1
|
Li ZH, Song WQ, Qiu CS, Li HM, Tang XL, Shen D, Zhang PD, Zhang XR, Ren JJ, Gao J, Zhong WF, Liu D, Chen YJ, Chen PL, Huang QM, Mao C. Fish oil supplementation, genetic susceptibility and risk of new-onset hypertension. Prev Med 2024; 189:108152. [PMID: 39423956 DOI: 10.1016/j.ypmed.2024.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES The risk of new-onset hypertension is influenced by habitual fish oil supplementation, but whether the association is modified by genetic predisposition is unknown. METHODS A total of 213,604 participants without hypertension were identified at baseline from the UK Biobank between 2006 and 2010. The weighted polygenetic risk score (PRS) comprising 118 identified single-nucleotide polymorphisms (SNPs) was used to quantify genetic susceptibility. Cox regression models were applied to determine the association between fish oil supplementation, PRS, and hypertension and evaluate the effect modification of genetic susceptibility. RESULTS During a median follow-up of 13.8 years, 18,498 new-onset hypertension cases were identified. Approximately 30.6 % (65,452) of participants were habitual fish oil users. The hazard ratio (HR) of habitual fish oil users for hypertension was 0.94 (95 % confidence interval [CI], 0.91-0.98). Fish oil nonusers with a high genetic risk had an increased risk of hypertension (HR, 1.52; 95 % CI, 1.41-1.64) compared to fish oil users with a low genetic risk. In addition, an interaction on the additive scale between the fish oil use and intermediate or high levels of genetic susceptibility was observed. The interactive effects accounted for approximately 7 % and 22 % of the risk of developing hypertension, respectively. CONCLUSIONS This cohort study indicates regular fish oil supplementation could be beneficial in preventing hypertension, particularly among individuals with intermediate or high genetic susceptibility on an additive scale.
Collapse
Affiliation(s)
- Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Qi Song
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng-Shen Qiu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Min Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu-Lian Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dong Shen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei-Dong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi-Ru Zhang
- Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiao-Jiao Ren
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Fang Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Pei-Liang Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing-Mei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Yoon YS, Lee HI, Oh SW. A Life-Stage Approach to Precision Nutrition: A Narrative Review. Cureus 2024; 16:e66813. [PMID: 39144414 PMCID: PMC11322800 DOI: 10.7759/cureus.66813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The concept of precision nutrition highlights the customization of nutrition to specific needs, emphasizing that a one-size-fits-all approach is not sufficient for either optimal nutrition or optimal health. Precision nutrition encompasses a range of factors, from broad strata of age and sex categories to personal characteristics such as lifestyle to an individual's unique genotype. This breadth of scope requires us to consider how precision nutrition can be implemented in an inclusive and appropriate way for individuals and groups within real-life populations. In this narrative review, we explore the potential of precision nutrition through a life-stage approach that emphasizes age- and gender-specific nutritional needs as these change across the lifespan. Focusing on adult life stages, we delineated trends in age-related conditions and health needs among Korean adults based on national-level survey data (KNHANES 2019-2021). We also reviewed the intake of nutrients associated with these health needs to better understand how life-stage guided approaches to nutrition and supplementation could support optimal health. Looking beyond preventing deficiency or disease, we discuss how tailored supplementation of essential vitamins, minerals, and certain bioactive substances could promote healthy functioning. Finally, we discuss the complexities and challenges of developing multivitamin/multimineral supplements (MVMS) to support life-stage appropriate nutrition while maximizing adherence. Future prospects include leveraging advancements in intelligent technologies and dietary assessments for tracking nutrient intake and health indicators and using these to optimize MVMS formulations in ways that are sensitive to a person's needs and priorities/preferences at different life stages. By adopting a life-stage guided approach to nutrition, we can better support health and well-being across the lifespan.
Collapse
Affiliation(s)
- Yeong Sook Yoon
- Department of Family Medicine, Inje University Ilsan Paik Hospital, Goyang, KOR
| | - Hye In Lee
- Medical Scientific Affairs, Haleon, Seoul, KOR
| | - Sang Woo Oh
- Department of Family Medicine, Center for Obesity, Metabolism, and Nutrition, Dongguk University Ilsan Hospital, Goyang, KOR
| |
Collapse
|
3
|
Torfadottir JE, Ulven SM. Fish - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10485. [PMID: 38571914 PMCID: PMC10989230 DOI: 10.29219/fnr.v68.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/17/2023] [Accepted: 01/03/2024] [Indexed: 04/05/2024] Open
Abstract
The aim of this scoping review was to conduct evidence-based documentation between fish intake and health outcomes for food-based dietary guidelines (FBDGs) in the Nordic Nutrition Recommendations (NNR) 2023. For most health outcomes, the evidence for fish oil and n-3 long chain (LC) polyunsaturated fatty acids (PUFA) supplementation was included when examining evidence between fish intake and health. In this review, conclusions from qualified systematic reviews (qSR) approved by NNR2023 are included. In addition, conclusions of a de novo systematic reviews on the topic of n-3 LC-PUFA, asthma, and allergy are included. Finally, a systematic literature search was performed limited to systematic reviews and meta-analysis published between 2011 and September 2021. In total, 21 papers from the systematic literature search, four qSR, and eight reports were included addressing the association between fish intake, fish oil, and n-3 LC-PUFA supplementation on several health outcomes. These included cardiovascular disease (CVD), type 2 diabetes, cancers (colorectal, breast, and prostate), metabolic syndrome, obesity, mortality, cognition and mental health, pregnancy-related outcomes (preterm birth and birth weight), and outcomes specific for children (neurodevelopment, and risk of food allergies, and asthma). In addition, intermediate risk factors such as blood lipids, glucose, C-reactive protein, and blood pressure were reviewed. Based on current evidence, fish consumption can have beneficial effects to prevent coronary heart disease (CHD) and stroke incidence, and lower mortality from CVD, CHD, myocardial infarction (MI), and stroke, as well as total mortality risk. In addition, fish consumption is beneficial for preventing cognitive decline in adults (e.g. dementia and Alzheimer's disease). Fish intake may also prevent metabolic syndrome, supported by an observed association between fish intake and reduction in plasma triglycerides and increase in high-density lipoprotein (HDL) cholesterol levels. Data from fish oil and n-3 LC-PUFA supplementation studies supports the conclusions on the effects of fish consumption on most of the health outcomes.
