1
|
Martínez-Díaz P, Parra A, Sanchez-López CM, Casas J, Lucas X, Marcilla A, Roca J, Barranco I. Small and Large Extracellular Vesicles of Porcine Seminal Plasma Differ in Lipid Profile. Int J Mol Sci 2024; 25:7492. [PMID: 39000599 PMCID: PMC11242203 DOI: 10.3390/ijms25137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Seminal plasma contains a heterogeneous population of extracellular vesicles (sEVs) that remains poorly characterized. This study aimed to characterize the lipidomic profile of two subsets of differently sized sEVs, small (S-) and large (L-), isolated from porcine seminal plasma by size-exclusion chromatography and characterized by an orthogonal approach. High-performance liquid chromatography-high-resolution mass spectrometry was used for lipidomic analysis. A total of 157 lipid species from 14 lipid classes of 4 major categories (sphingolipids, glycerophospholipids, glycerolipids, and sterols) were identified. Qualitative differences were limited to two cholesteryl ester species present only in S-sEVs. L-sEVs had higher levels of all quantified lipid classes due to their larger membrane surface area. The distribution pattern was different, especially for sphingomyelins (more in S-sEVs) and ceramides (more in L-sEVs). In conclusion, this study reveals differences in the lipidomic profile of two subsets of porcine sEVs, suggesting that they differ in biogenesis and functionality.
Collapse
Affiliation(s)
- Pablo Martínez-Díaz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Ana Parra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Christian M Sanchez-López
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Institute for Advanced Chemistry (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xiomara Lucas
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, 46100 Valencia, Spain
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, 46100 Valencia, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
2
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
3
|
Su H, Masters CL, Bush AI, Barnham KJ, Reid GE, Vella LJ. Exploring the significance of lipids in Alzheimer's disease and the potential of extracellular vesicles. Proteomics 2024; 24:e2300063. [PMID: 37654087 DOI: 10.1002/pmic.202300063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Colin L Masters
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Kevin J Barnham
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura J Vella
- The Florey, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Krokidis MG, Pucha KA, Mustapic M, Exarchos TP, Vlamos P, Kapogiannis D. Lipidomic Analysis of Plasma Extracellular Vesicles Derived from Alzheimer's Disease Patients. Cells 2024; 13:702. [PMID: 38667317 PMCID: PMC11049154 DOI: 10.3390/cells13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/31/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Analysis of blood-based indicators of brain health could provide an understanding of early disease mechanisms and pinpoint possible intervention strategies. By examining lipid profiles in extracellular vesicles (EVs), secreted particles from all cells, including astrocytes and neurons, and circulating in clinical samples, important insights regarding the brain's composition can be gained. Herein, a targeted lipidomic analysis was carried out in EVs derived from plasma samples after removal of lipoproteins from individuals with Alzheimer's disease (AD) and healthy controls. Differences were observed for selected lipid species of glycerolipids (GLs), glycerophospholipids (GPLs), lysophospholipids (LPLs) and sphingolipids (SLs) across three distinct EV subpopulations (all-cell origin, derived by immunocapture of CD9, CD81 and CD63; neuronal origin, derived by immunocapture of L1CAM; and astrocytic origin, derived by immunocapture of GLAST). The findings provide new insights into the lipid composition of EVs isolated from plasma samples regarding specific lipid families (MG, DG, Cer, PA, PC, PE, PI, LPI, LPE, LPC), as well as differences between AD and control individuals. This study emphasizes the crucial role of plasma EV lipidomics analysis as a comprehensive approach for identifying biomarkers and biological targets in AD and related disorders, facilitating early diagnosis and potentially informing novel interventions.
Collapse
Affiliation(s)
- Marios G. Krokidis
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Krishna A. Pucha
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| | - Maja Mustapic
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| | - Themis P. Exarchos
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Panagiotis Vlamos
- Laboratory of Bioinformatics and Human Electrophysiology, Department of Informatics, Ionian University, 49100 Corfu, Greece; (M.G.K.); (T.P.E.); (P.V.)
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health (NIA/NIH), Baltimore, MD 21224, USA; (K.A.P.); (M.M.)
| |
Collapse
|
5
|
Buchholz A, Deme P, Betz JF, Brandt J, Haughey N, Cervenka MC. A randomized feasibility trial of the modified Atkins diet in older adults with mild cognitive impairment due to Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1182519. [PMID: 38505743 PMCID: PMC10949529 DOI: 10.3389/fendo.2024.1182519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
Background Alzheimer's disease (AD) is increasing in prevalence, but effective treatments for its cognitive impairment remain severely limited. This study investigates the impact of ketone body production through dietary manipulation on memory in persons with mild cognitive impairment due to early AD and explores potential mechanisms of action. Methods We conducted a 12-week, parallel-group, controlled feasibility trial of a ketogenic diet, the modified Atkins diet (MAD), compared to a control diet in patients with cognitive impairments attributed to AD. We administered neuropsychological assessments, including memory tests, and collected blood samples at baseline and after 12 weeks of intervention. We performed untargeted lipidomic and targeted metabolomic analyses on plasma samples to detect changes over time. Results A total of 839 individuals were screened to yield 38 randomized participants, with 20 assigned to receive MAD and 18 assigned to receive a control diet. Due to attrition, only 13 in the MAD arm and nine in the control arm were assessed for the primary endpoint, with two participants meeting ketosis levels used to define MAD adherence criteria. The average change from baseline in the Memory Composite Score was 1.37 (95% CI: -0.87, 4.90) points higher in the MAD group compared to the control group. The effect size of the intervention on baseline MAD change was moderate (Cohen's D = 0.57, 95% CI: -0.67, 1.33). In the 15 participants (nine MAD, six control) assessed for lipidomic and metabolomic-lipidomics and metabolomics, 13 metabolites and 10 lipids showed significant changes from baseline to 12 weeks, including triacylglycerols (TAGs, 50:5, 52:5, and 52:6), sphingomyelins (SM, 44:3, 46:0, 46:3, and 48:1), acetoacetate, fatty acylcarnitines, glycerol-3-phosphate, and hydroxy fatty acids. Conclusions Attrition was greatest between baseline and week 6. All participants retained at week 6 completed the study. Despite low rates of adherence by criteria defined a priori, lipidomic and metabolomic analyses indicate significant changes from baseline in circulating lipids and metabolites between MAD and control participants at 12-week postrandomization, and MAD participants showed greater, albeit nonsignificant, improvement in memory.
Collapse
Affiliation(s)
- Alison Buchholz
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Pragney Deme
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joshua F. Betz
- Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jason Brandt
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Norman Haughey
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mackenzie C. Cervenka
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Azparren‐Angulo M, Mleczko J, Alboniga OE, Kruglik S, Guigner J, Gonzalez E, Garcia‐Vallicrosa C, Llop J, Simó C, Alonso C, Iruarrizaga M, Royo F, Falcon‐Perez JM. Lipidomics and biodistribution of extracellular vesicles-secreted by hepatocytes from Zucker lean and fatty rats. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e140. [PMID: 38939902 PMCID: PMC11080883 DOI: 10.1002/jex2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging. Based on the proportion of proteins to lipids and the types of lipids, our results indicate that within the range of small EVs, primary hepatocytes secrete different subpopulations of particles. These differences were observed in the enrichment of triglyceride species in EVs secreted by ZF hepatocytes. Biodistribution experiments showed accumulation in the brain, heart, lungs, kidney and specially in bladder after intravenous administration. In summary, we show that EVs released by a fatty hepatocytes carry a different lipid signature compared to their lean counterpart. Biodistribution experiment has shown no difference in the distribution of EVs secreted by ZF and ZL hepatocytes but has given us a first view of possible target organs for these particles. Our results might open a door to both pathology studies and therapeutic interventions.
