantly increased the amount of food intake but reduced hepatic mitochondrial BHB levels in mice. Moreover, gene transcriptions of voltage-dependent anion-selective channel 1 (Vdac1) and monocarboxylic acid transporter 1 (Mct1), major molecules relevant to mitochondrial biogenesis and BHB transporter, significantly decreased in the liver and PFC after chronic SDS exposure. These results provide evidence that hepatic and prefrontal mitochondrial biogenesis plays an important role in BHB synthesis under chronic stress and in humans with depressive symptoms.
Collapse
Affiliation(s)
- Shiho Sato
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Health Science, Tohoku University, Sendai, Japan
| | - Ikuko N Motoike
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Hirayama
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Biomedical Engineering Regenerative and Biomedical Engineering Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of System Bioinformatics, Tohoku University Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Preventive Medicine and Epidemiology, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
15
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
16
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 2022; 29:24-36. [PMID: 36193573 PMCID: PMC9804080 DOI: 10.1111/cns.13982] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Maoqiang Xue
- Department of Basic Medical Science, School of MedicineXiamen UniversityXiamenChina
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
17
|
ß-Hydroxybutyrate Improves Mitochondrial Function After Transient Ischemia in the Mouse. Neurochem Res 2022; 47:3241-3249. [PMID: 35674929 PMCID: PMC9546981 DOI: 10.1007/s11064-022-03637-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/12/2022] [Indexed: 11/03/2022]
Abstract
ß-Hydroxybutyrate (BHB) is a ketone body formed in high amounts during lipolysis and fasting. Ketone bodies and the ketogenic diet were suggested as neuroprotective agents in neurodegenerative disease. In the present work, we induced transient ischemia in mouse brain by unilaterally occluding the middle cerebral artery for 90 min. BHB (30 mg/kg), given immediately after reperfusion, significantly improved the neurological score determined after 24 h. In isolated mitochondria from mouse brain, oxygen consumption by the complexes I, II and IV was reduced immediately after ischemia but recovered slowly over 1 week. The single acute BHB administration after reperfusion improved complex I and II activity after 24 h while no significant effects were seen at later time points. After 24 h, plasma and brain BHB concentrations were strongly increased while mitochondrial intermediates (citrate, succinate) were unchanged in brain tissue. Our data suggest that a single administration of BHB may improve mitochondrial respiration for 1-2 days but not for later time points. Endogenous BHB formation seems to complement the effects of exogenous BHB administration.
Collapse
|
18
|
Takahashi S. Metabolic Contribution and Cerebral Blood Flow Regulation by Astrocytes in the Neurovascular Unit. Cells 2022; 11:cells11050813. [PMID: 35269435 PMCID: PMC8909328 DOI: 10.3390/cells11050813] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The neurovascular unit (NVU) is a conceptual framework that has been proposed to better explain the relationships between the neural cells and blood vessels in the human brain, focused mainly on the brain gray matter. The major components of the NVU are the neurons, astrocytes (astroglia), microvessels, pericytes, and microglia. In addition, we believe that oligodendrocytes should also be included as an indispensable component of the NVU in the white matter. Of all these components, astrocytes in particular have attracted the interest of researchers because of their unique anatomical location; these cells are interposed between the neurons and the microvessels of the brain. Their location suggests that astrocytes might regulate the cerebral blood flow (CBF) in response to neuronal activity, so as to ensure an adequate supply of glucose and oxygen to meet the metabolic demands of the neurons. In fact, the adult human brain, which accounts for only 2% of the entire body weight, consumes approximately 20–25% of the total amount of glucose and oxygen consumed by the whole body. The brain needs a continuous supply of these essential energy sources through the CBF, because there are practically no stores of glucose or oxygen in the brain; both acute and chronic cessation of CBF can adversely affect brain functions. In addition, another important putative function of the NVU is the elimination of heat and waste materials produced by neuronal activity. Recent evidence suggests that astrocytes play pivotal roles not only in supplying glucose, but also fatty acids and amino acids to neurons. Loss of astrocytic support can be expected to lead to malfunction of the NVU as a whole, which underlies numerous neurological disorders. In this review, we shall focus on historical and recent findings with regard to the metabolic contributions of astrocytes in the NVU.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and Stroke, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi 350-1298, Japan; ; Tel.: +81-42-984-4111 (ext. 7412) or +81-3-3353-1211 (ext. 62613); Fax: +81-42-984-0664 or +81-3-3357-5445
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Gorina YV, Salmina AB, Erofeev AI, Can Z, Bolshakova AV, Balaban PM, Bezprozvanny IB, Vlasova OL. Metabolic Plasticity of Astrocytes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021060016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Sánchez-Alegría K, Bastián-Eugenio CE, Vaca L, Arias C. Palmitic acid induces insulin resistance by a mechanism associated with energy metabolism and calcium entry in neuronal cells. FASEB J 2021; 35:e21712. [PMID: 34110637 DOI: 10.1096/fj.202100243r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023]
Abstract