Collapse
Affiliation(s)
- Johanna E. Torfadottir
- Centre of Public Health Sciences, University of Iceland, Reykjavik, Iceland
- Directorate of Health, Reykjavik, Iceland
| | - Stine M. Ulven
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Hirako S, Kim H, Iizuka Y, Matsumoto A. Fish oil consumption prevents hepatic lipid accumulation induced by high-cholesterol feeding in obese KK mice. Biomed Res 2024; 45:33-43. [PMID: 38325844 DOI: 10.2220/biomedres.45.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Fish oil (FO) is rich in the n-3 polyunsaturated fatty acids. It has been demonstrated that FO intake possesses lipid-lowering properties. Conversely, a high-cholesterol (CH) diet promotes lipid accumulation in the liver and induces fatty liver. This study investigated the effects of FO feeding on hepatic lipid accumulation induced by high-cholesterol feeding in KK mice. All experimental diets had a fat energy ratio of 25%, the SO group had all fat sources as safflower oil (SO), the 12.5 FO group had half of the SO replaced with FO, and the 25 FO group had all of the SO replaced with FO, each with or without 2 weight % (wt%) cholesterol (SO/CH, 12.5 FO/CH, and 25 FO/CH groups, respectively), for 8 weeks. The hepatic triglyceride and total cholesterol levels were significantly lower in the 25 FO/CH group than in the SO/CH group. The hepatic mRNAs of fatty acid synthesis-related genes were downregulated by the FO feeding groups. In view of importance to establish the benefit of FO for preventing severe NAFLD, our results suggest that FO intake prevents excessive hepatic fat accumulation induced by a high-cholesterol diet in obese KK mice through the inhibition of fatty acid synthesis.
Collapse
Affiliation(s)
- Satoshi Hirako
- Department of Health and Nutrition, University of Human Arts and Sciences, 1288 Magome, Iwatsuki-ku, Saitama-shi, Saitama 339-8539, Japan
| | - HyounJu Kim
- Department of Nutrition and Health Sciences, Faculty of Food and Nutritional Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma 374-0193, Japan
| | - Yuzuru Iizuka
- Department of Microbiology and Immunology, Tokyo Women's Medical University School of Medicine, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akiyo Matsumoto
- Department of Clinical Dietetics & Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama 350-0295, Japan
| |
Collapse
|
5
|
Brosolo G, Da Porto A, Marcante S, Picci A, Capilupi F, Capilupi P, Bertin N, Vivarelli C, Bulfone L, Vacca A, Catena C, Sechi LA. Omega-3 Fatty Acids in Arterial Hypertension: Is There Any Good News? Int J Mol Sci 2023; 24:9520. [PMID: 37298468 PMCID: PMC10253816 DOI: 10.3390/ijms24119520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), including alpha-linolenic acid (ALA) and its derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are "essential" fatty acids mainly obtained from diet sources comprising plant oils, marine blue fish, and commercially available fish oil supplements. Many epidemiological and retrospective studies suggested that ω-3 PUFA consumption decreases the risk of cardiovascular disease, but results of early intervention trials have not consistently confirmed this effect. In recent years, some large-scale randomized controlled trials have shed new light on the potential role of ω-3 PUFAs, particularly high-dose EPA-only formulations, in cardiovascular prevention, making them an attractive tool for the treatment of "residual" cardiovascular risk. ω-3 PUFAs' beneficial effects on cardiovascular outcomes go far beyond the reduction in triglyceride levels and are thought to be mediated by their broadly documented "pleiotropic" actions, most of which are directed to vascular protection. A considerable number of clinical studies and meta-analyses suggest the beneficial effects of ω-3 PUFAs in the regulation of blood pressure in hypertensive and normotensive subjects. These effects occur mostly through regulation of the vascular tone that could be mediated by both endothelium-dependent and independent mechanisms. In this narrative review, we summarize the results of both experimental and clinical studies that evaluated the effect of ω-3 PUFAs on blood pressure, highlighting the mechanisms of their action on the vascular system and their possible impact on hypertension, hypertension-related vascular damage, and, ultimately, cardiovascular outcomes.
Collapse
Affiliation(s)
- Gabriele Brosolo
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Andrea Da Porto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Stefano Marcante
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Alessandro Picci
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Filippo Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Patrizio Capilupi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Nicole Bertin
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cinzia Vivarelli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
| | - Luca Bulfone
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Antonio Vacca
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Cristiana Catena
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
| | - Leonardo A. Sechi
- Department of Medicine, University of Udine, 33100 Udine, Italy; (A.D.P.); (S.M.); (A.P.); (F.C.); (P.C.); (N.B.); (C.V.); (L.B.); (A.V.); (C.C.)
- European Hypertension Excellence Center, Clinica Medica, University of Udine, 33100 Udine, Italy
- Diabetes and Metabolism Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
- Thrombosis and Hemostasis Unit, Clinica Medica, University of Udine, 33100 Udine, Italy
| |
Collapse
|
6
|
Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2023; 12:foods12040725. [PMID: 36832799 PMCID: PMC9956263 DOI: 10.3390/foods12040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study was to explore the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation on serum lipid profile and blood pressure in patients with metabolic syndrome. We searched PubMed, Web of Science, Embase, and the Cochrane library from database inception to 30 April 2022. This meta-analysis included eight trials with 387 participants. We found that supplementation of n-3 PUFAs has no significant reduction in TC level (SMD = -0.02; 95% CI: -0.22 ~ 0.18, I2 = 23.7%) and LDL-c level in serum (SMD = 0.18; 95% CI: -0.18 ~ 0.53, I2 = 54.9%) of patients with metabolic syndrome. Moreover, we found no significant increase in serum high-density lipoprotein cholesterol level (SMD = 0.02; 95% CI: -0.21 ~ 0.25, I2 = 0%) in patients with metabolic syndrome after consuming n-3 PUFAs. In addition, we found that n-3 PUFAs can significantly decrease serum triglyceride levels (SMD= -0.39; 95% CI: -0.59 ~ -0.18, I2 = 17.2%), systolic blood pressure (SMD = -0.54; 95% CI: -0.86 ~ -0.22, I2 = 48.6%), and diastolic blood pressure (SMD = -0.56; 95% CI: -0.79 ~ 0.33, I2 = 14.0%) in patients with metabolic syndrome. The results from the sensitivity analysis confirmed that our results were robust. These findings suggest that n-3 PUFA supplementation may serve as a potential dietary supplement for improving lipids and blood pressure in metabolic syndrome. Given the quality of the included studies, further studies are still needed to verify our findings.