Collapse
Affiliation(s)
- Maria Azparren‐Angulo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Justyna Mleczko
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, CICbioGUNE‐BRTA, CIBERehdBizkaia Technology Park, DerioBizkaiaSpain
| | - Sergei Kruglik
- Laboratoire Jean PerrinSorbonne Université, CNRS UMR 8237, 4 place JussieuParisFrance
| | - Jean‐Michel Guigner
- L'Institut de Minéralogie, de Physique des Matériaux et de CosmochimieSorbonne Université, CNRS, IRD, MNHNParisFrance
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Clara Garcia‐Vallicrosa
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | - Cristina Simó
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | | | | | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
- IKERBASQUEBasque Foundation for Science, BilbaoBizkaiaSpain
| |
Collapse
|
7
|
Jiang W, Jin Q, Li C, Xun Y. A Plasma Exosomal Metabolic Profiling of Nonalcoholic Fatty Liver Disease Patients Complicated with Impaired Fasting Glucose. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:125-135. [PMID: 38454244 PMCID: PMC10895878 DOI: 10.5152/tjg.2024.22739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND/AIMS Nonalcoholic fatty liver disease is considered as the hepatic manifestation of metabolic syndrome. Detection of circulating exosomes together with metabolomic analysis of their cargo would provide early signals for metabolic derangements and complications associated with nonalcoholic fatty liver disease. Therefore, this study profiled exosomal metabolome of patients with nonalcoholic fatty liver disease and impaired fasting glucose. MATERIALS AND METHODS Plasma exosomes were extracted from nonalcoholic fatty liver disease patients with or without impaired fasting glucose through differential ultracentrifugation. Their metabolite profiles were examined by ultrahigh-performance liquid chrom atography-quadrupole time-of-flight mass spectrometry. Pathway analysis was carried out on platform MetaboAnalyst 4.0. RESULTS Thirty-nine patients were enrolled, including nonalcoholic fatty liver disease-alone group (n = 26) and age-and gender-comparable nonalcoholic fatty liver disease plus impaired fasting glucose group (n = 13). Although less than and different from their plasma counterparts, a total of 10 significantly differential exosomal metabolites were identified. Nonalcoholic fatty liver disease plus impaired fasting glucose group had higher concentrations of linoleic acid, palmitamide, stearamide, and oleamide, as well as a lower concentration of phosphatidylethanolamine [20:5(5Z,8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)]. Pathway analysis showed an obviously changed metabolism of linoleic acid. CONCLUSION Metabolomic analysis of plasma exosomes revealed a distinct change in fatty acids and related pathways in nonalcoholic fatty liver disease patients with impaired fasting glucose. These preliminary results provide a metabolomic snapshot and basis for further investigation of exosome biology for these patients.
Collapse
Affiliation(s)
- Weiyun Jiang
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Qiaofei Jin
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Chunqing Li
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| | - Yunhao Xun
- Department of Liver Disease, Hangzhou Sixth People’s Hospital/Xixi Hospital of Hangzhou Afflicted to Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical Translation of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2301010. [PMID: 37421185 DOI: 10.1002/adhm.202301010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Indexed: 07/10/2023]
Abstract
Extracellular vesicles (EVs) occur in a variety of bodily fluids and have gained recent attraction as natural materials due to their bioactive surfaces, internal cargo, and role in intercellular communication. EVs contain various biomolecules, including surface and cytoplasmic proteins; and nucleic acids that are often representative of the originating cells. EVs can transfer content to other cells, a process that is thought to be important for several biological processes, including immune responses, oncogenesis, and angiogenesis. An increased understanding of the underlying mechanisms of EV biogenesis, composition, and function has led to an exponential increase in preclinical and clinical assessment of EVs for biomedical applications, such as diagnostics and drug delivery. Bacterium-derived EV vaccines have been in clinical use for decades and a few EV-based diagnostic assays regulated under Clinical Laboratory Improvement Amendments have been approved for use in single laboratories. Though, EV-based products are yet to receive widespread clinical approval from national regulatory agencies such as the United States Food and Drug Administration (USFDA) and European Medicine Agency (EMA), many are in late-stage clinical trials. This perspective sheds light on the unique characteristics of EVs, highlighting current clinical trends, emerging applications, challenges and future perspectives of EVs in clinical use.
Collapse
Affiliation(s)
- Aayushi Ghodasara
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- The School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Research, Postgraduate and Further Education (DIPEC), Falcuty of Health Sciences, University of Alba, Santiago, 8320000, Chile
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
9
|
Dong X, Dong JF, Zhang J. Roles and therapeutic potential of different extracellular vesicle subtypes on traumatic brain injury. Cell Commun Signal 2023; 21:211. [PMID: 37596642 PMCID: PMC10436659 DOI: 10.1186/s12964-023-01165-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/13/2023] [Indexed: 08/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of injury-related disability and death around the world, but the clinical stratification, diagnosis, and treatment of complex TBI are limited. Due to their unique properties, extracellular vesicles (EVs) are emerging candidates for being biomarkers of traumatic brain injury as well as serving as potential therapeutic targets. However, the effects of different extracellular vesicle subtypes on the pathophysiology of traumatic brain injury are very different, or potentially even opposite. Before extracellular vesicles can be used as targets for TBI therapy, it is necessary to classify different extracellular vesicle subtypes according to their functions to clarify different strategies for EV-based TBI therapy. The purpose of this review is to discuss contradictory effects of different EV subtypes on TBI, and to propose treatment ideas based on different EV subtypes to maximize their benefits for the recovery of TBI patients. Video Abstract.
Collapse
Affiliation(s)
- Xinlong Dong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, Nansihuan West Road, Fengtai District, Beijing, China.
- Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, WA, USA
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
11
|
Unpacking the Role of Extracellular Vesicles in Ischemic and Hemorrhagic Stroke: Pathophysiology and Therapeutic Implications. Transl Stroke Res 2023; 14:146-159. [PMID: 35524026 DOI: 10.1007/s12975-022-01027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Stroke is a leading cause of death and disability worldwide. Inflammation and microvascular dysfunction have been associated with brain injury and long-term disability after both ischemic and hemorrhagic stroke. Recent studies have suggested a potential role of extracellular vesicles (EVs) as a link underlying these pathogenic processes. EVs are cell-derived particles enveloped by a lipid bilayer, containing proteins, lipids, and nucleic acids. From a functional standpoint, EVs can facilitate intercellular communication, including across the blood-brain barrier (BBB). Recent advances in EV research have shown a preferential release of EVs from specific cell types in the context of stroke, some of which were associated with increased neuroinflammation, microvascular dysfunction, and neuronal cytotoxicity while others offered a degree of neuroprotection. However, one historic challenge in the studies of EVs in stroke is the lack of consistent definitions and methods to analyze EVs, only recently updated in the MISEV2018 guidelines. Given limitations and complexity in the treatment of stroke, particularly delivery of therapeutics across the BBB, increasing attention has been paid towards manipulating EVs as one vehicle that can permit targeted therapeutic delivery to the central nervous system. These discoveries point towards a future where a better understanding of EVs will advance our knowledge of stroke-associated mechanisms of cerebral and systemic injury and contribute to the development of novel treatments. Here, we review the role that EVs play in ischemic and hemorrhagic stroke.
