1
|
Hoseinynejad K, Tafazzoli Z, Nejaddehbashi F, Moosavi M, Mansouri Z. In vitro and in vivo evidence of the effectiveness of gallic acid on glycerol-induced acute kidney injuries. Cytotechnology 2025; 77:45. [PMID: 39867825 PMCID: PMC11759744 DOI: 10.1007/s10616-025-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI. The study utilized both in vivo and in vitro models. In vivo, healthy rats were divided into six groups: control (normal saline), GLY (10 mg/kg, intramuscularly), GLY + GA10 (10 mg/kg), GLY + GA50 (50 mg/kg), GLY + GA100 (100 mg/kg), and GA (100 mg/kg). GA was administered by gavage for seven consecutive days, followed by a single intramuscular injection of GLY. Kidney biomarkers, lactate dehydrogenase (LDH), oxidative stress markers, inflammatory indices, and histological parameters were assessed 72 h post-injection. In vitro, human embryonic kidney 2 (HK-2) cells were incubated with GLY and GA at different concentrations (30, 60, and 125 μg/ml) to evaluate cell viability, reactive oxygen species (ROS) production, oxidative stress, and inflammatory cytokines. GLY administration significantly elevated renal dysfunction markers, including blood urea nitrogen and creatinine, alongside oxidative stress and reduced cell viability. GA treatment improved kidney biomarkers, enhanced antioxidant enzyme activity, and reduced inflammatory cytokines. Histological analyses also showed improved kidney structural integrity in GA-treated rats compared to the GLY group. This study confirmed that GLY induces AKI through oxidative stress, inflammation, and structural damage. GA exhibited significant renal protective effects by enhancing antioxidant defenses and reducing inflammation. These findings support GA as a potential natural supplement for preventing or treating renal diseases.
Collapse
Affiliation(s)
- Khojasteh Hoseinynejad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Zahra Tafazzoli
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Moosavi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| |
Collapse
|
2
|
Agarwal S, Kaushik S, Saha H, Paramanick D, Mazhar M, Basist P, Khan R, Alhalmi A. Therapeutic potential of traditional herbal plants and their polyphenols in alleviation of mercury toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03807-7. [PMID: 39912903 DOI: 10.1007/s00210-025-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Mercury (Hg) is a major environmental contaminant significantly impacting human health. As a naturally occurring element, mercury has been extensively mobilized into aquatic and terrestrial ecosystems over thousands of years, largely due to anthropogenic activities such as mining and metal extraction. Acute mercury toxicity causes extensive physiological damage, affecting vital organs including the kidneys, heart, liver, brain, and skin. Phytochemicals, known for their diverse pharmacological properties, have shown promise in mitigating metal-induced toxicities, including mercury. These compounds exhibit protective effects against mercury-induced multi-organ damage through mechanisms such as reactive oxygen species (ROS) scavenging, cyclooxygenase (COX) inhibition, and anti-inflammatory activity. This review explores the therapeutic potential of traditional herbal plants and their phytoconstituents in alleviating mercury-induced toxicity. Key findings highlight several plants with hepatoprotective effects, mitigating necrosis and anatomical distortion in liver cells. Phytochemicals such as quercetin, rutin, salicylic acid, ferulic acid, 6-gingerol, and 6-shogaol play pivotal roles in downregulating molecular pathways activated by mercury exposure. Other bioactive compounds, including acetogenin and gallic acid, exhibit potent antioxidant properties, with mechanisms such as ROS scavenging and inhibition of lipid peroxidation. This review also highlights certain compounds, such as aloe-emodin and gentisic acid, which exhibit potential for mitigating mercury toxicity through mechanisms like inhibiting oxidative stress and enhancing cellular defense pathways. However, these compounds remain underexplored, with no significant studies conducted to evaluate their efficacy against mercury-induced toxicity, presenting a critical area for future research. These findings underscore the potential of phytochemicals as effective agents in combating mercury toxicity through antioxidant mechanisms, cellular signalling regulation, and heavy metal chelation.
Collapse
Affiliation(s)
- Saloni Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Swati Kaushik
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Hiranmoy Saha
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Debashish Paramanick
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Mohd Mazhar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, 00967, Aden, Yemen.
| |
Collapse
|
3
|
Liu TT, Hong KS, Yang TS. Functionalities of Tremella fuciformis Polysaccharides Modified with Gallic Acid. Molecules 2024; 29:5890. [PMID: 39769979 PMCID: PMC11677367 DOI: 10.3390/molecules29245890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
This research aimed to modify polysaccharides extracted from the edible mushroom Tremella fuciformis with gallic acid (GA) and to complex them with zinc ions. The functionalities of the modified Tremella fuciformis polysaccharides (TFPs) were investigated. Regarding antioxidant activity, TFP-GA demonstrated effective scavenging activity against DPPH radicals, nitric oxide, and hydrogen peroxide. Additionally, TFP-GA exhibited superior reducing ability toward Fe3+ and enhanced chelating activity toward Fe2+ compared to unmodified TFP. Notably, the TFP-GA conjugate outperformed GA in Fe2+-chelating activity. In terms of antimicrobial activity, the TFP-GA-Zn complex showed significantly improved antimicrobial effectiveness against S. aureus and E. coli compared to TFP-GA.
Collapse
Affiliation(s)
- Tai-Ti Liu
- Department of Food Science, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan; (T.-T.L.); (K.-S.H.)
| | - Kai-Siang Hong
- Department of Food Science, Yuanpei University of Medical Technology, No. 306 Yuanpei Street, Hsinchu 30015, Taiwan; (T.-T.L.); (K.-S.H.)
| | - Tsung-Shi Yang
- Department of Cosmeceutics, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung 406040, Taiwan
| |
Collapse
|
4
|
Shirmard LR, Khezri S, Ahadzadeh S, Azadimoghaddam P, Azizian S, Salimi A. Preparation of gallic acid-loaded chitosan nanoparticles and their chemoprotective effects on N-ethyl-N-nitrosourea-induced hepatotoxicity and mortality in rats. J Mol Histol 2024; 56:1. [PMID: 39585491 DOI: 10.1007/s10735-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
N-ethyl-N-nitrosourea (ENU) as n-nitrosamine and alkylating agent, ubiquitous within living cells and in the environment can act as a full carcinogen and induce tumor formation in various tissues such as liver. In this study, gallic acid-loaded chitosan nanoparticles (GANPs) were synthesized and evaluated for their chemopreventive effect against ENU-induced hepatotoxicity and mortality in rats. Twenty-four male Wistar rats were divided into four groups including: control, ENU (single doses of 50 mg/kg via intraperitoneal injection), GA + ENU and GANPs + ENU. Animals were orally pretreated with GA (50 mg/kg) and GANPs (50 mg/kg) for 30 days, and liver injuries induced by ENU on the 31st day of study. After ENU administration, weight changes and mortality were monitored during 30 days, and then the animals were sacrificed and alpha-fetoprotein (AFP) as a tumor marker, liver function tests (ALT, AST and ALP), oxidative stress markers (GSH and MDA), mitochondrial toxicity parameters, and histopathological assessment were evaluated. Except for AFP and MDA, ENU caused significant elevation of liver enzymes, mitochondrial ROS formation, collapse of mitochondrial membrane potential depletion of GSH, histopathological abnormalities and mortality in rats. Our data showed that GANPs significantly increased the survival of rats by up to 66%, delayed in death time and prevented weight changes after exposure to ENU. Moreover, GANPs restored liver enzyme levels, ROS formation, mitochondrial dysfunction, GSH levels, and histopathological abnormalities towards normal. Our findings suggest that GANPs revealed a significant protective effect against deadly toxicity induced by ENU as an alkylating full carcinogen agent in liver tissue.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Sara Ahadzadeh
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Paniiiz Azadimoghaddam
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Azizian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Associate Professor of Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Rammali S, Kamal FZ, El Aalaoui M, Bencharki B, Burlui V, Khattabi A, Abderrahim A, Saad S, Romila L, Novac B, Aitlhaj-Mhand R, Petroaie AD, Ciobică A. In vitro antimicrobial and antioxidant activities of bioactive compounds extracted from Streptomyces africanus strain E2 isolated from Moroccan soil. Sci Rep 2024; 14:27372. [PMID: 39521814 PMCID: PMC11550811 DOI: 10.1038/s41598-024-77729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to isolate Streptomyces sp. from Moroccan terrestrial ecosystems and identify bioactive compounds through GC-MS analysis. Antimicrobial activity was assessed against various pathogenic microorganisms including Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 60193, and multi-drug resistant strains comprising Listeria monocytogenes, Klebsiella pneumoniae 19K 929, Proteus sp. 19K1313, Klebsiella pneumoniae 20B1572, Proteus vulgaris 16C1737, and Klebsiella pneumoniae 20B1572. Based on the results of the gene sequencing of gene 16S rRNA and phylogenetic analysis, the E2 isolate belongs to the genus Streptomyces with the highest degree of resemblance (97.51%) to the Streptomyces africanus strain NBRC 101005 (NR_112600.1). The isolate exhibited broad-spectrum antibacterial activity, with maximum efficacy against Klebsiella pneumoniae 20B1572 indicated by an inhibition zone diameter of 22.5 ± 0.71mm and a minimum inhibitory concentration (MIC) of 0.0625 mg/mL. The in vitro antioxidant potential of E2 strain was determined through screening of its ethyl acetate extract against sets of antioxidant assays. The results were indicative of E2 strain displaying strong antioxidant activity against ABTS, DPPH free radicals, and FRAP. Furthermore, there was a high significant correlation (p < 0.0001) between the total phenolic and flavonoid content and antioxidant activities. The GC-MS analysis of the extract identified six volatile compounds, with Eugenol (96%) and Maltol (93%) being the most prominent. Additionally, the HPLC-UV/vis analysis revealed six phenolic compounds: gallic acid, chlorogenic acid, vanillic acid, trans-ferulic acid, ellagic acid, and cinnamic acid. Overall, the study highlights Streptomyces sp. strain E2 as a potential source of potent antimicrobial and antioxidant metabolites, offering promise in addressing antibiotic resistance and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), 40000, Marrakech, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511, Iasi, Romania
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aasfar Abderrahim
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Salhi Saad
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Laura Romila
- Apollonia University, Păcurari Street 11, 700511, Iasi, Romania.
| | - Bogdan Novac
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | | | - Antoneta Dacia Petroaie
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506, Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
- Clinical Department, Apollonia University, Păcurari Street 11, 700511, Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16th Universitatii Street, 700115, Iasi, Romania
| |
Collapse
|
6
|
Abdel-Naby DH, El-Sheikh MM, Abd El-Rahman SS, El-Hamoly T. GSK-3β/Notch-1 Activation Promotes Radiation-Induced Renal Damage: The Role of Gallic Acid in Mitigation of Nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:4871-4883. [PMID: 38894622 DOI: 10.1002/tox.24361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Despite the therapeutic advances in treating malignancies, the efficient radiotherapeutic approaches with deprived adverse reactions still represent a potential clinical inquiry. The current study aims to elucidate the role of gallic acid (GA) in modifying the hazardous renal cytotoxicity induced by acute exposure to radiation. The MTT test was used to evaluate the viability of Vero cells exposed to 2 Gy gamma radiation with or without incubation of GA. In an in vivo model, male Wistar rats were divided into four experimental groups (n = 6): Control, Irradiated (IRR, 5 Gy), GA (100 mg/kg, i.p.) + IRR, and Glycogen synthase kinase inhibitor (GSKI, 3 mg/kg, i.p.) + IRR. Based on the MTT toxicity assay, from 0 and up to 5 μM dosages of GA did not demonstrate any cytotoxicity to Vero cells. The optimal GA dose that could protect the cells from radiation was 5 μM. Furthermore, GA exerted a protective effect from gamma radiation on renal tissue as indicated by corrected renal functions, decreased LDH level in serum, and balanced oxidative status, which is indicated by decreased tissue contents of NOx and TBARS with a significant increase of reduced GSH. These outcomes were inferred by the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. The overall molecular impact of radiation in damaging the renal tissue may be explained by modifying the upstream AKT activity and its downstream targets GSK-3β/Notch-1. Here, we concluded that the anticipated adverse reaction in the course of radiation exposure could be protected by daily administration of GA.