Collapse
|
7
|
Associations of baseline use of fish oil with progression of cardiometabolic multimorbidity and mortality among patients with hypertension: a prospective study of UK Biobank. Eur J Nutr 2022; 61:3461-3470. [PMID: 35589868 PMCID: PMC9119234 DOI: 10.1007/s00394-022-02889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/07/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The role of fish oil in the prognosis of hypertensive patients is unknown. This study investigated the associations of fish oil supplementation with the progression of cardiometabolic multimorbidity (CMM) and mortality among patients with hypertension. METHODS Based on UK Biobank, we enrolled participants with hypertension and free of other cardiometabolic diseases. The exposure was baseline use of fish oil derived from questionnaires at baseline. The primary outcomes were the incidence of CMM and all-cause mortality. Competing risk models and flexible parametric proportion-hazards models were fitted to assess the adjusted hazard ratios (HRs) for the risk of CMM and mortality outcomes, respectively. RESULTS Among 81,579 participants involved [50.37%, men; mean age, 59.38 years (standard deviation, 7.23 years)], 15,990 CMM events and 6456 all-cause deaths were reported (median follow-up, 12.23 years). In multivariable-adjusted models, baseline use of fish oil was associated with 8% lower risk of CMM [95% confidence interval (95% CI) 0.89-0.96, P < 0.001] and 10% lower risk of all-cause mortality (95% CI 0.85-0.95, P < 0.001). CONCLUSION In individuals with hypertension, baseline use of fish oil was associated with a reduced risk of CMM and all-cause mortality, and further clinical trials are needed to prove this hypothesis.
Collapse
|
8
|
Musazadeh V, Kavyani Z, Naghshbandi B, Dehghan P, Vajdi M. The beneficial effects of omega-3 polyunsaturated fatty acids on controlling blood pressure: An umbrella meta-analysis. Front Nutr 2022; 9:985451. [PMID: 36061895 PMCID: PMC9435313 DOI: 10.3389/fnut.2022.985451] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Several meta-analyses have revealed that n-3 PUFAs can lower blood pressure, but the findings are conflicting. In this regard, the present umbrella meta-analysis aimed was performed to clarify whether n-3 PUFAs have effects on blood pressure. PubMed, Scopus, Embase, Web of Science, and Google Scholar were used as international databases from inception to May 2022. To examine the effects of n-3 PUFA supplementation on blood pressure, a random-effects model was applied. The leave-one-out method was performed for the sensitivity analysis. The pooled estimate of 10 meta-analyses with 20 effect sizes revealed significant reductions in both systolic (ES = -1.19 mmHg; 95% CI: -1.76, -0.62, p < 0.001) and diastolic blood pressure (ES = -0.91 mmHg, 95% CI: -1.35, -0.47; p < 0.001) following n-3 PUFAs supplementation. In studies with a sample size of ≤ 400 participants and a mean age over 45, SBP and DBP were found to be substantially reduced. Overall, this umbrella meta-analysis indicates that n-3 PUFAs supplementation might play a role in improving DBP and SBP.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Naghshbandi
- Department of Food Science and Technology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Dehghan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
George M, Gupta A. Blood Pressure-Lowering Effects of Omega-3 Polyunsaturated Fatty Acids: Are These the Missing Link to Explain the Relationship Between Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Disease? J Am Heart Assoc 2022; 11:e026258. [PMID: 35647743 PMCID: PMC9238718 DOI: 10.1161/jaha.121.026258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marc George
- Department of Clinical Pharmacology and Therapeutics University College London Hospitals NHS Foundation Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| | - Ajay Gupta
- Department of Clinical Pharmacology William Harvey Research Institute, Queen Mary University of London London United Kingdom.,Royal London Hospital Barts Health NHS Trust London United Kingdom
| |
Collapse
|
10
|
Zhang X, Ritonja JA, Zhou N, Chen BE, Li X. Omega-3 Polyunsaturated Fatty Acids Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2022; 11:e025071. [PMID: 35647665 PMCID: PMC9238708 DOI: 10.1161/jaha.121.025071] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/24/2022] [Indexed: 02/06/2023]
Abstract
Background Current evidence might support the use of omega-3 fatty acids (preferably docosahexaenoic acid and eicosapentaenoic acid) for lowering blood pressure (BP), but the strength and shape of the dose-response relationship remains unclear. Methods and Results This study included randomized controlled trials published before May 7, 2021, that involved participants aged ≥18 years, and examined an association between omega-3 fatty acids (docosahexaenoic acid, eicosapentaenoic acid, or both) and BP. A random-effects 1-stage cubic spline regression model was used to predict the average dose-response association between daily omega-3 fatty acid intake and changes in BP. We also conducted stratified analyses to examine differences by prespecified subgroups. Seventy-one trials were included, involving 4973 individuals with a combined docosahexaenoic acid+eicosapentaenoic acid dose of 2.8 g/d (interquartile range, 1.3 g/d to 3.6 g/d). A nonlinear association was found overall or in most subgroups, depicted as J-shaped dose-response curves. The optimal intake in both systolic BP and diastolic BP reductions (mm Hg) were obtained by moderate doses between 2 g/d (systolic BP, -2.61 [95% CI, -3.57 to -1.65]; diastolic BP, -1.64 [95% CI, -2.29 to -0.99]) and 3 g/d (systolic BP, -2.61 [95% CI, -3.52 to -1.69]; diastolic BP, -1.80 [95% CI, -2.38 to -1.23]). Subgroup studies revealed stronger and approximately linear dose-response relations among hypertensive, hyperlipidemic, and older populations. Conclusions This dose-response meta-analysis demonstrates that the optimal combined intake of omega-3 fatty acids for BP lowering is likely between 2 g/d and 3 g/d. Doses of omega-3 fatty acid intake above the recommended 3 g/d may be associated with additional benefits in lowering BP among groups at high risk for cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Zhang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Jennifer A. Ritonja
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Na Zhou
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| | - Bingshu E. Chen
- Department of Public Health Sciences and Canadian Cancer Trials GroupQueen's UniversityKingstonOntarioCanada
| | - Xinzhi Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyTaipaMacauChina
| |
Collapse
|
11
|
Borghi C, Fogacci F, Agnoletti D, Cicero AFG. Hypertension and Dyslipidemia Combined Therapeutic Approaches. High Blood Press Cardiovasc Prev 2022; 29:221-230. [PMID: 35334087 PMCID: PMC9050771 DOI: 10.1007/s40292-022-00507-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Treating blood pressure (BP) alone may provide only limited benefits while it is recommendable to manage the total cardiovascular risk. To date, several studies have shown that concomitant treatment of hypertension and dyslipidemia with non-pharmacological approaches and/or metabolically neutral antihypertensive drugs and statins produce a significantly greater reduction of the risk of developing cardiovascular disease. Thus, in this review article, we summarize the available evidence regarding non-pharmacological and pharmacological approaches with a favourable effect on both BP and lipids.