Palmitic acid (PA) is a saturated fatty acid whose high consumption has been largely associated with the development of different metabolic alterations, such as insulin resistance, metabolic syndrome, and type 2 diabetes. Particularly in the brain, insulin signaling disruption has been linked to cognitive decline and is considered a risk factor for Alzheimer's disease. Cumulative evidence has demonstrated the participation of PA in the molecular cascade underlying cellular insulin resistance in peripheral tissues, but its role in the development of neuronal insulin resistance and the mechanisms involved are not fully understood. It has generally been accepted that the brain does not utilize fatty acids as a primary energy source, but recent evidence shows that neurons possess the machinery for fatty acid β-oxidation. However, it is still unclear under what conditions neurons use fatty acids as energy substrates and the implications of their oxidative metabolism in modifying insulin-stimulated effects. In the present work, we have found that neurons differentiated from human neuroblastoma MSN exposed to high but nontoxic concentrations of PA generate ATP through mitochondrial metabolism, which is associated with an increase in the cytosolic Ca2+ and diminished insulin signaling in neurons. These findings reveal a novel mechanism by which saturated fatty acids produce Ca2+ entry and insulin resistance that may play a causal role in increasing neuronal vulnerability associated with metabolic diseases.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carlos Ernesto Bastián-Eugenio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Vaca
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
21
|
Hernández IH, Villa-González M, Martín G, Soto M, Pérez-Álvarez MJ. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021; 10:1639. [PMID: 34208834 PMCID: PMC8305833 DOI: 10.3390/cells10071639] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is the second cause of mortality and the first cause of long-term disability constituting a serious socioeconomic burden worldwide. Approved treatments include thrombectomy and rtPA intravenous administration, which, despite their efficacy in some cases, are not suitable for a great proportion of patients. Glial cell-related therapies are progressively overcoming inefficient neuron-centered approaches in the preclinical phase. Exploiting the ability of microglia to naturally switch between detrimental and protective phenotypes represents a promising therapeutic treatment, in a similar way to what happens with astrocytes. However, the duality present in many of the roles of these cells upon ischemia poses a notorious difficulty in disentangling the precise pathways to target. Still, promoting M2/A2 microglia/astrocyte protective phenotypes and inhibiting M1/A1 neurotoxic profiles is globally rendering promising results in different in vivo models of stroke. On the other hand, described oligodendrogenesis after brain ischemia seems to be strictly beneficial, although these cells are the less studied players in the stroke paradigm and negative effects could be described for oligodendrocytes in the next years. Here, we review recent advances in understanding the precise role of mentioned glial cell types in the main pathological events of ischemic stroke, including inflammation, blood brain barrier integrity, excitotoxicity, reactive oxygen species management, metabolic support, and neurogenesis, among others, with a special attention to tested therapeutic approaches.
Collapse
Affiliation(s)
- Ivó H Hernández
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Mario Villa-González
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gerardo Martín
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Soto
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María José Pérez-Álvarez
- Center for Molecular Biology "Severo Ochoa" (CBMSO) UAM/CSIC, 28049 Madrid, Spain
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
A Phase I clinical trial of dose-escalated metabolic therapy combined with concomitant radiation therapy in high-grade glioma. J Neurooncol 2021; 153:487-496. [PMID: 34152528 DOI: 10.1007/s11060-021-03786-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Animal brain-tumor models have demonstrated a synergistic interaction between radiation therapy and a ketogenic diet (KD). Metformin has in-vitro anti-cancer activity, through AMPK activation and mTOR inhibition. We hypothesized that the metabolic stress induced by a KD combined with metformin would enhance radiation's efficacy. We sought to assess the tolerability and feasibility of this approach. METHODS A single-institution phase I clinical trial. Radiotherapy was either 60 or 35 Gy over 6 or 2 weeks, for newly diagnosed and recurrent gliomas, respectively. The dietary intervention consisted of a Modified Atkins Diet (ModAD) supplemented with medium chain triglycerides (MCT). There were three cohorts: Dietary intervention alone, and dietary intervention combined with low-dose or high-dose metformin; all patients received radiotherapy. Factors associated with blood ketone levels were investigated using a mixed-model analysis. RESULTS A total of 13 patients were accrued, median age 61 years, of whom six had newly diagnosed and seven with recurrent disease. All completed radiation therapy; five patients stopped the metabolic intervention early. Metformin 850 mg three-times daily was poorly tolerated. There were no serious adverse events. Ketone levels were associated with dietary factors (ketogenic ratio, p < 0.001), use of metformin (p = 0. 02) and low insulin levels (p = 0.002). Median progression free survival was ten and four months for newly diagnosed and recurrent disease, respectively. CONCLUSIONS The intervention was well tolerated. Higher serum ketone levels were associated with both dietary intake and metformin use. The recommended phase II dose is eight weeks of a ModAD combined with 850 mg metformin twice daily.
Collapse
|
23
|
Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22126568. [PMID: 34207355 PMCID: PMC8234992 DOI: 10.3390/ijms22126568] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Astrocytes (also, astroglia) consume huge amounts of glucose and produce lactate regardless of sufficient oxygen availability, indicating a high capacity for aerobic glycolysis. Glycolysis in astrocytes is activated in accordance with neuronal excitation and leads to increases in the release of lactate from astrocytes. Although the fate of this lactate remains somewhat controversial, it is believed to fuel neurons as an energy substrate. Besides providing lactate, astrocytic glycolysis plays an important role in neuroprotection. Among the minor pathways of glucose metabolism, glucose flux to the pentose-phosphate pathway (PPP), a major shunt pathway of glycolysis, is attracting research interest. In fact, PPP activity in astrocytes is five to seven times higher than that in neurons. The astrocytic PPP plays a key role in protecting neurons against oxidative stress by providing neurons with a reduced form of glutathione, which is necessary to eliminate reactive oxygen species. Therefore, enhancing astrocytic glycolysis might promote neuronal protection during acute ischemic stroke. Contrariwise, the dysfunction of astrocytic glycolysis and the PPP have been implicated in the pathogenesis of various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, since mitochondrial dysfunction and oxidative stress trigger and accelerate disease progression.