Collapse
|
12
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
De Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1835. [PMID: 35898167 PMCID: PMC10078256 DOI: 10.1002/wnan.1835] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/31/2023]
Abstract
Extracellular vesicles (EVs) are a unique and heterogeneous class of lipid bilayer nanoparticles secreted by most cells. EVs are regarded as important mediators of intercellular communication in both prokaryotic and eukaryotic cells due to their ability to transfer proteins, lipids and nucleic acids to recipient cells. In addition to their physiological role, EVs are recognized as modulators in pathological processes such as cancer, infectious diseases, and neurodegenerative disorders, providing new potential targets for diagnosis and therapeutic intervention. For a complete understanding of EVs as a universal cellular biological system and its translational applications, optimal techniques for their isolation and characterization are required. Here, we review recent progress in those techniques, from isolation methods to characterization techniques. With interest in therapeutic applications of EVs growing, we address fundamental points of EV-related cell biology, such as cellular uptake mechanisms and their biodistribution in tissues as well as challenges to their application as drug carriers or biomarkers for less invasive diagnosis or as immunogens. This article is categorized under: Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina P. De Sousa
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
| | - Izadora Rossi
- School of Human SciencesLondon Metropolitan UniversityLondonUK
- Federal University of ParanáCuritibaBrazil
| | | | - Marcel Ivan Ramirez
- Federal University of ParanáCuritibaBrazil
- Carlos Chagas Institute (ICC)CuritibaBrazil
| | - Dan Stratton
- Open UniversityThe School of Life, Health and Chemical SciencesMilton KeynesUK
| | - Jameel Malhador Inal
- Bioscience Research Group, School of Life and Medical SciencesUniversity of HertfordshireHertfordshireUK
- School of Human SciencesLondon Metropolitan UniversityLondonUK
| |
Collapse
|
14
|
Bettio V, Mazzucco E, Antona A, Cracas S, Varalda M, Venetucci J, Bruno S, Chiabotto G, Venegoni C, Vasile A, Chiocchetti A, Quaglia M, Camussi G, Cantaluppi V, Panella M, Rolla R, Manfredi M, Capello D. Extracellular vesicles from human plasma for biomarkers discovery: Impact of anticoagulants and isolation techniques. PLoS One 2023; 18:e0285440. [PMID: 37163560 PMCID: PMC10171685 DOI: 10.1371/journal.pone.0285440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Extracellular vesicles (EVs) isolated from plasma are increasingly recognized as promising circulating biomarkers for disease discovery and progression, as well as for therapeutic drug delivery. The scientific community underlined the necessity of standard operative procedures for the isolation and storage of the EVs to ensure robust results. The understanding of the impact of the pre-analytical variables is still limited and some considerations about plasma anticoagulants and isolation methods are necessary. Therefore, we performed a comparison study between EVs isolated by ultracentrifugation and by affinity substrate separation from plasma EDTA and sodium citrate. The EVs were characterized by Nano Tracking Analysis, Western Blot, cytofluorimetric analysis of surface markers, and lipidomic analysis. While anticoagulants did not significantly alter any of the analyzed parameters, the isolation methods influenced EVs size, purity, surface markers expression and lipidomic profile. Compared to ultracentrifugation, affinity substrate separation yielded bigger particles highly enriched in tetraspanins (CD9, CD63, CD81), fatty acids and glycerolipids, with a predominant LDL- and vLDL-like contamination. Herein, we highlighted that the isolation method should be carefully evaluated prior to study design and the need of standardized operative procedures for EVs isolation and application to biomarkers discovery.
Collapse
Affiliation(s)
- Valentina Bettio
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Annamaria Antona
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Cracas
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Chiara Venegoni
- Interdisciplinary Research Center of Autoimmune Diseases, Center on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
- Department of Health Science, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Alessandra Vasile
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Interdisciplinary Research Center of Autoimmune Diseases, Center on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
- Department of Health Science, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Marco Quaglia
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberta Rolla
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità", Università del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine, Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
15
|
Bruno MC, Cristiano MC, Celia C, d'Avanzo N, Mancuso A, Paolino D, Wolfram J, Fresta M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS NANO 2022; 16:19665-19690. [PMID: 36512378 DOI: 10.1021/acsnano.2c06393] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.
Collapse
Affiliation(s)
- Maria Chiara Bruno
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania
| | - Nicola d'Avanzo
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| |
Collapse
|
16
|
Walker SA, Davidovich I, Yang Y, Lai A, Goncalves JP, Deliwala V, Busatto S, Shapiro S, Koifman N, Salomon C, Talmon Y, Wolfram J. Sucrose-based cryoprotective storage of extracellular vesicles. EXTRACELLULAR VESICLE 2022; 1:100016. [PMID: 38665624 PMCID: PMC11044822 DOI: 10.1016/j.vesic.2022.100016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Advancements in extracellular vesicle (EV) studies necessitate the development of optimized storage conditions to ensure preservation of physical and biochemical characteristics. In this study, the most common buffer for EV storage (phosphate-buffered saline/PBS) was compared to a cryoprotective 5% sucrose solution. The size distribution and concentration of EVs from two different sources changed to a greater extent after -80 °C storage in PBS compared to the sucrose solution. Additionally, molecular surface protrusions and transmembrane proteins were more prevalent in EVs stored in the sucrose solution compared to those stored in PBS. This study demonstrates, for the first time, that distinct ring-like molecular complexes and cristae-like folded membranous structures are visible upon EV degradation. Taken together, the size, concentration, molecular surface extensions, and transmembrane proteins of EVs varied substantially based on the buffer used for -80 °C storage, suggesting that biocompatible cryoprotectants, such as sucrose, should be considered for EV studies.
Collapse
Affiliation(s)
- Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yubo Yang
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Vatsal Deliwala
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Sara Busatto
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Surgery, Harvard Medical School, Boston, MA 02115, United States
| | - Shane Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Na’ama Koifman
- Center of Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Ye C, Zheng F, Wu N, Zhu GQ, Li XZ. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin 2022; 43:2191-2201. [PMID: 35022541 PMCID: PMC9433397 DOI: 10.1038/s41401-021-00846-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
18
|
Aguirre RS, Kulkarni A, Becker MW, Lei X, Sarkar S, Ramanadham S, Phelps EA, Nakayasu ES, Sims EK, Mirmira RG. Extracellular vesicles in β cell biology: Role of lipids in vesicle biogenesis, cargo, and intercellular signaling. Mol Metab 2022; 63:101545. [PMID: 35817393 PMCID: PMC9294332 DOI: 10.1016/j.molmet.2022.101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex autoimmune disorder whose pathogenesis involves an intricate interplay between β cells of the pancreatic islet, other islet cells, and cells of the immune system. Direct intercellular communication within the islet occurs via cell surface proteins and indirect intercellular communication has traditionally been seen as occurring via secreted proteins (e.g., endocrine hormones and cytokines). However, recent literature suggests that extracellular vesicles (EVs) secreted by β cells constitute an additional and biologically important mechanism for transmitting signals to within the islet. SCOPE OF REVIEW This review summarizes the general mechanisms of EV formation, with a particular focus on how lipids and lipid signaling pathways influence their formation and cargo. We review the implications of EV release from β cells for T1D pathogenesis, how EVs and their cargo might be leveraged as biomarkers of this process, and how EVs might be engineered as a therapeutic candidate to counter T1D outcomes. MAJOR CONCLUSIONS Islet β cells have been viewed as initiators and propagators of the cellular circuit giving rise to autoimmunity in T1D. In this context, emerging literature suggests that EVs may represent a conduit for communication that holds more comprehensive messaging about the β cells from which they arise. As the field of EV biology advances, it opens the possibility that intervening with EV formation and cargo loading could be a novel disease-modifying approach in T1D.