Collapse
Affiliation(s)
- Claudio Borghi
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy. .,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy.
| | - Federica Fogacci
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Davide Agnoletti
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| | - Arrigo F G Cicero
- Medical and Surgical Sciences Department, Hypertension and Cardiovascular Risk Factors Research Center, Sant'Orsola-Malpighi University Hospital, U.O. Medicina Interna Cardiovascolare, Alma Mater Studiorum University of Bologna, Via Albertoni, 15, 40138, Bologna, Italy.,IRCCS AOU S. Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
12
|
Mantzourani I, Daoutidou M, Dasenaki M, Nikolaou A, Alexopoulos A, Terpou A, Thomaidis N, Plessas S. Plant Extract and Essential Oil Application against Food-Borne Pathogens in Raw Pork Meat. Foods 2022; 11:foods11060861. [PMID: 35327283 PMCID: PMC8955163 DOI: 10.3390/foods11060861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum L.) plants were applied alone or in combination with two essential oils (thyme and oregano in a concentration of 0.150 μg/g) in pork meatballs and their antimicrobial activity was estimated. The extracts exhibited promising results (aqueous and ethanolic extracts of pomegranate and cranberry in a food-compatible concentration of 2% w/v) were applied to raw pork meatball production and their antimicrobial activity was recorded versus Enterobacteriaceae, total mesophilic bacteria, yeasts/molds, Staphylococcus spp., Pseudomonas spp. and lactic acid bacteria (LAB). The outcome demonstrated that meatballs containing aqueous extracts of pomegranate were more resistant to spoilage compared to all the other samples since they were preserved for more days. The chemical profiles of plant extracts were determined through LC-QTOF/MS and the chemical composition of the essential oils applied was determined with the use of GC/MS in order to identify the substances involved in the observed antimicrobial activity. Phenolic acids (quinic acid, chlorogenic acid), monoterpenes (p-cymene, carvacrol, thymol, limonene), organic acids (citric acid) and phenols were the main constituents found in the plant extracts and essential oils applied. These extracts of plant origin could be used as natural preservatives in meat products, even in low concentrations.
Collapse
Affiliation(s)
- Ioanna Mantzourani
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece; (M.D.); (A.N.); (S.P.)
- Correspondence: ; Tel.: +30-255-204-1155
| | - Maria Daoutidou
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece; (M.D.); (A.N.); (S.P.)
| | - Marilena Dasenaki
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (M.D.); (N.T.)
| | - Anastasios Nikolaou
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece; (M.D.); (A.N.); (S.P.)
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology & Hygiene, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agri-food, and Natural Resources Management, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, GR-34400 Psachna, Greece;
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (M.D.); (N.T.)
| | - Stavros Plessas
- Laboratory of Food Processing, Faculty of Agriculture Development, Democritus University of Thrace, 68200 Orestiada, Greece; (M.D.); (A.N.); (S.P.)
| |
Collapse
|
13
|
Bellien J, Bozec E, Bounoure F, Khettab H, Malloizel-Delaunay J, Skiba M, Iacob M, Donnadieu N, Coquard A, Morio B, Laillet B, Rigaudière JP, Chardigny JM, Monteil C, Vendeville C, Mercier A, Cailleux AF, Blanchard A, Amar J, Fezeu LK, Pannier B, Bura-Rivière A, Boutouyrie P, Joannidès R. The effect of camelina oil on vascular function in essential hypertensive patients with metabolic syndrome: a randomized, placebo-controlled, double-blind study. Am J Clin Nutr 2022; 115:694-704. [PMID: 34791007 DOI: 10.1093/ajcn/nqab374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The effects of a dietary supplementation with the vegetable ω-3 α-linolenic acid (ALA) on cardiovascular homeostasis are unclear. In this context, it would be interesting to assess the effects of camelina oil. OBJECTIVE This study aimed to assess the cardiovascular and metabolic effects of camelina oil in hypertensive patients with metabolic syndrome. METHODS In a double-blind, placebo-controlled randomized study, treated essential hypertensive patients with metabolic syndrome received, during 6 mo, either cyclodextrin-complexed camelina oil containing ≈ 1.5 g ALA/d (n = 40) or an isocaloric placebo (n = 41), consisting of the same quantity of cyclodextrins and wheat starch. Anthropometric data, plasma lipids, glycemia, insulinemia, creatininemia, TBARs, high-sensitivity C-reactive protein, and n-3, n-6, and n-9 fatty acids in erythrocyte membranes were measured. Peripheral and central blood pressures, arterial stiffness, carotid intima-media thickness, and brachial artery endothelium-dependent flow-mediated dilatation (FMD) and endothelium-independent dilatation were assessed. RESULTS Compared with placebo, camelina oil increased ALA (mean ± SD: 0 ± 0.04 compared with 0.08 ± 0.06%, P <0.001), its elongation product EPA (0 ± 0.5 compared with 0.16 ± 0.65%, P <0.05), and the n-9 gondoic acid (GA; 0 ± 0.04 compared with 0.08 ± 0.04%, P <0.001). No between-group difference was observed for cardiovascular parameters. However, changes in FMD were associated with the magnitude of changes in EPA (r = 0.26, P = 0.03). Compared with placebo, camelina oil increased fasting glycemia (-0.2 ± 0.6 compared with 0.3 ± 0.5 mmol/L, P <0.001) and HOMA-IR index (-0.8 ± 2.5 compared with 0.5 ± 0.9, P <0.01), without affecting plasma lipids, or inflammatory and oxidative stress markers. Changes in HOMA-IR index were correlated with the magnitude of changes in GA (r = 0.32, P <0.01). Nutritional intake remained similar between groups. CONCLUSION ALA supplementation with camelina oil did not improve vascular function but adversely affected glucose metabolism in hypertensive patients with metabolic syndrome. Whether this adverse effect on insulin sensitivity is related to GA enrichment, remains to be elucidated.