Collapse
|
24
|
Lana D, Ugolini F, Giovannini MG. An Overview on the Differential Interplay Among Neurons-Astrocytes-Microglia in CA1 and CA3 Hippocampus in Hypoxia/Ischemia. Front Cell Neurosci 2020; 14:585833. [PMID: 33262692 PMCID: PMC7686560 DOI: 10.3389/fncel.2020.585833] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons have been long regarded as the basic functional cells of the brain, whereas astrocytes and microglia have been regarded only as elements of support. However, proper intercommunication among neurons-astrocytes-microglia is of fundamental importance for the functional organization of the brain. Perturbation in the regulation of brain energy metabolism not only in neurons but also in astrocytes and microglia may be one of the pathophysiological mechanisms of neurodegeneration, especially in hypoxia/ischemia. Glial activation has long been considered detrimental for survival of neurons, but recently it appears that glial responses to an insult are not equal but vary in different brain areas. In this review, we first take into consideration the modifications of the vascular unit of the glymphatic system and glial metabolism in hypoxic conditions. Using the method of triple-labeling fluorescent immunohistochemistry coupled with confocal microscopy (TIC), we recently studied the interplay among neurons, astrocytes, and microglia in chronic brain hypoperfusion. We evaluated the quantitative and morpho-functional alterations of the neuron-astrocyte-microglia triads comparing the hippocampal CA1 area, more vulnerable to ischemia, to the CA3 area, less vulnerable. In these contiguous and interconnected areas, in the same experimental hypoxic conditions, astrocytes and microglia show differential, finely regulated, region-specific reactivities. In both areas, astrocytes and microglia form triad clusters with apoptotic, degenerating neurons. In the neuron-astrocyte-microglia triads, the cell body of a damaged neuron is infiltrated and bisected by branches of astrocyte that create a microscar around it while a microglial cell phagocytoses the damaged neuron. These coordinated actions are consistent with the scavenging and protective activities of microglia. In hypoxia, the neuron-astrocyte-microglia triads are more numerous in CA3 than in CA1, further indicating their protective effects. These data, taken from contiguous and interconnected hippocampal areas, demonstrate that glial response to the same hypoxic insult is not equal but varies significantly. Understanding the differences of glial reactivity is of great interest to explain the differential susceptibility of hippocampal areas to hypoxia/ischemia. Further studies may evidence the differential reactivity of glia in different brain areas, explaining the higher or lower sensitivity of these areas to different insults and whether glia may represent a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Florence, Italy
| | - Maria G Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci 2020; 14:536682. [PMID: 33224019 PMCID: PMC7674659 DOI: 10.3389/fnins.2020.536682] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), anaplerotic inputs and cataplerotic outputs, as well as carbon shuttles to neurons, which highlight the metabolic specialization of astrocytic mitochondria and its relevance to brain function.
Collapse
Affiliation(s)
- Jordan Rose
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Christian Brian
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
26
|
Watanabe M, Tuccinardi D, Ernesti I, Basciani S, Mariani S, Genco A, Manfrini S, Lubrano C, Gnessi L. Scientific evidence underlying contraindications to the ketogenic diet: An update. Obes Rev 2020; 21:e13053. [PMID: 32648647 PMCID: PMC7539910 DOI: 10.1111/obr.13053] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
First identified as a feasible treatment for intractable epilepsy, the ketogenic diet (KD) has recently gained popularity thanks to growing evidence on applications such as weight loss, most importantly, but also NAFLD, cancer, neurologic conditions and chronic pain. As with any treatment, whether pharmacologic or not, the KD might not be an appropriate intervention for every individual, and a number of contraindications have been proposed, now deeply rooted into clinical practice, excluding de facto many patients that could benefit from its use. However, many of these concerns were expressed due to the absence of clinical studies conducted on fragile populations, and an assessment of lately emerged evidence relative to KD safety is currently lacking and much needed. We herein provide a critical revision of the literature behind each safety alert, in order to guide through the treatment options in the case of subjects with an indication to the KD and a borderline safe situation. Based on available evidence, the possible use of this diet as a therapeutic intervention should be assessed on a patient-to-patient basis by adequately skilled medical doctors, keeping in mind current recommendations, but reading them through the knowledge of the current state of the art.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Ilaria Ernesti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy.,Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Alfredo Genco
- Department of Surgical Sciences, Surgical Endoscopy Unit, Sapienza University of Rome, Rome, Italy
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
28
|
Tan C, Liu X, Peng W, Wang H, Zhou W, Jiang J, Wei X, Mo L, Chen Y, Chen L. Seizure-induced impairment in neuronal ketogenesis: Role of zinc-α2-glycoprotein in mitochondria. J Cell Mol Med 2020; 24:6833-6845. [PMID: 32340079 PMCID: PMC7299723 DOI: 10.1111/jcmm.15337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/11/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.
