1
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello J, Beshore DC, Howe JA. Evaluation of A Non-Nucleoside Inhibitor of the RSV RNA-Dependent RNA Polymerase in Translatable Animals Models. J Infect 2024:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small molecule antivirals are now either available, or in development, to prevent and treat RSV infections. Although, rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships, within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John Bilello
- Discovery Virology, Gilead Sciences Inc., Foster City, California 94404, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Bonneux B, Jacoby E, Ceconi M, Stobbelaar K, Delputte P, Herschke F. Direct-acting antivirals for RSV treatment, a review. Antiviral Res 2024; 229:105948. [PMID: 38972604 DOI: 10.1016/j.antiviral.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Respiratory syncytial virus (RSV) causes respiratory disease and complications in infants, the elderly and the immunocompromised. While three vaccines and two prophylactic monoclonal antibodies are now available, only one antiviral, ribavirin, is currently approved for treatment. This review aims to summarize the current state of treatments directly targeting RSV. Two major viral processes are attractive for RSV-specific antiviral drug discovery and development as they play essential roles in the viral cycle: the entry/fusion process carried out by the fusion protein and the replication/transcription process carried out by the polymerase complex constituted of the L, P, N and M2-1 proteins. For each viral target resistance mutations to small molecules of different chemotypes seem to delineate definite binding pockets in the fusion proteins and in the large proteins. Elucidating the mechanism of action of these inhibitors thus helps to understand how the fusion and polymerase complexes execute their functions. While many inhibitors have been studied, few are currently in clinical development for RSV treatment: one is in phase III, three in phase II and two in phase I. Progression was halted for many others because of strategic decisions, low enrollment, safety, but also lack of efficacy. Lessons can be learnt from the halted programs to increase the success rate of the treatments currently in development.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Edgar Jacoby
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium
| | - Kim Stobbelaar
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium.
| | | |
Collapse
|
3
|
Siegel DS, Hui HC, Pitts J, Vermillion MS, Ishida K, Rautiola D, Keeney M, Irshad H, Zhang L, Chun K, Chin G, Goyal B, Doerffler E, Yang H, Clarke MO, Palmiotti C, Vijjapurapu A, Riola NC, Stray K, Murakami E, Ma B, Wang T, Zhao X, Xu Y, Lee G, Marchand B, Seung M, Nayak A, Tomkinson A, Kadrichu N, Ellis S, Barauskas O, Feng JY, Perry JK, Perron M, Bilello JP, Kuehl PJ, Subramanian R, Cihlar T, Mackman RL. Discovery of GS-7682, a Novel 4'-Cyano-Modified C-Nucleoside Prodrug with Broad Activity against Pneumo- and Picornaviruses and Efficacy in RSV-Infected African Green Monkeys. J Med Chem 2024. [PMID: 39018526 DOI: 10.1021/acs.jmedchem.4c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Acute respiratory viral infections, such as pneumovirus and respiratory picornavirus infections, exacerbate disease in COPD and asthma patients. A research program targeting respiratory syncytial virus (RSV) led to the discovery of GS-7682 (1), a novel phosphoramidate prodrug of a 4'-CN-4-aza-7,9-dideazaadenosine C-nucleoside GS-646089 (2) with broad antiviral activity against RSV (EC50 = 3-46 nM), human metapneumovirus (EC50 = 210 nM), human rhinovirus (EC50 = 54-61 nM), and enterovirus (EC50 = 83-90 nM). Prodrug optimization for cellular potency and lung cell metabolism identified 5'-methyl [(S)-hydroxy(phenoxy)phosphoryl]-l-alaninate in combination with 2',3'-diisobutyrate promoieties as being optimal for high levels of intracellular triphosphate formation in vitro and in vivo. 1 demonstrated significant reductions of viral loads in the lower respiratory tract of RSV-infected African green monkeys when administered once daily via intratracheal nebulized aerosol. Together, these findings support additional evaluation of 1 and its analogues as potential therapeutics for pneumo- and picornaviruses.
Collapse
Affiliation(s)
- Dustin S Siegel
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hon C Hui
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jared Pitts
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Meghan S Vermillion
- Gilead Sciences, Inc., Foster City, California 94404, United States
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Kazuya Ishida
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Davin Rautiola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael Keeney
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hammad Irshad
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Lijun Zhang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kwon Chun
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gregory Chin
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bindu Goyal
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Edward Doerffler
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Hai Yang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michael O Clarke
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Chris Palmiotti
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arya Vijjapurapu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nicholas C Riola
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Kirsten Stray
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Eisuke Murakami
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bin Ma
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ting Wang
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Xiaofeng Zhao
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Gary Lee
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Bruno Marchand
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Minji Seung
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Arabinda Nayak
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Adrian Tomkinson
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Nani Kadrichu
- Inspired - Pulmonary Solutions, San Carlos, California 94070, United States
| | - Scott Ellis
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Ona Barauskas
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Jason K Perry
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Michel Perron
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - John P Bilello
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Philip J Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Raju Subramanian
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | - Tomas Cihlar
- Gilead Sciences, Inc., Foster City, California 94404, United States
| | | |
Collapse
|
4
|
Hayashi T, Kobayashi S, Hirano J, Murakami K. Human norovirus cultivation systems and their use in antiviral research. J Virol 2024; 98:e0166323. [PMID: 38470106 PMCID: PMC11019851 DOI: 10.1128/jvi.01663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Human norovirus (HuNoV) is a major cause of acute gastroenteritis and foodborne diseases, affecting all age groups. Despite its clinical needs, no approved antiviral therapies are available. Since the discovery of HuNoV in 1972, studies on anti-norovirals, mechanism of HuNoV infection, viral inactivation, etc., have been hampered by the lack of a robust laboratory-based cultivation system for HuNoV. A recent breakthrough in the development of HuNoV cultivation systems has opened opportunities for researchers to investigate HuNoV biology in the context of de novo HuNoV infections. A tissue stem cell-derived human intestinal organoid/enteroid (HIO) culture system is one of those that supports HuNoV replication reproducibly and, to our knowledge, is most widely distributed to laboratories worldwide to study HuNoV and develop therapeutic strategies. This review summarizes recently developed HuNoV cultivation systems, including HIO, and their use in antiviral studies.
Collapse
Affiliation(s)
- Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sakura Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Hirano
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
6
|
Kiy RT, Khoo SH, Chadwick AE. Assessing the mitochondrial safety profile of the molnupiravir active metabolite, β-d-N4-hydroxycytidine (NHC), in the physiologically relevant HepaRG model. Toxicol Res (Camb) 2024; 13:tfae012. [PMID: 38328743 PMCID: PMC10848230 DOI: 10.1093/toxres/tfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Background β-d-N4-Hydroxycytidine (NHC) is the active metabolite of molnupiravir, a broad-spectrum antiviral approved by the MHRA for COVID-19 treatment. NHC induces lethal mutagenesis of the SARS-CoV-2 virus, undergoing incorporation into the viral genome and arresting viral replication. It has previously been reported that several nucleoside analogues elicit off-target inhibition of mitochondrial DNA (mtDNA) or RNA replication. Although NHC does not exert these effects in HepG2 cells, HepaRG are proven to be advantageous over HepG2 for modelling nucleoside analogue-induced mitochondrial dysfunction. Therefore, the objective of this work was to assess the mitotoxic potential of NHC in HepaRG cells, a model more closely resembling physiological human liver. Methods Differentiated HepaRG cells were exposed to 1-60 μM NHC for 3-14 days to investigate effects of sub-, supra-, and clinically-relevant exposures (in the UK, molnupiravir for COVID-19 is indicated for 5 days and reported Cmax is 16 μM). Following drug incubation, cell viability, mtDNA copy number, mitochondrial protein expression, and mitochondrial respiration were assessed. Results NHC induced minor decreases in cell viability at clinically relevant exposures, but did not decrease mitochondrial protein expression. The effects on mtDNA were variable, but typically copy number was increased. At supra-clinical concentrations (60 μM), NHC reduced mitochondrial respiration, but did not appear to induce direct electron transport chain dysfunction. Conclusions Overall, NHC does not cause direct mitochondrial toxicity in HepaRG cells at clinically relevant concentrations, but may induce minor cellular perturbations. As HepaRG cells have increased physiological relevance, these findings provide additional assurance of the mitochondrial safety profile of NHC.