Collapse
Affiliation(s)
- Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Tarek El-Hamoly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
7
|
Weinberg Sibony R, Segev O, Dor S, Raz I. Overview of oxidative stress and inflammation in diabetes. J Diabetes 2024; 16:e70014. [PMID: 39435991 PMCID: PMC11494684 DOI: 10.1111/1753-0407.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
The global prevalence of diabetes has increased significantly, leading to various complications and a negative impact on quality of life. Hyperglycemia hyperglycemic-induced oxidative stress (OS) and inflammation are closely associated with the development and progression of type 2 diabetes mellitus (T2D) and its complications. This review explores the effect of T2D on target organ damage and potential treatments to minimize this damage. The paper examines the pathophysiology of T2D, focusing on low-grade chronic inflammation and OS and on their impact on insulin resistance. The review discusses the role of inflammation and OS in the development of microvascular and macrovascular complications. The findings highlight the mechanisms by which inflammatory cytokines, stress kinases, and reactive oxygen species (ROS) interfere with insulin signaling pathways, leading to impaired glucose metabolism and organ dysfunction. Lifestyle interventions, including a balanced diet and exercise, can help reduce chronic inflammation and OS, thereby preventing and controlling T2D and its associated complications. Additionally, various antioxidants and anti-inflammatory agents show potential in reducing OS and inflammation. Some anti-diabetic drugs, like pioglitazone, metformin, and glucagon-like peptide-1 (GLP-1) agonists, may also have anti-inflammatory effects. Further research, including randomized controlled trials, is needed to evaluate the efficacy of these interventions.
Collapse
Affiliation(s)
| | - Omri Segev
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Saar Dor
- Faculty of MedicineBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Itamar Raz
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Diabetes Unit, Department of Endocrinology and MetabolismHadassah Medical CenterJerusalemIsrael
| |
Collapse
|
8
|
Ameen HM, Jayadev A, Prasad G, Nair DI. Seagrass Meadows: Prospective Candidates for Bioactive Molecules. Molecules 2024; 29:4596. [PMID: 39407526 PMCID: PMC11478234 DOI: 10.3390/molecules29194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Seagrass meadows consist of angiosperms that thrive fully submerged in marine environments and form distinct ecosystems. They provide essential support for many organisms, acting as nursery grounds for species of economic importance. Beyond their ecological roles, seagrasses and their associated microbiomes are rich sources of bioactive compounds with the potential to address numerous human healthcare challenges. Seagrasses produce bioactive molecules responding to physical, chemical, and biological environmental changes. These activities can treat microbe-borne diseases, skin diseases, diabetes, muscle pain, helminthic diseases, and wounds. Seagrasses also offer potential secondary metabolites that can be used for societal benefits. Despite numerous results on their presence and bioactive derivatives, only a few studies have explored the functional and therapeutic properties of secondary metabolites from seagrass. With the increasing spread of epidemics and pandemics worldwide, the demand for alternative drug sources and drug discovery has become an indispensable area of research. Seagrasses present a reliable natural source, making this an opportune moment for further exploration of their pharmacological activities with minimal side effects. This review provides a comprehensive overview of the biochemical, phytochemical, and biomedical applications of seagrasses globally over the last two decades, highlighting the prospective areas of future research for identifying biomedical applications.
Collapse
Affiliation(s)
- Hazeena M. Ameen
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Ayona Jayadev
- Postgraduate Department of Environmental Sciences, All Saints’ College (Affiliated to the University of Kerala), Thiruvananthapuram 695007, India;
| | - Geena Prasad
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 641112, India
| | - Deepa Indira Nair
- Department of Engineering Technologies, Swinburne University of Technology, Melbourne 3122, Australia;
| |
Collapse
|
9
|
Uc-Cachón AH, Dzul-Beh A, González-Cortázar M, Zamilpa-Álvarez A, Molina-Salinas GM. Investigating the anti-growth, anti-resistance, and anti-virulence activities of Schoepfia schreberi J.F.Gmel. against the superbug Acinetobacter baumannii. Heliyon 2024; 10:e31420. [PMID: 38813144 PMCID: PMC11133943 DOI: 10.1016/j.heliyon.2024.e31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Schoepfia schreberi has been used in Mayan folk medicine to treat diarrhea and cough. This study aimed to determine the anti-growth, anti-resistance, and/or anti-virulence activities of S. schreberi extracts against Acinetobacter baumannii, a pathogen leader that causes healthcare-associated infections with high rates of drug-resistant including carbapenems, the last line of antibiotics known as superbugs, and analyze their composition using HPLC-DAD. Ethyl acetate (SSB-3) and methanol (SSB-4) bark extracts exhibit antimicrobial and biocidal effects against drug-susceptible and drug-resistant A. baumannii. Chemical analysis revealed that SSB-3 and SSB-4 contained of gallic and ellagic acids derivatives. The anti-resistance activity of the extracts revealed that SSB-3 or SSB-4, combined with imipenem, exhibited potent antibiotic reversal activity against A. baumannii by acting as pump efflux modulators. The extracts also displayed activity against surface motility of A. baumannii and its capacity to survive reactive oxygen species. This study suggests that S. schreberi can be considered a source of antibiotics, even adjuvanted compounds, as anti-resistant or anti-virulence agents against A. baumannii, contributing to ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, and supporting the traditional use of the bark of the medicinal plant S. schreberi for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| | - Angel Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Manases González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| |
Collapse
|
10
|
Karker M, Oueslati S, Falleh H, Msaada K, Legault J, Abdelly C, Pichette A, Ksouri R. Phytochemical investigation, antioxidant, anti-inflammatory and cytotoxic activities of Tunisian medicinal Tamarix africana Poir. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2366-2377. [PMID: 37652575 DOI: 10.1080/09603123.2023.2249424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
The current study aimed to evaluate Tunisian Tamarix africana Poir biological activities. In this study, novel biological activities of the shoot extracts related to their phenolics investigated. Secondary metabolite contents, antioxidant, anti-inflammatory and cytotoxic activities of four extracts (hexane, dichloromethane, methanol and water) were investigated. Antioxidant activities were assessed via in vitro and ex vivo assays. Besides, anticancer activity was investigated against human lung carcinoma (A-549) and colon adenocarcinoma (DLD-1) cells. The anti-inflammatory ability was evaluated via inhibition of LPS-induced NO production in RAW 264.7 macrophage cell lines. Methanol and water extracts displayed the highest antioxidant (IC50 = 3.3 and 4.3 µg/mL respectively), which are correlated activities correlated with phenolic contents. Hexane extract exhibited an important anti-inflammatory effect inhibiting NO ability by 100% at 80 µg/mL. Besides, T. africana extracts were found to be active against A-549 lung carcinoma cells with IC50 values ranging from 20 to 34 µg/mL. These results suggested that T. africana is considered as a potential source of readily accessible natural molecules with a promising effect on human health and diseases.
Collapse
Affiliation(s)
- Manel Karker
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| | - Samia Oueslati
- Laboratory of Extremophile Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| | - Hanen Falleh
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| | - Kamel Msaada
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| | - Jean Legault
- LASEVE Laboratory, Québec University in Chicoutimi, Québec, Canada
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| | - André Pichette
- LASEVE Laboratory, Québec University in Chicoutimi, Québec, Canada
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center at the Technopole of Borj-Cédria (CBBC), Hammam-Lif, Tunisia
| |
Collapse
|
11
|
Roudbari M, Barzegar M, Sahari MA. Pistachio green hull and pomegranate peel extracts as two natural antiglycation agents. Food Sci Nutr 2024; 12:3688-3695. [PMID: 38726394 PMCID: PMC11077175 DOI: 10.1002/fsn3.4039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced glycation end products (AGEs) are formed in the final step of the nonenzymatic Maillard reaction, which can contribute to various health problems such as diabetes mellitus, renal failure, and chronic inflammation. Bioactive compounds with antiglycation properties have the potential to inhibit AGE-related diseases. This study investigated the antiglycation potential of pistachio green hull (PGH) and pomegranate peel (PP) extracts, which are polyphenol-rich agro-residues, against fluorescent AGE formation and compared the results with pyridoxine (vitamin B6), metformin, and EDTA (as usual chemical antiglycation agents). The results showed that PGH and PP effectively inhibited the formation of AGEs in bovine serum albumin-glucose (BSA-Glu) and BSA-fructose (BSA-Fru) with antiglycation activities ranging from 92% to 97%. PP extract (with an IC50 of 94 mg ml-1) had a greater antiglycation ability than PGH extract (with an IC50 of 142 mg ml-1). Also, results indicated that the antiglycation activities of the extracts were comparable to that of pyridoxine, and higher than metformin and EDTA. These findings suggest that the two studied extracts can be used for sustainable production of high-added-value food products with a positive effect on consumers' health.
Collapse
Affiliation(s)
- Mozhgan Roudbari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohammad Ali Sahari
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
12
|
Danjolli-Hashani D, Selen Isbilir S. Effects of natural waste on in vitro oxidative DNA damage. Nat Prod Res 2024:1-10. [PMID: 38608249 DOI: 10.1080/14786419.2024.2340044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
In this study, the effects of natural waste products such as extracts from C. coggygria leaves and Punica granatum L. peels were investigated against oxidative DNA damage induced by Fenton reaction. 8-OH-2'dG as a general marker of DNA damage on thymus DNA, and the bioactive compounds of extracts were measured by LC-MS/MS. Our results had shown that ethanol extracts of C. coggygria leaf and Punica granatum L. peel had a protective effect on oxidative damaged DNA. It was determined that the bioactive compounds of C. coggygria leaves (gallic acid, protocatechuic acid, myricetin, syringic acid and ethyl gallate as a major compounds) and Punica granatum L. peel (ellagic acid, abscisic acid, ethyl gallate, phlorizin, gallic acid, myricetin as major compounds) may have an important role in the protective effect against oxidative DNA damage. Therefore, Cotinus coggygria leaves and Punica granatum L. peel may have potential use in medicine or cosmetic fields.