Collapse
Affiliation(s)
| | - Abhishek Kulkarni
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA
| | - Matthew W. Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology & The Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edward A. Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily K. Sims
- Department of Pediatrics and the Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Department of Medicine and the Kovler Diabetes Center, The University of Chicago, Chicago, IL, USA,Corresponding author. 900 E. 57th St., KCBD 8130, Chicago, IL, 60637, USA.
| |
Collapse
|
19
|
Bhargava P, Hartung HP, Calabresi PA. Contribution of B cells to cortical damage in multiple sclerosis. Brain 2022; 145:3363-3373. [PMID: 35775595 DOI: 10.1093/brain/awac233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis is associated with lesions not just in the white matter, but also involving the cortex. Cortical involvement has been linked to greater disease severity and hence understanding the factor underlying cortical pathology could help identify new therapeutic strategies for multiple sclerosis. The critical role of B cells in multiple sclerosis has been clarified by multiple pivotal trials of B cell depletion in people with multiple sclerosis. The presence of B cell rich areas of meningeal inflammation in multiple sclerosis has been identified at all stages of multiple sclerosis. Leptomeningeal inflammation is associated with greater extent of cortical demyelination and neuronal loss and with greater disease severity. Recent studies have identified several potential mechanisms by which B cells may mediate cortical injury including antibody production, extracellular vesicles containing neurotoxic substances and production of pro-inflammatory cytokines. Additionally, B cells may indirectly mediate cortical damage through effects on T cells, macrophages or microglia. Several animal models replicate the meningeal inflammation and cortical injury noted in people with multiple sclerosis. Studies in these models have identified BTK inhibition and type II anti-CD20 antibodies as potential agents that can impact meningeal inflammation. Trials of anti-CD20 monoclonal antibodies in people with multiple sclerosis have unsuccessfully attempted to eliminate B cells in the leptomeninges. New strategies to target B cells in multiple sclerosis include BTK inhibition and cell-based therapies aimed at B cells infected with Epstein Barr virus. Future studies will clarify the mechanisms by which B cells mediate cortical injury and treatment strategies that can target B cells in the leptomeninges and CNS parenchyma.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans Peter Hartung
- Department of Neurology, Heinrich-Heine University, Dusseldorf, Germany.,Brain and Mind Center, University of Sydney, Sydney, Australia.,Department of Neurology, Medical University of Vienna, Vienna, Austria.,Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Yang M, Walker SA, Aguilar Díaz de León JS, Davidovich I, Broad K, Talmon Y, Borges CR, Wolfram J. Extracellular vesicle glucose transporter-1 and glycan features in monocyte-endothelial inflammatory interactions. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102515. [PMID: 35074500 DOI: 10.1016/j.nano.2022.102515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Monocyte-induced endothelial cell inflammation is associated with multiple pathological conditions, and extracellular vesicles (EVs) are essential nanosized components of intercellular communication. EVs derived from endotoxin-stimulated monocytes were previously shown to carry pro-inflammatory proteins and RNAs. The role of glucose transporter-1 (GLUT-1) and glycan features in monocyte-derived EV-induced endothelial cell inflammation remains largely unexplored. This study demonstrates that EVs derived from endotoxin-stimulated monocytes activate inflammatory pathways in endothelial cells, which are partially attributed to GLUT-1. Alterations in glycan features and increased levels of GLUT-1 were observed in EVs derived from endotoxin-stimulated monocytes. Notably, inhibition of EV-associated GLUT-1, through the use of fasentin, suppressed EV-induced inflammatory cytokines in recipient endothelial cells.
Collapse
Affiliation(s)
- Man Yang
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Sierra A Walker
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Jesús S Aguilar Díaz de León
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelly Broad
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, Israel.
| | - Chad R Borges
- School of Molecular Sciences and Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, USA.
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia (present affiliation); School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia (present affiliation).
| |
Collapse
|
21
|
Reinicke M, Shamkeeva S, Hell M, Isermann B, Ceglarek U, Heinemann ML. Targeted Lipidomics for Characterization of PUFAs and Eicosanoids in Extracellular Vesicles. Nutrients 2022; 14:nu14071319. [PMID: 35405932 PMCID: PMC9000901 DOI: 10.3390/nu14071319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Lipids are increasingly recognized as bioactive mediators of extracellular vesicle (EV) functions. However, while EV proteins and nucleic acids are well described, EV lipids are insufficiently understood due to lack of adequate quantitative methods. We adapted an established targeted and quantitative mass spectrometry (LC-MS/MS) method originally developed for analysis of 94 eicosanoids and seven polyunsaturated fatty acids (PUFA) in human plasma. Additionally, the influence of freeze–thaw (FT) cycles, injection volume, and extraction solvent were investigated. The modified protocol was applied to lipidomic analysis of differently polarized macrophage-derived EVs. We successfully quantified three PUFAs and eight eicosanoids within EVs. Lipid extraction showed reproducible PUFA and eicosanoid patterns. We found a particularly high impact of FT cycles on EV lipid profiles, with significant reductions of up to 70%. Thus, repeated FT will markedly influence analytical results and may alter EV functions, emphasizing the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs. EV lipid profiles differed largely depending on the polarization of the originating macrophages. Particularly, we observed major changes in the arachidonic acid pathway. We emphasize the importance of a standardized sample pretreatment protocol for the analysis of bioactive lipids in EVs.
Collapse
|
22
|
Gonzalez-Covarrubias V, Martínez-Martínez E, del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022; 12:metabo12020194. [PMID: 35208267 PMCID: PMC8880031 DOI: 10.3390/metabo12020194] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolome offers a dynamic, comprehensive, and precise picture of the phenotype. Current high-throughput technologies have allowed the discovery of relevant metabolites that characterize a wide variety of human phenotypes with respect to health, disease, drug monitoring, and even aging. Metabolomics, parallel to genomics, has led to the discovery of biomarkers and has aided in the understanding of a diversity of molecular mechanisms, highlighting its application in precision medicine. This review focuses on the metabolomics that can be applied to improve human health, as well as its trends and impacts in metabolic and neurodegenerative diseases, cancer, longevity, the exposome, liquid biopsy development, and pharmacometabolomics. The identification of distinct metabolomic profiles will help in the discovery and improvement of clinical strategies to treat human disease. In the years to come, metabolomics will become a tool routinely applied to diagnose and monitor health and disease, aging, or drug development. Biomedical applications of metabolomics can already be foreseen to monitor the progression of metabolic diseases, such as obesity and diabetes, using branched-chain amino acids, acylcarnitines, certain phospholipids, and genomics; these can assess disease severity and predict a potential treatment. Future endeavors should focus on determining the applicability and clinical utility of metabolomic-derived markers and their appropriate implementation in large-scale clinical settings.
Collapse
Affiliation(s)
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication and Extracellular Vesicles, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Laura del Bosque-Plata
- Laboratory of Nutrigenetics and Nutrigenomics, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
- Correspondence: ; Tel.: +52-55-53-50-1974
| |
Collapse
|
23
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
24
|
Wang X, Pham A, Kang L, Walker SA, Davidovich I, Iannotta D, TerKonda SP, Shapiro S, Talmon Y, Pham S, Wolfram J. Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics 2021; 14:16. [PMID: 35056912 PMCID: PMC8780819 DOI: 10.3390/pharmaceutics14010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-released nanoparticles that transfer biomolecular content between cells. Among EV-associated biomolecules, microRNAs (miRNAs/miRs) represent one of the most important modulators of signaling pathways in recipient cells. Previous studies have shown that EVs from adipose-derived mesenchymal stromal cells (MSCs) and adipose tissue modulate inflammatory pathways in macrophages. In this study, the effects of miRNAs that are abundant in adipose tissue EVs and other biogenic nanoparticles (BiNPs) were assessed in terms of altering Toll-like receptor 4 (TLR4)-induced cytokines. TLR-4 signaling in macrophages is often triggered by pathogen or damage-induced inflammation and is associated with several diseases. This study demonstrates that miR-451a, which is abundant in adipose tissue BiNPs, suppresses pro-inflammatory cytokines and increases anti-inflammatory cytokines associated with the TLR4 pathway. Therefore, miR-451a may be partially responsible for immunomodulatory effects of adipose tissue-derived BiNPs.
Collapse
Affiliation(s)
- Xinghua Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Anthony Pham
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Lu Kang
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
| | - Sarvam P. TerKonda
- Department of Plastic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Shane Shapiro
- Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel; (I.D.); (Y.T.)
| | - Si Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (X.W.); (A.P.); (S.A.W.); (D.I.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
25
|
Azevedo CAB, da Cunha RS, Junho CVC, da Silva JV, Moreno-Amaral AN, de Moraes TP, Carneiro-Ramos MS, Stinghen AEM. Extracellular Vesicles and Their Relationship with the Heart-Kidney Axis, Uremia and Peritoneal Dialysis. Toxins (Basel) 2021; 13:toxins13110778. [PMID: 34822562 PMCID: PMC8618757 DOI: 10.3390/toxins13110778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.