Collapse
Affiliation(s)
- Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Erwan Bozec
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Université de Lorraine, Centre d'Investigations Cliniques-Plurithématique, INSERM 1433, CHRU Nancy, Inserm DCAC, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Frédéric Bounoure
- Normandie Université, UNIROUEN, INSERM U1239, Pharmacie Galénique, Rouen France
| | - Hakim Khettab
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | | | - Mohamed Skiba
- Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France
| | | | - Aude Coquard
- Department of Pharmacy, Rouen University Hospital, Rouen, France
| | - Béatrice Morio
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Brigitte Laillet
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Paul Rigaudière
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Chardigny
- Unité de Nutrition Humaine (UNH), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | | | | | - Alain Mercier
- Department of General Practice, University of Paris 13, SMBH, Bobigny, France
| | | | - Anne Blanchard
- Centre d'Investigation Clinique INSERM CIC-1418, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
| | - Jacques Amar
- Department of Arterial Hypertension, Toulouse University III, Toulouse, France
| | - Léopold K Fezeu
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center-University of Paris (CRESS), Bobigny, France
| | - Bruno Pannier
- Department of Nephrology, Centre Hospitalier FH Manhès, Fleury-Mérogis, France
| | | | - Pierre Boutouyrie
- Université de Paris, Service de Pharmacologie, INSERM U970, équipe 7, Paris, France.,Service de Pharmacologie, AP-HP, HEGP, Paris, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, Rouen, France.,Normandie Université, Rouen Normandy University (UNIROUEN), Institut National de la Santé et de la Recherche Médicale (INSERM), Fédération Hospitalo-Universitaire CArdiac Research Network on Aortic VAlve and heart faiLure (FHU CARNAVAL), Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, Rouen, France
| |
Collapse
|
14
|
Wang H, Li Q, Zhu Y, Zhang X. Omega-3 Polyunsaturated Fatty Acids: Versatile Roles in Blood Pressure Regulation. Antioxid Redox Signal 2021; 34:800-810. [PMID: 32349540 DOI: 10.1089/ars.2020.8108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Hypertension is characterized as the imbalance of vasoconstriction and vasodilatation. Hypertension is influenced by genetic variation and environmental risk factors, such as unhealthy diet. Clinical trial results suggest that increasing intake of foods rich in n-3 polyunsaturated fatty acids (PUFAs) is beneficial for hypertension. Recent Advances: We summarized recent clinical trials regarding supplementation with n-3 PUFAs to reduce blood pressure (BP) in untreated hypertensive and normotensive subjects and systematically discussed the antihypertension mechanisms of n-3 PUFAs/n-3 oxylipins, including reducing oxidative stress, altering functions of membrane-related proteins, and competing with n-6 PUFAs/n-6 oxylipins in regulating vasodilator release. Critical Issues: Previous studies considered n-3 PUFAs as single molecules with beneficial roles in hypertension. Recently, researchers have paid more attention to the metabolism of n-3 PUFAs and explored molecular mechanisms of n-3 PUFAs and oxylipins derived from n-3 PUFAs in hypertension interventions. Future Directions: Based on the metabolism of n-3 PUFAs/n-3 oxylipins and mechanisms in BP control, we suggested that supplementation of n-3 PUFAs combined with agents targeting PUFA metabolism or the related signal pathways may amplify their effects to treat hypertension and other cardiovascular diseases. Antioxid. Redox Signal. 34, 800-810.
Collapse
Affiliation(s)
- Hui Wang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
The Joint Effects of Diet and Dietary Supplements in Relation to Obesity and Cardiovascular Disease over a 10-Year Follow-Up: A Longitudinal Study of 69,990 Participants in Australia. Nutrients 2021; 13:nu13030944. [PMID: 33804132 PMCID: PMC8001791 DOI: 10.3390/nu13030944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
It is unknown whether a healthy diet or unhealthy diet combined with specific supplements may jointly contribute to incidence of obesity and cardiovascular disease (CVD). We included 69,990 participants from the 45 and Up Study who completed both baseline (2006–2009) and follow-up (2012–2015) surveys. We found that compared to participants with a long-term healthy diet and no supplement consumption, those with a long-term healthy diet combined with multivitamins and minerals (MVM) or fish oil consumption were associated with a lower incidence of CVD (p < 0.001); whilst those with an unhealthy diet and no MVM or fish oil consumption were associated with a higher risk of obesity (p < 0.05). Compared to participants with a long-term healthy diet and no calcium consumption, the combination of a long-term healthy diet and calcium consumption was linked to a lower risk of CVD (IRR = 0.87, 95% CI: 0.78; 0.96). In conclusion, a long-term healthy diet combined with MVM or fish oil was associated with a lower incidence of CVD. Participants who maintained a healthy diet and used calcium supplements were associated with a lower incidence of obesity. However, these associations were not found among those with an unhealthy diet, despite taking similar supplements.
Collapse
|
16
|
Ma M, Yang F, Wang Z, Bao Q, Shen J, Xie X. Association of plasma polyunsaturated fatty acids with arterial blood pressure: A Mendelian randomization study. Medicine (Baltimore) 2021; 100:e24359. [PMID: 33546071 PMCID: PMC7837969 DOI: 10.1097/md.0000000000024359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
High polyunsaturated fatty acids (PUFAs) intake is recommended for primary and secondary prevention of cardiovascular disease (CVD). However, the association of PUFAs with blood pressure (BP) is still controversial. In the present study, two-sample Mendelian randomization (MR) analysis was performed to investigate the causal relationship of PUFAs with BP, including systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP).Genetic instruments and summary statistics for two-sample MR analysis were obtained from 3 large-scale genome-wide association studies (GWASs). Eight single nucleotide polymorphisms (SNPs) significantly (P < 5 × 10-8) related to 6 PUFAs were used as instrumental variables. Conventional inverse-variance weighted method was adopted to evaluate the causality of PUFAs with BP; the Weighted Median, MR-egger, and Leave-one-out method were used for sensitivity analyses.As a result, there was no evidence of a causal association between all PUFAs and SBP. In addition, arachidonic acid (AA, β = -0.04, P < .001) and eicosapentaenoic acid (EPA, β = -0.47, P = .02) were negatively associated with DBP, while linoleic acid (LA, β = 0.03, P = .005) and α-linolenic acid (ALA, β = 3.83, P < .001) were positively associated with DBP. There was no evidence of a causal relationship between either docosapentaenoic acid (DPA) or docosahexaenoic acid (DHA) with DBP.In conclusion, a genetic predisposition to plasma polyunsaturated fatty acid (PUFA) had a divergent effect on DBP, independent of SBP. It suggested that it is helpful for lower DBP level to supplemental intake of AA and EPA or promote the conversion of LA and ALA to AA and EPA respectively, which need to be further validated with randomized controlled studies.
Collapse
|
17
|
Abstract
BACKGROUND Experimental studies suggest that omega-3 fatty acid have favorable effects on blood pressure (BP). However, data on the association of long-term dietary intake of omega-3 fatty acid or fish with risk of hypertension in healthy subjects are sparse. We examined whether fish or omega-3 fatty acid consumption was associated with incident hypertension in the Physicians' Health Study (PHS). METHODS In a prospective cohort study, we analyzed data on 12 279 PHS participants (mean age: 53.0 ± 8.7 years) free of hypertension at baseline. Fish and omega-3 fatty acid consumption were assessed from a baseline semiquantitative food-frequency questionnaire. Incident hypertension was ascertained via self-reports on annual follow-up questionnaires. RESULTS During a mean follow-up of 15.8 years, 6299 men (51.3%) developed hypertension. In a multivariable model controlling for established risk factors for hypertension, fish and omega-3 fatty acid consumption was not significantly associated with incident hypertension. The hazard ratio (95% CI) of hypertension was 1.10 (0.93-1.30) for men who consumed at least five servings per week of fish compared with those who did not consume any fish (P for trend = 0.29). For the highest versus lowest quintile of omega-3 fatty acid intake, the hazard ratio of hypertension was 1.02 (0.94-1.11) (P for trend = 0.34). The associations did not vary by type of fish. There was also no evidence of effect modification by baseline BP, BMI, or history of hypercholesterolemia. CONCLUSION Overall, long-term dietary intake of fish and omega-3 fatty acid was not associated with incident hypertension in a cohort of middle-aged and older US men.