Collapse
Affiliation(s)
- Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology 2020; 40:121-137. [PMID: 32037635 PMCID: PMC7187297 DOI: 10.1111/neup.12639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Astroglia or astrocytes, the most abundant cells in the brain, are interposed between neuronal synapses and microvasculature in the brain gray matter. They play a pivotal role in brain metabolism as well as in the regulation of cerebral blood flow, taking advantage of their unique anatomical location. In particular, the astroglial cellular metabolic compartment exerts supportive roles in dedicating neurons to the generation of action potentials and protects them against oxidative stress associated with their high energy consumption. An impairment of normal astroglial function, therefore, can lead to numerous neurological disorders including stroke, neurodegenerative diseases, and neuroimmunological diseases, in which metabolic derangements accelerate neuronal damage. The neurovascular unit (NVU), the major components of which include neurons, microvessels, and astroglia, is a conceptual framework that was originally used to better understand the pathophysiology of cerebral ischemia. At present, the NVU is a tool for understanding normal brain physiology as well as the pathophysiology of numerous neurological disorders. The metabolic responses of astroglia in the NVU can be either protective or deleterious. This review focuses on three major metabolic compartments: (i) glucose and lactate; (ii) fatty acid and ketone bodies; and (iii) D- and L-serine. Both the beneficial and the detrimental roles of compartmentalization between neurons and astroglia will be discussed. A better understanding of the astroglial metabolic response in the NVU is expected to lead to the development of novel therapeutic strategies for diverse neurological diseases.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Neurology and StrokeSaitama Medical University International Medical CenterSaitamaJapan
- Department of PhysiologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
30
|
Morris G, Maes M, Berk M, Carvalho AF, Puri BK. Nutritional ketosis as an intervention to relieve astrogliosis: Possible therapeutic applications in the treatment of neurodegenerative and neuroprogressive disorders. Eur Psychiatry 2020; 63:e8. [PMID: 32093791 PMCID: PMC8057392 DOI: 10.1192/j.eurpsy.2019.13] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nutritional ketosis, induced via either the classical ketogenic diet or the use of emulsified medium-chain triglycerides, is an established treatment for pharmaceutical resistant epilepsy in children and more recently in adults. In addition, the use of oral ketogenic compounds, fractionated coconut oil, very low carbohydrate intake, or ketone monoester supplementation has been reported to be potentially helpful in mild cognitive impairment, Parkinson’s disease, schizophrenia, bipolar disorder, and autistic spectrum disorder. In these and other neurodegenerative and neuroprogressive disorders, there are detrimental effects of oxidative stress, mitochondrial dysfunction, and neuroinflammation on neuronal function. However, they also adversely impact on neurone–glia interactions, disrupting the role of microglia and astrocytes in central nervous system (CNS) homeostasis. Astrocytes are the main site of CNS fatty acid oxidation; the resulting ketone bodies constitute an important source of oxidative fuel for neurones in an environment of glucose restriction. Importantly, the lactate shuttle between astrocytes and neurones is dependent on glycogenolysis and glycolysis, resulting from the fact that the astrocytic filopodia responsible for lactate release are too narrow to accommodate mitochondria. The entry into the CNS of ketone bodies and fatty acids, as a result of nutritional ketosis, has effects on the astrocytic glutamate–glutamine cycle, glutamate synthase activity, and on the function of vesicular glutamate transporters, EAAT, Na+, K+-ATPase, Kir4.1, aquaporin-4, Cx34 and KATP channels, as well as on astrogliosis. These mechanisms are detailed and it is suggested that they would tend to mitigate the changes seen in many neurodegenerative and neuroprogressive disorders. Hence, it is hypothesized that nutritional ketosis may have therapeutic applications in such disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia.,Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Metformin and cognition from the perspectives of sex, age, and disease. GeroScience 2020; 42:97-116. [PMID: 31897861 DOI: 10.1007/s11357-019-00146-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.
Collapse
|
32
|
Gross EC, Klement RJ, Schoenen J, D'Agostino DP, Fischer D. Potential Protective Mechanisms of Ketone Bodies in Migraine Prevention. Nutrients 2019; 11:E811. [PMID: 30974836 PMCID: PMC6520671 DOI: 10.3390/nu11040811] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
An increasing amount of evidence suggests that migraines are a response to a cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity. The ketogenic diet (KD), a diet mimicking fasting that leads to the elevation of ketone bodies (KBs), is a therapeutic intervention targeting cerebral metabolism that has recently shown great promise in the prevention of migraines. KBs are an alternative fuel source for the brain, and are thus likely able to circumvent some of the abnormalities in glucose metabolism and transport found in migraines. Recent research has shown that KBs-D-β-hydroxybutyrate in particular-are more than metabolites. As signalling molecules, they have the potential to positively influence other pathways commonly believed to be part of migraine pathophysiology, namely: mitochondrial functioning, oxidative stress, cerebral excitability, inflammation and the gut microbiome. This review will describe the mechanisms by which the presence of KBs, D-BHB in particular, could influence those migraine pathophysiological mechanisms. To this end, common abnormalities in migraines are summarised with a particular focus on clinical data, including phenotypic, biochemical, genetic and therapeutic studies. Experimental animal data will be discussed to elaborate on the potential therapeutic mechanisms of elevated KBs in migraine pathophysiology, with a particular focus on the actions of D-BHB. In complex diseases such as migraines, a therapy that can target multiple possible pathogenic pathways seems advantageous. Further research is needed to establish whether the absence/restriction of dietary carbohydrates, the presence of KBs, or both, are of primary importance for the migraine protective effects of the KD.
Collapse
Affiliation(s)
- Elena C Gross
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| | - Rainer J Klement
- Department of Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422 Schweinfurt, Germany.
| | - Jean Schoenen
- Headache Research Unit, University of Liège, Dept of Neurology-Citadelle Hospital, 4000 Liège, Belgium.
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Metabolic Medicine Research Laboratory, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA.
| | - Dirk Fischer
- Division of Paediatric Neurology, University Children's Hospital Basel (UKBB), University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
33
|
Morita M, Ikeshima-Kataoka H, Kreft M, Vardjan N, Zorec R, Noda M. Metabolic Plasticity of Astrocytes and Aging of the Brain. Int J Mol Sci 2019; 20:ijms20040941. [PMID: 30795555 PMCID: PMC6413111 DOI: 10.3390/ijms20040941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
As part of the blood-brain-barrier, astrocytes are ideally positioned between cerebral vasculature and neuronal synapses to mediate nutrient uptake from the systemic circulation. In addition, astrocytes have a robust enzymatic capacity of glycolysis, glycogenesis and lipid metabolism, managing nutrient support in the brain parenchyma for neuronal consumption. Here, we review the plasticity of astrocyte energy metabolism under physiologic and pathologic conditions, highlighting age-dependent brain dysfunctions. In astrocytes, glycolysis and glycogenesis are regulated by noradrenaline and insulin, respectively, while mitochondrial ATP production and fatty acid oxidation are influenced by the thyroid hormone. These regulations are essential for maintaining normal brain activities, and impairments of these processes may lead to neurodegeneration and cognitive decline. Metabolic plasticity is also associated with (re)activation of astrocytes, a process associated with pathologic events. It is likely that the recently described neurodegenerative and neuroprotective subpopulations of reactive astrocytes metabolize distinct energy substrates, and that this preference is supposed to explain some of their impacts on pathologic processes. Importantly, physiologic and pathologic properties of astrocytic metabolic plasticity bear translational potential in defining new potential diagnostic biomarkers and novel therapeutic targets to mitigate neurodegeneration and age-related brain dysfunctions.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Graduate School of Sciences, Kobe University, 657-8501 Kobe, Japan.