Collapse
Affiliation(s)
- Carolina Amaral Bueno Azevedo
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
| | - Carolina Victoria Cruz Junho
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Jessica Verônica da Silva
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa N. Moreno-Amaral
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Thyago Proença de Moraes
- Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil; (A.N.M.-A.); (T.P.d.M.)
| | - Marcela Sorelli Carneiro-Ramos
- Laboratory of Cardiovascular Immunology, Center of Natural and Human Sciences (CCNH), Federal University of ABC, Santo André 09210-580, Brazil; (C.V.C.J.); (J.V.d.S.); (M.S.C.-R.)
| | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 81531-980, Brazil; (C.A.B.A.); (R.S.d.C.)
- Correspondence:
| |
Collapse
|
26
|
Gamage TKJB, Fraser M. The Role of Extracellular Vesicles in the Developing Brain: Current Perspective and Promising Source of Biomarkers and Therapy for Perinatal Brain Injury. Front Neurosci 2021; 15:744840. [PMID: 34630028 PMCID: PMC8498217 DOI: 10.3389/fnins.2021.744840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review focuses on our current understanding of the proposed physiological and pathological functions of extracellular vesicles (EVs) in the developing brain. Furthermore, since EVs have attracted great interest as potential novel cell-free therapeutics, we discuss advances in the knowledge of stem cell- and astrocyte-derived EVs in relation to their potential for protection and repair following perinatal brain injury. This review identified 13 peer-reviewed studies evaluating the efficacy of EVs in animal models of perinatal brain injury; 12/13 utilized mesenchymal stem cell-derived EVs (MSC-EVs) and 1/13 utilized astrocyte-derived EVs. Animal model, method of EV isolation and size, route, timing, and dose administered varied between studies. Notwithstanding, EV treatment either improved and/or preserved perinatal brain structures both macroscopically and microscopically. Additionally, EV treatment modulated inflammatory responses and improved brain function. Collectively this suggests EVs can ameliorate, or repair damage associated with perinatal brain injury. These findings warrant further investigation to identify the optimal cell numbers, source, and dosage regimens of EVs, including long-term effects on functional outcomes.
Collapse
|
27
|
The Fatty Acid and Protein Profiles of Circulating CD81-Positive Small Extracellular Vesicles Are Associated with Disease Stage in Melanoma Patients. Cancers (Basel) 2021; 13:cancers13164157. [PMID: 34439311 PMCID: PMC8392159 DOI: 10.3390/cancers13164157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Early detection of cutaneous melanoma is the key to increasing survival and proper therapeutic adjustment, especially in stages II–IV. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) expressing CD81, derived from the plasma of stage 0–I, II and III–IV melanoma patients, could reflect disease stage. Results showed a higher content of FA and differences in C18:0/C18:1 ratio, a marker of cell membrane fluidity, that distinguished patients’ CD81sEV from those of healthy donors (HD). By proteomic analysis (identifier PXD024434) we identified significant increases in CD14, PON1, PON3 and APOA5 in stage II CD81sEV compared to HD. In stage III–IV, CD81sEV’ RAP1B expression was decreased. These stage-related signatures may support the potential of sEV to provide information for early diagnosis, prediction of metastatic behavior, treatment and follow-up of melanoma patients. Abstract The early detection of cutaneous melanoma, a potentially lethal cancer with rising incidence, is fundamental to increasing survival and therapeutic adjustment. In stages II–IV especially, additional indications for adjuvant therapy purposes after resection and for treatment of metastatic patients are urgently needed. We investigated whether the fatty acid (FA) and protein compositions of small extracellular vesicles (sEV) derived from the plasma of stage 0–I, II and III–IV melanoma patients (n = 38) could reflect disease stage. The subpopulation of sEV expressing CD81 EV marker (CD81sEV) was captured by an ad hoc immune affinity technique from plasma depleted of large EV. Biological macromolecules were investigated by gas chromatography and mass spectrometry in CD81sEV. A higher content of FA was detectable in patients with respect to healthy donors (HD). Moreover, a higher C18:0/C18:1 ratio, as a marker of cell membrane fluidity, distinguished early (stage 0–I) from late (III–IV) stages’ CD81sEV. Proteomics detected increases in CD14, PON1, PON3 and APOA5 exclusively in stage II CD81sEV, and RAP1B was decreased in stage III–IV CD81sEV, in comparison to HD. Our results suggest that stage dependent alterations in CD81sEV’ FA and protein composition may occur early after disease onset, strengthening the potential of circulating sEV as a source of discriminatory information for early diagnosis, prediction of metastatic behavior and following up of melanoma patients.
Collapse
|
28
|
Pulmonary arterial hypertension induces the release of circulating extracellular vesicles with oxidative content and alters redox and mitochondrial homeostasis in the brains of rats. Hypertens Res 2021; 44:918-931. [PMID: 33875858 DOI: 10.1038/s41440-021-00660-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/03/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased resistance of the pulmonary vasculature and afterload imposed on the right ventricle (RV). Two major contributors to the worsening of this disease are oxidative stress and mitochondrial impairment. This study aimed to explore the effects of monocrotaline (MCT)-induced PAH on redox and mitochondrial homeostasis in the RV and brain and how circulating extracellular vesicle (EV) signaling is related to these phenomena. Wistar rats were divided into control and MCT groups (60 mg/kg, intraperitoneal), and EVs were isolated from blood on the day of euthanasia (21 days after MCT injections). There was an oxidative imbalance in the RV, brain, and EVs of MCT rats. PAH impaired mitochondrial function in the RV, as seen by a decrease in the activities of mitochondrial complex II and citrate synthase and manganese superoxide dismutase (MnSOD) protein expression, but this function was preserved in the brain. The key regulators of mitochondrial biogenesis, namely, proliferator-activated receptor gamma coactivator 1-alpha and sirtuin 1, were poorly expressed in the EVs of MCT rats, and this result was positively correlated with MnSOD expression in the RV and negatively correlated with MnSOD expression in the brain. Based on these findings, we can conclude that the RV is severely impacted by the development of PAH, but this pathological injury may signal the release of circulating EVs that communicate with different organs, such as the brain, helping to prevent further damage through the upregulation of proteins involved in redox and mitochondrial function.
Collapse
|
29
|
Iannotta D, Yang M, Celia C, Di Marzio L, Wolfram J. Extracellular vesicle therapeutics from plasma and adipose tissue. NANO TODAY 2021; 39:101159. [PMID: 33968157 PMCID: PMC8104307 DOI: 10.1016/j.nantod.2021.101159] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Extracellular vesicles (EVs) are cell-released lipid-bilayer nanoparticles that contain biologically active cargo involved in physiological and pathological intercellular communication. In recent years, the therapeutic potential of EVs has been explored in various disease models. In particular, mesenchymal stromal cell-derived EVs have been shown to exert anti-inflammatory, anti-oxidant, anti-apoptotic, and pro-angiogenic properties in cardiovascular, metabolic and orthopedic conditions. However, a major drawback of EV-based therapeutics is scale-up issues due to extensive cell culture requirements and inefficient isolation protocols. An emerging alternative approach to time-consuming and costly cell culture expansion is to obtain therapeutic EVs directly from the body, for example, from plasma and adipose tissue. This review discusses isolation methods and therapeutic applications of plasma and adipose tissue-derived EVs, highlighting advantages and disadvantages compared to cell culture-derived ones.
Collapse
Affiliation(s)
- Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Man Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Christian Celia
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti – Pescara “G d’Annunzio”, Chieti, Italy
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston TX, USA
| |
Collapse
|
30
|
Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021; 21:e2000118. [PMID: 33857352 PMCID: PMC8365743 DOI: 10.1002/pmic.202000118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed nanoparticles released by cells. They play a role in intercellular communication and are involved in numerous physiological and pathological processes. Cells release subpopulations of EVs with distinct composition and inherent biological function which overlap in size. Current size-based isolation methods are, therefore, not optimal to discriminate between functional EV subpopulations. In addition, EVs overlap in size with several other biological nanoparticles, such as lipoproteins and viruses. Proteomic analysis has allowed for more detailed study of EV composition, and EV isolation approaches based on this could provide a promising alternative for purification based on size. Elucidating EV heterogeneity and the characteristics and role of EV subpopulations will advance our understanding of EV biology and the role of EVs in health and disease. Here, we discuss current knowledge of EV composition, EV heterogeneity and advances in affinity based EV isolation tools.
