1
|
Pitsikas N. Evaluation of the potential efficacy of the nitric oxide donor molsidomine for the treatment of schizophrenia. Med Gas Res 2025; 15:228-233. [PMID: 39511754 DOI: 10.4103/mgr.medgasres-d-24-00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Schizophrenia is a chronic devastating psychiatric disease characterized by a high recurrence rate. Pharmacological management of this disorder appears disappointing since it is associated with a lack of efficacy for negative symptoms and cognitive deficits, typical features of schizophrenia, and the presence of severe undesired side effects. Thus, novel molecules with high efficacy and low toxicity for the treatment of schizophrenia are urgently needed. The involvement of the gaseous molecule nitric oxide in the pathogenesis of schizophrenia is well documented since low concentrations of nitric oxide are associated with this psychiatric disease. Therefore, chemicals able to normalize nitric oxide levels, such as nitric oxide donors, might be useful for the management of this type of schizophrenia. Molsidomine is a nitric oxide donor and is under investigation as a novel antischizophrenia agent. The aim of this review is to critically evaluate the potential efficacy of this molecule for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
2
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2025; 30:679-692. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Siafis S, Nomura N, Schneider-Thoma J, Bighelli I, Bannach-Brown A, Ramage FJ, Tinsdeall F, Mantas I, Jauhar S, Natesan S, Vernon AC, de Bartolomeis A, Hölter SM, Drude NI, Tölch U, Hansen WP, Chiocchia V, Howes OD, Priller J, Macleod MR, Salanti G, Leucht S. Muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis: protocol for a systematic review and meta-analysis. F1000Res 2025; 13:1017. [PMID: 39844929 PMCID: PMC11751611 DOI: 10.12688/f1000research.155356.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background Muscarinic receptor agonism and positive allosteric modulation is a promising mechanism of action for treating psychosis, not present in most D2R-blocking antipsychotics. Xanomeline, an M1/M4-preferring agonist, has shown efficacy in late-stage clinical trials, with more compounds being investigated. Therefore, we aim to synthesize evidence on the preclinical efficacy of muscarinic receptor agonists and positive allosteric modulators in animal models of psychosis to provide unique insights and evidence-based information to guide drug development. Methods We plan a systematic review and meta-analysis of in vivo animal studies comparing muscarinic receptor agonists or positive allosteric modulators with control conditions and existing D2R-blocking antipsychotics in animals subjected to any method that induces behavioural changes of relevance for psychosis. We will identify eligible studies by searching multiple electronic databases. At least two independent reviewers will conduct the study selection and data extraction using prespecified forms and assess the risk of bias with the SYRCLE's tool. Our primary outcomes include locomotor activity and prepulse inhibition measured with standardized mean differences. We will examine other behavioural readouts of relevance for psychosis as secondary outcomes, such as social interaction and cognitive function. We will synthesize the data using multi-level meta-analysis with a predefined random-effects structure, considering the non-independence of the data. In meta-regressions we will explore potential sources of heterogeneity from a predefined list of characteristics of the animal population, model, and intervention. We will assess the confidence in the evidence considering a self-developed instrument thatconsiders the internal and external validity of the evidence. Protocol registration PROSPERO-ID: CRD42024520914.
Collapse
Affiliation(s)
- Spyridon Siafis
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Nobuyuki Nomura
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Johannes Schneider-Thoma
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Irene Bighelli
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Alexandra Bannach-Brown
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fiona J. Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sameer Jauhar
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Sridhar Natesan
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Anthony C. Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Sabine M. Hölter
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Natascha I. Drude
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulf Tölch
- QUEST Center for Responsible Research, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Virginia Chiocchia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Oliver D. Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Josef Priller
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Georgia Salanti
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Stefan Leucht
- German Center for Mental Health (DZPG), partner site München/Augsburg, Munich, Germany
- Technical University of Munich, School of Medicine and Health, Department of Psychiatry and Psychotherapy, Munich, Germany
| |
Collapse
|
4
|
Costines C, Schmidt TT. Phenomenology of Psychedelic Experiences and Psychedelic-Associated Distressing Effects: Quantifying Subjective Experiences. Curr Top Behav Neurosci 2024. [PMID: 39739177 DOI: 10.1007/7854_2024_562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The range of phenomena that can be induced by psychedelic substances is broad and variable, including effects on perception, cognition, and emotion. The umbrella term "psychedelic phenomenology" is used to refer to a combination of altered experiential features, such as hallucinations or ego dissolution, which together constitute a psychedelic experience. However, there is no consensus on the set of alterations of consciousness that qualifies an altered state to be a "psychedelic state." In this chapter we summarize the most commonly discussed changes in subjective experiences which could be seen as "core features" of psychedelic experiences. While acknowledging the rich history of pioneering phenomenological work of the last century, this chapter focuses on more recent developments in the quantitative work on the assessment of these phenomena. We also address the under-researched phenomenology of distressing effects, often referred to as "challenging experiences" or "bad trips," and point to their importance in understanding the therapeutic potential and risks associated with psychedelic phenomenology. Historically, one can find many links between psychedelic phenomenology and the phenomenology of psychopathology. We stress the importance to refine the assessment and description also of distressing effects, to identify factors that promote acute experiences which are beneficial and limit those which can have potentially harmful long-term effects.
Collapse
Affiliation(s)
- Cyril Costines
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany.
- Psychedelic Substance Research Group, Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- CIRCE - Collaboration for Interdisciplinary Research on Conscious Experience, Teupitz, Germany.
| |
Collapse
|
5
|
Mu E, Gurvich C, Kulkarni J. Estrogen and psychosis - a review and future directions. Arch Womens Ment Health 2024; 27:877-885. [PMID: 38221595 PMCID: PMC11579214 DOI: 10.1007/s00737-023-01409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 01/16/2024]
Abstract
The link between sex hormones and schizophrenia has been suspected for over a century; however, scientific evidence supporting the pharmacotherapeutic effects of exogenous estrogen has only started to emerge during the past three decades. Accumulating evidence from epidemiological and basic research suggests that estrogen has a protective effect in women vulnerable to schizophrenia. Such evidence has led multiple researchers to investigate the role of estrogen in schizophrenia and its use in treatment. This narrative review provides an overview of the effects of estrogen as well as summarizes the recent work regarding estrogen as a treatment for schizophrenia, particularly the use of new-generation selective estrogen receptor modulators.
Collapse
Affiliation(s)
- Eveline Mu
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Caroline Gurvich
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jayashri Kulkarni
- HER Centre Australia, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Kim HR, Martina M. Bidirectional Regulation of GABA A Reversal Potential in the Adult Brain: Physiological and Pathological Implications. Life (Basel) 2024; 14:143. [PMID: 38276272 PMCID: PMC10817304 DOI: 10.3390/life14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
In physiological conditions, the intracellular chloride concentration is much lower than the extracellular. As GABAA channels are permeable to anions, the reversal potential of GABAA is very close to that of Cl-, which is the most abundant free anion in the intra- and extracellular spaces. Intracellular chloride is regulated by the activity ratio of NKCC1 and KCC2, two chloride-cation cotransporters that import and export Cl-, respectively. Due to the closeness between GABAA reversal potential and the value of the resting membrane potential in most neurons, small changes in intracellular chloride have a major functional impact, which makes GABAA a uniquely flexible signaling system. In most neurons of the adult brain, the GABAA reversal potential is slightly more negative than the resting membrane potential, which makes GABAA hyperpolarizing. Alterations in GABAA reversal potential are a common feature in numerous conditions as they are the consequence of an imbalance in the NKCC1-KCC2 activity ratio. In most conditions (including Alzheimer's disease, schizophrenia, and Down's syndrome), GABAA becomes depolarizing, which causes network desynchronization and behavioral impairment. In other conditions (neonatal inflammation and neuropathic pain), however, GABAA reversal potential becomes hypernegative, which affects behavior through a potent circuit deactivation.
Collapse
Affiliation(s)
- Haram R. Kim
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
| | - Marco Martina
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA;
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 300 E. Superior, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
8
|
Siafis S, McCutcheon R, Chiocchia V, Ostinelli EG, Wright S, Stansfield C, Juma DO, Mantas I, Howes OD, Rutigliano G, Ramage F, Tinsdeall F, Friedrich C, Milligan L, Moreno C, Elliott JH, Thomas J, Macleod MR, Sena ES, Seedat S, Salanti G, Potts J, Cipriani A, Leucht S. Trace amine-associated receptor 1 (TAAR1) agonists for psychosis: protocol for a living systematic review and meta-analysis of human and non-human studies. Wellcome Open Res 2023; 8:365. [PMID: 38634067 PMCID: PMC11021884 DOI: 10.12688/wellcomeopenres.19866.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND There is an urgent need to develop more effective and safer antipsychotics beyond dopamine 2 receptor antagonists. An emerging and promising approach is TAAR1 agonism. Therefore, we will conduct a living systematic review and meta-analysis to synthesize and triangulate the evidence from preclinical animal experiments and clinical studies on the efficacy, safety, and underlying mechanism of action of TAAR1 agonism for psychosis. METHODS Independent searches will be conducted in multiple electronic databases to identify clinical and animal experimental studies comparing TAAR1 agonists with licensed antipsychotics or other control conditions in individuals with psychosis or animal models for psychosis, respectively. The primary outcomes will be overall psychotic symptoms and their behavioural proxies in animals. Secondary outcomes will include side effects and neurobiological measures. Two independent reviewers will conduct study selection, data extraction using predefined forms, and risk of bias assessment using suitable tools based on the study design. Ontologies will be developed to facilitate study identification and data extraction. Data from clinical and animal studies will be synthesized separately using random-effects meta-analysis if appropriate, or synthesis without meta-analysis. Study characteristics will be investigated as potential sources of heterogeneity. Confidence in the evidence for each outcome and source of evidence will be evaluated, considering the summary of the association, potential concerns regarding internal and external validity, and reporting biases. When multiple sources of evidence are available for an outcome, an overall conclusion will be drawn in a triangulation meeting involving a multidisciplinary team of experts. We plan trimonthly updates of the review, and any modifications in the protocol will be documented. The review will be co-produced by multiple stakeholders aiming to produce impactful and relevant results and bridge the gap between preclinical and clinical research on psychosis. PROTOCOL REGISTRATION PROSPERO-ID: CRD42023451628.