Collapse
Affiliation(s)
- Robyn T Kiy
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| | - Saye H Khoo
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
- Tropical Infectious Diseases Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, United Kingdom
| | - Amy E Chadwick
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, United Kingdom
| |
Collapse
|
7
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
8
|
Kamzeeva PN, Aralov AV, Alferova VA, Korshun VA. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr Issues Mol Biol 2023; 45:6851-6879. [PMID: 37623252 PMCID: PMC10453654 DOI: 10.3390/cimb45080433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.
Collapse
Affiliation(s)
| | | | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (P.N.K.); (A.V.A.); (V.A.A.)
| |
Collapse
|
9
|
Wong CHA, Hubert JG, Sparrow KJ, Harris LD, Tyler PC, Brimble MA. Expedient synthesis of imino-C-nucleoside fleximers featuring a one-pot procedure to prepare aryl triazoles. Org Biomol Chem 2023; 21:6134-6140. [PMID: 37462413 DOI: 10.1039/d3ob00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleoside analogues such as the antiviral agents galidesivir and ribavirin are of synthetic interest. This work reports a "one-pot" preparation of similar fleximers using a bifunctional copper catalyst that generates the aryl azide in situ, which is captured by a terminal alkyne to effect triazole formation.
Collapse
Affiliation(s)
- C H Andy Wong
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Jonathan G Hubert
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
10
|
Li A, Wang Q, Huang Y, Hu L, Li S, Wang Q, Yu Y, Zhang H, Tang DYY, Show PL, Feng S. Can egg yolk antibodies terminate the CSBV infection in apiculture? Virus Res 2023; 328:199080. [PMID: 36882131 DOI: 10.1016/j.virusres.2023.199080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Chinese sacbrood virus (CSBV) is the most severe pathogen of Apis cerana, which leads to serious fatal diseases in bee colonies and eventual catastrophe for the Chinese beekeeping industry. Additionally, CSBV can potentially infect Apis mellifera by bridging the species barrier and significantly affect the productivity of the honey industry. Although several approaches, such as feeding royal jelly, traditional Chinese medicine, and double-stranded RNA treatments, have been employed to suppress CSBV infection, their practical applicabilities are constrained due to their poor effectiveness. In recent years, specific egg yolk antibodies (EYA) have been increasingly utilized in passive immunotherapy for infectious diseases without any side effects. According to both laboratory research and practical use, EYA have demonstrated superior protection for bees against CSBV infection. This review provided an in-depth analysis of the issues and drawbacks in this field in addition to provide a thorough summary of current advancements in CSBV studies. Some promising strategies for the synergistic study of EYA against CSBV, including the exploitation of novel antibody drugs, novel TCM monomer/formula determination, and development of nucleotide drugs, are also proposed in this review. Furthermore, the prospects for the future perspectives of EYA research and applications are presented. Collectively, EYA would terminate CSBV infection soon, as well as will provide scientific guidance and references to control and manage other viral infections in apiculture.
Collapse
Affiliation(s)
- Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Qianfang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yu Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yangfan Yu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haizhou Zhang
- Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China; Luoyang Fengzaokang Biotechnological Co. Ltd., Luoyang, Henan 471000, China.
| |
Collapse
|
11
|
Masmoudi F, Santos-Ferreira N, Pajkrt D, Wolthers KC, DeGroot J, Vlaming MLH, Rocha-Pereira J, Buti L. Evaluation of 3D Human Intestinal Organoids as a Platform for EV-A71 Antiviral Drug Discovery. Cells 2023; 12:cells12081138. [PMID: 37190047 DOI: 10.3390/cells12081138] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Enteroviruses are a leading cause of upper respiratory tract, gastrointestinal, and neurological infections. Management of enterovirus-related diseases has been hindered by the lack of specific antiviral treatment. The pre-clinical and clinical development of such antivirals has been challenging, calling for novel model systems and strategies to identify suitable pre-clinical candidates. Organoids represent a new and outstanding opportunity to test antiviral agents in a more physiologically relevant system. However, dedicated studies addressing the validation and direct comparison of organoids versus commonly used cell lines are lacking. Here, we described the use of human small intestinal organoids (HIOs) as a model to study antiviral treatment against human enterovirus 71 (EV-A71) infection and compared this model to EV-A71-infected RD cells. We used reference antiviral compounds such as enviroxime, rupintrivir, and 2'-C-methylcytidine (2'CMC) to assess their effects on cell viability, virus-induced cytopathic effect, and viral RNA yield in EV-A71-infected HIOs and cell line. The results indicated a difference in the activity of the tested compounds between the two models, with HIOs being more sensitive to infection and drug treatment. In conclusion, the outcome reveals the value added by using the organoid model in virus and antiviral studies.
Collapse
Affiliation(s)
- Fatma Masmoudi
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nanci Santos-Ferreira
- Laboratory of Virology and Chemotherapy, KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium
| | - Dasja Pajkrt
- OrganoVIR Labs, Pediatric Infectious Diseases, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC Location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen DeGroot
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
| | | | - Joana Rocha-Pereira
- Laboratory of Virology and Chemotherapy, KU Leuven-Department of Microbiology, Immunology and Transplantation, Rega Institute, 3000 Leuven, Belgium
| | - Ludovico Buti
- Charles River Laboratories, 2333 CR Leiden, The Netherlands
| |
Collapse
|
12
|
Yan YC, Zhang H, Hu K, Zhou SM, Chen Q, Qu RY, Yang GF. A mini-review on synthesis and antiviral activity of natural product oxetanocin A derivatives. Bioorg Med Chem 2022; 72:116968. [PMID: 36054994 DOI: 10.1016/j.bmc.2022.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022]
Abstract
Oxetanocin A (Oxt-A), a novel oxetanosyl N-glycoside nucleoside, was isolated from Bacillus megaterium in 1986. It carries an oxetane ring on the sugar moiety of the nucleoside scaffold, which contributes to differences in its structure from those of common tetrahydrofuranyl-based nucleosides. In view of the unique 3D-spatial framework, the complete synthesis of Oxt-A has been achieved by multiple research groups. The pharmacological properties of this natural product have also been broadly investigated by pharmacists and chemists since its discovery. Notably, the potential antiviral effect of Oxt-A has captured attention of researchers in the field of antiviral agent development. Furthermore, epidemic outbreaks caused by viruses have been stimulating the preparation and modification of various Oxt-A analogs over the past few decades. However, none of the studies have overviewed the antiviral efficacies of this naturally occurring scaffold yet. Thus, the present review summarizes the synthesis, structural modification, and antiviral activities of Oxt-A and its derivatives. We believe that these comprehensive descriptions will provide a novel perspective for the discovery of antivirus drugs with well-improved performance and pave newer paths for combating sudden public health issues triggered by viruses in the future.