Collapse
Affiliation(s)
- William Phillips
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Eduard Willms
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
31
|
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021; 174:348-368. [PMID: 33964356 PMCID: PMC8217305 DOI: 10.1016/j.addr.2021.04.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous nanovesicles secreted from living cells, shuttling macromolecules in intercellular communication and potentially possessing intrinsic therapeutic activity. Due to their stability, low immunogenicity, and inherent interaction with recipient cells, EVs also hold great promise as drug delivery vehicles. Indeed, they have been used to deliver nucleic acids, proteins, and small molecules in preclinical investigations. Furthermore, EV-based drugs have entered early clinical trials for cancer or neurodegenerative diseases. Despite their appeal as delivery vectors, however, EV-based drug delivery progress has been hampered by heterogeneity of sample types and methods as well as a persistent lack of standardization, validation, and comprehensive reporting. This review highlights specific requirements for EVs in drug delivery and describes the most pertinent approaches for separation and characterization. Despite residual uncertainties related to pharmacodynamics, pharmacokinetics, and potential off-target effects, clinical-grade, high-potency EV drugs might be achievable through GMP-compliant workflows in a highly standardized environment.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Su H, Rustam YH, Masters CL, Makalic E, McLean CA, Hill AF, Barnham KJ, Reid GE, Vella LJ. Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J Extracell Vesicles 2021; 10:e12089. [PMID: 34012516 PMCID: PMC8111496 DOI: 10.1002/jev2.12089] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region. AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.
Collapse
Affiliation(s)
- Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Yepy H. Rustam
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Catriona A. McLean
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVictoriaAustralia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Gavin E. Reid
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVictoriaAustralia
- School of Chemistry, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleVictoriaAustralia
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
33
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
34
|
Gioseffi A, Edelmann MJ, Kima PE. Intravacuolar Pathogens Hijack Host Extracellular Vesicle Biogenesis to Secrete Virulence Factors. Front Immunol 2021; 12:662944. [PMID: 33959131 PMCID: PMC8093443 DOI: 10.3389/fimmu.2021.662944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in recent years due to their contributions to cell-to-cell communication and disease processes. EVs are composed of a complex profile of bioactive molecules, which include lipids, nucleic acids, metabolites, and proteins. Although the biogenesis of EVs released by cells under various normal and abnormal conditions has been well-studied, there is incomplete knowledge about how infection influences EV biogenesis. EVs from infected cells contain specific molecules of both host and pathogen origin that may contribute to pathogenesis and the elicitation of the host immune response. Intracellular pathogens exhibit diverse lifestyles that undoubtedly dictate the mechanisms by which their molecules enter the cell’s exosome biogenesis schemes. We will discuss the current understanding of the mechanisms used during infection to traffic molecules from their vacuolar niche to host EVs by selected intravacuolar pathogens. We initially review general exosome biogenesis schemes and then discuss what is known about EV biogenesis in Mycobacterium, Plasmodium, Toxoplasma, and Leishmania infections, which are pathogens that reside within membrane delimited compartments in phagocytes at some time in their life cycle within mammalian hosts. The review includes discussion of the need for further studies into the biogenesis of EVs to better understand the contributions of these vesicles to host-pathogen interactions, and to uncover potential therapeutic targets to control these pathogens.
Collapse
Affiliation(s)
- Anna Gioseffi
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Peter E Kima
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
35
|
The Role of Exosomes in Lysosomal Storage Disorders. Biomolecules 2021; 11:biom11040576. [PMID: 33920837 PMCID: PMC8071119 DOI: 10.3390/biom11040576] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes, small membrane-bound organelles formed from endosomal membranes, represent a heterogenous source of biological and pathological biomarkers capturing the metabolic status of a cell. Exosomal cargo, including lipids, proteins, mRNAs, and miRNAs, can either act as inter-cellular messengers or are shuttled for autophagic/lysosomal degradation. Most cell types in the central nervous system (CNS) release exosomes, which serve as long and short distance communicators between neurons, astrocytes, oligodendrocytes, and microglia. Lysosomal storage disorders are diseases characterized by the accumulation of partially or undigested cellular waste. The exosomal content in these diseases is intrinsic to each individual disorder. Emerging research indicates that lysosomal dysfunction enhances exocytosis, and hence, in lysosomal disorders, exosomal secretion may play a role in disease pathogenesis. Furthermore, the unique properties of exosomes and their ability to carry cargo between adjacent cells and organs, and across the blood-brain barrier, make them attractive candidates for use as therapeutic delivery vehicles. Thus, understanding exosomal content and function may have utility in the treatment of specific lysosomal storage disorders. Since lysosomal dysfunction and the deficiency of at least one lysosomal enzyme, glucocerebrosidase, is associated with the development of parkinsonism, the study and use of exosomes may contribute to an improved understanding of Parkinson disease, potentially leading to new therapeutics.
Collapse
|
36
|
Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A Simple and Quick Method for Loading Proteins in Extracellular Vesicles. Pharmaceuticals (Basel) 2021; 14:356. [PMID: 33924377 PMCID: PMC8069621 DOI: 10.3390/ph14040356] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular transport of biomolecular cargo in the body, making them promising delivery vehicles for bioactive compounds. Genetic engineering of producer cells has enabled encapsulation of therapeutic proteins in EVs. However, genetic engineering approaches can be expensive, time-consuming, and incompatible with certain EV sources, such as human plasma and bovine milk. The goal of this study was to develop a quick, versatile, and simple method for loading proteins in EVs post-isolation. Proteins, including CRISPR associated protein 9 (Cas9), were bound to cationic lipids that were further complexed with MDA-MB-231 cell-derived EVs through passive incubation. Size-exclusion chromatography was used to remove components that were not complexed with EVs. The ability of EVs to mediate intracellular delivery of proteins was compared to conventional methods, such as electroporation and commercial protein transfection reagents. The results indicate that EVs retain native features following protein-loading and obtain similar levels of intracellular protein delivery as conventional methods, but display less toxicity. This method opens up opportunities for rapid exploration of EVs for protein delivery.
Collapse
Affiliation(s)
- Sara Busatto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dalila Iannotta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Sierra A. Walker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti—Pescara “G. d’Annunzio”, 66100 Chieti, Italy;
| | - Joy Wolfram
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL 32224, USA; (D.I.); (S.A.W.)
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
37
|
Diaz-Garrido N, Cordero C, Olivo-Martinez Y, Badia J, Baldomà L. Cell-to-Cell Communication by Host-Released Extracellular Vesicles in the Gut: Implications in Health and Disease. Int J Mol Sci 2021; 22:ijms22042213. [PMID: 33672304 PMCID: PMC7927122 DOI: 10.3390/ijms22042213] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Communication between cells is crucial to preserve body homeostasis and health. Tightly controlled intercellular dialog is particularly relevant in the gut, where cells of the intestinal mucosa are constantly exposed to millions of microbes that have great impact on intestinal homeostasis by controlling barrier and immune functions. Recent knowledge involves extracellular vesicles (EVs) as mediators of such communication by transferring messenger bioactive molecules including proteins, lipids, and miRNAs between cells and tissues. The specific functions of EVs principally depend on the internal cargo, which upon delivery to target cells trigger signal events that modulate cellular functions. The vesicular cargo is greatly influenced by genetic, pathological, and environmental factors. This finding provides the basis for investigating potential clinical applications of EVs as therapeutic targets or diagnostic biomarkers. Here, we review current knowledge on the biogenesis and cargo composition of EVs in general terms. We then focus the attention to EVs released by cells of the intestinal mucosa and their impact on intestinal homeostasis in health and disease. We specifically highlight their role on epithelial barrier integrity, wound healing of epithelial cells, immunity, and microbiota shaping. Microbiota-derived EVs are not reviewed here.