| | - Hiroko Ikeshima-Kataoka
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Marko Kreft
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Nina Vardjan
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
34
|
Expression and Function of Zinc-α2-Glycoprotein. Neurosci Bull 2019; 35:540-550. [PMID: 30610461 DOI: 10.1007/s12264-018-00332-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG), encoded by the AZGP1 gene, is a major histocompatibility complex I molecule and a lipid-mobilizing factor. ZAG has been demonstrated to promote lipid metabolism and glucose utilization, and to regulate insulin sensitivity. Apart from adipose tissue, skeletal muscle, liver, and kidney, ZAG also occurs in brain tissue, but its distribution in brain is debatable. Only a few studies have investigated ZAG in the brain. It has been found in the brains of patients with Krabbe disease and epilepsy, and in the cerebrospinal fluid of patients with Alzheimer disease, frontotemporal lobe dementia, and amyotrophic lateral sclerosis. Both ZAG protein and AZGP1 mRNA are decreased in epilepsy patients and animal models, while overexpression of ZAG suppresses seizure and epileptic discharges in animal models of epilepsy, but knowledge of the specific mechanism of ZAG in epilepsy is limited. In this review, we summarize the known roles and molecular mechanisms of ZAG in lipid metabolism and glucose metabolism, and in the regulation of insulin sensitivity, and discuss the possible mechanisms by which it suppresses epilepsy.
Collapse
|
35
|
Gao J, Xiong R, Xiong D, Zhao W, Zhang S, Yin T, Zhang X, Jiang G, Yin Z. The Adenosine Monophosphate (AMP) Analog, 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Inhibits Hepatosteatosis and Liver Tumorigenesis in a High-Fat Diet Murine Model Treated with Diethylnitrosamine (DEN). Med Sci Monit 2018; 24:8533-8543. [PMID: 30474622 PMCID: PMC6278641 DOI: 10.12659/msm.910544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The development and progression of hepatocellular carcinoma (HCC) are associated with obesity and hepatosteatosis. AMP-activated protein kinase (AMPK) regulates metabolic homeostasis. This study aimed to investigate the effects of treatment with the adenosine monophosphate (AMP) analog, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) on hepatosteatosis in a mouse model fed a high-fat diet (HFD), and on hepatocellular carcinoma (HCC) induced by diethylnitrosamine (DEN) in the HFD mouse model. Material/Methods Male C57BL/6 male mice from two weeks of age were fed a high-fat diet, resulting in hepatosteatosis. HFD mice (15–20 per group) were treated with AICAR and without AICAR. HFD mice were treated with DEN, with and without AICAR. Mouse liver tissues were examined histologically using lipid histochemical stains, immunohistochemistry, and immunofluorescence. Levels of cytokines, alanine transaminase (ALT), triacylglyceride (TAG), and apoptosis were determined. Western blot was used to detect AMPK, pAMPK, STAT3, and pSTAT3. Real-time polymerase chain reaction (RT-PCR) detected expression of the ACL, FAS, CD36, ATGL, CPT1, and IL6 genes. Results In the HFD mouse model, AICAR treatment inhibited hepatic lipid synthesis and IL-6 expression. In the DEN-treated mice, AICAR treatment reduced tumorigenesis, IL-6 signaling, and STAT3 activation. Short-term AICAR treatment had no significant effect in advanced HCC. Conclusions In an HFD mouse model, treatment with AICAR reduced the development of hepatosteatosis, and following treatment with the liver carcinogen, DEN, AICAR reduced the development of HCC. These preliminary findings support further studies on the role of AICAR in fatty liver disease and HCC.
Collapse
Affiliation(s)
- Jianlong Gao
- Department of Minimally Invasive Interventional Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Rui Xiong
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Dan Xiong
- Department of Radiology, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Wenxing Zhao
- Department of Surgery, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Tao Yin
- Department of Hepatobiliary Surgery, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Xinhua Zhang
- Department of Minimally Invasive Interventional Oncology, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Guozhen Jiang
- Department of Public Health, Hua Rong Central Health Hospital, Ezhou, Hubei, China (mainland)
| | - Zhengyu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China (mainland).,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China (mainland)
| |
Collapse
|
36
|
Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation. PLoS One 2018; 13:e0195520. [PMID: 29617444 PMCID: PMC5884621 DOI: 10.1371/journal.pone.0195520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/23/2018] [Indexed: 11/19/2022] Open
Abstract
Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations.