Collapse
Affiliation(s)
- Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Hu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Kai Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Shao-Meng Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
13
|
Adenosine sulfamates: Next generation of antimalarials. Cell Host Microbe 2022; 30:1074-1076. [PMID: 35952645 DOI: 10.1016/j.chom.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tackling the ancient infectious foe of malaria, Xie et al. (2022) uncover a novel class of nucleoside analogs that selectively hijack and inhibit the tyrosine tRNA synthase of the parasite. With high potency, good oral bioavailability, and minimal host cell toxicity, these inhibitors show promise as next-generation antimalarials.
Collapse
|
14
|
Roy V, Agrofoglio LA. Nucleosides and emerging viruses: A new story. Drug Discov Today 2022; 27:1945-1953. [PMID: 35189369 PMCID: PMC8856764 DOI: 10.1016/j.drudis.2022.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022]
Abstract
With several US Food and Drug Administration (FDA)-approved drugs and high barriers to resistance, nucleoside and nucleotide analogs remain the cornerstone of antiviral therapies for not only herpesviruses, but also HIV and hepatitis viruses (B and C); however, with the exception of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which vaccines have been developed at unprecedented speed, there are no vaccines or small antivirals yet available for (re)emerging viruses, which are primarily RNA viruses. Thus, herein, we present an overview of ribonucleoside analogs recently developed and acting as inhibitors of the viral RNA-dependent RNA polymerase (RdRp). They are new lead structures that will be exploited for the discovery of new antiviral nucleosides.
Collapse
Affiliation(s)
- Vincent Roy
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France
| | - Luigi A Agrofoglio
- ICOA, University of Orléans, CNRS UMR 7311, Rue de Chartres, 45067 Orléans, France.
| |
Collapse
|
15
|
Cao Y, Aimaiti A, Zhu Z, Zhou L, Ye D. Discovery of Novel 3-Hydroxyquinazoline-2,4(1 H,3 H)-Dione Derivatives: A Series of Metal Ion Chelators with Potent Anti-HCV Activities. Int J Mol Sci 2022; 23:ijms23115930. [PMID: 35682608 PMCID: PMC9180926 DOI: 10.3390/ijms23115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Millions of people worldwide suffer from acute or chronic liver inflammation caused by the hepatitis C virus (HCV). Metal ion chelators have achieved widespread success in the development of antiviral drugs. Some inhibitors with metal ion chelating structures have been proven to have good inhibitory activities on non-structural protein 5B (NS5B) polymerase. However, most of the reported metal ion chelators showed poor anti-HCV potency at the cellular level. Hence, we designed and synthesized a series of 3-hydroxyquinazoline-2,4(1H,3H)-dione derivatives with novel metal ion chelating structures. Typical compounds such as 21h, 21k, and 21t showed better anti-HCV activities than ribavirin with EC50 values less than 10 μM. 21t is currently known as one of the metal ion chelators with the best anti-HCV potency (EC50 = 2.0 μM) at the cellular level and has a better therapeutic index (TI > 25) as compared to ribavirin and the reported compound 6. In the thermal shift assay, the representative compounds 21e and 21k increased the melting temperature (Tm) of NS5B protein solution by 1.6 °C and 2.1 °C, respectively, at the test concentration, indicating that these compounds may exert an anti-HCV effect by targeting NS5B. This speculation was also supported by our molecular docking studies and ultraviolet-visible (UV-Vis) spectrophotometry assay, in which the possibility of binding of 3-hydroxyquinazoline-2,4(1H,3H)-diones with Mg2+ in the NS5B catalytic center was observed.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Abudumijiti Aimaiti
- Shanghai Medical College, Fudan University, 130 Dongan Rd, Shanghai 200032, China;
| | - Zeyun Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
- Correspondence: (L.Z.); (D.Y.)
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai 201203, China; (Y.C.); (Z.Z.)
- Correspondence: (L.Z.); (D.Y.)
| |
Collapse
|
16
|
Wallace K, Bjork J. Molnupiravir; molecular and functional descriptors of mitochondrial safety. Toxicol Appl Pharmacol 2022; 442:116003. [PMID: 35358570 PMCID: PMC8958731 DOI: 10.1016/j.taap.2022.116003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Molnupiravir is an orally active nucleoside analog antiviral drug that recently was approved by the U.S. FDA for emergency treatment of adult patients infected with the SARS-CoV-2 (COVID-19) virus and at risk for severe progression. The active form of the drug, N-hydroxycytidine (NHC) triphosphate competes for incorporation by RNA-dependent RNA-polymerase (RdRp) into the replicating viral genome resulting in mutations and arrest of the replicating virus. Historically, some nucleoside analog antiviral drugs have been found to lack specificity for the virus and also inhibit replication and/or expression of the mitochondrial genome. The objective of the present study was to test whether molnupiravir and/or NHC also target mitochondrial DNA polymerase gamma (PolG) or RNA polymerase (POLRMT) activity to inhibit the replication and/or expression of the mitochondrial genome leading to impaired mitochondrial function. Human-derived HepG2 cells were exposed for 48 h in culture to increasing concentrations of either molnupiravir or NHC after which cytotoxicity, mtDNA copy number and mitochondrial gene expression were determined. The phenotypic endpoint, mitochondrial respiration, was measured with the Seahorse® XF96 Extracellular Flux Analyzer. Both molnupiravir and NHC were cytotoxic at concentrations of ≥10 μM. However, at non-cytotoxic concentrations, neither significantly altered mitochondrial gene dose or transcription, or mitochondrial respiration. From this we conclude that mitochondrial toxicity is not a primary off target in the mechanism of cytotoxicity for either molnupiravir or its active metabolite NHC in the HepG2 cell line.
Collapse
|
17
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
18
|
Abstract
The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.
Collapse
|
19
|
Remdesivir; molecular and functional measures of mitochondrial safety. Toxicol Appl Pharmacol 2021; 433:115783. [PMID: 34740633 PMCID: PMC8562045 DOI: 10.1016/j.taap.2021.115783] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/23/2022]
Abstract
Remdesivir is one of a few antiviral drugs approved for treating severe cases of coronavirus 2 (SARS-CoV-2) infection in hospitalized patients. The prodrug is a nucleoside analog that interferes with viral replication by inhibiting viral RNA-dependent RNA polymerase. The drug has also been shown to be a weak inhibitor of human mitochondrial RNA polymerase, leaving open the possibility of mitochondrial off-targets and toxicity. The investigation was designed to explore whether remdesivir causes mitochondrial toxicity, using both genomic and functional parameters in the assessment. Human-derived HepG2 liver cells were exposed for up to 48 h in culture to increasing concentrations of remdesivir. At sub-cytotoxic concentrations (<1 μM), the drug failed to alter either the number of copies or the expression of the mitochondrial genome. mtDNA copy number was unaffected as was the relative rates of expression of mtDNA-encoded and nuclear encoded subunits of complexes I and IV of the mitochondrial respiratory chain. Consistent with this is the observation that remdesivir was without effect on mitochondrial respiration, including basal respiration, proton leak, maximum uncoupled respiration, spare respiratory capacity or coupling efficiency. We conclude that although remdesivir has weak inhibitory activity towards mitochondrial RNA polymerase, mitochondria are not primary off-targets for the mechanism of cytotoxicity of the drug.