Collapse
Affiliation(s)
- Natalia Diaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Cecilia Cordero
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Yenifer Olivo-Martinez
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Josefa Badia
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (C.C.); (Y.O.-M.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-44-96
| |
Collapse
|
38
|
Kralj-Iglič V, Pocsfalvi G, Mesarec L, Šuštar V, Hägerstrand H, Iglič A. Minimizing isotropic and deviatoric membrane energy - An unifying formation mechanism of different cellular membrane nanovesicle types. PLoS One 2020; 15:e0244796. [PMID: 33382808 PMCID: PMC7775103 DOI: 10.1371/journal.pone.0244796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Tiny membrane-enclosed cellular fragments that can mediate interactions between cells and organisms have recently become a subject of increasing attention. In this work the mechanism of formation of cell membrane nanovesicles (CNVs) was studied experimentally and theoretically. CNVs were isolated by centrifugation and washing of blood cells and observed by optical microscopy and scanning electron microscopy. The shape of the biological membrane in the budding process, as observed in phospholipid vesicles, in erythrocytes and in CNVs, was described by an unifying model. Taking the mean curvature h and the curvature deviator d of the membrane surface as the relevant parameters, the shape and the distribution of membrane constituents were determined theoretically by minimization of membrane free energy. Considering these results and previous results on vesiculation of red blood cells it was interpreted that the budding processes may lead to formation of different types of CNVs as regards the compartment (exo/endovesicles), shape (spherical/tubular/torocytic) and composition (enriched/depleted in particular kinds of molecules). It was concluded that the specificity of pinched off nanovesicles derives from the shape of the membrane constituents and not primarily from their chemical identity, which explains evidences on great heterogeneity of isolated extracellular vesicles with respect to composition. One of the amazing properties of a biological membrane is the ability to undergo dramatic changes of its shape. It may exhibit very high curvature and thereby enclose nano-sized compartments that pinch off from the mother membrane and become freely moving cellular nanovesicles (CNVs). CNVs externalize the pieces of the cell and make them available to other cells within the same organism or other organisms. Therefore they have been acknowledged as mediators of communication between microorganisms, plants, animals and human. Furthernore, they dwell on the border between living and non-living things. Recent findings report on heterogeneity of the size and composition of CNVs found in isolates from different biological samples. As communication between cells is involved in many physiological and patophysiological processes, it is of importance to understand the mechanisms of CNVs formation and recognize the natural laws that mainly govern them. We point to an unifying mechanism that explains stability of differently shaped and composed CNVs by taking into account that the biological membrane tends to attain the minimum of its relevant energy. Conveniently, the procedure can be described by a mathematical model which allows for transparent comparison between experimentally induced shapes of membrane-enclosed vesicular structures and numerical calculations.
Collapse
Affiliation(s)
- Veronika Kralj-Iglič
- Faculty of Health Sciences, Laboratory of Clinical Biophysics, University of Ljubljana, Ljubljana, Slovenia
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
- * E-mail:
| | - Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
| | - Luka Mesarec
- Faculty of Electrical Engineering, Laboratory of Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Vid Šuštar
- Faculty of Medicine, Lymphocyte Cytoskeleton Group, University of Turku, Turku, Finland
| | - Henry Hägerstrand
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Åbo/Turku, Finland
- Novia University of Applied Sciences, Ekenäs, Finland
| | - Aleš Iglič
- Extracellular Vesicles and Mass Spetrometry Group, Institute of Biosciences and Bioresources, National Research Council of Italy, Napoli, Italy
- Faculty of Electrical Engineering, Laboratory of Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Palmitate and pyruvate carbon flux in response to choline and methionine in bovine neonatal hepatocytes. Sci Rep 2020; 10:19078. [PMID: 33154483 PMCID: PMC7645801 DOI: 10.1038/s41598-020-75956-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Choline and methionine may serve unique functions to alter hepatic energy metabolism. Our objective was to trace carbon flux through pathways of oxidation and glucose metabolism in bovine hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM). Primary hepatocytes were isolated from 4 Holstein calves and maintained for 24 h before treatment with CC (0, 10, 100, 1000 μmol/L) and DLM (0, 100, 300 μmol/L) in a factorial design. After 21 h, [1-14C]C16:0 or [2-14C]pyruvate was added to measure complete and incomplete oxidation, and cellular glycogen. Reactive oxygen species (ROS), cellular triglyceride (TG), and glucose and ß-hydroxybutyrate (BHB) export were quantified. Exported very-low density lipoprotein particles were isolated for untargeted lipidomics and to quantify TG. Interactions between CC and DLM, and contrasts for CC (0 vs. [10, 100, 1000 μmol/L] and linear and quadratic contrast 10, 100, 1000 μmol/L) and DLM (0 vs. [100, 300 μmol/L] and 100 vs. 300 μmol/L) were evaluated. Presence of CC increased complete oxidation of [1-14C]C16:0 and decreased BHB export. Glucose export was decreased, but cellular glycogen was increased by the presence of CC and increasing CC. Presence of CC decreased ROS and marginally decreased cellular TG. No interactions between CC and DLM were detected for these outcomes. These data suggest a hepato-protective role for CC to limit ROS and cellular TG accumulation, and to alter hepatic energy metabolism to support complete oxidation of FA and glycogen storage regardless of Met supply.
Collapse
|
40
|
Nawaz M, Malik MI, Zhang H, Hassan IA, Cao J, Zhou Y, Hameed M, Hussain Kuthu Z, Zhou J. Proteomic Analysis of Exosome-Like Vesicles Isolated From Saliva of the Tick Haemaphysalis longicornis. Front Cell Infect Microbiol 2020; 10:542319. [PMID: 33194791 PMCID: PMC7642894 DOI: 10.3389/fcimb.2020.542319] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs), are considered as vehicles of cellular communication. Parasites usually release EVs in their excretory-secretory products to modulate host environment. However, little is known about the secretion of EVs by ticks. In this study, we show for the first time that the tick Haemaphysalis longicornis secretes EVs in saliva that resembles exosomes. EVs were purified from pilocarpine induced saliva of partially engorged H. longicornis ticks. Electron microscopy analysis revealed the presence of exosome-like vesicles with a size of 100 nm. Proteomic analysis by LC-MS/MS identified a total of 356 proteins in tick-derived EVs. Proteome data of tick-derived EVs was validated by Western blot analysis. Immunodetection of Hsp70 and GAPDH proteins indicated that the proteomics data of tick-derived EVs were highly reliable. Bioinformatics analysis (Gene Ontology) indicated association of certain biological and molecular functions with proteins which may be helpful during tick development. Likewise, KEGG database revealed involvement of vesicular proteins in proton transport, detoxification, ECM-receptor interaction, ribosome, RNA transport, ABC transporters, and oxidative phosphorylation. The results of this study provide evidence that EVs are being secreted in tick saliva and suggest that tick saliva-derived EVs could play important roles in host-parasite relationships. Moreover, EVs could be a useful tool in development of vaccines or therapeutics against ticks.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ibrahim A Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mudassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zulfiqar Hussain Kuthu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
41
|
Huang C, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, Pastorin G, Wang JW. Extracellular vesicles in cardiovascular disease. Adv Clin Chem 2020; 103:47-95. [PMID: 34229852 DOI: 10.1016/bs.acc.2020.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality globally. Extracellular vesicles (EVs), a group of heterogeneous nanosized cell-derived vesicles, have attracted great interest as liquid biopsy material for biomarker discovery in a variety of diseases including cardiovascular disease. Because EVs inherit bioactive components from parent cells and are able to transfer their contents to recipient cells, EVs hold great promise as potential cell-free therapeutics and drug delivery systems. However, the development of EV-based diagnostics, therapeutics or drug delivery systems has been challenging due to the heterogenicity of EVs in biogenesis, size and cellular origin, the lack of standardized isolation and purification methods as well as the low production yield. In this review, we will provide an overview of the recent advances in EV-based biomarker discovery, highlight the potential usefulness of EVs and EV mimetics for therapeutic treatment and drug delivery in cardiovascular disease. In view of the fast development in this field, we will also discuss the challenges of current methodologies for isolation, purification and fabrication of EVs and potential alternatives.