Collapse
Affiliation(s)
- Spyridon Siafis
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Robert McCutcheon
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Virginia Chiocchia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
| | - Edoardo G. Ostinelli
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Simonne Wright
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Claire Stansfield
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | | | - Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
| | - Grazia Rutigliano
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
| | - Fiona Ramage
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Francesca Tinsdeall
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Claire Friedrich
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | | | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
| | - Julian H. Elliott
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| | - James Thomas
- EPPI Centre, Social Research Institute, University College London, London, England, UK
| | - Malcolm R. Macleod
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Emily S. Sena
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Georgia Salanti
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
| | - Jennifer Potts
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Andrea Cipriani
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - the GALENOS team
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry, University of Oxford, Oxford, England, UK
- Oxford Health NHS Foundation Trust, Oxford, England, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, UK
- Institute of Social and Preventive Medicine, University of Bern, Bern, Canton of Bern, Switzerland
- Oxford Precision Psychiatry Lab, University of Oxford, Oxford, England, UK
- Department of Psychiatry, Stellenbosch University, Stellenbosch, Western Cape, South Africa
- EPPI Centre, Social Research Institute, University College London, London, England, UK
- My Mind Our Humanity, Mombasa, Kenya
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, England, UK
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
- MQ Mental Health Research, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense de Madrid, Madrid, Community of Madrid, Spain
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Clayton, Victoria, Australia
- Future Evidence Foundation, Melbourne, Australia
| |
Collapse
|
9
|
Ebrahimi M, Ahangar N, Zamani E, Shaki F. L-Carnitine Prevents Behavioural Alterations in Ketamine-Induced Schizophrenia in Mice: Possible Involvement of Oxidative Stress and Inflammation Pathways. J Toxicol 2023; 2023:9093231. [PMID: 37363159 PMCID: PMC10289879 DOI: 10.1155/2023/9093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a chronic mental complaint known as cognitive impairment. There has been evidence that inflammation and oxidative stress play a main role in schizophrenia pathophysiology. This study aimed to investigate the effects of l-carnitine, as a potent antioxidant, on the treatment of behavioural and biochemical disturbances in mice with ketamine-induced schizophrenia. In this study, schizophrenia was induced in mice by ketamine (25 mg/kg/day, i.p). Before induction of schizophrenia, mice were treated with l-carnitine (100, 200, and 400 mg/kg/day, i.p). Then, behavioural impairments were evaluated by open field (OF) assessment and social interaction test (SIT). After brain tissue isolation, reactive oxygen species (ROS), glutathione concentration (GSH), lipid peroxidation (LPO), protein carbonyl oxidation, superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx) were assessed as oxidative stress markers. Furthermore, inflammatory biomarkers such as tumour necrosis factor alpha (TNF-α) and nitric oxide (NO) were evaluated in brain tissue. Our results showed ketamine increased inflammation and oxidative damage in brain tissue that was similar to behaviour disorders in mice. Interestingly, l-carnitine significantly decreased oxidative stress and inflammatory markers compared with ketamine-treated mice. In addition, l-carnitine prevented and reversed ketamine-induced alterations in the activities of SOD and GPx enzymes in mice's brains. Also, improved performance in OFT (locomotor activity test) and SIT was observed in l-carnitine-treated mice. These data provided evidence that, due to the antioxidant and anti-inflammatory effects of l-carnitine, it has a neuroprotective effect on mice model of schizophrenia.
Collapse
Affiliation(s)
- Mehrasa Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
10
|
Bozkurt NM, Unal G. Vortioxetine improved negative and cognitive symptoms of schizophrenia in subchronic MK-801 model in rats. Behav Brain Res 2023; 444:114365. [PMID: 36858318 DOI: 10.1016/j.bbr.2023.114365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Schizophrenia is a devastating psychiatric disorder with complex symptoms and neurobiology. Serotonergic dysregulation is known to contribute to the pathogenesis of schizophrenia although dopaminergic and glutamatergic systems are thought to have central roles in neurobiology. No significant success can be achieved in the treatment of negative and cognitive symptoms while positive symptoms can be significantly reduced with current pharmacotherapy. Vortioxetine is a new multimodal antidepressant with 5-HT1A agonism, 5-HT1B partial agonism, 5-HT3, 5-HT7, and 5-HT1D antagonism, and serotonin reuptake inhibition. A limited number of studies suggest its therapeutic effect on the negative and cognitive symptoms of schizophrenia. Therefore, we investigated the potential beneficial effects of vortioxetine on behavioral and molecular deficits in the MK-801 model of schizophrenia in rats. Female Wistar albino rats (10-12 weeks) were grouped as saline, MK-801 (0.2 mg/kg), MK-801 + vortioxetine (2.5 mg/kg), MK-801 + vortioxetine (5 mg/kg), MK-801 + vortioxetine (10 mg/kg), MK-801 + risperidone (0.3 mg/kg), MK-801 + haloperidol (1 mg/kg) (n = 8 in each group). MK-801 has been daily administered (i.p.) for 14 days. Vortioxetine and antipsychotic treatments were injected for 21 days after a washout period of MK-801 and locomotor activity (LA), social interaction (SI), novel object recognition (NOR), Y-maze and prepulse inhibition (PPI) tests were performed at the 16-20th days of treatments, respectively. ELISA test was conducted to evaluate molecular analyses. MK-801 decreased PPI (%), social behaviors, and discrimination index in NOR and alternation (%) in the Y-maze test. In NOR and Y-maze tests, especially vortioxetine 5 and 10 mg/kg increased discrimination index and alternation (%) compared to MK-801. In addition, vortioxetine administration increased social behaviors. Moreover, MK-801 decreased GAD67 and parvalbumin levels while vortioxetine increased these protein levels compared to MK-801. Herein, we first suggested a potential therapeutic effect of vortioxetine, a new multimodal antidepressant, on negative and cognitive symptoms and neurobiological deficits including GAD67 and parvalbumin low expression in the MK-801 model in rats. It would be beneficial to confirm our results in different rodent models and to shed light on the possible mechanisms underlying these effects.
Collapse
Affiliation(s)
- Nuh Mehmet Bozkurt
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Türkiye; Erciyes University, Experimental Research, and Application Center (DEKAM), Brain Research Unit, Kayseri, Türkiye
| | - Gokhan Unal
- Erciyes University, Faculty of Pharmacy, Department of Pharmacology, Kayseri, Türkiye; Erciyes University, Experimental Research, and Application Center (DEKAM), Brain Research Unit, Kayseri, Türkiye.