Collapse
|
20
|
Bennett RP, Postnikova EN, Eaton BP, Cai Y, Yu S, Smith CO, Liang J, Zhou H, Kocher GA, Murphy MJ, Smith HC, Kuhn JH. Sangivamycin is highly effective against SARS-CoV-2 in vitro and has favorable drug properties. JCI Insight 2021; 7:153165. [PMID: 34807849 PMCID: PMC8765048 DOI: 10.1172/jci.insight.153165] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/17/2021] [Indexed: 01/08/2023] Open
Abstract
Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin’s potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.
Collapse
Affiliation(s)
- Ryan P Bennett
- Drug Discovery, OyaGen, Inc, Rochester, United States of America
| | - Elena N Postnikova
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Brett P Eaton
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Yingyun Cai
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Shuiqing Yu
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester, Rochester, United States of America
| | - Janie Liang
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Huanying Zhou
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Gregory A Kocher
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Michael J Murphy
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| | - Harold C Smith
- Drug Discovery, OyaGen, Inc, Rochester, United States of America
| | - Jens H Kuhn
- Drug Discovery, Inegrated Research Facility NIH/NIAID, Frederick, United States of America
| |
Collapse
|
21
|
Velasco-Ruiz A, Nuñez-Torres R, Pita G, Wildiers H, Lambrechts D, Hatse S, Delombaerde D, Van Brussel T, Alonso MR, Alvarez N, Herraez B, Vulsteke C, Zamora P, Lopez-Fernandez T, Gonzalez-Neira A. POLRMT as a Novel Susceptibility Gene for Cardiotoxicity in Epirubicin Treatment of Breast Cancer Patients. Pharmaceutics 2021; 13:1942. [PMID: 34834357 PMCID: PMC8622627 DOI: 10.3390/pharmaceutics13111942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
Anthracyclines are among the most used chemotherapeutic agents in breast cancer (BC). However their use is hampered by anthracycline-induced cardiotoxicity (AIC). The currently known clinical and genetic risk factors do not fully explain the observed inter-individual variability and only have a limited ability to predict which patients are more likely to develop this severe toxicity. To identify novel predictive genes, we conducted a two-stage genome-wide association study in epirubicin-treated BC patients. In the discovery phase, we genotyped over 700,000 single nucleotide variants in a cohort of 227 patients. The most interesting finding was rs62134260, located 4kb upstream of POLRMT (OR = 5.76, P = 2.23 × 10-5). We replicated this association in a validation cohort of 123 patients (P = 0.021). This variant regulates the expression of POLRMT, a gene that encodes a mitochondrial DNA-directed RNA polymerase, responsible for mitochondrial gene expression. Individuals harbouring the risk allele had a decreased expression of POLRMT in heart tissue that may cause an impaired capacity to maintain a healthy mitochondrial population in cardiomyocytes under stressful conditions, as is treatment with epirubicin. This finding suggests a novel molecular mechanism involved in the development of AIC and may improve our ability to predict patients who are at risk.
Collapse
Affiliation(s)
- Alejandro Velasco-Ruiz
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Rocio Nuñez-Torres
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Guillermo Pita
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - Sigrid Hatse
- Multidisciplinary Breast Centre, University Hospital of Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Laboratory of Experimental Oncology (LEO), Department of Oncology, Katholieke Universiteit (KU) Leuven, Oude Markt 13, 3000 Leuven, Belgium
| | - Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Thomas Van Brussel
- Laboratory of Translational Genetics, Centre for Cancer Biology (CCB), Flanders Institute for Biotechnology (VIB), Rijvisschestraat 120, 9052 Leuven, Belgium; (D.L.); (T.V.B.)
| | - M. Rosario Alonso
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Nuria Alvarez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Belen Herraez
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, 9000 Ghent, Belgium; (D.D.); (C.V.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Pilar Zamora
- Department of Medical Oncology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Teresa Lopez-Fernandez
- Department of Cardiology, University Hospital La Paz, Paseo de la Castellana 261, 28046 Madrid, Spain;
| | - Anna Gonzalez-Neira
- Human Genotyping Unit, CeGen (Spanish National Genotyping Centre), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Alamagro, 3, 28029 Madrid, Spain; (A.V.-R.); (R.N.-T.); (G.P.); (M.R.A.); (N.A.); (B.H.)
| |
Collapse
|
22
|
Drug Discovery of Nucleos(t)ide Antiviral Agents: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Birthday. Molecules 2021; 26:molecules26040923. [PMID: 33572409 PMCID: PMC7916218 DOI: 10.3390/molecules26040923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleoside and nucleotide analogues are essential antivirals in the treatment of infectious diseases such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV). To celebrate the 80th birthday of Prof. Dr. Erik De Clercq on 28 March 2021, this review provides an overview of his contributions to eight approved nucleos(t)ide drugs: (i) three adenosine nucleotide analogues, namely tenofovir disoproxil fumarate (Viread®) and tenofovir alafenamide (Vemlidy®) against HIV and HBV infections and adefovir dipivoxil (Hepsera®) against HBV infections; (ii) two thymidine nucleoside analogues, namely brivudine (Zostex®) against HSV-1 and VZV infections and stavudine (Zerit®) against HIV infections; (iii) two guanosine analogues, namely valacyclovir (Valtrex®, Zelitrex®) against HSV and VZV and rabacfosadine (Tanovea®-CA1) for the treatment of lymphoma in dogs; and (iv) one cytidine nucleotide analogue, namely cidofovir (Vistide®) for the treatment of HCMV retinitis in AIDS patients. Although adefovir dipivoxil, stavudine, and cidofovir are virtually discontinued for clinical use, tenofovir disoproxil fumarate and tenofovir alafenamide remain the most important antivirals against HIV and HBV infections worldwide. Overall, the broad-spectrum antiviral potential of nucleos(t)ide analogues supports their development to treat or prevent current and emerging infectious diseases worldwide.
Collapse
|
23
|
Off-Target In Vitro Profiling Demonstrates that Remdesivir Is a Highly Selective Antiviral Agent. Antimicrob Agents Chemother 2021; 65:AAC.02237-20. [PMID: 33229429 PMCID: PMC7849018 DOI: 10.1128/aac.02237-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. Remdesivir (RDV, GS-5734), the first FDA-approved antiviral for the treatment of COVID-19, is a single diastereomer monophosphoramidate prodrug of an adenosine analogue. It is intracellularly metabolized into the active triphosphate form, which in turn acts as a potent and selective inhibitor of multiple viral RNA polymerases. RDV has broad-spectrum activity against members of the coronavirus family, such as SARS-CoV-2, SARS-CoV, and MERS-CoV, as well as filoviruses and paramyxoviruses. To assess the potential for off-target toxicity, RDV was evaluated in a set of cellular and biochemical assays. Cytotoxicity was evaluated in a set of relevant human cell lines and primary cells. In addition, RDV was evaluated for mitochondrial toxicity under aerobic and anaerobic metabolic conditions, and for the effects on mitochondrial DNA content, mitochondrial protein synthesis, cellular respiration, and induction of reactive oxygen species. Last, the active 5′-triphosphate metabolite of RDV, GS-443902, was evaluated for potential interaction with human DNA and RNA polymerases. Among all of the human cells tested under 5 to 14 days of continuous exposure, the 50% cytotoxic concentration (CC50) values of RDV ranged from 1.7 to >20 μM, resulting in selectivity indices (SI, CC50/EC50) from >170 to 20,000, with respect to RDV anti-SARS-CoV-2 activity (50% effective concentration [EC50] of 9.9 nM in human airway epithelial cells). Overall, the cellular and biochemical assays demonstrated a low potential for RDV to elicit off-target toxicity, including mitochondria-specific toxicity, consistent with the reported clinical safety profile.