Collapse
|
37
|
Freese J, Klement RJ, Ruiz-Núñez B, Schwarz S, Lötzerich H. The sedentary (r)evolution: Have we lost our metabolic flexibility? F1000Res 2017; 6:1787. [PMID: 29225776 DOI: 10.12688/f1000research.12724.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
During the course of evolution, up until the agricultural revolution, environmental fluctuations forced the human species to develop a flexible metabolism in order to adapt its energy needs to various climate, seasonal and vegetation conditions. Metabolic flexibility safeguarded human survival independent of food availability. In modern times, humans switched their primal lifestyle towards a constant availability of energy-dense, yet often nutrient-deficient, foods, persistent psycho-emotional stressors and a lack of exercise. As a result, humans progressively gain metabolic disorders, such as the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, certain types of cancer, cardiovascular disease and Alzheimer´s disease, wherever the sedentary lifestyle spreads in the world. For more than 2.5 million years, our capability to store fat for times of food shortage was an outstanding survival advantage. Nowadays, the same survival strategy in a completely altered surrounding is responsible for a constant accumulation of body fat. In this article, we argue that the metabolic disease epidemic is largely based on a deficit in metabolic flexibility. We hypothesize that the modern energetic inflexibility, typically displayed by symptoms of neuroglycopenia, can be reversed by re-cultivating suppressed metabolic programs, which became obsolete in an affluent environment, particularly the ability to easily switch to ketone body and fat oxidation. In a simplified model, the basic metabolic programs of humans' primal hunter-gatherer lifestyle are opposed to the current sedentary lifestyle. Those metabolic programs, which are chronically neglected in modern surroundings, are identified and conclusions for the prevention of chronic metabolic diseases are drawn.
Collapse
Affiliation(s)
- Jens Freese
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, 50933, Germany
| | - Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, 97422, Germany
| | - Begoña Ruiz-Núñez
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713, Netherlands
| | - Sebastian Schwarz
- University College Physiotherapy Thim van der Laan,, Landquart, 7302, Switzerland
| | - Helmut Lötzerich
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, 50933, Germany
| |
Collapse
|
38
|
Freese J, Klement RJ, Ruiz-Núñez B, Schwarz S, Lötzerich H. The sedentary (r)evolution: Have we lost our metabolic flexibility? F1000Res 2017; 6:1787. [PMID: 29225776 PMCID: PMC5710317 DOI: 10.12688/f1000research.12724.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
During the course of evolution, up until the agricultural revolution, environmental fluctuations forced the human species to develop a flexible metabolism in order to adapt its energy needs to various climate, seasonal and vegetation conditions. Metabolic flexibility safeguarded human survival independent of food availability. In modern times, humans switched their primal lifestyle towards a constant availability of energy-dense, yet often nutrient-deficient, foods, persistent psycho-emotional stressors and a lack of exercise. As a result, humans progressively gain metabolic disorders, such as the metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, certain types of cancer, cardiovascular disease and Alzheimer´s disease, wherever the sedentary lifestyle spreads in the world. For more than 2.5 million years, our capability to store fat for times of food shortage was an outstanding survival advantage. Nowadays, the same survival strategy in a completely altered surrounding is responsible for a constant accumulation of body fat. In this article, we argue that the metabolic disease epidemic is largely based on a deficit in metabolic flexibility. We hypothesize that the modern energetic inflexibility, typically displayed by symptoms of neuroglycopenia, can be reversed by re-cultivating suppressed metabolic programs, which became obsolete in an affluent environment, particularly the ability to easily switch to ketone body and fat oxidation. In a simplified model, the basic metabolic programs of humans’ primal hunter-gatherer lifestyle are opposed to the current sedentary lifestyle. Those metabolic programs, which are chronically neglected in modern surroundings, are identified and conclusions for the prevention of chronic metabolic diseases are drawn.
Collapse
Affiliation(s)
- Jens Freese
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, 50933, Germany
| | - Rainer Johannes Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Schweinfurt, 97422, Germany
| | - Begoña Ruiz-Núñez
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713, Netherlands
| | - Sebastian Schwarz
- University College Physiotherapy Thim van der Laan,, Landquart, 7302, Switzerland
| | - Helmut Lötzerich
- Institute of Outdoor Sports and Environmental Science, German Sports University Cologne, Cologne, 50933, Germany
| |
Collapse
|
39
|
Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaihed A, Filisio F, Giles-Davis W, Xu X, Karakousis GC, Schuchter LM, Xu W, Amaravadi R, Xiao M, Sadek N, Krepler C, Herlyn M, Freeman GJ, Rabinowitz JD, Ertl HCJ. Enhancing CD8 + T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 2017; 32:377-391.e9. [PMID: 28898698 PMCID: PMC5751418 DOI: 10.1016/j.ccell.2017.08.004] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023]
Abstract
How tumor-infiltrating T lymphocytes (TILs) adapt to the metabolic constrains within the tumor microenvironment (TME) and to what degree this affects their ability to combat tumor progression remain poorly understood. Using mouse melanoma models, we report that CD8+ TILs enhance peroxisome proliferator-activated receptor (PPAR)-α signaling and catabolism of fatty acids (FAs) when simultaneously subjected to hypoglycemia and hypoxia. This metabolic switch partially preserves CD8+ TILs' effector functions, although co-inhibitor expression increases during tumor progression regardless of CD8+ TILs' antigen specificity. Further promoting FA catabolism improves the CD8+ TILs' ability to slow tumor progression. PD-1 blockade delays tumor growth without changing TIL metabolism or functions. It synergizes with metabolic reprogramming of T cells to achieve superior antitumor efficacy and even complete cures.