| |
Collapse
|
11
|
Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology (Berl) 2023; 240:1201-1219. [PMID: 37060470 DOI: 10.1007/s00213-023-06361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
RATIONALE Challenges in drug development for psychiatric disorders have left much room for the introduction of novel treatments with better therapeutic efficacies and indices. As a result, intense research has focused on identifying new targets for developing such pharmacotherapies. One of these targets may be the phosphodiesterase (PDE) class of enzymes, which play important roles in intracellular signaling. Due to their critical roles in cellular pathways, these enzymes affect diverse neurobiological functions from learning and memory formation to neuroinflammation. OBJECTIVES In this paper, we reviewed studies on the use of PDE inhibitors (PDEIs) in preclinical models and clinical trials of psychiatric disorders including depression, anxiety, schizophrenia, post-traumatic stress disorder (PTSD), bipolar disorder (BP), sexual dysfunction, and feeding disorders. RESULTS PDEIs are able to improve symptoms of psychiatric disorders in preclinical models through activating the cAMP-PKA-CREB and cGMP-PKG pathways, attenuating neuroinflammation and oxidative stress, and stimulating neural plasticity. The most promising therapeutic candidates to emerge from these preclinical studies are PDE2 and PDE4 inhibitors for depression and anxiety and PDE1 and PDE10 inhibitors for schizophrenia. Furthermore, PDE3 and 4 inhibitors have shown promising results in clinical trials in patients with depression and schizophrenia. CONCLUSIONS Larger and better designed clinical studies of PDEIs in schizophrenia, depression, and anxiety are warranted to facilitate their translation into the clinic. Regarding the other conditions discussed in this review (most notably PTSD and BP), better characterization of the effects of PDEIs in preclinical models is required before clinical studies.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi Zoshk
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, AJA University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Cognitive Neuroscience Center, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Kourosh Abbasian
- Management and Health Economics Department, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Więdłocha M, Zborowska N, Marcinowicz P, Dębowska W, Dębowska M, Zalewska A, Maciejczyk M, Waszkiewicz N, Szulc A. Oxidative Stress Biomarkers among Schizophrenia Inpatients. Brain Sci 2023; 13:brainsci13030490. [PMID: 36979300 PMCID: PMC10046541 DOI: 10.3390/brainsci13030490] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Background. Finding the associations between schizophrenia symptoms and the biomarkers of inflammation, oxidative stress and the kynurenine pathway may lead to the individualization of treatment and increase its effectiveness. Methods. The study group included 82 schizophrenia inpatients. The Positive and Negative Symptoms Scale (PANSS), the Brief Assessment of Cognition in Schizophrenia (BACS) and the Calgary Depression in Schizophrenia Scale were used for symptom evaluation. Biochemical analyses included oxidative stress parameters and brain-derived neurotrophic factor (BDNF). Results. Linear models revealed the following: (1) malondiadehyde (MDA), N-formylkynurenine (N-formKYN), advanced oxidation protein products (AOPP), advanced glycation end-products of proteins (AGE) and total oxidative status (TOS) levels are related to the PANSS-total score; (2) MDA, reduced glutathione (GSH) and BDNF levels are related to the PANSS-negative score; (3) TOS and kynurenine (KYN) levels are related to the PANSS-positive score; (4) levels of total antioxidant status (TAS) and AOPP along with the CDSS score are related to the BACS-total score; (5) TAS and N-formKYN levels are related to the BACS-working memory score. Conclusions. Oxidative stress biomarkers may be associated with the severity of schizophrenia symptoms in positive, negative and cognitive dimensions. The identification of biochemical markers associated with the specific symptom clusters may increase the understanding of biochemical profiles in schizophrenia patients.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
- Correspondence:
| | - Natalia Zborowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
| | - Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 16-070 Choroszcz, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, 02-091 Warsaw, Poland; (N.Z.)
| |
Collapse
|
13
|
Kassim FM, Lahooti SK, Keay EA, Iyyalol R, Rodger J, Albrecht MA, Martin-Iverson MT. Dexamphetamine widens temporal and spatial binding windows in healthy participants. J Psychiatry Neurosci 2023; 48:E90-E98. [PMID: 36918195 PMCID: PMC10019325 DOI: 10.1503/jpn.220149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The pathophysiology of psychosis is complex, but a better understanding of stimulus binding windows (BWs) could help to improve our knowledge base. Previous studies have shown that dopamine release is associated with psychosis and widened BWs. We can probe BW mechanisms using drugs of specific interest to psychosis. Therefore, we were interested in understanding how manipulation of the dopamine or catecholamine systems affect psychosis and BWs. We aimed to investigate the effect of dexamphetamine, as a dopamine-releasing stimulant, on the BWs in a unimodal illusion: the tactile funneling illusion (TFI). METHODS We conducted a randomized, double-blind, counterbalanced placebo-controlled crossover study to investigate funnelling and errors of localization. We administered dexamphetamine (0.45 mg/kg) to 46 participants. We manipulated 5 spatial (5-1 cm) and 3 temporal (0, 500 and 750 ms) conditions in the TFI. RESULTS We found that dexamphetamine increased funnelling illusion (p = 0.009) and increased the error of localization in a delay-dependent manner (p = 0.03). We also found that dexamphetamine significantly increased the error of localization at 500 ms temporal separation and 4 cm spatial separation (p interaction = 0.009; p 500ms|4cm v. baseline = 0.01). LIMITATIONS Although amphetamine-induced models of psychosis are a useful approach to understanding the physiology of psychosis related to dopamine hyperactivity, dexamphetamine is equally effective at releasing noradrenaline and dopamine, and, therefore, we were unable to tease apart the effects of the 2 systems on BWs in our study. CONCLUSION We found that dexamphetamine increases illusory perception on the unimodal TFI in healthy participants, which suggests that dopamine or other catecholamines have a role in increasing tactile spatial and temporal BWs.
Collapse
Affiliation(s)
- Faiz M Kassim
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Samra Krakonja Lahooti
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Elizabeth Ann Keay
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Rajan Iyyalol
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Jennifer Rodger
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Matthew A Albrecht
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| | - Mathew T Martin-Iverson
- From the Department of Psychiatry, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia (Kassim); the Psychopharmacology Unit, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia (Kassim, Lahooti, Keay, Martin-Iverson); the Psychiatry, Graylands Hospital, Mt Claremont, Perth, WA, Australia (Iyyalol); the Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Crawley, WA, Australia (Rodger); the Brain Plasticity Group, Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia (Rodger); the Western Australian Centre for Road Safety Research, School of Psychological Science, University of Western Australia, Perth, WA, Australia (Albrecht)
| |
Collapse
|
14
|
Sarcosine (glycine transporter inhibitor) attenuates behavioural and biochemical changes induced by ketamine, in the rat model of schizophrenia. Exp Brain Res 2023; 241:451-467. [PMID: 36577922 DOI: 10.1007/s00221-022-06530-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/29/2022] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a neurological disorder that alters the behavior and affects the quality of life of a patient. It is characterized by hallucinations, disorganized behavior, cognitive dysfunction, hyperlocomotion, and loss of the reward system. Schizophrenia constitutes three symptoms' domains, viz. positive, negative and cognitive. Typical and atypical antipsychotics do not fully resolve all the symptoms' domains thus paving the way to the genesis of the glutamatergic hypothesis, i.e. N-methyl-D-aspartate (NMDA) receptor hypofunction in the pathophysiology of schizophrenia. Positive modulation of NMDA receptors by enhancing co-agonist, glycine effect is proposed to produce a therapeutic effect in schizophrenia. Hence, sarcosine (N-methyl glycine), natural amino acid, and a glycine transporter inhibitor (GlyT-1) which also acts on NMDA receptors were used in the present study. The present study unravels the role of sarcosine in the attenuation of ketamine-induced three symptom domains in a rat model through modulation of oxidative stress, mitochondrial dysfunction, and neuroinflammatory pathways. The animal model of schizophrenia was established by injecting ketamine intraperitoneal (ip) at a 30 mg/kg dose for 10 consecutive days, after which sarcosine (300, 600 mg/kg, ip) as a treatment was given for 7 days followed by behavioral, biochemical, molecular, and histopathological analysis. It was revealed that sarcosine reversed ketamine-induced behavioral impairments. Moreover, sarcosine ameliorated oxidative and nitrosative stress, mitochondrial dysfunction, and neuroinflammation and showed protective effects in histopathological examination by hematoxylin and eosin staining. Hence, conclusively, sarcosine was regarded to attenuate the behavioural symptoms of schizophrenia by alleviating oxidative stress, neuroinflammation, and mitochondrial dysfunction established by the ketamine.
Collapse
|
15
|
Malik JA, Yaseen Z, Thotapalli L, Ahmed S, Shaikh MF, Anwar S. Understanding translational research in schizophrenia: A novel insight into animal models. Mol Biol Rep 2023; 50:3767-3785. [PMID: 36692676 PMCID: PMC10042983 DOI: 10.1007/s11033-023-08241-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Schizophrenia affects millions of people worldwide and is a major challenge for the scientific community. Like most psychotic diseases, it is also considered a complicated mental disorder caused by an imbalance in neurotransmitters. Due to the complexity of neuropathology, it is always a complicated disorder. The lack of proper understanding of the pathophysiology makes the disorder unmanageable in clinical settings. However, due to recent advances in animal models, we hope we can have better therapeutic approaches with more success in clinical settings. Dopamine, glutamate, GABA, and serotonin are the neurotransmitters involved in the pathophysiology of schizophrenia. Various animal models have been put forward based on these neurotransmitters, including pharmacological, neurodevelopmental, and genetic models. Polymorphism of genes such as dysbindin, DICS1, and NRG1 has also been reported in schizophrenia. Hypothesis based on dopamine, glutamate, and serotonin are considered successful models of schizophrenia on which drug therapies have been designed to date. New targets like the orexin system, muscarinic and nicotinic receptors, and cannabinoid receptors have been approached to alleviate the negative and cognitive symptoms. The non-pharmacological models like the post-weaning social isolation model (maternal deprivation), the isolation rearing model etc. have been also developed to mimic the symptoms of schizophrenia and to create and test new approaches of drug therapy which is a breakthrough at present in psychiatric disorders. Different behavioral tests have been evaluated in these specific models. This review will highlight the currently available animal models and behavioral tests in psychic disorders concerning schizophrenia.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India.,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Zahid Yaseen
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Delhi, India
| | - Lahari Thotapalli
- Department of Pharmaceutical Sciences, JNTU University, Anantapur, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia. .,School of Dentistry and Medical Sciences, Charles Sturt University, Orange, 2800, New South Wales, Australia.
| | - Sirajudheen Anwar
- Department of Pharmacology, College of Pharmacy, University of Hail, Hail, 81422, Saudi Arabia.