Collapse
|
24
|
Young CKJ, Wheeler JH, Rahman MM, Young MJ. The antiretroviral 2',3'-dideoxycytidine causes mitochondrial dysfunction in proliferating and differentiated HepaRG human cell cultures. J Biol Chem 2021; 296:100206. [PMID: 33334881 PMCID: PMC7948951 DOI: 10.1074/jbc.ra120.014885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus infection, and their use can cause mitochondrial toxicity, including mitochondrial DNA (mtDNA) depletion in several cases. The first-generation NRTIs, including 2',3'-dideoxycytidine (ddC), were originally and are still pursued as anticancer agents. NRTI-sensitive DNA polymerases localizing to mitochondria allow for the opportunity to poison proliferating cancer cell mtDNA replication as certain cancers rely heavily on mitochondrial functions. However, mtDNA replication is independent of the cell cycle creating a significant concern that toxicants such as ddC impair mtDNA maintenance in both proliferating and nonproliferating cells. To examine this possibility, we tested the utility of the HepaRG cell line to study ddC-induced toxicity in isogenic proliferating (undifferentiated) and nonproliferating (differentiated) cells. Following ddC exposures, we measured cell viability, mtDNA copy number, and mitochondrial bioenergetics utilizing trypan blue, Southern blotting, and extracellular flux analysis, respectively. After 13 days of 1 μM ddC exposure, proliferating and differentiated HepaRG harbored mtDNA levels of 0.9% and 17.9% compared with control cells, respectively. Cells exposed to 12 μM ddC contained even less mtDNA. By day 13, differentiated cell viability was maintained but declined for proliferating cells. Proliferating HepaRG bioenergetic parameters were severely impaired by day 8, with 1 and 12 μM ddC, whereas differentiated cells displayed defects of spare and maximal respiratory capacities (day 8) and proton-leak linked respiration (day 14) with 12 μM ddC. These results indicate HepaRG is a useful model to study proliferating and differentiated cell mitochondrial toxicant exposures.
Collapse
Affiliation(s)
- Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Joel H Wheeler
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| |
Collapse
|
25
|
Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother 2020; 28:2040206620976786. [PMID: 33297724 PMCID: PMC7734526 DOI: 10.1177/2040206620976786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.
Collapse
Affiliation(s)
- Johanna Huchting
- Chemistry Department, Institute for Organic Chemistry, Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
26
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
27
|
Friman T, Chernobrovkin A, Martinez Molina D, Arnold L. CETSA MS Profiling for a Comparative Assessment of FDA-Approved Antivirals Repurposed for COVID-19 Therapy Identifies TRIP13 as a Remdesivir Off-Target. SLAS DISCOVERY 2020; 26:336-344. [PMID: 33208020 PMCID: PMC7736708 DOI: 10.1177/2472555220973597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reuse of preexisting small molecules for a novel emerging disease threat is a rapid measure to discover unknown applications for previously validated therapies. A pertinent and recent example where such a strategy could be employed is in the fight against coronavirus disease 2019 (COVID-19). Therapies designed or discovered to target viral proteins also have off-target effects on the host proteome when employed in a complex physiological environment. This study aims to assess these host cell targets for a panel of FDA-approved antiviral compounds including remdesivir, using the cellular thermal shift assay (CETSA) coupled with mass spectrometry (CETSA MS) in noninfected cells. CETSA MS is a powerful method to delineate direct and indirect interactions between small molecules and protein targets in intact cells. Biologically active compounds can induce changes in thermal stability, in their primary binding partners, and in proteins that in turn interact with the direct targets. Such engagement of host targets by antiviral drugs may contribute to the clinical effect against the virus but can also constitute a liability. We present here a comparative study of CETSA molecular target engagement fingerprints of antiviral drugs to better understand the link between off-targets and efficacy.
Collapse
|
28
|
Balakrishnan A, Price E, Luu C, Shaul J, Wartchow C, Cantwell J, Vo T, DiDonato M, Spraggon G, Hekmat-Nejad M. Biochemical Characterization of Respiratory Syncytial Virus RNA-Dependent RNA Polymerase Complex. ACS Infect Dis 2020; 6:2800-2811. [PMID: 32886480 DOI: 10.1021/acsinfecdis.0c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) from nonsegmented negative strand (NNS) RNA viruses perform both mRNA transcription and genome replication, and these activities are regulated by their interactions with RNA and other accessory proteins within the ribonucleoprotein (RNP) complex. Detailed biochemical characterization of these enzymatic activities and their regulation is essential for understanding the life cycles of many pathogenic RNA viruses and for antiviral drug discovery. We developed biochemical and biophysical kinetic methods to study the RNA synthesis and RNA binding activities of respiratory syncytial virus (RSV) L/P RdRP. We determined that the intact L protein is essential for RdRP activity, and in truncated L protein constructs, RdRP activity is abrogated due to their deficiency in RNA template binding. These results are in agreement with the observation of an RNA template-binding tunnel at the interface of RdRP and capping domains in RSV and vesicular stomatitis virus (VSV) L protein cryo-EM structures. We also describe nonradiometric assays for measuring RNA binding and RNA polymerization activity of RSV RdRP, which are amenable to compound screening and profiling.
Collapse
Affiliation(s)
- Anand Balakrishnan
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Edmund Price
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Catherine Luu
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Jacob Shaul
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Charles Wartchow
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - John Cantwell
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Todd Vo
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Michael DiDonato
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Glen Spraggon
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Mohammad Hekmat-Nejad
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| |
Collapse
|
29
|
Verma S, Twilley D, Esmear T, Oosthuizen CB, Reid AM, Nel M, Lall N. Anti-SARS-CoV Natural Products With the Potential to Inhibit SARS-CoV-2 (COVID-19). Front Pharmacol 2020; 11:561334. [PMID: 33101023 PMCID: PMC7546787 DOI: 10.3389/fphar.2020.561334] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), known to cause the disease COVID-19, was declared a pandemic in early 2020. The objective of this review was to collate information regarding the potential of plants and natural products to inhibit coronavirus and targets associated with infection in humans and to highlight known drugs, which may have potential activity against SARS-CoV-2. Due to the similarity in the RNA genome, main proteases, and primary host receptor between SARS-CoV and SARS-CoV-2, a review was conducted on plants and secondary metabolites, which have shown activity against SARS-CoV. Numerous scientific reports on the potential of plants and secondary metabolites against SARS-CoV infection were found, providing important information on their possible activity against SARS-CoV-2. Based on current literature, 83 compounds have been identified with the potential to inhibit COVID-19. The most prominent selectivity was found for the alkaloid, lycorine, the lignan, savinin, and the abietane terpenoid, 8-beta-hydroxyabieta-9(11),13-dien-12-one with selectivity index values greater than 945, 667, and 510, respectively. Plants and their secondary metabolites, with activity against targets associated with the SARS-CoV infection, could provide valuable leads for the development into drugs for the novel SARS-CoV-2. The prospects of using computational methods to screen secondary metabolites against SARS-CoV targets are briefly discussed, and the drawbacks have been highlighted. Finally, we discuss plants traditionally used in Southern Africa for symptoms associated with respiratory viral infections and influenza, such as coughs, fever, and colds. However, only a few of these plants have been screened against SARS-CoV. Natural products hold a prominent role in discovering novel therapeutics to mitigate the current COVID-19 pandemic; however, further investigations regarding in vitro, in vivo, pre-clinical, and clinical phases are still required.