Collapse
Affiliation(s)
- Ying Zhang
- Gene Therapy and Vaccines Program, University of Pennsylvania (U of PA), Philadelphia, PA 19104, USA; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Raj Kurupati
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ling Liu
- Lewis-Sigler Institute for Integrative Genomics & Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | | | - Gao Zhang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Abeer Hudaihed
- Biology Program, Temple University, Philadelphia, PA 19122, USA
| | - Flavia Filisio
- Biology Program, Temple University, Philadelphia, PA 19122, USA
| | | | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, U of PA, Philadelphia, PA 19104, USA
| | | | | | - Wei Xu
- Department of Medicine, U of PA, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Department of Medicine, U of PA, Philadelphia, PA 19104, USA
| | - Min Xiao
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Norah Sadek
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics & Department of Chemistry, Princeton University, Princeton, NJ 08540, USA
| | | |
Collapse
|
40
|
Liu Y, Wang T, Liu X, Wei X, Xu T, Yin M, Ding X, Mo L, Chen L. Neuronal zinc-α2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats. Neuroscience 2017; 357:56-66. [DOI: 10.1016/j.neuroscience.2017.05.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022]
|
41
|
Hohnholt MC, Blumrich EM, Waagepetersen HS, Dringen R. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes. J Neurosci Res 2017; 95:2307-2320. [PMID: 28316081 DOI: 10.1002/jnr.24050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Abstract
Metformin is an antidiabetic drug that is used daily by millions of patients worldwide. Metformin is able to cross the blood-brain barrier and has recently been shown to increase glucose consumption and lactate release in cultured astrocytes. However, potential effects of metformin on mitochondrial tricarboxylic acid (TCA) cycle metabolism in astrocytes are unknown. We investigated this by mapping 13 C labeling in TCA cycle intermediates and corresponding amino acids after incubation of primary rat astrocytes with [U-13 C]glucose. The presence of metformin did not compromise the viability of cultured astrocytes during 4 hr of incubation, but almost doubled cellular glucose consumption and lactate release. Compared with control cells, the presence of metformin dramatically lowered the molecular 13 C carbon labeling (MCL) of the cellular TCA cycle intermediates citrate, α-ketoglutarate, succinate, fumarate, and malate, as well as the MCL of the TCA cycle intermediate-derived amino acids glutamate, glutamine, and aspartate. In addition to the total molecular 13 C labeling, analysis of the individual isotopomers of TCA cycle intermediates confirmed a severe decline in labeling and a significant lowering in TCA cycling ratio in metformin-treated astrocytes. Finally, the oxygen consumption of mitochondria isolated from metformin-treated astrocytes was drastically reduced in the presence of complex I substrates, but not of complex II substrates. These data demonstrate that exposure to metformin strongly impairs complex I-mediated mitochondrial respiration in astrocytes, which is likely to cause the observed decrease in labeling of mitochondrial TCA cycle intermediates and the stimulation of glycolytic lactate production. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Bremen, Germany
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Bremen, Germany
| |
Collapse
|
42
|
Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. J Neurosci 2017; 37:1888-1899. [PMID: 28093477 DOI: 10.1523/jneurosci.2712-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/21/2022] Open
Abstract
The relative contributions of glycolysis and oxidative phosphorylation to neuronal presynaptic energy demands are unclear. In rat hippocampal neurons, ATP production by either glycolysis or oxidative phosphorylation alone sustained basal evoked synaptic transmission for up to 20 min. However, combined inhibition of both ATP sources abolished evoked transmission. Neither action potential propagation failure nor depressed Ca2+ influx explained loss of evoked synaptic transmission. Rather, inhibition of ATP synthesis caused massive spontaneous vesicle exocytosis, followed by arrested endocytosis, accounting for the disappearance of evoked postsynaptic currents. In contrast to its weak effects on basal transmission, inhibition of oxidative phosphorylation alone depressed recovery from vesicle depletion. Local astrocytic lactate shuttling was not required. Instead, either ambient monocarboxylates or neuronal glycolysis was sufficient to supply requisite substrate. In summary, basal transmission can be sustained by glycolysis, but strong presynaptic demands are met preferentially by oxidative phosphorylation, which can be maintained by bulk but not local monocarboxylates or by neuronal glycolysis.SIGNIFICANCE STATEMENT Neuronal energy levels are critical for proper CNS function, but the relative roles for the two main sources of ATP production, glycolysis and oxidative phosphorylation, in fueling presynaptic function in unclear. Either glycolysis or oxidative phosphorylation can fuel low-frequency synaptic function and inhibiting both underlies loss of synaptic transmission via massive vesicle release and subsequent failure to endocytose lost vesicles. Oxidative phosphorylation, fueled by either glycolysis or endogenously released monocarboxylates, can fuel more metabolically demanding tasks such as vesicle recovery after depletion. Our work demonstrates the flexible nature of fueling presynaptic function to maintain synaptic function.
Collapse
|
43
|
Nonaka Y, Takagi T, Inai M, Nishimura S, Urashima S, Honda K, Aoyama T, Terada S. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line. J Oleo Sci 2016; 65:693-9. [PMID: 27430387 DOI: 10.5650/jos.ess16069] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.
Collapse
Affiliation(s)
- Yudai Nonaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Ertl HCJ. Starved and Asphyxiated: How Can CD8(+) T Cells within a Tumor Microenvironment Prevent Tumor Progression. Front Immunol 2016; 7:32. [PMID: 26904023 PMCID: PMC4748049 DOI: 10.3389/fimmu.2016.00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023] Open
Abstract
Although cancer immunotherapy has achieved significant breakthroughs in recent years, its overall efficacy remains limited in the majority of patients. One major barrier is exhaustion of tumor antigen-specific CD8(+) tumor-infiltrating lymphocytes (TILs), which conventionally has been attributed to persistent stimulation with antigen within the tumor microenvironment (TME). A series of recent studies have highlighted that the TME poses significant metabolic challenges to TILs, which may contribute to their functional exhaustion. Hypoxia increases the expression of coinhibitors on activated CD8(+) T cells, which in general reduces the T cells' effector functions. It also impairs the cells' ability to gain energy through oxidative phosphorylation. Glucose limitation increases the expression of programed cell death protein-1 and reduces functions of activated CD8(+) T cells. A combination of hypoxia and hypoglycemia, as is common in solid tumors, places CD8(+) TILs at dual metabolic jeopardy by affecting both major pathways of energy production. Recently, a number of studies addressed the effects of metabolic stress on modulating CD8(+) T cell metabolism, differentiation, and functions. Here, we discuss recent findings on how different types of metabolic stress within the TME shape the tumor-killing capacity of CD8(+) T cells. We propose that manipulating the metabolism of TILs to more efficiently utilize nutrients, especially during intermittent periods of hypoxia could maximize their performance, prolong their survival and improve the efficacy of active cancer immunotherapy.