Collapse
Affiliation(s)
- Dua Danjolli-Hashani
- Department of Chemistry, Institute of Natural and Applied Sciences, Trakya University, Edirne, Türkiye
| | | |
Collapse
|
13
|
Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, Dang R, Li M, Wang C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int 2024; 180:114068. [PMID: 38395544 DOI: 10.1016/j.foodres.2024.114068] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.
Collapse
Affiliation(s)
- Zedong Xiang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Xiang Zhao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Qi Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Zhejun Xie
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Fujie Cai
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Rui Dang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China
| | - Manlin Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Laboratory of Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, 1200 Cailun Road, 201203, China.
| |
Collapse
|
14
|
Wasti Y, Muntaqua D, Majid M, Naz I, Zafar A, Khan SU, Kazmi STB, Rehman TU, Irshad N, Fatima H. Characterization and comparative evaluation of wound healing potential of Ajugarin I and Ajuga bracteosa Wall. ex Benth. Front Chem 2024; 11:1325578. [PMID: 38362004 PMCID: PMC10867974 DOI: 10.3389/fchem.2023.1325578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Ajuga bracteosa (family: Lamiaceae), commonly known as kauri booti, is an important ethnomedicinal plant. The current research was conducted to appraise and compare the in vitro antioxidant and antibacterial profiles as well as in vivo wound healing potentials of Ajugarin I and A. bracteosa extract. Ajugarin I and polyphenols in A. bracteosa were enumerated by reversed-phase high-performance liquid chromatography analysis that confirmed significant amounts of Ajugarin I (2.2 ± 0.02 μg/mg DW) and other phenolic compounds (14 out of 17 standards). A. bracteosa (374.4 ± 0.20 µg AAE/mg of DW, 201.9 ± 0.20 µg AAE/mg of DW, 87 ± 0.30%) showed a higher antioxidant profile compared to Ajugarin I (221.8 ± 0.50 µg AAE/mg of DW, 51.8 ± 0.40 µg AAE/mg of DW, 27.65 ± 0.80%) with 1.86-, 3.89-, and 3.15-fold greater activity in ferric reducing antioxidant power, total antioxidant capacity, and free radical scavenging assays, respectively. Likewise, A. bracteosa showed antibacterial activity against 3/5 strains (MIC 25-200 μg/ml) than Ajugarin I (2/5 strains; MIC 50-200 μg/ml). Hemolytic (<2% hemolysis) and dermal toxicity tests rendered both samples non-toxic. Additionally, A. bracteosa (100 ± 2.34% at day 12; 9.33 ± 0.47 days) demonstrated 1.11- and 1.24-fold higher percent wound contraction and epithelization time, respectively, than Ajugarin I (95.6 ± 1.52% at day 12; 11.6 ± 0.47 days) as assessed by an excision wound model in mice. Histopathological examination further reinforced the better wound healing potential of A. bracteosa with good epithelization, collagen synthesis, fibroblast proliferation, and revascularization. Briefly, we endorse the significant comparative antioxidant, antibacterial, and wound healing activities of A. bracteosa and Ajugarin I and present these as prospective candidates for wound healing drugs.
Collapse
Affiliation(s)
- Yusra Wasti
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Durdana Muntaqua
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University, Islamabad, Pakistan
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraidah, Saudi Arabia
| | - Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | - Tofeeq Ur Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
Pattanik SK, Pradhan KK. A validated bioanalytical method for the simultaneous estimation of telmisartan and gallic acid in rat plasma samples by high-performance thin-layer chromatography-mass spectrometry: Application to an oral pharmacokinetic study. Biomed Chromatogr 2024; 38:e5770. [PMID: 37963720 DOI: 10.1002/bmc.5770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/16/2023]
Abstract
A novel and cost-effective high-performance thin-layer chromatography (HPTLC) method, combined with densitometric quantification, was developed for the biomedical analysis of telmisartan (TEL) and gallic acid (GA). Recent research indicates that when used in combination, these compounds offer improved therapeutic efficacy for the treatment of cardiovascular diseases with reduced side effects. The study focused on the simultaneous quantification and pharmacokinetic analysis of drugs in rat plasma. The separation was conducted using HPTLC silica gel 60 F254 plates with dimensions of 20 × 10 cm and a thickness of 0.2 mm. The mobile phase used for separation consisted of a mixture of ethyl acetate, methanol, chloroform, and acetic acid in the ratio of 4:2:2:0.2 (v/v). GA and TEL were analyzed using ultraviolet detection at specific wavelengths, with GA at 280 nm and TEL at 296 nm. Peak purity was assessed through spectral correlation analysis using Vision CATS software. The method underwent validation following the guidelines of the US Food and Drug Administration (US FDA). Calibration plots demonstrated linearity in the concentration range of 200-1200 ng/spot, with high correlation coefficients (R2 ). The retention factors (Rf ) were 0.67 for TEL and 0.60 for GA. The identity of the separated compounds was further confirmed using MS, with GA having a mass-to-charge ratio (m/z) of 168.9 in negative mode and TEL with m/z 515.2 in positive mode. In the pharmacokinetic study, the maximum peak plasma concentration (Cmax ) for GA was 899.7 ng/mL, and for TEL, it was 1013 ng/mL. The time to reach maximum concentration (Tmax ) was 2 h for GA and 6 h for TEL. This simultaneous qualitative and quantitative determination of the drugs in an oral pharmacokinetic study involving Wistar rats can serve as a valuable tool for future investigations into pharmacokinetic interactions, quality control, and routine analysis of these drugs, both in their pure forms and in novel formulations.
Collapse
Affiliation(s)
- Swadesh Kumar Pattanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Kishanta Kumar Pradhan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
16
|
Wu C, Zhang W, Yan F, Dai W, Fang F, Gao Y, Cui W. Amelioration effects of the soybean lecithin-gallic acid complex on iron-overload-induced oxidative stress and liver damage in C57BL/6J mice. PHARMACEUTICAL BIOLOGY 2023; 61:37-49. [PMID: 36573499 PMCID: PMC9809354 DOI: 10.1080/13880209.2022.2151632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Gallic acid (GA) and lecithin showed important roles in antioxidant and drug delivery, respectively. A complex synthesized from GA and soybean lecithin (SL-GAC), significantly improved bioavailability of GA and pharmacological activities. However, the antioxidant activity of SL-GAC and its effect on iron-overload-induced liver injury remains unexplored. OBJECTIVE This study investigates the antioxidant properties of SL-GAC in vitro and in mice, and its remediating effects against liver injury by iron-overloaded. MATERIALS AND METHODS In vitro, free radical scavenging activity, lipid peroxidation inhibition, and ferric reducing power of SL-GAC were measured by absorbance photometry. In vivo, C57BL/6J mice were randomized into 4 groups: control, iron-overloaded, iron-overloaded + deferoxamine, and iron-overloaded + SL-GAC. Treatments with deferoxamine (150 mg/kg/intraperitioneally) and SL-GAC (200 mg/kg/orally) were given to the desired groups for 12 weeks, daily. Iron levels, oxidative stress, and biochemical parameters were determined by histopathological examination and molecular biological techniques. RESULTS In vitro, SL-GAC showed DPPH and ABTS free radicals scavenging activity with IC50 values equal to 24.92 and 128.36 μg/mL, respectively. In C57BL/6J mice, SL-GAC significantly reduced the levels of serum iron (22.82%), liver iron (50.29%), aspartate transaminase (25.97%), alanine transaminase (38.07%), gamma glutamyl transferase (42.11%), malondialdehyde (19.82%), total cholesterol (45.96%), triglyceride (34.90%), ferritin light chain (18.51%) and transferrin receptor (27.39%), while up-regulated the levels of superoxide dismutase (24.69%), and glutathione (11.91%). CONCLUSIONS These findings encourage the use of SL-GAC to treat liver injury induced by iron-overloaded. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Caihong Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenxin Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Feifei Yan
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Wenwen Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Fang Fang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| | - Yanli Gao
- Department of Pediatric Ultrosonic, The First Hospital of Jilin University, Changchun, China
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Singh SK, Shrivastava S, Mishra AK, Kumar D, Pandey VK, Srivastava P, Pradhan B, Behera BC, Bahuguna A, Baek KH. Friedelin: Structure, Biosynthesis, Extraction, and Its Potential Health Impact. Molecules 2023; 28:7760. [PMID: 38067489 PMCID: PMC10707989 DOI: 10.3390/molecules28237760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Pharmaceutical companies are investigating more source matrices for natural bioactive chemicals. Friedelin (friedelan-3-one) is a pentacyclic triterpene isolated from various plant species from different families as well as mosses and lichen. The fundamental compounds of these friedelane triterpenoids are abundantly found in cork tissues and leaf materials of diverse plant genera such as Celastraceae, Asteraceae, Fabaceae, and Myrtaceae. They possess many pharmacological effects, including anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. Friedelin also has an anti-insect effect and the ability to alter the soil microbial ecology, making it vital to agriculture. Ultrasound, microwave, supercritical fluid, ionic liquid, and acid hydrolysis extract friedelin with reduced environmental impact. Recently, the high demand for friedelin has led to the development of CRISPR/Cas9 technology and gene overexpression plasmids to produce friedelin using genetically engineered yeast. Friedelin with low cytotoxicity to normal cells can be the best phytochemical for the drug of choice. The review summarizes the structural interpretation, biosynthesis, physicochemical properties, quantification, and various forms of pharmacological significance.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Shweta Shrivastava
- School of Pharmacy, ARKA Jain University, Jamshedpur 832108, Jharkhand, India;
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Darshan Kumar
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Vijay Kant Pandey
- Department of Agriculture, Netaji Subhas University, Jamshedpur 831012, Jharkhand, India;
| | - Pratima Srivastava
- Department of Biotechnology, ARKA Jain University, Jamshedpur 832108, Jharkhand, India; (S.K.S.); (P.S.)
| | - Biswaranjan Pradhan
- S.K. Dash Centre of Excellence of Biosciences and Engineering and Technology, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| | - Bikash Chandra Behera
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India;
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
18
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
19
|
Albogami B. Ameliorative synergistic therapeutic effect of gallic acid and albendazole against Trichinella spiralis muscular phase infection and assessment of their effects on hepatic and cardiac tissues in male mice. Saudi J Biol Sci 2023; 30:103763. [PMID: 37609546 PMCID: PMC10440570 DOI: 10.1016/j.sjbs.2023.103763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023] Open
Abstract
Trichinellosis is a serious food-borne parasitic disease with serious community health effects, mainly causing muscle damage with no recent approved treatment. This study aimed to assess the therapeutic effect of gallic acid (GA) as a potent antioxidant against the encysted phase of Trichinella spiralis in male (BALB/c) mice alone or combined with albendazole (ALB) and to detect their synergistic effects on the histology and ultrastructure of skeletal and cardiac muscles and some biochemical blood analyses. Forty male mice were randomly divided into five groups (8 mice/group). 1st group: the negative control received only distilled water, 2nd group: the positive control (infected control group without treatment), 3rd group: infected group plus treatment with ALB (50 mg Kg-1 orally), and 4th group: infected group and then treated with GA (30 mg Kg-1 orally) and finally 5th infected group treated with a combination of both ALB and GA. Aspartate and Alanine aminotransferase, Lactate dehydrogenase, alkaline phosphatase, C-reactive protein, Interleukin-4 and Creatine kinase were used as biochemical markers of hepatic and cardiac toxicity and inflammation. Malondialdehyde level, catalase, superoxide dismutase, and glutathione peroxidase were evaluated in heart tissue homogenates beside histological and ultra-structural examination of heart and skeletal muscles beside parasitological analyses. Results showed that the reduction % of Trichinella sp. larvae g-1 in muscles of the group treated with the combination of GA and ALB showed overall reduction percentages. Oral administration of 30 mg kg1 of GA led to infection reduction of T. spiralis than ALB treated group. Both administration of ALB beside GA showed the best treatment group that resulted in high infection reduction besides amelioration of both biochemical markers and restoration of histological and ultrastructures to normal state. In conclusion, GA is highly effective against T. spiralis which could be a promising alternative antioxidant drug and the GA effect was higher in the case of combination with ALB. This experiment provides a basis for further exploration of potent activities of other antioxidants against different phases of T. spiralis and the reduction of any health hazards prospectively.