Collapse
Affiliation(s)
- Surjeet Verma
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Danielle Twilley
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Tenille Esmear
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Carel B. Oosthuizen
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Marizé Nel
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- School of Natural Resources, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- Bio-Tech R&D Institute, University of the West Indies, Kingston, Jamaica
| |
Collapse
|
30
|
Dasari M, Ma P, Pelly SC, Sharma SK, Liotta DC. Synthesis and biological evaluation of 5'-C-methyl nucleotide prodrugs for treating HCV infections. Bioorg Med Chem Lett 2020; 30:127539. [PMID: 32919013 DOI: 10.1016/j.bmcl.2020.127539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Nucleotide prodrugs are of great clinical interest for treating a variety of viral infections due to their ability to target tissues selectively and to deliver relatively high concentrations of the active nucleotide metabolite intracellularly. However, their clinical successes have been limited, oftentimes due to unwanted in vivo metabolic processes that reduce the quantities of nucleoside triphosphate that reach the site of action. In an attempt to circumvent this, we designed novel nucleosides that incorporate a sterically bulky group at the 5'-carbon of the phosphoester prodrug, which we reasoned would reduce the amounts of non-productive PO bond cleavage back to the corresponding nucleoside by nucleotidases. Molecular docking studies with the NS5B HCV polymerase suggested that a nucleotide containing a 5'-methyl group could be accommodated. Therefore, we synthesized mono- and diphosphate prodrugs of 2',5'-C-dimethyluridine stereoselectively and evaluated their cytotoxicity and anti-HCV activity in the HCV replicon assay. All four prodrugs exhibited anti-HCV activity with IC50 values in the single digit micromolar concentrations, with the 5'(R)-C-methyl prodrug displaying superior potency relative to its 5'(S)-C-methyl counterpart. However, when compared to the unmethylated prodrug, the potency is poorer. The poorer potency of these prodrugs may be due to unfavorable steric interactions of the 5'-C-methyl group in the active sites of the kinases that catalyze the formation of active triphosphate metabolite.
Collapse
Affiliation(s)
- Madhuri Dasari
- Department of Chemistry, Emory University, 1521 Dickey Drive NE, Atlanta, GA 30322, United States
| | - Peipei Ma
- Department of Chemistry, Emory University, 1521 Dickey Drive NE, Atlanta, GA 30322, United States
| | - Stephen C Pelly
- Department of Chemistry, Emory University, 1521 Dickey Drive NE, Atlanta, GA 30322, United States
| | - Savita K Sharma
- Department of Chemistry, Emory University, 1521 Dickey Drive NE, Atlanta, GA 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, 1521 Dickey Drive NE, Atlanta, GA 30322, United States.
| |
Collapse
|
31
|
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P, Ng WL. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell 2020; 79:710-727. [PMID: 32853546 PMCID: PMC7402271 DOI: 10.1016/j.molcel.2020.07.027] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that is wreaking havoc on worldwide public health and economies has heightened awareness about the lack of effective antiviral treatments for human coronaviruses (CoVs). Many current antivirals, notably nucleoside analogs (NAs), exert their effect by incorporation into viral genomes and subsequent disruption of viral replication and fidelity. The development of anti-CoV drugs has long been hindered by the capacity of CoVs to proofread and remove mismatched nucleotides during genome replication and transcription. Here, we review the molecular basis of the CoV proofreading complex and evaluate its potential as a drug target. We also consider existing nucleoside analogs and novel genomic techniques as potential anti-CoV therapeutics that could be used individually or in combination to target the proofreading mechanism.
Collapse
Affiliation(s)
- Fran Robson
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Khadija Shahed Khan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Thi Khanh Le
- Life Science Department, University of Science and Technology of Hanoi (USTH), Hanoi, Vietnam; Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Sinem Demirbag
- Faculty of Engineering and Natural Sciences, Sabanci University, İstanbul, Turkey
| | - Peter Barfuss
- Université Paris-Est, Cermics (ENPC), INRIA, 77455 Marne-la-Vallée, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, Marseille, France
| | - Wai-Lung Ng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
32
|
Wang G, Dyatkina N, Prhavc M, Williams C, Serebryany V, Hu Y, Huang Y, Wu X, Chen T, Huang W, Rajwanshi VK, Deval J, Fung A, Jin Z, Stoycheva A, Shaw K, Gupta K, Tam Y, Jekle A, Smith DB, Beigelman L. Synthesis and Anti-HCV Activity of Sugar-Modified Guanosine Analogues: Discovery of AL-611 as an HCV NS5B Polymerase Inhibitor for the Treatment of Chronic Hepatitis C. J Med Chem 2020; 63:10380-10395. [PMID: 32816483 DOI: 10.1021/acs.jmedchem.0c00935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic hepatitis C (CHC) is a major liver disease caused by the hepatitis C virus. The current standard of care for CHC can achieve cure rates above 95%; however, the drugs in current use are administered for a period of 8-16 weeks. A combination of safe and effective drugs with a shorter treatment period is highly desirable. We report synthesis and biological evaluation of a series of 2',3'- and 2',4'-substituted guanosine nucleotide analogues. Their triphosphates exhibited potent inhibition of the HCV NS5B polymerase with IC50 as low as 0.13 μM. In the HCV replicon assay, the phosphoramidate prodrugs of these analogues demonstrated excellent activity with EC50 values as low as 5 nM. A lead compound AL-611 showed high levels of the nucleoside 5'-triphosphate in vitro in primary human hepatocytes and in vivo in dog liver following oral administration.
Collapse
Affiliation(s)
- Guangyi Wang
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Natalia Dyatkina
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Marija Prhavc
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Caroline Williams
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Vladimir Serebryany
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Yujian Hu
- Department of Medicinal Chemistry, WuXi AppTec, Shanghai 200131, P. R. China
| | - Yongfei Huang
- Department of Medicinal Chemistry, WuXi AppTec, Shanghai 200131, P. R. China
| | - Xiangyang Wu
- Department of Medicinal Chemistry, WuXi AppTec, Shanghai 200131, P. R. China
| | - Tongqian Chen
- Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, P. R. China
| | - Wensheng Huang
- Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, P. R. China
| | - Vivek K Rajwanshi
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Jerome Deval
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Amy Fung
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Zhinan Jin
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Antitsa Stoycheva
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Kenneth Shaw
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Kusum Gupta
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Yuen Tam
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Andreas Jekle
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - David B Smith
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| | - Leonid Beigelman
- Janssen BioPharma, Inc., 260 E. Grand Avenue, South San Francisco, California 94080, United States
| |
Collapse
|
33
|
Chudinov MV. Nucleoside Analogs with Fleximer Nucleobase. Chem Heterocycl Compd (N Y) 2020; 56:636-643. [PMID: 32836313 PMCID: PMC7364132 DOI: 10.1007/s10593-020-02713-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/15/2020] [Indexed: 11/30/2022]
Abstract
This review article is devoted to the so-called fleximer nucleoside analogs, containing two or more planar moieties in the heterocyclic base, connected by a bond that permits rotation. Such analogs have been proposed as molecular probes for detecting enzyme-substrate interactions and studying the transcription and translation of nucleic acids, but subsequently have attracted the interest of researchers by their antiviral and antitumor activity. The methods used in the synthesis of such compounds, along with their structural features and also biological activity are considered in this review.