| |
Collapse
|
16
|
Anticevic A, Halassa MM. The thalamus in psychosis spectrum disorder. Front Neurosci 2023; 17:1163600. [PMID: 37123374 PMCID: PMC10133512 DOI: 10.3389/fnins.2023.1163600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Psychosis spectrum disorder (PSD) affects 1% of the world population and results in a lifetime of chronic disability, causing devastating personal and economic consequences. Developing new treatments for PSD remains a challenge, particularly those that target its core cognitive deficits. A key barrier to progress is the tenuous link between the basic neurobiological understanding of PSD and its clinical phenomenology. In this perspective, we focus on a key opportunity that combines innovations in non-invasive human neuroimaging with basic insights into thalamic regulation of functional cortical connectivity. The thalamus is an evolutionary conserved region that forms forebrain-wide functional loops critical for the transmission of external inputs as well as the construction and update of internal models. We discuss our perspective across four lines of evidence: First, we articulate how PSD symptomatology may arise from a faulty network organization at the macroscopic circuit level with the thalamus playing a central coordinating role. Second, we discuss how recent animal work has mechanistically clarified the properties of thalamic circuits relevant to regulating cortical dynamics and cognitive function more generally. Third, we present human neuroimaging evidence in support of thalamic alterations in PSD, and propose that a similar "thalamocortical dysconnectivity" seen in pharmacological imaging (under ketamine, LSD and THC) in healthy individuals may link this circuit phenotype to the common set of symptoms in idiopathic and drug-induced psychosis. Lastly, we synthesize animal and human work, and lay out a translational path for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Alan Anticevic
- School of Medicine, Yale University, New Haven, CT, United States
- *Correspondence: Alan Anticevic,
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Michael M. Halassa,
| |
Collapse
|
17
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Matloka M, Janowska S, Pankiewicz P, Kokhanovska S, Kos T, Hołuj M, Rutkowska-Wlodarczyk I, Abramski K, Janicka M, Jakubowski P, Świątkiewicz M, Welniak-Kaminska M, Hucz-Kalitowska J, Dera P, Bojarski L, Grieb P, Popik P, Wieczorek M, Pieczykolan J. A PDE10A inhibitor CPL500036 is a novel agent modulating striatal function devoid of most neuroleptic side-effects. Front Pharmacol 2022; 13:999685. [PMID: 36438799 PMCID: PMC9681820 DOI: 10.3389/fphar.2022.999685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/24/2022] [Indexed: 01/04/2024] Open
Abstract
Background: Phosphodiesterase 10A (PDE10A) is expressed almost exclusively in the striatum and its inhibition is suggested to offer potential treatment in disorders associated with basal ganglia. We evaluated the selectivity, cytotoxicity, genotoxicity, pharmacokinetics and potential adverse effects of a novel PDE10A inhibitor, CPL500036, in vivo. Methods: The potency of CPL500036 was demonstrated by microfluidic technology, and selectivity was investigated in a radioligand binding assay against 44 targets. Cardiotoxicity in vitro was evaluated in human ether-a-go-go related gene (hERG)-potassium channel-overexpressing cells by the patch-clamp method and by assessing key parameters in 3D cardiac spheroids. Cytotoxicity was determined in H1299, HepG2 and SH-SY5Y cell lines. The Ames test was used for genotoxicity analyses. During in vivo studies, CPL500036 was administered by oral gavage. CPL500036 exposure were determined by liquid chromatography-tandem mass spectrometry and plasma protein binding was assessed. The bar test was employed to assess catalepsy. Prolactin and glucose levels in rat blood were measured by ELISAs and glucometers, respectively. Cardiovascular safety in vivo was investigated in dogs using a telemetry method. Results: CPL500036 inhibited PDE10A at an IC50 of 1 nM, and interacted only with the muscarinic M2 receptor as a negative allosteric modulator with an IC50 of 9.2 µM. Despite inhibiting hERG tail current at an IC25 of 3.2 μM, cardiovascular adverse effects were not observed in human cardiac 3D spheroids or in vivo. Cytotoxicity in vitro was observed only at > 60 μM and genotoxicity was not recorded during the Ames test. CPL500036 presented good bioavailability and penetration into the brain. CPL500036 elicited catalepsy at 0.6 mg/kg, but hyperprolactinemia or hyperglycemic effects were not observed in doses up to 3 mg/kg. Conclusion: CPL500036 is a potent, selective and orally bioavailable PDE10A inhibitor with a good safety profile distinct from marketed antipsychotics. CPL500036 may be a compelling drug candidate.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Kos
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Hołuj
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | | | | | | - Maciej Świątkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | - Paweł Grieb
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | | | |
Collapse
|
19
|
Jiang W, Isenhart R, Sutherland R, Lu Z, Xu H, Pace J, Bonaguidi MA, Lee DJ, Liu CY, Song D. Subthreshold repetitive transcranial magnetic stimulation suppresses ketamine-induced poly population spikes in rat sensorimotor cortex. Front Neurosci 2022; 16:998704. [PMCID: PMC9633989 DOI: 10.3389/fnins.2022.998704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical oscillations within or across brain regions play fundamental roles in sensory, motor, and memory functions. It can be altered by neuromodulations such as repetitive transcranial magnetic stimulation (rTMS) and pharmacological manipulations such as ketamine. However, the neurobiological basis of the effects of rTMS and ketamine, as well as their interactions, on cortical oscillations is not understood. In this study, we developed and applied a rodent model that enabled simultaneous rTMS treatment, pharmacological manipulations, and invasive electrophysiological recordings, which is difficult in humans. Specifically, a miniaturized C-shaped coil was designed and fabricated to deliver focal subthreshold rTMS above the primary somatosensory (S1) and motor (M1) cortex in rats. Multi-electrode arrays (MEA) were implanted to record local field potentials (LFPs) and single unit activities. A novel form of synchronized activities, poly population spikes (PPS), was discovered as the biomarker of ketamine in LFPs. Brief subthreshold rTMS effectively and reversibly suppressed PPS while increasing the firing rates of single unit activities. These results suggest that ketamine and rTMS have convergent but opposing effects on cortical oscillations and circuits. This highly robust phenomenon has important implications to understanding the neurobiological mechanisms of rTMS and ketamine as well as developing new therapeutic strategies involving both neuromodulation and pharmacological agents.
Collapse
Affiliation(s)
- Wenxuan Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Wenxuan Jiang,
| | - Robert Isenhart
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| | - Robert Sutherland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Zhouxiao Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huijing Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - John Pace
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
| | - Darrin J. Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Charles Y. Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
- Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Dong Song,
| |
Collapse
|
20
|
Dourron HM, Strauss C, Hendricks PS. Self-Entropic Broadening Theory: Toward a New Understanding of Self and Behavior Change Informed by Psychedelics and Psychosis. Pharmacol Rev 2022; 74:982-1027. [DOI: 10.1124/pharmrev.121.000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
|
21
|
Barrett FS. Comparative Pharmacology and Circuit-Level Models of the Effects of Psychedelic Drugs on the Human Brain. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:849-851. [PMID: 36084963 DOI: 10.1016/j.bpsc.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Frederick S Barrett
- Center for Psychedelic and Consciousness Research, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Johns Hopkins University School of Medicine, and the Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
22
|
Hazani R, Lavidor M, Weller A. Treatments for Social Interaction Impairment in Animal Models of Schizophrenia: A Critical Review and Meta-analysis. Schizophr Bull 2022; 48:1179-1193. [PMID: 35925025 PMCID: PMC9673263 DOI: 10.1093/schbul/sbac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While pharmacological treatments for positive symptoms of schizophrenia are widely used, their beneficial effect on negative symptoms, particularly social impairment, is insufficiently studied. Therefore, there is an increasing interest in preclinical research of potentially beneficial treatments, with mixed results. The current review aims to evaluate the efficacy of available treatments for social deficits in different animal models of schizophrenia. STUDY DESIGN A systematic literature search generated 145 outcomes for the measures "total time" and "number" of social interactions. Standardized mean differences (SMD) and 95% confidence interval (CI) were calculated, and heterogeneity was tested using Q statistics in a random-effect meta-analytic model. Given the vast heterogeneity in effect sizes, the animal model, treatment group, and sample size were all examined as potential moderators. STUDY RESULTS The results showed that in almost all models, treatment significantly improved social deficit (total time: SMD = 1.24; number: SMD = 1.1). The moderator analyses discovered significant subgroup differences across models and treatment subgroups. Perinatal and adult pharmacological models showed the most substantial influence of treatments on social deficits, reflecting relative pharmacological validity. Furthermore, atypical antipsychotic drugs had the highest SMD within each model subgroup. CONCLUSIONS Our findings indicate that the improvement in social interaction behaviors is dependent on the animal model and treatment family used. Implications for the preclinical and clinical fields are discussed.