Collapse
Affiliation(s)
- Bander Albogami
- Biology Department, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
20
|
Wei F, Wang J, Luo L, Tayyab Rashid M, Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review. Food Res Int 2023; 170:112994. [PMID: 37316067 DOI: 10.1016/j.foodres.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jie Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
21
|
Srinonthong P, Wandee J, Aengwanich W. The effect of gallic acid on malondialdehyde, hydrogen peroxide and nitric oxide that influence viability of broiler blood cells at the high ambient temperatures. Br Poult Sci 2023. [PMID: 37145879 DOI: 10.1080/00071668.2023.2184247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
1. The objective of this study was to measure the effect of gallic acid on levels of ferric reducing antioxidant power, malondialdehyde, hydrogen peroxide, nitric oxide and the viability of broiler blood cells (BBCs) when exposed to high ambient temperature.2. The BBCs were maintained at 41.5°C (control group, CG) or at ambient temperatures ranging from 41.5°C to 46°C. At 41.5°C to 46°C, BBCs were diluted with gallic acid at 0 (positive control group, PCG), 6.25, 12.5, 25 and 50 µmol, respectively. Ferric reducing antioxidant power, malondialdehyde, hydrogen peroxide, nitric oxide and viability of BBCs were investigated.3. Hydrogen peroxide, malondialdehyde and nitric oxide for the CG was lower than PCG (P<0.05). However, the viability of CG was higher than PCG (P<0.05). At 41.5 to 46°C, malondialdehyde, hydrogen peroxide, and nitric oxide of BBCs diluted with gallic acid were lower compared to PCG (P<0.05). Viability of BBCs diluted with gallic acid was higher than PCG (P<0.05).4. These results indicated that gallic acid could reduce the adverse oxidative effects of high ambient temperature on BBCs, with an optimum dilution rate of 12.5 µmol.
Collapse
Affiliation(s)
- Piyarat Srinonthong
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Bioveterinary Research unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Jaroon Wandee
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Bioveterinary Research unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Worapol Aengwanich
- Stress and Oxidative Stress in Animal Research Unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Bioveterinary Research unit of Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham 44150 Thailand
- Faculty of Veterinary Sciences, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| |
Collapse
|
22
|
Luo J, Jiang C, Zhao J, Zhao L, Zheng P, Fang J. Hierarchical tungsten-doped bimetallic selenides nanosheets arrays/nickel foam composite electrode as efficient gallic acid electrochemical sensor. Mikrochim Acta 2023; 190:165. [PMID: 37000326 DOI: 10.1007/s00604-023-05732-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023]
Abstract
The development of effective and accurate gallic acid (GA) electrochemical sensors is critical for food and pharmaceutical industry and health perspectives. Multi-step hydrothermal treatments of bimetallic (Ni/Co) flaky bimetallic hydroxides (NiCo FBHs) were employed to prepare tungsten-doped cobalt-nickel selenides nanosheets arrays (W-Co0.5Ni0.5Se2 NSAs) serving as the main active substance of GA detection. The morphology and composition of the W-Co0.5Ni0.5Se2 NSAs/NF were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The GA electrochemical sensor constructed by the W-Co0.5Ni0.5Se2 NSAs/NF composite electrode exhibits two linear concentration ranges of 1.00-36.2 μM and 36.2-1.00×103 μM for GA electrochemical detection with a limit of detection of 0.120 μM (S/N=3) at the working potential of 0.05 V (vs. SCE). The W-Co0.5Ni0.5Se2 NSAs/NF shows high selectivity, good long-term stability, high recovery in the range 97.9-105%, and a relative standard deviation (RSD) between 0.60 and 2.7%.
Collapse
Affiliation(s)
- Jialun Luo
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Cheng Jiang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jihua Zhao
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Luyao Zhao
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Peizhu Zheng
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing, 100029, People's Republic of China.
| | - Jian Fang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
23
|
Metabolic Profiling of Mimusops elengi Linn. leaves extract and in silico anti-inflammatory assessment targeting NLRP3 inflammasome. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
24
|
Gallic acid abates cadmium chloride toxicity via alteration of neurotransmitters and modulation of inflammatory markers in Wistar rats. Sci Rep 2023; 13:1577. [PMID: 36709339 PMCID: PMC9884205 DOI: 10.1038/s41598-023-28893-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 01/29/2023] Open
Abstract
Cadmium is a highly neurotoxic heavy metal that disrupts membranes and causes oxidative stress in the brain. The study aimed to investigate the neuroprotective effect of gallic acid on oxidative damage in the brains of Wistar rats exposed to cadmium chloride (CdCl2). Male Wistar rats were divided into four groups of five rats each. Group 1 was administered distilled water only throughout the study. Throughout the study, Group 2 received CdCl2 alone (5 mg/kg b.w./day), Group 3 received gallic acid (20 mg/kg b.w./day), and Group 4 received CdCl2 + gallic acid (20 mg/kg). Treatments were oral with distilled water as a vehicle. The study lasted 21 days. In the brain, the activities of cholinesterase and antioxidant enzymes were evaluated, as well as the levels of reduced glutathione, malondialdehyde, neurotransmitters, Na+/K+ ATPase, myeloperoxidase activity, nitric oxide, and interleukin-6. CdCl2-induced brain impairments in experimental animals and gallic acid prevents the following CdCl2-induced activities: inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), elevated neurotransmitters (serotonin and dopamine), decreased antioxidant enzymes (superoxide dismutase, catalase), decreased glutathione, Na+/K+ ATPases, and increased MDA and neuroinflammatory markers (myeloperoxidase (MPO), nitric oxide, and interleukin-6 in the brain of experimental rats exposed to CdCl2 (p < 0.05). Taken together, the neuroprotective effects of gallic acid on CdCl2-induced toxicity in the brains of rats suggest its potent antioxidant and neurotherapeutic properties.
Collapse
|
25
|
Salimi A, Shabani M, Bayrami D, Saray A, Farshbaf Moghimi N. Gallic acid and sesame oil exert cardioprotection via mitochondrial protection and antioxidant properties on Ketamine-Induced cardiotoxicity model in rats. TOXIN REV 2023. [DOI: 10.1080/15569543.2023.2165503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Deniz Bayrami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Armin Saray
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
26
|
Bălănescu F, Botezatu AV, Marques F, Busuioc A, Marincaş O, Vînătoru C, Cârâc G, Furdui B, Dinica RM. Bridging the Chemical Profile and Biological Activities of a New Variety of Agastache foeniculum (Pursh) Kuntze Extracts and Essential Oil. Int J Mol Sci 2023; 24:ijms24010828. [PMID: 36614269 PMCID: PMC9821440 DOI: 10.3390/ijms24010828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
This study investigated the phytochemical content of alcoholic extracts and essential oil of a new variety of medicinal plants, Agastache foeniculum (Pursh), which Kuntze adapted for cultivation in Romania, namely “Aromat de Buzău”. The essential oil was investigated by GC-MS, while the identification and quantification of various compounds from alcoholic extracts were performed by HPLC-DAD. The total phenol and flavonoid contents of the extracts were evaluated by using standard phytochemical methods. The antioxidant activities of ethanol, methanol extracts, and essential oil of the plant were also assessed against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+), and by ferric reducing power (FRAP) using spectroscopic methods. Cyclic voltammetry was used to evaluate the antioxidant capacity of the essential oil. The concentrations of phenolic compounds were higher in methanolic extract compared to ethanolic extract. A significant correlation was found between total phenol and total flavonoid contents (r = 0.9087). Significant high correlations were also found between the total phenolic compounds and the antioxidant activities of the extracts (r ≥ 0.8600, p < 0.05). In addition, the extracts and essential oil showed good antioxidant and xanthine oxidase inhibitory activities. Estragole was detected as the major constituent of the essential oil (94.89%). The cytotoxic activity of the essential oil was evaluated by the MTT assay. At lower concentrations (1 µg/mL) high cytotoxicity against MCF-7 breast cancer cells was observed but not on the non-tumoral dermal fibroblasts (HDF) which indicated selectivity for cancer cells and suggests the presence of biologically active components that contribute to the observed high cytotoxic effect. Findings from the present study offer new perspectives on the use of A. foeniculum as a potential source of bioactive compounds and a good candidate for pharmaceutical plant-based products.
Collapse
Affiliation(s)
- Fănică Bălănescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos” University of Galati, 35 A.I. Cuza Street, 800010 Galati, Romania
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Andreea Veronica Botezatu
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.V.B.); (R.M.D.)
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares (DECN), Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, University of Lisbon, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, Bobadela, 2695-066 Boticas, Portugal
| | - Anna Busuioc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Olivian Marincaş
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Costel Vînătoru
- Plant Genetic Resources Bank for Vegetables, Floriculture, Aromatic and Medicinal Plants Buzău, 56 Nicolae Bălcescu Street, 120187 Buzau, Romania
| | - Geta Cârâc
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Bianca Furdui
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
| | - Rodica Mihaela Dinica
- Faculty of Sciences and Environment, Department of Chemistry Physical and Environment, “Dunărea de Jos” University of Galati, 111 Domnească Street, 800201 Galati, Romania
- Correspondence: (A.V.B.); (R.M.D.)
| |
Collapse
|
27
|
Ghosh A, Chakraborty D, Mukerjee N, Baishya D, Chigurupati S, Felemban SG, Almahmoud SA, Almikhlafi MA, Sehgal A, Singh S, Sharma N, Aleya L, Behl T. Target-based virtual screening and molecular interaction studies for lead identification of natural olive compounds against glioblastoma multiforme. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6170-6191. [PMID: 35994146 DOI: 10.1007/s11356-022-22401-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma multiforme, a rare traumatic brain disorder, is at the research climax for its uncontrolled growth leading to a catastrophic outcome. Throwing light on the target-based virtual screening of drugs using natural phytocompounds is a striking cornerstone in glioblastoma-based drug discovery, accelerating with leaps and bounds. This project aims to develop promising lead compounds against glioblastoma brain cancer using OliveNet™, an open-source database. In this pursuit, our rationale for selecting molecules was based on their capability to pass through the blood-brain barrier. Out of 51 derivative molecules from flavonoids and polyphenols, 17 molecules were screened out bearing the best ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, alongside fulfilling our rationale of lead selection. Two polyphenols, 3,4,5-trimethoxybenzoic acid and 4-ethyl guaiacol, have binding affinity for the antioxidant flavonoid luteolin of -5.1 and -4.3 kcal/mol, respectively. According to docking studies, the residues ASN1960, ASN1966, ASN1960, PHE1984, TYR1896, VAL1911, and LYS1966 make both polar and nonpolar interactions with 3,4,5-trimethoxybenzoic acid and 4-ethylguanidine, respectively. LD50 values of toxicity screening using TOX Pro brought to limelight the excellent safety profile of polyphenols and flavonoids. Furthermore, studies using in silico cytotoxicity prediction and molecular modelling have decisively shown that these polyphenols are likely to be effective brain cancer inhibitors and promising future lead candidates against glioblastoma multiforme.