Collapse
Affiliation(s)
- Mikhail V. Chudinov
- MIREA - Russian Technological University, Lomonosov Institute of Fine Chemical Tehnology, 78 Vernadsky Ave, Moscow, 119454 Russia
| |
Collapse
|
34
|
Wonganan P, Limpanasithikul W, Jianmongkol S, Kerr SJ, Ruxrungtham K. Pharmacokinetics of nucleoside/nucleotide reverse transcriptase inhibitors for the treatment and prevention of HIV infection. Expert Opin Drug Metab Toxicol 2020; 16:551-564. [PMID: 32508203 DOI: 10.1080/17425255.2020.1772755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Despite dramatic increases in new drugs and regimens, a combination of two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remains the backbone of many regimens to treat HIV. AREA COVERED This article summarizes the pharmacokinetic characteristics of approved NRTIs that are currently in the international treatment and prevention guidelines. EXPERT OPINION Compared to other NRTIs, tenofovir alafenamide fumarate (TAF) is more advantageous in terms of potency and safety. It is therefore a preferred choice in combination with emtricitabine (FTC) in most HIV treatment guidelines. The efficacy of the two-drug combination of NRTI/Integrase strand-transfer inhibitor, i.e. lamivudine/dolutegravir has been approved as an option for initial therapy. This regimen however has some limitations in patients with HBV coinfection. The two NRTI combinations tenofovir disproxil fumarate (TDF)/FTC and TAF/FTC have also been approved for pre-exposure prophylaxis (PrEP). Interestingly, a promising long-acting nucleoside reverse transcriptase translocation inhibitor, islatravir, formulated for implant was well tolerated and remained effective for up to a year, suggesting its potential as a single agent for PrEP. In the next decade, it remains to be seen whether NRTI-based regimens will remain the backbone of preferred ART regimens, or if the treatment will eventually move toward NRTI-sparing regimens to avoid long-term NRTI-toxicity.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| | | | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand.,HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand
| | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
35
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
36
|
Bojkova D, Westhaus S, Costa R, Timmer L, Funkenberg N, Korencak M, Streeck H, Vondran F, Broering R, Heinrichs S, Lang KS, Ciesek S. Sofosbuvir Activates EGFR-Dependent Pathways in Hepatoma Cells with Implications for Liver-Related Pathological Processes. Cells 2020; 9:cells9041003. [PMID: 32316635 PMCID: PMC7225999 DOI: 10.3390/cells9041003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Rui Costa
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Lejla Timmer
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Nora Funkenberg
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Marek Korencak
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Hendrik Streeck
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Florian Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
- German Center for Infection Research (DZIF), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-69-63015219
| |
Collapse
|
37
|
Anasir MI, Ramanathan B, Poh CL. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses 2020; 12:v12040367. [PMID: 32225021 PMCID: PMC7232406 DOI: 10.3390/v12040367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) presents a significant threat to global public health with more than 500,000 hospitalizations and 25,000 deaths annually. Currently, there is no clinically approved antiviral drug to treat DENV infection. The envelope (E) glycoprotein of DENV is a promising target for drug discovery as the E protein is important for viral attachment and fusion. Understanding the structure and function of DENV E protein has led to the exploration of structure-based drug discovery of antiviral compounds and peptides against DENV infections. This review summarizes the structural information of the DENV E protein with regards to DENV attachment and fusion. The information enables the development of antiviral agents through structure-based approaches. In addition, this review compares the potency of antivirals targeting the E protein with the antivirals targeting DENV multifunctional enzymes, repurposed drugs and clinically approved antiviral drugs. None of the current DENV antiviral candidates possess potency similar to the approved antiviral drugs which indicates that more efforts and resources must be invested before an effective DENV drug materializes.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Babu Ramanathan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
| | - Chit Laa Poh
- Center for Virus and Vaccine Research, School of Science and Technology, Sunway University, Kuala Lumpur, Selangor 47500, Malaysia;
- Correspondence: ; Tel.: +60-3-7491-8622; Fax: +60-3-5635-8633
| |
Collapse
|
38
|
Prutkov AN, Chudinov MV, Matveev AV, Grebenkina LE, Akimov MG, Berezovskaya YV. 5-alkylvinyl-1,2,4-triazole nucleosides: Synthesis and biological evaluation. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:943-963. [PMID: 32126895 DOI: 10.1080/15257770.2020.1723624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Some 5-substituted ribavirin analogues have a high antiviral and anticancer activity, but their mechanisms of action are obviously not the same as their parent compound. The SAR studies performed on 3 (5)-substituted 1,2,4-triazole nucleosides have shown a high dependency between the structure of the 3 (5)-substituent and the level of antiviral/anticancer activity. The most active substances of the row contain coplanar with the 1,2,4-triazole ring aromatic substituent which is connected by a rigid ethynyl bond. However, the compounds with the trans-vinyl linker also had antiviral activity. We decided to study the antitumor activity of ribavirin analogues with alkyl/aryl vinyl substituents in the 5th position of the 1,2,4-triazole ring. Protected nucleoside analogues with various 5-alkylvinyl substituents were obtained by Horner-Wadsworth-Emmons reaction from the common precursor and converted to the nucleosides. Arylvinyl nucleosides were synthesised according the reported procedures. All compounds did not show significant antiproliferative activity on several tumour cell lines. Coplanar aromatic motif in the 5-substituent for the anticancer activity manifestation was confirmed.
Collapse
Affiliation(s)
- Alexander N Prutkov
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Mikhail V Chudinov
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Andrey V Matveev
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Lyubov E Grebenkina
- Biotechnology & Industrial Pharmacy Department, Lomonosov Institute of Fine Chemical Tehnologies, MIREA - Russian Technological University, Moscow, Russia
| | - Mikhail G Akimov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia V Berezovskaya
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
39
|
Analysis of the Potential for N 4-Hydroxycytidine To Inhibit Mitochondrial Replication and Function. Antimicrob Agents Chemother 2020; 64:AAC.01719-19. [PMID: 31767721 PMCID: PMC6985706 DOI: 10.1128/aac.01719-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 μM in CEM cells and up to >100 μM in other cell lines. N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 μM in CEM cells and up to >100 μM in other cell lines. The mitochondrial DNA-dependent RNA polymerase (POLRMT) has been shown to incorporate some nucleotide analogs into mitochondrial RNAs, resulting in substantial mitochondrial toxicity. NHC was tested in multiple assays intended to determine its potential to cause mitochondrial toxicity. NHC showed similar cytotoxicity in HepG2 cells incubated in a glucose-free and glucose-containing media, suggesting that NHC does not impair mitochondrial function in this cell line based on the Crabtree effect. We demonstrate that the 5′-triphosphate of NHC can be used by POLRMT for incorporation into nascent RNA chain but does not cause immediate chain termination. In PC-3 cells treated with NHC, the 50% inhibitory concentrations of mitochondrial protein expression inhibition were 2.7-fold lower than those for nuclear-encoded protein expression, but this effect did not result in selective mitochondrial toxicity. A 14-day incubation of HepG2 cells with NHC had no effect on mitochondrial DNA copy number or extracellular lactate levels. In CEM cells treated with NHC at 10 μM, a slight decrease (by ∼20%) in mitochondrial DNA copy number and a corresponding slight increase in extracellular lactate levels were detected, but these effects were not enhanced by an increase in NHC treatment concentration. In summary, the results indicate that mitochondrial impairment by NHC is not the main contributor to the compound’s observed cytotoxicity in these cell lines.