Collapse
|
18
|
Drotningsvik A, Oterhals Å, Mjøs SA, Vikøren LA, Flesland O, Gudbrandsen OA. Effects of intact and hydrolysed blue whiting proteins on blood pressure and markers of kidney function in obese Zucker fa/fa rats. Eur J Nutr 2020; 60:529-544. [PMID: 32409916 PMCID: PMC7867508 DOI: 10.1007/s00394-020-02262-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To investigate the effects of diets containing intact or hydrolysed proteins from blue whiting (Micromesistius poutassou) on the development of high blood pressure and markers of kidney function in obese Zucker fa/fa rats which are prone to develop hypertension and renal failure. METHODS Male rats were fed isocaloric diets containing either intact blue whiting whole meal (BW-WM), blue whiting protein hydrolysate prepared with Alcalase® (BW-HA) or blue whiting protein hydrolysate prepared with Protamex® (BW-HP) as 1/3 of total protein with the remaining 2/3 as casein, or casein as sole protein source (control group). Blood pressure was measured at Day 0 and Day 32. Rats were housed in metabolic cages for 24 h for collection of urine in week 4. After 5 weeks, rats were euthanized and blood was drawn from the heart. The renin and angiotensin-converting enzyme (ACE) inhibition capacities for casein and blue whiting proteins were measured in vitro. RESULTS The blood pressure increase was lower in rats fed diets containing blue whiting proteins when compared to the control group, whereas markers of kidney function were similar between all groups. The three blue whiting proteins inhibited renin activity in vitro, whereas casein had no effect. The in vitro ACE inhibition was similar for casein, BW-WM and BW-HP proteins, whereas BW-HA protein was less potent. CONCLUSION Blue whiting protein feeding attenuated the blood pressure increase in obese Zucker fa/fa rats, possibly mediated through the renin-angiotensin system and without affecting markers of kidney function.
Collapse
Affiliation(s)
- Aslaug Drotningsvik
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.,TripleNine Vedde AS, 6030, Langevåg, Norway
| | | | - Svein Are Mjøs
- Department of Chemistry, University of Bergen, 5020, Bergen, Norway
| | - Linn Anja Vikøren
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | | | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
19
|
Hilleman DE, Wiggins BS, Bottorff MB. Critical Differences Between Dietary Supplement and Prescription Omega-3 Fatty Acids: A Narrative Review. Adv Ther 2020; 37:656-670. [PMID: 31919792 PMCID: PMC6999166 DOI: 10.1007/s12325-019-01211-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Currently available omega-3 (OM-3) fatty acid products in the US are either nonprescription dietary supplements (e.g., fish oils) or prescription (Rx) medications. As such, we aimed to describe critical therapeutic differences among the OM-3 fatty acids, focusing on differences between fish oil supplements and Rx OM-3s. METHODS A narrative review of known papers salient to this topic was conducted. RESULTS Despite the multiple purported clinical benefits, the published evidence for OM-3 dietary supplements is generally insufficient, inconsistent, or negative. Rx OM-3 products are indicated as an adjunct to diet to reduce triglycerides (TG) in adults with severe hypertriglyceridemia (TG ≥ 500 mg/dl). Recently, the Rx eicosapentaenoic acid (EPA)-only OM-3, icosapent ethyl, demonstrated cardiovascular (CV) risk reduction among statin-treated patients at high risk of CV disease in a large CV outcomes trial (CVOT), and is now also indicated as an adjunct to maximally tolerated statin therapy to reduce the risk of myocardial infarction, stroke, coronary revascularization, and unstable angina requiring hospitalization in adult patients with elevated TG (≥ 150 mg/dL) and established CVD or diabetes mellitus and ≥ 2 additional risk factors for CVD. In contrast to the rigorous regulatory standards for safety, efficacy, and manufacturing of medications (whether Rx or over the counter), the Food and Drug Administration manages dietary supplements as food. Issues specific to OM-3 dietary supplements include variable content, labeling inconsistencies, and poor product quality/impurity. Given these issues, OM-3 dietary supplements should not be substituted for Rx OM-3 products. The efficacy of the EPA-only Rx OM-3 product in a large CVOT cannot be extrapolated to other OM-3 products. CONCLUSION Consumers and health care providers need to recognize critical differences between Rx and OM-3 dietary supplements to ensure appropriate use of each OM-3 product.
Collapse
Affiliation(s)
- Daniel E Hilleman
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA.
| | | | - Michael B Bottorff
- Department of Pharmacy Practice, Manchester University, Fort Wayne, IN, USA
| |
Collapse
|
20
|
The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res Int 2019; 128:108749. [PMID: 31955788 DOI: 10.1016/j.foodres.2019.108749] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) is a worldwide epidemic in both developed and developing countries. It is one of the leading causes of major health problems such as cardiovascular disease, stroke, and heart attack. In recent years, several studies have reported associations between specific dietary ingredients and improving HTN. Nutraceuticals are natural food components with pharmacological properties. Reports suggest that functional foods and nutraceutical ingredients might support patients to obtain the desired therapeutic blood pressure (BP) goals and reduce cardiovascular risks by modulating various risk factors such as oxidative stress, renin-angiotensin system hyperactivity, inflammation, hyperlipidemia, and vascular resistance. We review the recent clinical experiments that have evaluated the biological and pharmacological activities of several types of nutraceuticals, including sour tea, cocoa, common spices, vitamin C, vitamin E, lycopene, flavonoids, coenzyme Q10, milk's tripeptides, calcium, magnesium, polyunsaturated fatty acids, and prebiotics in preventing and treating HTN. This review summarizes recent knowledge about the impact of common nutraceuticals for the regulation of BP.