Collapse
Affiliation(s)
- Reut Hazani
- To whom correspondence should be addressed; Department of Psychology, Bar-Ilan University, Ramat-Gan 5290002, Israel; tel: 972-3-531-8548, fax: 972-3-738-4173, e-mail:
| | - Michal Lavidor
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
23
|
Luessen DJ, Conn PJ. Allosteric Modulators of Metabotropic Glutamate Receptors as Novel Therapeutics for Neuropsychiatric Disease. Pharmacol Rev 2022; 74:630-661. [PMID: 35710132 PMCID: PMC9553119 DOI: 10.1124/pharmrev.121.000540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors, a family of G-protein-coupled receptors, have been identified as novel therapeutic targets based on extensive research supporting their diverse contributions to cell signaling and physiology throughout the nervous system and important roles in regulating complex behaviors, such as cognition, reward, and movement. Thus, targeting mGlu receptors may be a promising strategy for the treatment of several brain disorders. Ongoing advances in the discovery of subtype-selective allosteric modulators for mGlu receptors has provided an unprecedented opportunity for highly specific modulation of signaling by individual mGlu receptor subtypes in the brain by targeting sites distinct from orthosteric or endogenous ligand binding sites on mGlu receptors. These pharmacological agents provide the unparalleled opportunity to selectively regulate neuronal excitability, synaptic transmission, and subsequent behavioral output pertinent to many brain disorders. Here, we review preclinical and clinical evidence supporting the utility of mGlu receptor allosteric modulators as novel therapeutic approaches to treat neuropsychiatric diseases, such as schizophrenia, substance use disorders, and stress-related disorders.
Collapse
|
24
|
de Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia 2022; 70:1585-1604. [PMID: 35634946 PMCID: PMC9544982 DOI: 10.1002/glia.24221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Corrado Calì
- Department of Neuroscience, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Francesco Petrelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Department of Pharmacology and Physiology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
25
|
Waldman L, Richardson B, Hamilton J, Thanos P. Chronic Oral Olanzapine Treatment but not Haloperidol Decreases [ 3H] MK-801 Binding in the Rat Brain Independent of Dietary Conditions. Neurosci Lett 2022; 781:136657. [PMID: 35483503 DOI: 10.1016/j.neulet.2022.136657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Haloperidol and olanzapine are first and second-generation antipsychotic (neuroleptic) medications approved to treat schizophrenia. Glutamate signaling is known to play an important role in the manifestation of schizophrenia symptoms, as phencyclidine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, replicates and exasperates these symptoms. While initial reports show that neuroleptic treatments can impact aspects of NMDAR expression, there is little attention on the interaction between neuroleptics and dietary conditions. Thus, we examined the impact of chronic haloperidol and olanzapine treatment under both normal and high-fat dietary conditions on NMDAR expression. Adult male rats were treated for 28-days with either oral vehicle, haloperidol (1.5mg/kg), or olanzapine (10mg/kg), and fed either a standard control diet or a high-fat diet. In-vitro receptor autoradiography binding was performed using [3H] MK-801 as a measure of NMDAR expression. Results showed that olanzapine, irrespective of the diet, significantly decreased [3H] MK-801 binding within the cingulate cortex, substantia nigra, insular cortex, piriform cortex, ectorhinal cortex and perirhinal cortex, the forelimb region of the somatosensory cortex, and all quadrants of the caudate-putamen. In contrast, haloperidol treatment did not impact [3H] MK-801 binding, and we also report no effect of diet on [3H] MK-801 binding. These data suggest that the effects seen in olanzapine treatment are not mediated by diet, nor does a 28-day chronic high-fat diet alter [3H] MK-801 binding. Furthermore, these data also importantly support that combined consumption of a high-fat diet and pharmacological treatments are not immediately detrimental to NMDARs and contribute to the expansive literature of precision medicine.
Collapse
Affiliation(s)
- Leah Waldman
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Brittany Richardson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA
| | - Panayotis Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical and Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY, USA; Department of Psychology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
26
|
Sánchez-Hidalgo AC, Martín-Cuevas C, Crespo-Facorro B, Garrido-Torres N. Reelin Alterations, Behavioral Phenotypes, and Brain Anomalies in Schizophrenia: A Systematic Review of Insights From Rodent Models. Front Neuroanat 2022; 16:844737. [PMID: 35401125 PMCID: PMC8986979 DOI: 10.3389/fnana.2022.844737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/14/2022] [Indexed: 12/09/2022] Open
Abstract
Reelin is an extracellular matrix glycoprotein reduced in brain regions (the prefrontal cortex and the hippocampus) of patients with schizophrenia. There are diverse rodent models of schizophrenia that mimic patient symptoms based on various causal theories; however, likely shared reelin alterations have not yet been systematically assessed in those models. A systematic review of the literature was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. Articles focused on psychotic disorders or schizophrenia and their relationship with reelin in rodent models were selected. Data (first author, publication year, results, both open field and prepulse inhibition test results, and type of reelin alteration) were extracted in duplicate by two independent reviewers. The 37 reviewed articles reported about various schizophrenia models and their reelin alterations, brain morphology, and behavioral defects. We conclude that reelin is an altered preclinical biomarker common to all models included, mainly prenatal or genetic models, and a key protein in schizophrenia disease, making the reelin signaling pathway in prenatal stages a target of special interest for future preclinical and clinical studies. All models presented at least one of the four described reelin alteration types. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021210568], identifier [CRD42021210568].
Collapse
Affiliation(s)
- Ana C. Sánchez-Hidalgo
- Spanish Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Seville Biomedical Research Centre (IBiS), Seville, Spain
| | - Celia Martín-Cuevas
- Spanish Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Seville Biomedical Research Centre (IBiS), Seville, Spain
| | - Benedicto Crespo-Facorro
- Spanish Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Seville Biomedical Research Centre (IBiS), Seville, Spain
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocío-IBiS, Seville, Spain
- *Correspondence: Benedicto Crespo-Facorro,
| | - Nathalia Garrido-Torres
- Spanish Network for Research in Mental Health (CIBERSAM), Madrid, Spain
- Seville Biomedical Research Centre (IBiS), Seville, Spain
- Department of Psychiatry, School of Medicine, University Hospital Virgen del Rocío-IBiS, Seville, Spain
| |
Collapse
|
27
|
Portela R, Wainberg ML, Castel S, de Oliveira HN, Ruas CM. Risk factors associated with readmissions of patients with severe mental disorders under treatment with antipsychotics. BMC Psychiatry 2022; 22:189. [PMID: 35300649 PMCID: PMC8931964 DOI: 10.1186/s12888-022-03794-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the risk of readmission in patients with severe mental disorders, compare it between patients using different types of antipsychotics and determine risk factors for psychiatric readmission. METHODS Medical records of a non-concurrent cohort of 625 patients with severe mental disorders (such as psychoses and severe mood disorders) who were first discharged from January to December 2012 (entry into the cohort), with longitudinal follow-up until December 2017 constitute the sample. Descriptive statistical analysis of characteristics of study sample was performed. The risk factors for readmission were assessed using Cox regression. RESULTS Males represented 51.5% of the cohort, and 75.6% of the patients had no partner. Most patients (89.9%) lived with relatives, and 64.7% did not complete elementary school. Only 17.1% used more than one antipsychotic, 34.2% did not adhere to the treatment, and 13.9% discontinued the medication due to unavailability in public pharmacies. There was a need to change the antipsychotic due to the lack of therapeutic response (11.2% of the patients) and adverse reactions to the antipsychotic (5.3% of the patients). Cox regression showed that the risk of readmission was increased by 25.0% (RR, 1.25; 95% CI, 1.03-1.52) when used typical antipsychotics, compared to those who used atypical ones, and by 92.0% (RR, 1.92; 95% CI, 1.63-2.27) when patients did not adhere to maintenance treatment compared to those who adhered. CONCLUSIONS Use of atypical antipsychotics and adherence to treatment were associated with a lower risk of psychiatric readmissions.
Collapse
Affiliation(s)
- Ronaldo Portela
- Faculty of Pharmacy, Social Pharmacy Department, UFMG, PPGMAF, Presidente Antônio Carlos, Av., 6627 - Pampulha CEP: 31270-901, Belo Horizonte MG, Brasil.
| | - Milton Leonard Wainberg
- grid.413734.60000 0000 8499 1112Department of Psychiatry, Columbia University, New York State Psychiatric Institute, New York, USA
| | - Saulo Castel
- grid.17063.330000 0001 2157 2938Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Helian Nunes de Oliveira
- grid.8430.f0000 0001 2181 4888UFMG, Social and Preventive Medicine Department of Medical School, Belo Horizonte, Brazil
| | - Cristina Mariano Ruas
- grid.8430.f0000 0001 2181 4888Faculty of Pharmacy, Social Pharmacy Department, UFMG, PPGMAF, Presidente Antônio Carlos, Av., 6627 - Pampulha CEP: 31270-901, Belo Horizonte MG, Brasil
| |
Collapse
|
28
|
Gerra ML, Mutti C, Luviè L, Daniel BD, Florindo I, Picetti E, Parrino L, Marchesi C, Zinno L. Relapsing-remitting psychosis with malignant catatonia: a multidisciplinary challenge. Neurocase 2022; 28:126-130. [PMID: 35176968 DOI: 10.1080/13554794.2022.2032185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Malignant catatonia is a life-threatening syndrome that could be observed in various psychiatric and neurological conditions. We describe the challenging case of a young woman with relapsing-remitting malignant catatonia, which finally resolve after electroconvulsive therapy (ECT). Details regarding her psychiatric symptoms, dynamics, and EEG features during each acute and post-acute phases of the disease are described and long-term follow-ups are provided. We emphasize the importance of a multidisciplinary cross talk between neurologists and psychiatrists to ensure adequate management of this dangerous condition. Knowledge and gaps in the field of autoimmune psychosis are also discussed.