Collapse
|
40
|
Good SS, Moussa A, Zhou XJ, Pietropaolo K, Sommadossi JP. Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS One 2020; 15:e0227104. [PMID: 31914458 PMCID: PMC6949113 DOI: 10.1371/journal.pone.0227104] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023] Open
Abstract
Despite the availability of highly effective direct-acting antiviral (DAA) regimens for the treatment of hepatitis C virus (HCV) infections, sustained viral response (SVR) rates remain suboptimal for difficult-to-treat patient populations such as those with HCV genotype 3, cirrhosis or prior treatment experience, warranting development of more potent HCV replication antivirals. AT-527 is the hemi-sulfate salt of AT-511, a novel phosphoramidate prodrug of 2’-fluoro-2’-C-methylguanosine-5'-monophosphate that has potent in vitro activity against HCV. The EC50 of AT-511, determined using HCV laboratory strains and clinical isolates with genotypes 1–5, ranged from 5–28 nM. The active 5'-triphosphate metabolite, AT-9010, specifically inhibited the HCV RNA-dependent RNA polymerase. AT-511 did not inhibit the replication of other selected RNA or DNA viruses in vitro. AT-511 was approximately 10-fold more active than sofosbuvir (SOF) against a panel of laboratory strains and clinical isolates of HCV genotypes 1–5 and remained fully active against S282T resistance-associated variants, with up to 58-fold more potency than SOF. In vitro, AT-511 did not inhibit human DNA polymerases or elicit cytotoxicity or mitochondrial toxicity at concentrations up to 100 μM. Unlike the other potent guanosine analogs PSI-938 and PSI-661, no mutagenic O6-alkylguanine bases were formed when incubated with cytochrome P450 (CYP) 3A4, and AT-511 had IC50 values ≥25 μM against a panel of CYP enzymes. In hepatocytes from multiple species, the active triphosphate was the predominant metabolite produced from the prodrug, with a half-life of 10 h in human hepatocytes. When given orally to rats and monkeys, AT-527 preferentially delivered high levels of AT-9010 in the liver in vivo. These favorable preclinical attributes support the ongoing clinical development of AT-527 and suggest that, when used in combination with an HCV DAA from a different class, AT-527 may increase SVR rates, especially for difficult-to-treat patient populations, and could potentially shorten treatment duration for all patients.
Collapse
Affiliation(s)
- Steven S. Good
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Xiao-Jian Zhou
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Keith Pietropaolo
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
41
|
Liu W, Caglar MU, Mao Z, Woodman A, Arnold JJ, Wilke CO, Cameron CE. More than efficacy revealed by single-cell analysis of antiviral therapeutics. SCIENCE ADVANCES 2019; 5:eaax4761. [PMID: 31692968 PMCID: PMC6821460 DOI: 10.1126/sciadv.aax4761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/16/2019] [Indexed: 05/11/2023]
Abstract
Because many aspects of viral infection dynamics and inhibition are governed by stochastic processes, single-cell analysis should provide more information than approaches using population averaging. We have developed a microfluidic device composed of ~6000 wells, with each well containing a microstructure to capture single, infected cells replicating an enterovirus expressing a fluorescent reporter protein. We have used this system to characterize enterovirus inhibitors with distinct mechanisms of action. Single-cell analysis reveals that each class of inhibitor interferes with the viral infection cycle in a manner that can be distinguished by principal component analysis. Single-cell analysis of antiviral candidates not only reveals efficacy but also facilitates clustering of drugs with the same mechanism of action and provides some indication of the ease with which resistance will develop.
Collapse
Affiliation(s)
- Wu Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Mehmet U. Caglar
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, and Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| | - Claus O. Wilke
- Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, and Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16801, USA
| |
Collapse
|
42
|
Hendriks DFG, Hurrell T, Riede J, van der Horst M, Tuovinen S, Ingelman-Sundberg M. Mechanisms of Chronic Fialuridine Hepatotoxicity as Revealed in Primary Human Hepatocyte Spheroids. Toxicol Sci 2019; 171:385-395. [PMID: 31505000 DOI: 10.1093/toxsci/kfz195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
AbstractDrug hepatotoxicity is often delayed in onset. An exemplar case is the chronic nature of fialuridine hepatotoxicity, which resulted in the deaths of several patients in clinical trials as preclinical studies failed to identify this human-specific hepatotoxicity. Conventional preclinical in vitro models are mainly designed to evaluate the risk of acute drug toxicity. Here, we evaluated the utility of 3D spheroid cultures of primary human hepatocytes (PHHs) to assess chronic drug hepatotoxicity events using fialuridine as an example. Fialuridine toxicity was only detectable after 7 days of repeated exposure. Clinical manifestations, including reactive oxygen species formation, lipid accumulation, and induction of apoptosis, were readily identified. Silencing the expression or activity of the human equilibrative nucleoside transporter 1 (ENT1), implicated in the mitochondrial transport of fialuridine, modestly protected PHH spheroids from fialuridine toxicity. Interference with the phosphorylation of fialuridine into the active triphosphate metabolites by silencing of thymidine kinase 2 (TK2) provided substantial protection, whereas simultaneous silencing of ENT1 and TK2 provided near-complete protection. Fialuridine-induced mitochondrial dysfunction was suggested by a decrease in the expression of mtDNA-encoded genes, which correlated with the onset of toxicity and was prevented under the simultaneous silencing of ENT1 and TK2. Furthermore, interference with the expression or activity of ribonucleotide reductase (RNR), which is critical to deoxyribonucleoside triphosphate (dNTP) pool homeostasis, resulted in selective potentiation of fialuridine toxicity. Our findings demonstrate the translational applicability of the PHH 3D spheroid model for assessing drug hepatotoxicity events which manifest only under chronic exposure conditions.
Collapse
Affiliation(s)
- Delilah F G Hendriks
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Tracey Hurrell
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Julia Riede
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Muriëlle van der Horst
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Sarianna Tuovinen
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
43
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|
44
|
Abstract
Oligonucleotides (ONs) can interfere with biomolecules representing the entire extended central dogma. Antisense gapmer, steric block, splice-switching ONs, and short interfering RNA drugs have been successfully developed. Moreover, antagomirs (antimicroRNAs), microRNA mimics, aptamers, DNA decoys, DNAzymes, synthetic guide strands for CRISPR/Cas, and innate immunity-stimulating ONs are all in clinical trials. DNA-targeting, triplex-forming ONs and strand-invading ONs have made their mark on drug development research, but not yet as medicines. Both design and synthetic nucleic acid chemistry are crucial for achieving biologically active ONs. The dominating modifications are phosphorothioate linkages, base methylation, and numerous 2'-substitutions in the furanose ring, such as 2'-fluoro, O-methyl, or methoxyethyl. Locked nucleic acid and constrained ethyl, a related variant, are bridged forms where the 2'-oxygen connects to the 4'-carbon in the sugar. Phosphorodiamidate morpholino oligomers, carrying a modified heterocyclic backbone ring, have also been commercialized. Delivery remains a major obstacle, but systemic administration and intrathecal infusion are used for treatment of the liver and brain, respectively.
Collapse
Affiliation(s)
- C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Rula Zain
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden; .,Department of Clinical Genetics, Centre for Rare Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|