Collapse
Affiliation(s)
- Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Dipanwita Chakraborty
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, West Bengal, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati, Assam, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madina, Kingdom of Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besancon, France
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
28
|
Kurt D, Yalçin E, Çavuşoğlu K. GC-MS and HPLC supported phytochemical analysis of watercress and the protective role against paraben toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6033-6046. [PMID: 35986852 DOI: 10.1007/s11356-022-22380-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, the phytochemical content of Nasturtium officinale R. Br. (watercress) leaf extract (Noex) and its protective effects against paraben toxicity were investigated. GC-MS and HPLC analyses were performed to determine the phytochemical content. Paraben toxicity and protective properties of Noex were investigated with the Allium test, and 6 different groups were formed for this purpose. Toxicity in each group was investigated by using physiological, cytogenetic, biochemical, and anatomical parameters. DNA-paraben interaction was investigated with spectroscopic analysis for the genotoxicity mechanism. As a result of the study, paraben (500 mM) caused a regression in the physiological parameters related to germination in Allium cepa L. bulbs. Paraben caused a 43.3% reduction in mitotic index (MI) rates compared to control, which is likely the reason for the decrease in germination-related parameters. With the application of paraben in root tip cells, the frequency of micronucleus (MN) and chromosomal aberrations (CAs) increased and a high genotoxic effect was observed. Paraben promoted CAs such as fragment, sticky chromosome, bridge, unequal distribution of chromatin, and irregular mitosis. It also caused anatomical damage in the form of epidermis cell damage, flattened cell nucleus, cortex cell damage, cortex cell walls thickening, and unclear vascular tissue in root tip meristem cells. Paraben-DNA interaction was caused by bathochromic and hypochromic shifts in the UV spectrum of DNA, indicating the intercalation mode of interaction. Paraben also caused an increase in malondialdehyde (MDA) levels, a decrease in glutathione (GSH) levels, and abnormalities in antioxidant enzyme levels (superoxide dismutase = SOD and catalase = CAT), thereby disrupting the antioxidant/oxidant dynamics in the cell. The basis of physiological, cytological, and genetic abnormalities was attributed to the oxidative stress in the cell. Administration of Noex produced a dose-dependent incremental improvement in paraben-induced abnormalities. The increase in GSH levels and the decrease in MDA levels observed as a result of the Noex application contributed to the restoration of antioxidant/oxidant balance, and this improvement was also reflected in other parameters. Application of 200 mg/L Noex provided a 24.2% improvement in the MI rate reduced by paraben, and accordingly, an increase in germination parameters was observed. Similarly, the frequencies of MN and CAs, which are signs of genotoxicity, decreased with the Noex application. As a result of the phytochemical analysis of Noex with HPLC and GC-MS, the presence of strong antioxidant and antimutagenic substances such as rutin, coumaric acid, ferrulic acid, L-serine, L-proline, and phytol were determined in Noex structure. The curative effects of Noex against paraben toxicity can be attributed to these active ingredients.
Collapse
Affiliation(s)
- Deniz Kurt
- Laboratory and Veterinary Health Program, Vocational School of Alucra Turan Bulutçu, Giresun University, Giresun, Turkey.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| |
Collapse
|
29
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Therapeutic Role of Phytophenol Gallic Acid for the Cure of COVID-19 Pathogenesis. Endocr Metab Immune Disord Drug Targets 2023; 23:464-469. [PMID: 36043737 DOI: 10.2174/1871530322666220829141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
The SARS CoV-2 virus, the causative agent of COVID-19 uses the ACE-2 receptor of the host to penetrate and infect the cell, mainly in the pulmonary, renal, and cardiac tissues. The earlier reported Delta and the recent Omicron are the variants of concern. The mutations in the RBD region of spike protein are associated with increased RBD-ACE-2 receptor interaction. This binding affinity between spike protein and the receptor is greater in Omicron than in the Delta variant. Moreover, the Omicron variant has numerous hydrophobic amino acids in the RBD region of the spike protein, which maintain its structural integrity. Gallic acid is a phytophenol and shows high binding affinity toward the ACE-2 receptors, which may be helpful for better outcomes in the treatment of COVID-19 pathogenesis. In the present study, significant data were collected from different databases i.e., PubMed, Scopus, Science Direct, and Web of Science by using keywords like anti-oxidative, anti-inflammatory, and antimicrobial properties of gallic acid, in addition to receptor-based host cell interaction of SARS CoV-2 virus. The finding shows that gallic acid can reduce inflammation by attenuating NF-κB and MAPK signaling pathways to suppress the release of ICAM-1, a cell surface glycoprotein; various pro-inflammatory cytokines like TNF-α, IL 1-β, IL-6, IL-10, and chemokines like CCL-2,5, CXCL-8 along with tissue infiltration by immune cells. The purpose of this review is to highlight the therapeutic potential of gallic acid in COVID-19 pathogenesis based on its strong anti-oxidative, anti-inflammatory, and anti- microbial properties.
Collapse
Affiliation(s)
- Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Renu Shrivastava
- Department of Zoology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
30
|
López-Romero JC, Torres-Moreno H, Vidal-Gutiérrez M, Cabrera-Cabrera GG, Robles-Zepeda RE, Rodríguez-Martínez KL, Ortega-García J, Villegas-Ochoa MA, Salazar-López NJ, Domínguez-Avila JA, González-Aguilar GA. Caesalpinia palmeri: First Report on the Phenolic Compounds Profile, Antioxidant and Cytotoxicity Effect. Chem Biodivers 2023; 20:e202200631. [PMID: 36423339 DOI: 10.1002/cbdv.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to determine the phenolic compounds profile, antioxidant potential and cytotoxicity of extracts and fractions of Caesalpinia palmeri. Methanolic extracts were generated from C. palmeri berries, stems and flowers. The latter was subjected to liquid-liquid partition, obtaining hexane, ethyl acetate and residues fractions. Results showed that the flower extract and ethyl acetate fraction had a larger concentration of phenolic compounds (148.9 and 307.9 mg GAE/g, respectively), being ellagic acid (6233.57 and 19550.08 μg/g, respectively), quercetin-3-β-glycoside (3023.85 and 8952.55 μg/g, respectively) and gallic acid (2212.98 and 8422.34 μg/g, respectively) the most abundant compounds. Flower extract and ethyl acetate fraction also presented the highest antioxidant capacity on all tested methods (DPPH, ABTS, ORAC and FRAP) and low cytotoxicity against ARPE-19 cells (IC50 >170 μg/mL). C. palmeri possessed high antioxidant potential, associated with the presence of phenolic compounds and low cytotoxicity, suggesting that they could represent an option to counter oxidative stress.
Collapse
Affiliation(s)
- J C López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - H Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - M Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Lazaro Cardenas de Rio No. 100 Col. Francisco Villa, Navojoa, Sonora, México
| | - G G Cabrera-Cabrera
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - R E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, 83000, Hermosillo, Sonora, México
| | - K L Rodríguez-Martínez
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora, Unidad Académica Hermosillo, 83100, Hermosillo, Sonora, México
| | - J Ortega-García
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - M A Villegas-Ochoa
- Coordinación de Tecnología de Alimentos de Origen Vegetal. Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Aztiazarán Rosas No. 42, 83304, Hermosillo, Sonora, México
| | - Norma J Salazar-López
- Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Lic. en Nutrición, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California, 21000, México
| | - J Abraham Domínguez-Avila
- Conacyt-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, 83304, Mexico
| | - G A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal. Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Aztiazarán Rosas No. 42, 83304, Hermosillo, Sonora, México
| |
Collapse
|
31
|
Polat DÇ, İlgün S, Karatoprak GŞ, Akkol EK, Capasso R. Phytochemical Profiles, Antioxidant, Cytotoxic, and Anti-Inflammatory Activities of Traditional Medicinal Plants: Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans. Molecules 2022; 27:molecules27238249. [PMID: 36500342 PMCID: PMC9735548 DOI: 10.3390/molecules27238249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Centaurea pichleri subsp. pichleri, Conyza canadensis, and Jasminum fruticans are traditionally used plants grown in Turkey. Methanol extracts were obtained from these plants and pharmacological activity studies and phytochemical analyses were carried out. To evaluate the phytochemical composition, spectrophotometric and chromatographic techniques were used. The extracts were evaluated for antioxidant activity by DPPH●, ABTS●+ radical scavenging, and FRAP assays. The cytotoxic effects of the extracts were investigated on DU145 prostate cancer and A549 lung cancer cell lines. The anti-inflammatory effects of extracts were investigated on the NO amount, TNF-α, IFN-γ, and PGE 2 levels in lipopolysaccharide-stimulated Raw 264.7 cells. The richest extract in terms of phenolic compounds (98.19 ± 1.64 mgGAE/gextract) and total flavonoids (21.85 ± 0.64 mgCA/gextract) was identified as C. pichleri subsp. pichleri methanol extract. According to antioxidant activity determinations, the C. pichleri subsp. pichleri extract was found to be the most active extract. Finally, the C. pichleri subsp. pichleri methanol extract was revealed to be the most effective inhibitor of viability in the cytotoxic activity investigation, and the extract with the best anti-inflammatory action. The findings point to C. pichleri subsp. pichleri as a promising source of bioactive compounds in the transition from natural sources to industrial uses, such as new medications, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Derya Çiçek Polat
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Correspondence: (E.K.A.); (R.C.); Tel.: +90-0312-202-3185 (E.K.A.)
| |
Collapse
|
32
|
Slighoua M, Chebaibi M, Mahdi I, Amrati FEZ, Conte R, Cordero MAW, Alotaibi A, Saghrouchni H, Agour A, Zair T, Bari A, Bousta D. The LC-MS/MS Identification and Analgesic and Wound Healing Activities of Lavandula officinalis Chaix: In Vivo and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2022; 11:3222. [PMID: 36501262 PMCID: PMC9738568 DOI: 10.3390/plants11233222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
We earlier emphasized in vivo the lavender plant's (Lavandula officinalis Chaix.) anti-inflammatory and estrogenic activities and described the chemical compositions of its hydro-ethanolic (HE) extract. We used LC-MS/MS and GC-MS analyses to profile the phytochemical composition of the HE extract and to assess the analgesic and wound-healing effects of both the hydro-ethanolic (HE) and polyphenolic (LOP) extracts in vivo and in silico. The analgesic activity was studied using two methods: acetic acid and formalin injections in mice. The wound-healing activity was carried out over 25 days using a burn model in rats. In the in silico study, the polyphenols identified in the plant were docked in the active sites of three enzymes: casein kinase-1, cyclooxygenase-2, and glycogen synthase kinase-3β. The LC-MS/MS identified some phenolic compounds, mainly apigenin, catechin, and myricetin, and the GC-MS analysis revealed the presence of 19 volatile compounds with triazole, D-glucose, hydroxyphenyl, and D-Ribofuranose as the major compounds. The HE and LOP extracts showed significant decreases in abdominal writhes, and the higher licking time of the paw (57.67%) was observed using the LOP extract at 200 mg/kg. Moreover, both extracts showed high healing percentages, i.e., 99.31 and 92.88%, compared to the control groups, respectively. The molecular docking showed that myricetin, amentoflavone, apigenin, and catechin are the most active molecules against the three enzyme receptors. This study sheds light on the potential of L. officinalis Chaix as a source of natural products for pharmaceutical applications for analgesic purposes as well as their utility in promoting burn-healing activity.