Collapse
|
21
|
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019; 138:e484-e594. [PMID: 30354654 DOI: 10.1161/cir.0000000000000596] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paul K Whelton
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Robert M Carey
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Wilbert S Aronow
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Donald E Casey
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Karen J Collins
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Cheryl Dennison Himmelfarb
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Sondra M DePalma
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Samuel Gidding
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Kenneth A Jamerson
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Daniel W Jones
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Eric J MacLaughlin
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Paul Muntner
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Bruce Ovbiagele
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Sidney C Smith
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Crystal C Spencer
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Randall S Stafford
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Sandra J Taler
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Randal J Thomas
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Kim A Williams
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Jeff D Williamson
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| | - Jackson T Wright
- American Society for Preventive Cardiology Representative. †ACC/AHA Representative. ‡Lay Volunteer/Patient Representative. §Preventive Cardiovascular Nurses Association Representative. ‖American Academy of Physician Assistants Representative. ¶Task Force Liaison. #Association of Black Cardiologists Representative. **American Pharmacists Association Representative. ††ACC/AHA Prevention Subcommittee Liaison. ‡‡American College of Preventive Medicine Representative. §§American Society of Hypertension Representative. ‖‖Task Force on Performance Measures Liaison. ¶¶American Geriatrics Society Representative. ##National Medical Association Representative
| |
Collapse
|
22
|
Naja F, Itani L, Hwalla N, Sibai AM, Kharroubi SA. Identification of dietary patterns associated with elevated blood pressure among Lebanese men: A comparison of principal component analysis with reduced rank regression and partial least square methods. PLoS One 2019; 14:e0220942. [PMID: 31419246 PMCID: PMC6697315 DOI: 10.1371/journal.pone.0220942] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To examine the associations of dietary patterns with odds of elevated Blood Pressure (BP) among Lebanese adult males using principal component analysis (PCA), and compare the results to two other data reduction methods, including reduced rank regression (RRR) and partial least-squares (PLS) regression. METHODS Data from the National Nutrition and Non-Communicable Disease Risk Factor Survey conducted in Lebanon between years 2008 and 2009 were used. Dietary intake data were collected by a 61-item food frequency questionnaire (FFQ). In addition, anthropometric and blood pressure measurements were obtained following standard techniques. For the purpose of this study, data of males older than 20 years with no history of chronic diseases were selected (n = 673). Elevated BP was indicated if the systolic blood pressure was > = 130mm Hg and/or the diastolic blood pressure > = 85 mm Hg. Dietary patterns were constructed using PCA, PLS and RRR and compared based on the performance to identify plausible patterns associated with elevated BP. For PLS and RR, the response variables were BMI, waist circumference and percent body fat. Multiple logistic regression was used to evaluate the associations between the dietary pattern scores of each method and risk of elevated BP. RESULTS Three dietary patterns were identified using PCA: Western, Traditional Lebanese, and Fish and alcohol. Both the Western and the Traditional Lebanese patterns were associated with higher odds of elevated BP in the study population (OR = 1.23, CI 1.03, 1.46; OR = 1.29, CI 1.09, 1.52 respectively). The comparison among the three methods for dietary patterns derivation showed that PLS and RRR derived patterns explained greater variance in the outcome (PCA: 1.2%; PLS: 14.1%; RRR: 15.36%) and were significantly associated with elevated BP, while the PCA dietary patterns were descriptive of the study population's real dietary habits (PCA: 23.6%; PLS: 19.8%; RRR: 11.3%). CONCLUSIONS The Western and Traditional Lebanese dietary patterns were associated with higher odds of elevated BP among Lebanese males. The findings of this study showed that, compared to PCA, the use of RRR method resulted in more significant associations with the outcome while the PCA-derived patterns were more related to the real habits in the study population.
Collapse
Affiliation(s)
- Farah Naja
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Laila Itani
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University Beirut, Lebanon
| | - Nahla Hwalla
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Abla M Sibai
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Samer A Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
23
|
Zehr KR, Segovia A, Shah M, Walsh-Wilcox MT, Brumbach BH, Anderson JR, Walker MK. Associations of medium and long chain omega-3 polyunsaturated fatty acids with blood pressure in Hispanic and non-Hispanic smokers and nonsmokers. Prostaglandins Leukot Essent Fatty Acids 2019; 144:10-15. [PMID: 31088622 PMCID: PMC6521860 DOI: 10.1016/j.plefa.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Epidemiology studies and clinical trials have shown that omega-3 polyunsaturated fatty acids (n-3 PUFAs) are inversely associated with blood pressure. We sought to determine the influence of cigarette smoking and Hispanic ethnicity on this association. Age- and sex-matched smokers and nonsmokers (n = 98) 19-50 years old lacking cardiovascular disease were recruited. Systolic and diastolic blood pressure (SBP, DBP), heart rate, HbA1c, lipids, BMI, and RBC fatty acids were measured. The omega-3 index (percent eicosapentaenoic and docosahexaenoic acid, EPA+DHA, in RBCs) was significantly lower in smokers (Smokers: 3.19 ± 0.86%; Nonsmokers, 3.88 ± 1.05%, p = 0.001) and Hispanics (Hispanic 3.32 ± 0.93%; Non-Hispanic, 3.82 ± 1.03%, p = 0.006). DHA exhibited a significant inverse association with BP in both smokers and nonsmokers, while alpha-linolenic acid (ALA) exhibited a significant positive association with BP only in smokers. Multiple regression analyses showed that BMI, DHA, smoking status, and smoking status*ALA interaction significantly predicted SBP (p < 0.0001, R2 = 0.44) and DBP (p < 0.0001, R2 = 0.33), while ethnicity had no effect. The observed lower BP when DHA levels are high suggests a possible protective role of DHA on BP in normotensive smokers and nonsmokers. Additionally, the observed higher BP when ALA levels are high only in smokers suggests that ALA may influence the BP-lowering effects of chronic smoking.
Collapse
Affiliation(s)
- Kayla R Zehr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, MSC09 5360, 2703 Frontier Ave NE, Albuquerque 87109, NM, USA
| | - Allison Segovia
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Meera Shah
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, MSC09 5360, 2703 Frontier Ave NE, Albuquerque 87109, NM, USA
| | - Mary T Walsh-Wilcox
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, MSC09 5360, 2703 Frontier Ave NE, Albuquerque 87109, NM, USA
| | | | - Joe R Anderson
- Department of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Mary K Walker
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, MSC09 5360, 2703 Frontier Ave NE, Albuquerque 87109, NM, USA.