Collapse
Affiliation(s)
- Ying Zhang
- Gene Therapy and Vaccines Program, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; The Wistar Institute Vaccine Center, Philadelphia, PA, USA
| | | |
Collapse
|
45
|
Harshman SW, Geier BA, Fan M, Rinehardt S, Watts BS, Drummond LA, Preti G, Phillips JB, Ott DK, Grigsby CC. The identification of hypoxia biomarkers from exhaled breath under normobaric conditions. J Breath Res 2015; 9:047103. [PMID: 26505091 DOI: 10.1088/1752-7155/9/4/047103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pilots have reported experiencing in-flight hypoxic-like symptoms since the inception of high-altitude aviation. As a result, the need to monitor pilots, in-flight, for the onset of hypoxic conditions is of great interest to the aviation community. We propose that exhaled breath is an appropriate non-invasive medium for monitoring pilot hypoxic risk through volatile organic compound (VOC) analysis. To identify changes in the exhaled breath VOCs produced during periods of reduced O2 levels, volunteers were exposed to simulated flight profiles, i.e. sea level for 5 min, O2 levels found at elevated altitudes for 5 min or placebo and 5 min at 100% O2 recovery gas, using a modified flight mask interfaced with a reduced O2 breathing device. During the course of these test events, time series breath samples from the flight mask and pre/post bag samples were collected and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven compounds (pentanal, 4-butyrolactone, 2-pentanone, 2-hexanone, 2-cyclopenten-1-one, 3-methylheptane and 2-heptanone) were found to significantly change in response to hypoxic conditions. Additionally, the isoprene, 2-methyl-1,3-butadiene, was found to increase following the overall exposure profile. This study establishes an experimental means for monitoring changes in VOCs in response to hypoxic conditions, a computational workflow for compound analysis via the Metabolite Differentiation and Discovery Lab and MatLab(©) software and identifies potential volatile organic compound biomarkers of hypoxia exposure.
Collapse
Affiliation(s)
- Sean W Harshman
- UES Inc., Air Force Research Laboratory, 711th Human Performance Wing/RHXBC, 2510 Fifth Street, Area B, Building 840, Wright-Patterson AFB, OH 45433, USA. Authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Itoh K, Maki T, Lok J, Arai K. Mechanisms of cell-cell interaction in oligodendrogenesis and remyelination after stroke. Brain Res 2015; 1623:135-49. [PMID: 25960351 PMCID: PMC4569526 DOI: 10.1016/j.brainres.2015.04.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/20/2022]
Abstract
White matter damage is a clinically important aspect of several central nervous system diseases, including stroke. Cerebral white matter primarily consists of axonal bundles ensheathed with myelin secreted by mature oligodendrocytes, which play an important role in neurotransmission between different areas of gray matter. During the acute phase of stroke, damage to oligodendrocytes leads to white matter dysfunction through the loss of myelin. On the contrary, during the chronic phase, white matter components promote an environment, which is favorable for neural repair, vascular remodeling, and remyelination. For effective remyelination to take place, oligodendrocyte precursor cells (OPCs) play critical roles by proliferating and differentiating into mature oligodendrocytes, which help to decrease the burden of axonal injury. Notably, other types of cells contribute to these OPC responses under the ischemic conditions. This mini-review summarizes the non-cell autonomous mechanisms in oligodendrogenesis and remyelination after white matter damage, focusing on how OPCs receive support from their neighboring cells. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- Kanako Itoh
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
47
|
Westhaus A, Blumrich EM, Dringen R. The Antidiabetic Drug Metformin Stimulates Glycolytic Lactate Production in Cultured Primary Rat Astrocytes. Neurochem Res 2015; 42:294-305. [PMID: 26433380 DOI: 10.1007/s11064-015-1733-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022]
Abstract
Metformin is the most frequently used drug for the treatment of type 2 diabetes in humans. However, only little is known about effects of metformin on brain metabolism. To investigate potential metabolic consequences of an exposure of brain cells to metformin, we incubated rat astrocyte-rich primary cultures with this compound. Metformin in concentrations of up to 30 mM did not acutely compromise the viability of astrocytes, but caused a time- and concentration-dependent increase in cellular glucose consumption and lactate production. For acute incubations in the hour range, the presence of 10 mM metformin doubled the glycolytic flux, while already 1 mM metformin doubled glycolytic flux during incubation for 24 h. In addition to metformin, also other guanidino compounds increased astrocytic lactate production. After 4 h of incubation, half-maximal stimulation of glycolysis was observed for metformin, guanidine and phenformin at concentrations of around 3 mM, 3 mM and 30 µM, respectively. The acute stimulation of glycolytic lactate production by metformin was persistent after removal of extracellular metformin and was also observed, if glucose was absent from the incubation medium or replaced by other hexoses. The metformin-induced stimulation of glycolytic flux was not prevented by compound C, an inhibitor of AMP-dependent protein kinase, nor was it additive to the stimulation of glycolytic flux caused by respiratory chain inhibitors. These data demonstrate that the antidiabetic drug metformin has the potential to strongly activate glycolytic lactate production in brain astrocytes.
Collapse
Affiliation(s)
- Adrian Westhaus
- Centre for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany
| | - Eva Maria Blumrich
- Centre for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, University of Bremen, PO. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|