Collapse
Affiliation(s)
- Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agro-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Mohamed Chebaibi
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, Sidi Mohamed Ben Abdellah University, B.P. 1893, Km 22, Road of Sidi Harazem, Fez 30000, Morocco
| | - Ismail Mahdi
- AgroBioSciences Research Program, Mohammed VI Polytechnic University, Lot 660-Hay Moulay Rachid, Ben-Guerir 43150, Morocco
| | - Fatima Ez-zahra Amrati
- Laboratory of Biotechnology, Environment, Agro-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Mary Anne W. Cordero
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Balcali/Sariçam, Adana 01330, Turkey
| | - Abdelkrim Agour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Fez 30000, Morocco
| | - Touria Zair
- Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay 19 Ismail University, B.P. 11201, Meknes 50070, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agro-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agro-Food and Health (LBEAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
33
|
From degrader to producer: reversing the gallic acid metabolism of Pseudomonas putida KT2440. Int Microbiol 2022; 26:243-255. [PMID: 36357545 PMCID: PMC9649394 DOI: 10.1007/s10123-022-00282-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h.
Collapse
|
34
|
Meng Y, Song C, ElGamal R, Liu C. Relationship between heat/mass transfer and color change during drying process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zambrano CN, Lu W, Johnson C, Beeber M, Panitz A, Ibrahim S, Fraser M, Ma GX, Navder K, Yeh MC, Ogunwobi OO. Dietary behavior and urinary gallic acid concentration differences among underserved elder racial and ethnic minorities in New York City. Cancer Causes Control 2022; 33:929-937. [PMID: 35438359 PMCID: PMC9188520 DOI: 10.1007/s10552-022-01581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
Purpose Diet and nutrition are important for cancer prevention. To investigate associations between dietary behavior, demographics, and risk of cancer, we assessed dietary behavior and urinary concentration of gallic acid, a polyphenol with anticancer properties found in various fruits and vegetables, in racial and ethnic minorities. Methods Ninety-one (91) participants were recruited from senior centers in East Harlem, New York City, a racially diverse and underserved community. A National Institute of Health (NIH)—validated dietary survey questionnaire—was used to collect dietary fruits and vegetables consumption data. Demographic and cancer information were also collected. All 91 participants completed the survey and forty-five (45) participants provided urine samples for gallic acid analysis. Results Gender differences were significantly associated with dietary behavior and urinary gallic acid concentration (UGAC). Female participants had a higher total daily intake of fruits and a significantly higher UGAC compared to male participants (p < 0.05). Age was negatively associated with the serving quantity of French fries/fried potatoes and white potatoes (p < 0.05), while positively associated with the daily intake frequency and daily intake of fruits (p < 0.05). Furthermore, Asian race was associated with higher daily intake frequencies of fruits and vegetable soup (p < 0.05), compared to other races. In a multivariate analysis, a significant association was observed between the serving quantities of fruits and other vegetables and UGAC (p < 0.05) after controlling for demographic characteristics. Conclusion The observed differences in dietary behavior and UGAC in this study provide limited information on the association between demographic differences and cancer prevalence in elder racial and ethnic minorities. Future research should investigate this association further for potential implications in cancer prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s10552-022-01581-y.
Collapse
Affiliation(s)
- Cristina N Zambrano
- Department of Biological Sciences, Hunter College of the City University of New York, New York, USA
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA
| | - Wenyue Lu
- Center for Asian Health, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Sociology Department, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - Cicely Johnson
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA
| | - Maayan Beeber
- Nutrition Program, School of Urban Public Health, Hunter College of the City University of New York, New York, USA
| | - April Panitz
- Nutrition Program, School of Urban Public Health, Hunter College of the City University of New York, New York, USA
| | - Safa Ibrahim
- Department of Biological Sciences, Hunter College of the City University of New York, New York, USA
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA
| | - Marilyn Fraser
- Arthur Ashe Institute for Urban Health, Brooklyn, New York, USA
| | - Grace X Ma
- Center for Asian Health, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Khursheed Navder
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA
- Nutrition Program, School of Urban Public Health, Hunter College of the City University of New York, New York, USA
| | - Ming-Chin Yeh
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA
- Nutrition Program, School of Urban Public Health, Hunter College of the City University of New York, New York, USA
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, USA.
- Hunter College Center for Cancer Health Disparities Research (CCHDR), Hunter College of the City University of New York, 695 Park Avenue, HN310A, New York, 10065, USA.
| |
Collapse
|
36
|
Chemical Characterization of Taif Rose (Rosa damascena) Methanolic Extract and Its Physiological Effect on Liver Functions, Blood Indices, Antioxidant Capacity, and Heart Vitality against Cadmium Chloride Toxicity. Antioxidants (Basel) 2022; 11:antiox11071229. [PMID: 35883718 PMCID: PMC9311532 DOI: 10.3390/antiox11071229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Exposure to cadmium chloride (CdCl2) causes an imbalance in the oxidant status of the body by triggering the release of reactive oxygen species (ROS). This study investigated the effect of Rosa damascena (R. damascena) extract on oxidative stress, hepatotoxicity, and the injured cardiac tissue of male rats exposed to CdCl2. Forty male Wistar albino rats were divided into four groups: the vehicle control (1 mg/kg normal saline), the CdCl2-treated group (5 mg/kg), the R. damascena extract group (100 mg Kg), and the combination of CdCl2 and R. damascena extract group. Male rats exposed to CdCl2 showed multiple significant histopathological changes in the liver and heart, including inflammatory cell infiltration and degenerative alterations. Successive exposure to CdCl2 elevated the levels of hepatic and cardiac reactive oxygen species (ROS), malondialdehyde (MDA), tumour necrosis factor-alpha) (TNF-α) and interleukin -6 (IL-6) and decreased antioxidant defences. The extracts significantly increased the levels of glutathione, superoxide dismutase (SOD), and catalase (CAT), whereas it dramatically decreased the levels of lipid peroxidation (LPO), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the mRNA of TNF-α and IL-6. R. damascena administration prevented liver and heart injury; suppressed excessive ROS generation, LPO, and inflammatory responses; and enhanced antioxidant defences. In addition, R. damascena upregulated the mRNA of TNF-α and IL-6 in CdCl2-administered male rats. In conclusion, R. damascena modulated the oxidative stress and inflammation induced by CdCl2. The hepatic and cardiac tissue damage and histopathological alterations resulting from the CdCl2-induced oxidative stress were counteracted by the administration of R. damascena extracts. R. damascena enhanced antioxidant defence enzymes in male rats.
Collapse
|
37
|
Varesi A, Chirumbolo S, Campagnoli LIM, Pierella E, Piccini GB, Carrara A, Ricevuti G, Scassellati C, Bonvicini C, Pascale A. The Role of Antioxidants in the Interplay between Oxidative Stress and Senescence. Antioxidants (Basel) 2022; 11:1224. [PMID: 35883714 PMCID: PMC9311946 DOI: 10.3390/antiox11071224] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest occurring in response to stressful stimuli, such as telomere attrition, DNA damage, reactive oxygen species, and oncogenic proteins. Although beneficial and protective in several physiological processes, an excessive senescent cell burden has been involved in various pathological conditions including aging, tissue dysfunction and chronic diseases. Oxidative stress (OS) can drive senescence due to a loss of balance between pro-oxidant stimuli and antioxidant defences. Therefore, the identification and characterization of antioxidant compounds capable of preventing or counteracting the senescent phenotype is of major interest. However, despite the considerable number of studies, a comprehensive overview of the main antioxidant molecules capable of counteracting OS-induced senescence is still lacking. Here, besides a brief description of the molecular mechanisms implicated in OS-mediated aging, we review and discuss the role of enzymes, mitochondria-targeting compounds, vitamins, carotenoids, organosulfur compounds, nitrogen non-protein molecules, minerals, flavonoids, and non-flavonoids as antioxidant compounds with an anti-aging potential, therefore offering insights into innovative lifespan-extending approaches.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | | | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25123 Brescia, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
38
|
Gono CMP, Ahmadi P, Hertiani T, Septiana E, Putra MY, Chianese G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 2022; 20:md20070406. [PMID: 35877699 PMCID: PMC9324380 DOI: 10.3390/md20070406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Marine angiosperms produce a wide variety of secondary metabolites with unique structural features that have the potential to be developed as effective and potent drugs for various diseases. Recently, research trends in secondary metabolites have led to drug discovery with an emphasis on their pharmacological activity. Among marine angiosperms, seagrasses have been utilized for a variety of remedial purposes, such as treating fevers, mental disorders, wounds, skin diseases, muscle pain, and stomach problems. Hence, it is essential to study their bioactive metabolites, medical properties, and underlying mechanisms when considering their pharmacological activity. However, there is a scarcity of studies on the compilation of existing work on their pharmacological uses, pharmacological pathways, and bioactive compounds. This review aims to compile the pharmacological activities of numerous seagrass species, their secondary metabolites, pharmacological properties, and mechanism of action. In conclusion, this review highlights the potency of seagrasses as a promising source of natural therapeutical products for preventing or inhibiting human diseases.