Collapse
Affiliation(s)
- Maria Lidia Gerra
- Department of Mental Health, Local Health Service of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of Neurology, University Hospital of Parma, Parma, Italy
| | - Lorenzo Luviè
- Department of Anesthesia and Intensive Care, University Hospital of Parma, Parma, Italy
| | | | - Irene Florindo
- Department of Neurology, University Hospital of Parma, Parma, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, University Hospital of Parma, Parma, Italy
| | - Liborio Parrino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucia Zinno
- Department of Neurology, University Hospital of Parma, Parma, Italy
| |
Collapse
|
29
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
30
|
Sawahata M, Asano H, Nagai T, Ito N, Kohno T, Nabeshima T, Hattori M, Yamada K. Microinjection of Reelin into the mPFC prevents MK-801-induced recognition memory impairment in mice. Pharmacol Res 2021; 173:105832. [PMID: 34450306 DOI: 10.1016/j.phrs.2021.105832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022]
Abstract
Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.
Collapse
Affiliation(s)
- Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Asano
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan; Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| | - Norimichi Ito
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan.
| |
Collapse
|
31
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
32
|
The Imbalanced Plasticity Hypothesis of Schizophrenia-Related Psychosis: A Predictive Perspective. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:679-697. [PMID: 34050524 DOI: 10.3758/s13415-021-00911-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
A considerable number of studies have attempted to account for the psychotic aspects of schizophrenia in terms of the influential predictive coding (PC) hypothesis. We argue that the prediction-oriented perspective on schizophrenia-related psychosis may benefit from a mechanistic model that: 1) gives due weight to the extent to which alterations in short- and long-term synaptic plasticity determine the degree and the direction of the functional disruption that occurs in psychosis; and 2) addresses the distinction between the two central syndromes of psychosis in schizophrenia: disorganization and reality-distortion. To accomplish these goals, we propose the Imbalanced Plasticity Hypothesis - IPH, and demonstrate that it: 1) accounts for commonalities and differences between disorganization and reality distortion in terms of excessive (hyper) or insufficient (hypo) neuroplasticity, respectively; 2) provides distinct predictions in the cognitive and electrophysiological domains; and 3) is able to reconcile conflicting PC-oriented accounts of psychosis.
Collapse
|
33
|
Athanassiou M, Dumais A, Gnanhoue G, Abdel-Baki A, Jutras-Aswad D, Potvin S. A systematic review of longitudinal studies investigating the impact of cannabis use in patients with psychotic disorders. Expert Rev Neurother 2021; 21:779-791. [PMID: 34120548 DOI: 10.1080/14737175.2021.1942845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Research has established a link between cannabis use and adverse psychotic outcomes in psychosis patients. However, we have yet to determine if this relationship is maintained when controlling for important confounding variables. The following systematic review aims to investigate if the association between cannabis use and psychotic outcomes is preserved when accounting for important confounders, and if discontinued use mitigates any potential negative impacts.Areas covered: The authors conducted an exhaustive search of the MEDLINE database and Google Scholar to identify articles pertaining to the systematic review. Thirty-three articles were retained for meeting the eligibility criteria.Expert opinion: The evidence confirms an overarching pattern of negative psychotic outcomes of cannabis intake in psychosis populations, even when accounting for crucial confounders. Psychosis patients should be informed with evidence-based health information regarding the effects of cannabis use. Clinicians should systematically evaluate cannabis intake patterns in psychosis patients and offer intervention services geared toward reducing problematic consumption. Researchers should record confounding factors in a more systematic manner in future longitudinal investigations while paying careful attention to the potency and dose-response effects of the ingested cannabis. Deciders will need to investigate the impact of cannabis regulations on psychosis populations.
Collapse
Affiliation(s)
- Maria Athanassiou
- Centre De Recherche De l'Institut Universitaire En Santé Mentale De Montréal, Montreal, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Alexandre Dumais
- Centre De Recherche De l'Institut Universitaire En Santé Mentale De Montréal, Montreal, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada.,Philippe-Pinel National Institute of Legal Psychiatry, Montreal, Canada
| | - Gismonde Gnanhoue
- Centre De Recherche De l'Institut Universitaire En Santé Mentale De Montréal, Montreal, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Amal Abdel-Baki
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada.,Centre De Recherche Du Centre Hospitalier De l'Université De Montréal, Montreal, Canada
| | - Didier Jutras-Aswad
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada.,Centre De Recherche Du Centre Hospitalier De l'Université De Montréal, Montreal, Canada
| | - Stéphane Potvin
- Centre De Recherche De l'Institut Universitaire En Santé Mentale De Montréal, Montreal, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
34
|
Hua LL, Alderman EM, Chung RJ, Grubb LK, Lee J, Powers ME, Upadhya KK, Wallace SB. Collaborative Care in the Identification and Management of Psychosis in Adolescents and Young Adults. Pediatrics 2021; 147:peds.2021-051486. [PMID: 34031232 DOI: 10.1542/peds.2021-051486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pediatricians are often the first physicians to encounter adolescents and young adults presenting with psychotic symptoms. Although pediatricians would ideally be able to refer these patients immediately into psychiatric care, the shortage of child and adolescent psychiatry services may sometimes require pediatricians to make an initial assessment or continue care after recommendations are made by a specialist. Knowing how to identify and further evaluate these symptoms in pediatric patients and how to collaborate with and refer to specialty care is critical in helping to minimize the duration of untreated psychosis and to optimize outcomes. Because not all patients presenting with psychotic-like symptoms will convert to a psychotic disorder, pediatricians should avoid prematurely assigning a diagnosis when possible. Other contributing factors, such as co-occurring substance abuse or trauma, should also be considered. This clinical report describes psychotic and psychotic-like symptoms in the pediatric age group as well as etiology, risk factors, and recommendations for pediatricians, who may be among the first health care providers to identify youth at risk.
Collapse
Affiliation(s)
- Liwei L. Hua
- Catholic Charities of Baltimore, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zoupa E, Pitsikas N. The Nitric Oxide (NO) Donor Sodium Nitroprusside (SNP) and Its Potential for the Schizophrenia Therapy: Lights and Shadows. Molecules 2021; 26:molecules26113196. [PMID: 34073534 PMCID: PMC8199342 DOI: 10.3390/molecules26113196] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder affecting up to 1% of the worldwide population. Available therapy presents different limits comprising lack of efficiency in attenuating negative symptoms and cognitive deficits, typical features of schizophrenia and severe side effects. There is pressing requirement, therefore, to develop novel neuroleptics with higher efficacy and safety. Nitric oxide (NO), an intra- and inter-cellular messenger in the brain, appears to be implicated in the pathogenesis of schizophrenia. In particular, underproduction of this gaseous molecule is associated to this mental disease. The latter suggests that increment of nitrergic activity might be of utility for the medication of schizophrenia. Based on the above, molecules able to enhance NO production, as are NO donors, might represent a class of compounds candidates. Sodium nitroprusside (SNP) is a NO donor and is proposed as a promising novel compound for the treatment of schizophrenia. In the present review, we intended to critically assess advances in research of SNP for the therapy of schizophrenia and discuss its potential superiority over currently used neuroleptics.
Collapse
|
36
|
Kim HR, Rajagopal L, Meltzer HY, Martina M. Depolarizing GABA A current in the prefrontal cortex is linked with cognitive impairment in a mouse model relevant for schizophrenia. SCIENCE ADVANCES 2021; 7:eaba5032. [PMID: 33789887 PMCID: PMC8011979 DOI: 10.1126/sciadv.aba5032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/12/2021] [Indexed: 05/06/2023]
Abstract
Cognitive impairment in schizophrenia (CIAS) is the most critical predictor of functional outcome. Limited understanding of the cellular mechanisms of CIAS hampers development of more effective treatments. We found that in subchronic phencyclidine (scPCP)-treated mice, an animal model that mimics CIAS, the reversal potential of GABAA currents in pyramidal neurons of the infralimbic prefrontal cortex (ILC) shifts from hyperpolarizing to depolarizing, the result of increased expression of the chloride transporter NKCC1. Further, we found that in scPCP mice, the NKCC1 antagonist bumetanide normalizes GABAA current polarity ex vivo and improves performance in multiple cognitive tasks in vivo. This behavioral effect was mimicked by selective, bilateral, NKCC1 knockdown in the ILC. Thus, we show that depolarizing GABAA currents in the ILC contributes to cognitive impairments in scPCP mice and suggest that bumetanide, an FDA-approved drug, has potential to treat or prevent CIAS and other components of the schizophrenia syndrome.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Lakshmi Rajagopal
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Herbert Y Meltzer
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA.
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA.
- Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, 300 E. Chicago Avenue, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Pitsikas N. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment? Molecules 2021; 26:molecules26051237. [PMID: 33669124 PMCID: PMC7956290 DOI: 10.3390/molecules26051237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic mental devastating disease. Current therapy suffers from various limitations including low efficacy and serious side effects. Thus, there is an urgent necessity to develop new antipsychotics with higher efficacy and safety. The dried stigma of the plant Crocus sativus L., (CS) commonly known as saffron, are used in traditional medicine for various purposes. It has been demonstrated that saffron and its bioactive components crocins and safranal exert a beneficial action in different pathologies of the central nervous system such as anxiety, depression, epilepsy and memory problems. Recently, their role as potential antipsychotic agents is under investigation. In the present review, I intended to critically assess advances in research of these molecules for the treatment of schizophrenia, comment on their advantages over currently used neuroleptics as well-remaining challenges. Up to our days, few preclinical studies have been conducted to this end. In spite of it, results are encouraging and strongly corroborate that additional research is mandatory aiming to definitively establish a role for saffron and its bioactive components for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
38
|
Shokraneh F, Adams CE. Classification of all pharmacological interventions tested in trials relevant to people with schizophrenia: A study‐based analysis. Health Info Libr J 2021. [DOI: 10.1111/hir.12366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/11/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Farhad Shokraneh
- London Institute of Healthcare Engineering King's College London London UK
- Cochrane Schizophrenia Group Division of Psychiatry and Applied Psychology School of Medicine Institute of Mental Health University of Nottingham Nottingham UK
| | - Clive E. Adams
- Cochrane Schizophrenia Group Division of Psychiatry and Applied Psychology School of Medicine Institute of Mental Health University of Nottingham Nottingham UK
| |
Collapse
|
39
|
Sotiropoulos MG, Poulogiannopoulou E, Delis F, Dalla C, Antoniou K, Kokras N. Innovative screening models for the discovery of new schizophrenia drug therapies: an integrated approach. Expert Opin Drug Discov 2021; 16:791-806. [PMID: 33467920 DOI: 10.1080/17460441.2021.1877657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Schizophrenia is a severe psychiatric disorder affecting millions worldwide. However, available treatment options do not fully address the disease. Whereas current antipsychotics may control psychotic symptoms, they seem notoriously ineffective in improving negative and cognitive symptoms or in preventing functional decline. As the etiology of schizophrenia eludes us, the development of valid animal models for screening new drug targets appears to be a strenuous task.Areas covered: In this review, the authors present the key concepts that validate animal models of schizophrenia, as well as the different screening approaches for novel schizophrenia treatments. The models covered are either based on major neurotransmitter systems or neurodevelopmental, immune, and genetic approaches.Expert opinion: Sadly, due to inertia, research focuses on developing 'anti-psychotics', instead of 'anti-schizophrenia' drugs that would tackle the entire syndrome of schizophrenia. Whereas no perfect model may ever exist, combining different experimental designs may enhance validity, as the over-reliance on a single model is inappropriate. Multi-model approaches incorporating vulnerability, the 'two-hit' hypothesis, and endophenotypes offer a promise for developing new strategies for schizophrenia treatment. Forward and reverse translation between preclinical and clinical research will increase the probability of success and limit failures in drug development.
Collapse
Affiliation(s)
- Marinos G Sotiropoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Poulogiannopoulou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Oka M, Ito K, Koga M, Kusumi I. Changes in subunit composition of NMDA receptors in animal models of schizophrenia by repeated administration of methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109984. [PMID: 32473191 DOI: 10.1016/j.pnpbp.2020.109984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
The dopamine and glutamate hypotheses reflect only some of the pathophysiological changes associated with schizophrenia. We have proposed a new "comprehensive progressive pathophysiology model" based on the "dopamine to glutamate hypothesis." Repeated administration of methamphetamine (METH) at a dose of 2.5 mg/kg in rats has been used to assess dynamic changes in the pathophysiology of schizophrenia. Previous use of this model suggested N-methyl-d-aspartate receptor (NMDA-R) dysfunction, but the mechanism could only be inferred from limited, indirect observations. In the present study, we used this model to investigate changes in the expression of NMDA-R subunits. Repeated administration of METH significantly decreased the gene expression levels of glutamate ionotropic receptor NMDA type subunit (Grin) subtypes Grin1 and Grin2c in the prefrontal cortex (PFC), Grin1 and Grin2a in the hippocampus (HPC), and Grin1, Grin2b, and Grin2d in the striatum (ST).We observed a significant difference in Grin1 expression between the PFC and ST. Furthermore, repeated administration of METH significantly decreased the protein expression of GluN1 in both cytosolic and synaptosomal fractions isolated from the PFC, and significantly decreased the protein expression of GluN1 in the cytosolic fraction, but not the synaptosomal fraction from the ST. These regional differences may be due to variations in the synthesis of GluN1 or intracellular trafficking events in each area of the brain. Considering that knockdown of Grin1 in mice affects vulnerability to develop schizophrenia, these results suggest that this model reflects some of the pathophysiological changes of schizophrenia, combining both the dopamine and glutamate hypotheses.
Collapse
Affiliation(s)
- Matsuhiko Oka
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN.
| | - Koki Ito
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN
| | - Minori Koga
- Department of Psychiatry, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, West 7, North 15, Kita Ward, Sapporo City, Hokkaido 060-8638, JAPAN.
| |
Collapse
|
42
|
Kajero JA, Seedat S, Ohaeri J, Akindele A, Aina O. Investigation of the effects of cannabidiol on vacuous chewing movements, locomotion, oxidative stress and blood glucose in rats treated with oral haloperidol. World J Biol Psychiatry 2020; 21:612-626. [PMID: 32264772 DOI: 10.1080/15622975.2020.1752934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objectives: Tardive dyskinesia (TD) unlike acute dystonia may be irreversible. This study investigated the effects of oral cannabidiol (CBD) on haloperidol-induced vacuous chewing movement (VCM) model of TD. Methods: There were six experimental groups with different combinations of oral cannabidiol with 5 mg/kg of haloperidol given orally. Behavioural assays and FBS were measured. VCMs were assessed after the last dose of medication. Blood for oxidative stress assays was collected on the 8th day after the administration of the last dose of medication. Results: This study found that CBD co-administration with haloperidol attenuated the VCMs and increased motor tone produced by haloperidol. CBD alone at 5 mg/kg appears to have anxiolytic properties but may not be as effective as haloperidol which exhibited a greater anxiolytic effect at 5 mg/kg. Treatment with CBD alone at 5 mg/kg also appeared to enhance brain DPPH scavenging activity. Conclusions: We confirmed that CBD can ameliorate motor impairments produced by haloperidol. Our data suggest that CBD can be combined with haloperidol to prevent the emergent of extrapyramidal side effects and long-term movement disorders, such as acute dystonic disorder and TD.
Collapse
Affiliation(s)
| | - Soraya Seedat
- Department of Psychiatry, University of Stellenbosch, Cape Town, South Africa
| | - Jude Ohaeri
- Department of Psychological Medicine, University of Nigeria, Enugu State, Nigeria
| | - Abidemi Akindele
- Faculty of Basic Medical Sciences, Department of Pharmacology, Therapeutics & Toxicology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwagbemiga Aina
- Department of Biochemistry, Nigerian Institute of Medical Research Yaba Lagos, Lagos, Nigeria
| |
Collapse
|
43
|
Barrett FS, Krimmel SR, Griffiths RR, Seminowicz DA, Mathur BN. Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. Neuroimage 2020; 218:116980. [PMID: 32454209 PMCID: PMC10792549 DOI: 10.1016/j.neuroimage.2020.116980] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Psychedelic drugs, including the serotonin 2a (5-HT2A) receptor partial agonist psilocybin, are receiving renewed attention for their possible efficacy in treating a variety of neuropsychiatric disorders. Psilocybin induces widespread dysregulation of cortical activity, but circuit-level mechanisms underlying this effect are unclear. The claustrum is a subcortical nucleus that highly expresses 5-HT2A receptors and provides glutamatergic inputs to arguably all areas of the cerebral cortex. We therefore tested the hypothesis that psilocybin modulates claustrum function in humans. Fifteen healthy participants (10M, 5F) completed this within-subjects study in which whole-brain resting-state blood-oxygenation level-dependent (BOLD) signal was measured 100 min after blinded oral administration of placebo and 10 mg/70 kg psilocybin. Left and right claustrum signal was isolated using small region confound correction. Psilocybin significantly decreased both the amplitude of low frequency fluctuations as well as the variance of BOLD signal in the left and right claustrum. Psilocybin also significantly decreased functional connectivity of the right claustrum with auditory and default mode networks (DMN), increased right claustrum connectivity with the fronto-parietal task control network (FPTC), and decreased left claustrum connectivity with the FPTC. DMN integrity was associated with right-claustrum connectivity with the DMN, while FPTC integrity and modularity were associated with right claustrum and left claustrum connectivity with the FPTC, respectively. Subjective effects of psilocybin predicted changes in the amplitude of low frequency fluctuations and the variance of BOLD signal in the left and right claustrum. Observed effects were specific to claustrum, compared to flanking regions of interest (the left and right insula and putamen). This study used a pharmacological intervention to provide the first empirical evidence in any species for a significant role of 5-HT2A receptor signaling in claustrum functioning, and supports a possible role of the claustrum in the subjective and therapeutic effects of psilocybin.