Collapse
Affiliation(s)
- Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Yub Raj Neupane
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xiong Chang Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rawan Shekhani
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials, Science and Engineering, and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
La Salvia S, Gunasekaran PM, Byrd JB, Erdbrügger U. Extracellular Vesicles in Essential Hypertension: Hidden Messengers. Curr Hypertens Rep 2020; 22:76. [PMID: 32880744 DOI: 10.1007/s11906-020-01084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Hypertension affects about half of all Americans, yet in the vast majority of cases, the factors causing the hypertension cannot be clearly delineated. Developing a more precise understanding of the molecular pathogenesis of HTN and its various phenotypes is therefore a pressing priority. Circulating and urinary extracellular vesicles (EVs) are potential novel candidates as biomarkers and bioactivators in HTN. EVs are a heterogeneous population of small membrane fragments shed from various cell types into various body fluids. As EVs carry protein, RNA, and lipids, they also play a role as effectors and novel cell-to-cell communicators. In this review, we discuss the diagnostic, functional, and regenerative role of EVs in essential HTN and focus on EV protein and RNA cargo as the most extensively studied EV cargo. RECENT FINDINGS The field of EVs in HTN is still a young one and earlier studies have not used the novel EV detection tools currently available. More rigor and transparency in EV research are needed. Current data suggest that EVs represent potential novel biomarkers in HTN. EVs correlate with HTN severity and possibly end-organ damage. However, it has yet to be discerned which specific subtype(s) of EV reflects best HTN pathophysiology. Evolving studies are also showing that EVs might be novel regulators in vascular and renal tubular function and also be therapeutic. RNA in EVs has been studied in the context of hypertension, largely in the form of studies of miRNA, which are reviewed herein. Beyond miRNAs, mRNA in urinary EVs changed in response to sodium loading in humans. EVs represent promising novel biomarkers and bioactivators in essential HTN. Novel tools are being developed to apply more rigor in EV research including more in vivo models and translation to humans.
Collapse
Affiliation(s)
- Sabrina La Salvia
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA.
| | - Pradeep Moon Gunasekaran
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - James Brian Byrd
- Department of Internal Medicine, Division of Cardiovascular Medicine, Medical School, University of Michigan Medical School, 5570C MSRB II, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Uta Erdbrügger
- Department of Internal Medicine, Division of Nephrology, University of Virginia Health System, 1300 Jefferson Park Avenue, Charlottesville, VA, 22908-0133, USA
| |
Collapse
|
43
|
Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, Zimmerman A, Amiji M, Ivanov AR. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol 2020; 38:1066-1098. [PMID: 32564882 PMCID: PMC7302792 DOI: 10.1016/j.tibtech.2020.05.012] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are phospholipid bilayer membrane-enclosed structures containing RNAs, proteins, lipids, metabolites, and other molecules, secreted by various cells into physiological fluids. EV-mediated transfer of biomolecules is a critical component of a variety of physiological and pathological processes. Potential applications of EVs in novel diagnostic and therapeutic strategies have brought increasing attention. However, EV research remains highly challenging due to the inherently complex biogenesis of EVs and their vast heterogeneity in size, composition, and origin. There is a need for the establishment of standardized methods that address EV heterogeneity and sources of pre-analytical and analytical variability in EV studies. Here, we review technologies developed for EV isolation and characterization and discuss paths toward standardization in EV research.
Collapse
Affiliation(s)
- Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Xianyi Su
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Jacqueline Wood
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Angela L Nocera
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Sarath Chandra Alli
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Lara Milane
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alan Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Xiong J, Xue Y, Xia Y, Zhao J, Wang Y. Identification of key microRNAs of plasma extracellular vesicles and their diagnostic and prognostic significance in melanoma. Open Med (Wars) 2020; 15:464-482. [PMID: 33313406 PMCID: PMC7706137 DOI: 10.1515/med-2020-0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Melanoma is one of the most highly metastatic, aggressive and fatal malignant tumors in skin cancer. This study employs bioinformatics to identify key microRNAs and target genes (TGs) of plasma extracellular vesicles (pEVs) and their diagnostic and prognostic significance in melanoma. The gene expression microarray dataset (GSE100508) was downloaded from the Gene Expression Omnibus database. Differential analysis of miRNAs in pEVs was performed to compare melanoma samples and healthy samples. Then, TGs of the differential miRNAs (DE-miRNAs) in melanoma were selected, and differential genes were analyzed by bioinformatics (including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, protein–protein interaction network and prognostic analysis). A total of 55 DE-miRNAs were found, and 3,083 and 1,351 candidate TGs were diagnostically correlated with the top ten upregulated DE-miRNAs and all downregulated DE-miRNAs, respectively. Prognostic analysis results showed that high expression levels of hsa-miR-550a-3p, CDK2 and POLR2A and low expression levels of hsa-miR-150-5p in melanoma patients were associated with significantly reduced overall survival. In conclusion, bioinformatics analysis identified key miRNAs and TGs in pEVs of melanoma, which may represent potential biomarkers for the early diagnosis and treatment of this cancer.
Collapse
Affiliation(s)
- Jiachao Xiong
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Yan Xue
- Department of Dermatology, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Yu Xia
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Jiayi Zhao
- Department of General Practice, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| | - Yuchong Wang
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
| |
Collapse
|
45
|
Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020; 159:308-321. [PMID: 32151658 DOI: 10.1016/j.addr.2020.03.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles contain a lipid bilayer membrane that protects the encapsulated material, such as proteins, nucleic acids, lipids and metabolites, from the extracellular environment. These vesicles are released from cells via different mechanisms. During recent years extracellular vesicles have been studied as possible biomarkers for different diseases, as biological nanoparticles for drug delivery, and in basic studies as a tool to understand the structure of biological membranes and the mechanisms involved in vesicular trafficking. Lipids are essential molecular components of extracellular vesicles, but at the moment our knowledge about the lipid composition and the function of lipids in these vesicles is limited. However, the interest of the research community in these molecules is increasing as their role in extracellular vesicles is starting to be acknowledged. In this review, we will present the status of the field and describe what is needed to bring it forward.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway; Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway.
| |
Collapse
|
46
|
Sun Y, Saito K, Saito Y. Lipid Profile Characterization and Lipoprotein Comparison of Extracellular Vesicles from Human Plasma and Serum. Metabolites 2019; 9:metabo9110259. [PMID: 31683897 PMCID: PMC6918450 DOI: 10.3390/metabo9110259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) consist of lipid bilayers, occur in various biofluids, and are invaluable in biomarker screening. Liquid chromatography coupled with high-resolution mass spectrometry (LC-MS) was recently used to study comprehensive EV lipid profiles in vitro. The aim of this study was to establish a lipidomics platform for human plasma and serum EVs for comprehensive characterization of their lipid profiles, and to compare them with those of other lipid-containing particles, such as high-density lipoproteins (HDL), and low/very low-density lipoproteins (LDL/VLDL). Isolation was validated by specific protein markers; CD9 and MHC class for EVs, apoA-I for HDL, and apoB-100 for LDL/VLDL. Lipidomics identified 264 lipids from isolated plasma EVs, HDL, and LDL/VLDL. The absolute lipid levels per unit protein content in the EVs were more than eight times lower than those of the lipoproteins. Moreover, the EVs had higher lysoglycerophospholipid levels than HDL or LDL/VLDL. Similar profiles were also determined for human serum. The present study found that the lipid profiles of EVs are unique and distinctly different from those of lipoproteins. The lipidomics platform applied to human plasma and serum EVs could generate important information for the exploration and qualification of biomarkers in disease diagnosis.
Collapse
Affiliation(s)
- Yuchen Sun
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| | - Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| | - Yoshiro Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan.
| |
Collapse
|