Collapse
Affiliation(s)
| | - Peni Ahmadi
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Triana Hertiani
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Eris Septiana
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: (P.A.); (M.Y.P.); (G.C.); Tel.: +62-21875-4587 (P.A. & M.Y.P.); +39-0816-74125 (G.C.)
| |
Collapse
|
39
|
El-Houssiny AS, Kamel NA, Soliman AAF, El-Messieh SLA, Abd-EL-Nour KN. Preparation and characterisation of gallic acid loaded carboxymethyl chitosan nanoparticles as drug delivery system for cancer treatment. ADVANCES IN NATURAL SCIENCES: NANOSCIENCE AND NANOTECHNOLOGY 2022; 13:025002. [DOI: 10.1088/2043-6262/ac6c22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Gallic acid (GA) is a natural phenolic compound with antioxidant, anti-proliferative, and anticancer effects. However, the potential of GA as an anticancer agent is restricted by its poor absorption, rapid elimination, and low bioavailability. Nanostructure-drug carriers have opened up a new field in cancer therapy by improving the efficacy of drugs. In this work, we developed a nanoformulation of GA in carboxymethyl chitosan (CMC). The particle size, surface charge and molecular structure of the CMC NPs loaded and unloaded with GA were measured using TEM, DLS and FTIR spectroscopy, respectively. The dielectric parameters (permittivity ε′ and dielectric loss ε″) were measured in the frequency range (0.1 Hz–5 MHz) at room temperature. Additionally, the in-vitro anti-cancer effects of the GA, CMC NPs, and GA-CMC NPs were tested against human colon carcinoma (HCT-116), human breast carcinoma (MCF-7), and normal skin fibroblast cells (BJ1) using MTT assay. TEM confirmed that the NPs have a spherical morphology within the size range of 15 nm. DLS studies revealed NPs with a mean diameter of 31.06 nm. The zeta potential results indicated the high suspension stability of the prepared nanoformulation. The FTIR results indicated the interaction between GA and CMC NPs. The dielectric study showed a decrease within the ε″ and conductivity values of GA-CMC NPs which confirmed the successful encapsulation of GA within the CMC NPs. Cytotoxicity studies indicated that the GA-CMC NPs showed specific toxicity towards cancer cells and non-toxicity to normal cells. Overall, these results indicate that the GA-CMC NPs will be an efficient nanocarrier for delivering gallic acid to cancer cells.
Collapse
|
40
|
Almeida de Oliveira LS, de Moura Bandeira SR, Gomes Gonçalves RL, Pereira de Sousa Neto B, Carvalho de Rezende D, dos Reis-Filho AC, Sousa IJO, Pinheiro-Neto FR, Timah Acha B, do Nascimento Caldas Trindade G, do Nascimento LG, de Sousa DP, de Castro Almeida FR, Lucarini M, Durazzo A, Arcanjo DDR, de Assis Oliveira F. The Isopropyl Gallate Counteracts Cyclophosphamide-Induced Hemorrhagic Cystitis in Mice. BIOLOGY 2022; 11:728. [PMID: 35625456 PMCID: PMC9138278 DOI: 10.3390/biology11050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Hemorrhagic cystitis is the main adverse effect associated with the clinical use of oxazaphosphorine, resulting in increased oxidative stress and proinflammatory cytokines, which culminate in injury of the bladder tissue. The aim of this study was to evaluate the protective effect of isopropyl gallate (IPG) against ifosfamide (IFOS)-induced hemorrhagic cystitis in mice. The induction of the hemorrhagic cystitis model was carried out using a single dose of IFOS (400 mg/kg, i.p.) four hours after oral pretreatment with IPG (6.25, 12.5, 25, and 50 mg/kg) or saline (vehicle). Mesna (positive control; 80 mg/kg, i.p.) was administered four hours before and eight hours after induction of cystitis. In the present study, IPG 25 mg/kg significantly decreased edema and hemorrhage, with a reduction of the bladder wet weight (36.86%), hemoglobin content (54.55%), and peritoneal vascular permeability (42.94%) in urinary bladders of mice. Interestingly, IPG increased SOD activity (89.27%) and reduced MDA levels (35.53%), as well as displayed anti-inflammatory activity by decreasing TNF-α (88.77%), IL-1β (62.87%), and C-reactive protein (56.41%) levels. Our findings demonstrate that IPG has a substantial protective role against IFOS-induced hemorrhagic cystitis in mice by enhancing antioxidant activity and proinflammatory mechanisms. Thus, IPG represents a promising co-adjuvant agent in oxazaphosphorine-based chemotherapy treatments.
Collapse
Affiliation(s)
- Lucas Solyano Almeida de Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Sara Raquel de Moura Bandeira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Rodrigo Lopes Gomes Gonçalves
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Benedito Pereira de Sousa Neto
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Diana Carvalho de Rezende
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Antonio Carlos dos Reis-Filho
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Ian Jhemes Oliveira Sousa
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Flaviano Ribeiro Pinheiro-Neto
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Boris Timah Acha
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Gabriela do Nascimento Caldas Trindade
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Lázaro Gomes do Nascimento
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.G.d.N.); (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.G.d.N.); (D.P.d.S.)
| | - Fernanda Regina de Castro Almeida
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (M.L.); (A.D.)
| | - Daniel Dias Rufino Arcanjo
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
- Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, Brazil
| | - Francisco de Assis Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, Teresina 64049-550, Brazil; (L.S.A.d.O.); (S.R.d.M.B.); (R.L.G.G.); (B.P.d.S.N.); (D.C.d.R.); (A.C.d.R.-F.); (I.J.O.S.); (F.R.P.-N.); (B.T.A.); (G.d.N.C.T.); (F.R.d.C.A.); (F.d.A.O.)
| |
Collapse
|
41
|
Stavropoulou E, Voidarou C(C, Rozos G, Vaou N, Bardanis M, Konstantinidis T, Vrioni G, Tsakris A. Antimicrobial Evaluation of Various Honey Types against Carbapenemase-Producing Gram-Negative Clinical Isolates. Antibiotics (Basel) 2022; 11:antibiotics11030422. [PMID: 35326885 PMCID: PMC8944737 DOI: 10.3390/antibiotics11030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The development of antibiotic resistance is a major public health issue, as infections are increasingly unresponsive to antibiotics. Emerging antimicrobial resistance has raised researchers’ interest in the development of alternative strategies using natural compounds with antibacterial activity, like honey, which has emerged as an agent to treat several infections and wound injuries. Nevertheless, the antibacterial effect of honey was mostly evaluated against Gram-positive bacteria. Hence, the objective of our study was to evaluate the antibacterial activity, as well as the physicochemical parameters, of genuine Greek honeys against multidrug-resistant Gram-negative pathogenic bacteria. In this vein, we aimed to study the in vitro antibacterial potential of rare Greek honeys against Verona integron-encoded metallo-β-lactamase (VIM)- or Klebsiella pneumoniae carbapenemase-producing multidrug-resistant Gram-negative pathogens. Physicochemical parameters such as pH, hydrogen peroxide, free acidity, lactonic acid, total phenols total flavonoids, free radical scavenging activities, tyrosinase enzyme inhibitory activity and kojic acid were examined. Moreover, the antimicrobial activity of 10 different honey types was evaluated in five consecutive dilutions (75%, 50%, 25%, 12.5% and 6.25%) against the clinical isolates by the well diffusion method, as well as by the determination of the minimum inhibition concentration after the addition of catalase and protease. Almost all the physicochemical parameters varied significantly among the different honeys. Fir and manuka honey showed the highest values in pH and H2O2, while the free acidity and lactonic acid levels were higher in chestnut honey. Total phenols, total flavonoids and free radical scavenging activities were found higher in cotton, arbutus and manuka honey, and finally, manuka and oregano honeys showed higher tyrosinase inhibition activity and kojic acid levels. The antimicrobial susceptibility depended on the type of honey, on its dilution, on the treatment methodology and on the microorganism. Arbutus honey was the most potent against VIM-producing Enterobacter cloacae subsp. dissolvens in 75% concentration, while fir honey was more lethal for the same microorganism in the 25% concentration. Many honeys outperformed manuka honey in their antibacterial potency. It is of interest that, for any given concentration in the well diffusion method and for any given type of honey, significant differences were not detected among the four multidrug-resistant pathogens, which explains that the damaging effect to the bacterial cells was the same regardless of the bacterial species or strain. Although the antimicrobial potency of different honey varieties dependents on their geographical origin and on their compositional differences, the exact underlying mechanism remains yet unclear.
Collapse
Affiliation(s)
- Elisavet Stavropoulou
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
- Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
- Correspondence: or
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Georgios Rozos
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.V.); (G.R.)
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
| | - Michael Bardanis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
- Gourmeli., 73100 Chania, Crete, Greece
| | - Theodoros Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (N.V.); (M.B.); (T.K.)
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece; (G.V.); (A.T.)
| |
Collapse
|
42
|
Mota FAR, Pereira SAP, Araújo ARTS, Gullón B, Passos MLC, Saraiva MLMFS. Automatic Identification of Myeloperoxidase Natural Inhibitors in Plant Extracts. Molecules 2022; 27:molecules27061825. [PMID: 35335191 PMCID: PMC8950977 DOI: 10.3390/molecules27061825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is the development of an automated method for myeloperoxidase activity evaluation and its application in testing the inhibitory action of different plant extracts on the activity of the enzyme. This enzyme has its concentration increased in inflammatory and infectious processes, so it is a possible target to limit these processes. Therefore, an automatic sequential in-jection analysis (SIA) system was optimized and demonstrated that it is possible to obtain results with satisfactory accuracy and precision. With the developed method, plant extracts were studied, as promising candidates for MPO inhibition. In the group of selected plant extracts, IC50 values from 0.029 ± 0.002 mg/mL to 35.4 ± 3.5 mg/mL were obtained. Arbutus unedo L. proved to be the most inhibitory extract for MPO based on its phenolic compound content. The coupling of an automatic SIA method to MPO inhibition assays is a good alternative to other conventional methods, due to its simplicity and speed. This work also supports the pharmacological use of these species that inhibit MPO, and exhibit activity that may be related to the treatment of infection and inflammation.
Collapse
Affiliation(s)
- Fátima A. R. Mota
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
| | - Sarah A. P. Pereira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
| | - André R. T. S. Araújo
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No 50, 6300-559 Guarda, Portugal
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
| | - Marieta L. C. Passos
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Correspondence: (M.L.C.P.); (M.L.M.F.S.S.); Tel.: +351-220428643 (M.L.C.P.); +351-220428674 (M.L.M.F.S.S.)
| | - Maria Lúcia M. F. S. Saraiva
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, Porto University, Rua Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (F.A.R.M.); (S.A.P.P.); (A.R.T.S.A.)