Collapse
Affiliation(s)
- Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA; Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201, USA
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| |
Collapse
|
44
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
45
|
The Current State of the Clinical High Risk for Psychosis Research Paradigm. Biol Psychiatry 2020; 88:284-286. [PMID: 32731922 DOI: 10.1016/j.biopsych.2020.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022]
|
46
|
Nicol AU, Morton AJ. Characteristic patterns of EEG oscillations in sheep (Ovis aries) induced by ketamine may explain the psychotropic effects seen in humans. Sci Rep 2020; 10:9440. [PMID: 32528071 PMCID: PMC7289807 DOI: 10.1038/s41598-020-66023-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Ketamine is a valuable anaesthetic and analgesic that in recent years has gained notoriety as a recreational drug. Recently, ketamine has also been proposed as a novel treatment for depression and post-traumatic stress disorder. Beyond its anaesthetic actions, however, the effects of ketamine on brain activity have rarely been probed. Here we examined the cortical electroencephalography (EEG) response to ketamine of 12 sheep. Following ketamine administration, EEG changes were immediate and widespread, affecting the full extent of the EEG frequency spectrum measured (0–125 Hz). After recovery from sedation during which low frequency activity dominated, the EEG was characterised by short periods (2–3 s) of alternating low (<14 Hz) and high (>35 Hz) frequency oscillation. This alternating EEG rhythm phase is likely to underlie the dissociative actions of ketamine, since it is during this phase that ketamine users report hallucinations. At the highest intravenous dose used (24 mg/kg), in 5/6 sheep we observed a novel effect of ketamine, namely the complete cessation of cortical EEG activity. This persisted for up to several minutes, after which cortical activity resumed. This phenomenon is likely to explain the ‘k-hole’, a state of oblivion likened to a near death experience that is keenly sought by ketamine abusers.
Collapse
Affiliation(s)
- A U Nicol
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - A J Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
47
|
Banaszkiewicz I, Biala G, Kruk-Slomka M. Contribution of CB2 receptors in schizophrenia-related symptoms in various animal models: Short review. Neurosci Biobehav Rev 2020; 114:158-171. [PMID: 32437746 DOI: 10.1016/j.neubiorev.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a severe and chronic mental disease with a high prevalence and a variety of symptoms. Data from behavioural studies suggest that it is rational to investigate the endocannabinoid system (ECS) and its cannabinoid receptor (CBr) because they seem to underlie susceptibility to schizophrenia, and these findings have pointed to several lines of future research. Currently, most available studies address the role of CBr type 1 in schizophrenia-like responses. Here, we present for the first time, a review that demonstrates the pivotal role of CBr type 2 in the regulation of neurobiological processes underlying cognition, psychosis- and mood-related (anxiety, depression) behaviours, all of which may be included in schizophrenia symptoms. This review is based on available evidence from the PubMed database regarding schizophrenia-like symptoms induced via CB2r modulation in various animal models. The data presented in this manuscript indicate that CB2r could be a promising new key target in the treatment of different central nervous system (CNS) disorders, which manifest as psychosis, mood-related disturbances and/or memory impairment.
Collapse
Affiliation(s)
- Izabela Banaszkiewicz
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland.
| |
Collapse
|
48
|
Ganesh S, Cortes-Briones J, Ranganathan M, Radhakrishnan R, Skosnik PD, D’Souza DC. Psychosis-Relevant Effects of Intravenous Delta-9-Tetrahydrocannabinol: A Mega Analysis of Individual Participant-Data from Human Laboratory Studies. Int J Neuropsychopharmacol 2020; 23:559-570. [PMID: 32385508 PMCID: PMC7710917 DOI: 10.1093/ijnp/pyaa031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION There is increasing interest in the relationship between cannabinoids and psychosis. While individual human laboratory studies have been critical in demonstrating that cannabinoids (e.g., delta-9-tetrahydrocannabinol [THC]) can induce acute transient psychosis-like effects in healthy human volunteers, combining data from multiple studies offers a fine-grained view of these effects. METHODS THC-induced psychosis-relevant effects were examined using a data repository of 10 double-blind, randomized, placebo-controlled, crossover studies with 400 i.v. THC infusions in healthy human volunteers. The Positive and Negative Syndrome scale was used to measure psychotomimetic effects. The profile of symptoms, frequency of a response, its relationship to THC dose and substance use, latent structure in Positive and Negative Syndrome scale response, and the relationships between psychotomimetic and perceptual alteration symptoms were evaluated. RESULTS Clinically meaningful increases in positive symptoms were noted in 44.75% infusions; conceptual disorganization, hallucinations, blunted affect, somatic concern, motor retardation, and poor attention were the items most frequently altered by THC. The increase in Positive and Negative Syndrome scale positive symptoms was positively associated with THC dose (beta = 11.13, SE = 4.94, Wald χ 2 = 19.88, P < .001) and negatively associated with frequent cannabis use (beta = -0.575, SE = 0.14, Wald χ 2 = 18.13, P < .001). Furthermore, positive symptoms were strongly correlated with Clinician Administered Dissociative States Scale perceptual alterations score (rs = 0.514, P < .001). CONCLUSION Intravenous administration of THC consistently induces psychotomimetic effects that include symptoms across Positive and Negative Syndrome scale domains. Moreover, healthy individuals who frequently use cannabis have a blunted psychotomimetic response.
Collapse
Affiliation(s)
- Suhas Ganesh
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Jose Cortes-Briones
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Mohini Ranganathan
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Rajiv Radhakrishnan
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Patrick D Skosnik
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Deepak Cyril D’Souza
- Schizophrenia Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven, CT,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Correspondence: Prof Deepak Cyril D’Souza, MD, Psychiatry Service, VA Connecticut Healthcare System, West Haven, CT 06516 ()
| |
Collapse
|
49
|
George MY, Menze ET, Esmat A, Tadros MG, El-Demerdash E. Potential therapeutic antipsychotic effects of Naringin against ketamine-induced deficits in rats: Involvement of Akt/GSK-3β and Wnt/β-catenin signaling pathways. Life Sci 2020; 249:117535. [PMID: 32151688 DOI: 10.1016/j.lfs.2020.117535] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
AIM Schizophrenia is a chronic, disabling and one of the major neurological illnesses affecting nearly 1% of the global population. Currently available antipsychotic medications possess limited effects. The current research aimed at investigating potential therapeutic add-on benefit to enhance the effects of clozapine anti-schizophrenic. MAIN METHODS To induce schizophrenia, ketamine was administered at a dose of 25 mg/kg i.p. for 14 consecutive days. Naringin was administered to Wistar rats at a dose of 100 mg/kg orally, alone or in combination with clozapine 5 mg/kg i.p from day 8 to day 14. Furthermore, behavioral tests were conducted to evaluate positive, negative and cognitive symptoms of schizophrenia. In addition, neurotransmitters' levels were detected using HPLC. Moreover, oxidative stress markers were assessed using spectrophotometry. Furthermore, apoptotic and wnt/β-catenin pathway markers were determined using western blotting (Akt, GSK-3β and β-catenin), colorimetric methods (Caspase-3) and immunohistochemistry (Bax, Bcl2 and cytochrome c). KEY FINDINGS Ketamine induced positive, negative and cognitive schizophrenia symptoms together with neurotransmitters' imbalance. In addition, ketamine treatment caused significant glutathione depletion, lipid peroxidation and reduction in catalase activity. Naringin and/or clozapine treatment significantly attenuated ketamine-induced schizophrenic symptoms and oxidative injury. Additionally, ketamine provoked apoptosis via increasing Bax/Bcl2 expression, caspase-3 activity, and Cytochrome C and Akt protein expression while naringin/clozapine treatment significantly inhibited this apoptotic effect. Moreover, naringin activated the neurodevelopmental wnt/β-catenin signaling pathway evidenced by increasing pGSK-3β and reducing pβ-catenin protein expression. SIGNIFICANCE These findings may suggest that naringin possesses a potential therapeutic add-on effect against ketamine-induced schizophrenia.
Collapse
Affiliation(s)
- Mina Y George
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Esmat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - E El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
50
|
Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, Somasundaram SG, Kirkland CE, Bachurin SO, Aliev G. Alterations of Astrocytes in the Context of Schizophrenic Dementia. Front Pharmacol 2020; 10:1612. [PMID: 32116664 PMCID: PMC7020441 DOI: 10.3389/fphar.2019.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The levels of the astrocyte markers (GFAP, S100B) were increased unevenly in patients with schizophrenia. Reactive astrogliosis was found in approximately 70% of patients with schizophrenia. The astrocytes play a major role in etiology and pathogenesis of schizophrenia. Astrocytes produce the components that altered in schizophrenia extracellular matrix system which are involved in inflammation, functioning of interneurons, glio-, and neurotransmitter system, especially glutamate system. Astrocytes activate the interneurons through glutamate release and ATP. Decreased expression of astrocyte glutamate transporters was observed in patients with schizophrenia. Astrocytes influence on N-methyl-d-aspartate (NMDA) receptors via D-serine, an agonist of the glycine-binding site of NMDA receptors, and kynurenic acid, an endogenous antagonist. NMDA receptors, on its turn, control the impulses of dopamine neurons. Therefore following theories of schizophrenia are proposed. They are a) activation of astrocytes for neuroinflammation, b) glutamate and dopamine theory, as astrocyte products control the activity of NMDA receptors, which influence on the dopamine neurons.
Collapse
Affiliation(s)
- Vadim V Tarasov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladimir N Chubarev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Susanna S Sologova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Polina Mukhortova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitrii Levushkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, United States
| | - Sergey O Bachurin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia.,Federal State Budgetary Institution, Research Institute of Human Morphology, Russian Federation, Moscow, Russia.,GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|