- Correspondence: (M.L.C.P.); (M.L.M.F.S.S.); Tel.: +351-220428643 (M.L.C.P.); +351-220428674 (M.L.M.F.S.S.)
| |
Collapse
|
43
|
Yang K, Deng X, Jian S, Zhang M, Wen C, Xin Z, Zhang L, Tong A, Ye S, Liao P, Xiao Z, He S, Zhang F, Deng J, Zhang L, Deng B. Gallic Acid Alleviates Gut Dysfunction and Boosts Immune and Antioxidant Activities in Puppies Under Environmental Stress Based on Microbiome-Metabolomics Analysis. Front Immunol 2022; 12:813890. [PMID: 35095912 PMCID: PMC8795593 DOI: 10.3389/fimmu.2021.813890] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life exposure to environmental stress disrupts the gut barrier and leads to inflammatory responses and changes in gut microbiota composition. Gallic acid (GA), a natural plant polyphenol, has received significant interest for its antioxidant, anti-inflammatory, and antimicrobial properties that support the maintenance of intestinal health. To assess whether dietary supplementation of GA alleviates environmental stress, a total of 19 puppies were randomly allocated to the following three dietary treatments for 2 weeks: 1) basal diet (control (CON)); 2) basal diet + transportation (TS); and 3) basal diet with the addition of 500 mg/kg of GA + transportation (TS+GA). After a 1-week supplementation period, puppies in the TS and TS+GA groups were transported from a stressful environment to another livable location, and puppies in the CON group were then left in the stressful environment. Results indicated that GA markedly reduced the diarrhea rate in puppies throughout the trial period and caused a moderate decline of serum cortisol and HSP-70 levels after transportation. Also, GA alleviated the oxidative stress and inflammatory response caused by multiple environmental stressors. Meanwhile, puppies fed GA had a higher abundance of fecal Firmicutes and Lactobacillus and lower Proteobacteria, Escherichia–Shigella, and Clostridium_sensu_stricto_1 after transportation. As a result, the TS+GA group had the highest total short-chain fatty acids and acetic acid. Also, the fecal and serum metabolomics analyses revealed that GA markedly reversed the abnormalities of amino acid metabolism, lipid metabolism, carbohydrate metabolism, and nucleotide metabolism caused by stresses. Finally, Spearman’s correlation analysis was carried out to explore the comprehensive microbiota and metabolite relationships. Overall, dietary supplementation of GA alleviates oxidative stress and inflammatory response in stressed puppies by causing beneficial shifts on gut microbiota and metabolites that may support gut and host health.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaolin Deng
- Department of Urology, Ganzhou People's Hospital, Ganzhou, China
| | - Shiyan Jian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Chaoyu Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Aorigeile Tong
- Research Center of Pet Nutrition, Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, China
| | - Shibin Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pinfeng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zaili Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shansong He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingna Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baichuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Angwa LM, Jiang Y, Pei J, Sun D. Antioxidant Phytochemicals for the Prevention of Fluoride-Induced Oxidative Stress and Apoptosis: a Review. Biol Trace Elem Res 2022; 200:1418-1441. [PMID: 34003450 DOI: 10.1007/s12011-021-02729-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Fluorosis is a major public health problem globally. The non-availability of specific treatment and the irreversible nature of dental and skeletal lesions poses a challenge in the management of fluorosis. Oxidative stress is known to be one of the most important mechanisms of fluoride toxicity. Fluoride promotes the accumulation of reactive oxygen species by inhibiting the activity of antioxidant enzymes, resulting in the excessive production of reactive oxygen species at the cellular level which further leads to activation of cell death processes such as apoptosis. Phytochemicals that act as antioxidants have the potential to protect cells from oxidative stress. Evidence confirms that clinical symptoms of fluorosis can be mitigated to some extent or prevented by long-term intake of antioxidants and plant products. The primary purpose of this review is to examine recent findings that focus on the amelioration of fluoride-induced oxidative stress and apoptosis by natural and synthetic phytochemicals and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Linet M Angwa
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Clinical Medicine, Kabarak University, Nakuru, 20157, Kenya
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Junrui Pei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
45
|
Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): New Therapeutic Perspectives for Neuroprotection, Aging, and Neuroinflammation for the Modern Age. Biomolecules 2022; 12:biom12030371. [PMID: 35327563 PMCID: PMC8945730 DOI: 10.3390/biom12030371] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s and Parkinson’s diseases are the two most common forms of neurodegenerative diseases. The exact etiology of these disorders is not well known; however, environmental, molecular, and genetic influences play a major role in the pathogenesis of these diseases. Using Alzheimer’s disease (AD) as the archetype, the pathological findings include the aggregation of Amyloid Beta (Aβ) peptides, mitochondrial dysfunction, synaptic degradation caused by inflammation, elevated reactive oxygen species (ROS), and cerebrovascular dysregulation. This review highlights the neuroinflammatory and neuroprotective role of epigallocatechin-3-gallate (EGCG): the medicinal component of green tea, a known nutraceutical that has shown promise in modulating AD progression due to its antioxidant, anti-inflammatory, and anti-aging abilities. This report also re-examines the current literature and provides innovative approaches for EGCG to be used as a preventive measure to alleviate AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ashley Payne
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Samuel Nahashon
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, USA;
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (A.P.); (E.T.); (G.M.A.)
- Correspondence: ; Tel.: +1850-322-8788
| |
Collapse
|
46
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cardiovascular and Metabolic Diseases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiovascular and metabolic diseases are a leading cause of death worldwide. Epidemiological studies strongly highlight various benefits of consuming colorful fruits and vegetables in everyday life. In this review, we aimed to revisit previous studies conducted in the last few decades regarding green-colored foods and their bioactive compounds in consideration of treating and/or preventing cardiovascular and metabolic diseases. This review draws a comprehensive summary and assessment of research on the physiological effects of various bioactive compounds, mainly polyphenols, derived from green-colored fruits and vegetables. In particular, their health-beneficial effects, including antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, cardioprotective, and lipid-lowering properties, will be discussed. Furthermore, the bioavailability and significance of action of these bioactive compounds on cardiovascular and metabolic diseases will be discussed in detail.
Collapse
|
47
|
Gallic Acid as a Non-Selective Inhibitor of α/β-Hydrolase Fold Enzymes Involved in the Inflammatory Process: The Two Sides of the Same Coin. Pharmaceutics 2022; 14:pharmaceutics14020368. [PMID: 35214100 PMCID: PMC8874653 DOI: 10.3390/pharmaceutics14020368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/31/2022] Open
Abstract
(1) Background: Gallic acid (GA) has been characterized as an effective anti-inflammatory, antivenom, and promising drug for therapeutic use. (2/3) Methods and Results: GA was identified from ethanolic extract of fresh pitanga (Eugenia uniflora) leaves, which was identified using commercial GA. Commercial GA neutralized the enzymatic activity of secretory PLA2 (sPLA2) by inhibiting the active site and inducing changes in the secondary structure of the enzyme. Pharmacological edema assays showed that GA strongly decreased edema when the compound was previously incubated with sPLA2. However, prior treatment of GA (30 min before) significantly increased the edema and myotoxicity induced by sPLA2. The molecular docking results of GA with platelet-acetylhydrolase (PAF-AH) and acetylcholinesterase reveal that this compound was able to interact with the active site of both molecules, inhibiting the hydrolysis of platelet-activating factor (PAF) and acetylcholine (ACh). (4) Conclusion: GA has a great potential application; however, our results show that this compound can also induce adverse effects in previously treated animals. Additionally, the increased edema and myotoxicity observed experimentally in GA-treated animals may be due to the inhibition of PAF-AH and Acetylcholinesterase.
Collapse
|
48
|
Synthesis and Antioxidant Activity of New N-Containing Hybrid Derivatives of Gallic and Ursolic Acids. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03546-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Salimi A, Atashbar S, Shabani M. Gallic acid inhibits celecoxib-induced mitochondrial permeability transition and reduces its toxicity in isolated cardiomyocytes and mitochondria. Hum Exp Toxicol 2021; 40:S530-S539. [PMID: 34715756 DOI: 10.1177/09603271211053299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mitochondria are the main target organelles through which drugs and chemicals exert their toxic effect on cardiomyocytes. The mitochondria-related mechanisms of celecoxib-induced cardiotoxicity have been extensively studied. Accumulated evidence shows natural molecules targeting mitochondria have proven to be effective in preventing cardiotoxicity. PURPOSE In the present study, we examined the ameliorative effect of gallic acid (GA) against celecoxib-induced cellular and mitochondrial toxicity in isolated cardiomyocytes and mitochondria. RESEARCH DESIGN The isolated cardiomyocytes and mitochondria were divided into various group, namely, control, celecoxib, celecoxib + GA (10, 50, and 100 µM). Several cellular and mitochondrial parameters such as cell viability, lipid peroxidation, succinate dehydrogenase (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling were assessed in isolated cardiomyocytes and mitochondria. RESULTS Our results showed that administration of celecoxib (16 µg/ml) induced cytotoxicity and mitochondrial dysfunction at 6 h and 1 h, respectively, which is associated with lipid peroxidation intact cardiomyocytes, mitochondrial ROS formation, MMP collapse, and mitochondrial swelling. The cardiomyocytes and mitochondria treated with celecoxib + GA (10, 50, and 100 µM) significantly and dose-dependently restore the altered levels of cellular and mitochondrial parameters. CONCLUSIONS We concluded that GA through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted ameliorative role in celecoxib-induced toxicity in isolated cardiomyocytes and mitochondria. The data of the current study suggested that GA supplementation may reduce celecoxib-induced cellular and mitochondrial toxicity during exposure and may provide a potential prophylactic and defensive candidate for coxibs-induced mitochondrial dysfunction, oxidative stress, and cardiotoxicity.
Collapse
Affiliation(s)
- A Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - S Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - M Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
50
|
Eslamifar Z, Moridnia A, Sabbagh S, Ghaffaripour R, Jafaripour L, Behzadifard M. Ameliorative Effects of Gallic Acid on Cisplatin-Induced Nephrotoxicity in Rat Variations of Biochemistry, Histopathology, and Gene Expression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2195238. [PMID: 34746299 PMCID: PMC8564201 DOI: 10.1155/2021/2195238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cisplatin is a powerful chemotherapeutic drug mainly used in the treatment of solid tumors. Aggregation of the drug in renal proximal tubule cells causes nephrotoxicity and renal failure. Investigations showed nephrotoxicity as Cisplatin's dose-limiting side effect. One of the Cisplatin toxicity mechanisms is generation of reactive oxygen species, which leads to oxidative stress and renal damage. The purpose of this study was evaluation of the modulating effects of Gallic acid on Cisplatin-induced variations including Caspase-3 and Clusterin expression and histopathological and biochemical parameters in adult male Wistar rats. METHOD Rats were kept under standard condition of temperature, light, and humidity. The animals were divided into 4 groups: GpI: control group (received distilled water for 10 days); GpII: Gallic acid (alone) (50 mg/kg bw, once a day for 10 days); GpIII: Cisplatin (alone), single dose (6 mg/kg bw, I.P. on 5th day of study); GpIV: Gallic acid (50 mg/kg bw, once a day for 10 days) and also injected with single dose of Cisplatin (6 mg/kg bw, I.P., on 5th day of study). After 10 days, all rats were anaesthetized and plasma collected to estimate urea, creatinine, and uric acid. The right kidneys were removed for the study of gene expression and biochemical parameters. The left kidneys were used for histopathological studies. RESULTS The Cisplatin-induced nephrotoxicity was evident from the elevated levels of creatinine, urea, uric acid, and renal tissue MDA and also decreased levels of SOD, CAT, GPX, and GSH in renal tissue. Administration of Gallic acid significantly modulated nephrotoxicity markers, gene expression variations, and histopathological damage. CONCLUSION Outcomes of the present investigation suggest that Gallic acid provides protection against CP-induced nephrotoxicity, but for application in people, further studies are needed.
Collapse
Affiliation(s)
- Zahra Eslamifar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Abbas Moridnia
- Department of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Susan Sabbagh
- Department of Anatomy, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Reza Ghaffaripour
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Leila Jafaripour
- Department of Anatomy, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mahin Behzadifard
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|