| |
Collapse
|
24
|
Lee JB, Notay K, Klingel SL, Chabowski A, Mutch DM, Millar PJ. Docosahexaenoic acid reduces resting blood pressure but increases muscle sympathetic outflow compared with eicosapentaenoic acid in healthy men and women. Am J Physiol Heart Circ Physiol 2019; 316:H873-H881. [DOI: 10.1152/ajpheart.00677.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Supplementation with monounsaturated or ω-3 polyunsaturated fatty acids ( n-3 PUFA) can lower resting blood pressure (BP) and reduce the risk of cardiovascular events. The independent contributions of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on BP, and the mechanisms responsible, are unclear. We tested whether EPA, DHA, and olive oil (OO), a source of monounsaturated fat, differentially affect resting hemodynamics and muscle sympathetic nerve activity (MSNA). Eighty-six healthy young men and women were recruited to participate in a 12-wk, randomized, double-blind trial examining the effects of orally supplementing ~3 g/day of EPA ( n = 28), DHA ( n = 28), or OO ( n = 30) on resting hemodynamics; MSNA was examined in a subset of participants ( n = 31). Both EPA and DHA supplements increased the ω-3 index ( P < 0.01). Reductions in systolic BP were greater [adjusted intergroup mean difference (95% confidence interval)] after DHA [−3.4 mmHg (−0.9, −5.9), P = 0.008] and OO [−3.0 mmHg (−0.5, −5.4), P = 0.01] compared with EPA, with no difference between DHA and OO ( P = 0.74). Reductions in diastolic BP were greater following DHA [−3.4 mmHg (−1.3,−5.6), P = 0.002] and OO [−2.2 mmHg (0.08,−4.3), P = 0.04] compared with EPA. EPA increased heart rate compared with DHA [4.2 beats/min (−0.009, 8.4), P = 0.05] and OO [4.2 beats/min, (0.08, 8.3), P = 0.04]. MSNA burst frequency was higher after DHA [4 bursts/min (0.5, 8.3), P = 0.02] but not OO [−3 bursts/min (−6, 0.6), P = 0.2] compared with EPA. Overall, DHA and OO evoked similar responses in resting BP; however, DHA, but not OO, increased peripheral vasoconstrictor outflow. These findings may have implications for fatty acid supplementation in clinical populations characterized by chronic high BP and sympathetic overactivation. NEW & NOTEWORTHY We studied the effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and olive oil supplementation on blood pressure (BP) and muscle sympathetic nerve activity (MSNA). After 12 wk of 3 g/day supplementation, DHA and olive oil were associated with lower resting systolic and diastolic BPs than EPA. However, DHA increased MSNA compared with EPA. The reductions in BP with DHA likely occur via a vascular mechanism and evoke a baroreflex-mediated increase in sympathetic activity.
Collapse
Affiliation(s)
- Jordan B. Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Karambir Notay
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Shannon L. Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David M. Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J. Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Mirmiran P, Asghari G, Dizavi A, Farhadnejad H, Azizi F. The Association between Fish Consumption and Risk of Metabolic Syndrome in Adults: Tehran Lipid and Glucose Study. INT J VITAM NUTR RES 2019; 89:192-199. [PMID: 30829136 DOI: 10.1024/0300-9831/a000561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objective: Although fish consumption may play a role in prevention of the risk of metabolic syndrome (MetS), results of studies available on this topic are controversial. In this study, we have examined the association of fish consumption and 3.6-year incidence of MetS in Tehranian adults. METHODS We conducted a population based cohort study of 3382 adult subjects, aged 19-55 years, from the Tehran Lipid and Glucose Study (TLGS). Fish consumption data were collected using a valid and reliable food-frequency questionnaire. The consumption of fish, in the form of canned and non-canned fish was designated for all subjects, and was classified into three categories (< 30, 30-45, and > 45 g/week). Odds ratio (OR) for the occurrence of MetS according to categories of fish consumption was assessed by multivariable logistic regression. RESULTS The mean age of participants (35% male) at baseline was 35 years. Mean fish consumption was 11.3 g/d and incidence of MetS was 13.1%. In the fully adjusted model, subjects, who consumed > 45 g/week of fish had lower incidence of MetS, compared to those who consumed < 30 g/week (OR = 0.73; CI: 0.56-0.95). However, there were no associations between consumption of non-canned fish (OR = 0.86; 95% CI: 0.67-1.10) and canned fish (OR = 0.91; 95% CI: 0.64-1.29) and the incidence of MetS. CONCLUSION Our findings suggest that high consumption of fish can reduce the incidence of MetS among adults.
Collapse
Affiliation(s)
- Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Dizavi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Guo XF, Li KL, Li JM, Li D. Effects of EPA and DHA on blood pressure and inflammatory factors: a meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 59:3380-3393. [DOI: 10.1080/10408398.2018.1492901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-fei Guo
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ke-lei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Jiao-mei Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Hosomi R, Fukunaga K, Nagao T, Tanizaki T, Miyauchi K, Yoshida M, Kanda S, Nishiyama T, Takahashi K. Effect of Dietary Partial Hydrolysate of Phospholipids, Rich in Docosahexaenoic Acid-Bound Lysophospholipids, on Lipid and Fatty Acid Composition in Rat Serum and Liver. J Food Sci 2019; 84:183-191. [DOI: 10.1111/1750-3841.14416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Toshihiro Nagao
- Osaka Research Inst. of Industrial Science and Technology; Morinomiya Center; 1-6-50, Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Toshifumi Tanizaki
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kazumasa Miyauchi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Seiji Kanda
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Toshimasa Nishiyama
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Koretaro Takahashi
- Faculty of Engineering; Kitami Inst. of Technology; 165 Koen-cho Kitami Hokkaido 090-8507 Japan
| |
Collapse
|
28
|
Yang B, Shi L, Wang AM, Shi MQ, Li ZH, Zhao F, Guo XJ, Li D. Lowering Effects of n-3 Fatty Acid Supplements on Blood Pressure by Reducing Plasma Angiotensin II in Inner Mongolia Hypertensive Patients: A Double-Blind Randomized Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:184-192. [PMID: 30511840 DOI: 10.1021/acs.jafc.8b05463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Whether n-3 fatty acid (FA) has hypotensive actions among Chinese adults remains inconclusive. Hypertensive patients from Inner Mongolia, China ( n = 126) were recruited to a double-blind, randomized controlled trial. We investigated the effects of n-3 FA supplements on blood pressure (BP, mm Hg), plasma concentrations of angiotensin II (Ang II, pg/mL), and nitric oxygen (NO, μmol/L), using fish oil ( n = 41, 4 capsules/day, equivalent to 2 g of eicosapentaenoic acid plus docosahexaenoic acid) and flaxseed oil ( n = 42, 4 capsules/day, equivalent to 2.5 g of α-linolenic acid). Comparing to the control group (corn oil, n = 43), the mean systolic BP (-4.52 ± 9.28 vs -1.51 ± 9.23, P = 0.040) and the plasma Ang II levels (-12.68 ± 10.87 vs -4.93 ± 9.08, P = 0.023) were significantly lowered in the fish oil group, whereas diastolic BP ( P = 0.285) and plasma NO levels ( P = 0.220) were not. Such findings suggest that marine-based n-3 FA has a hypotensive efficacy in Chinese hypertensive patients possibly through inhibiting Ang II-dependent vasoconstrictions.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine , Wenzhou Medical University , Chashan University Town, Wenzhou , China 325035
- Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China 310029
| | - Lin Shi
- Ejin Horo Banner Centre for Disease Prevention and Control, Ordos , Inner Mongolia , China 017200
| | - Ai-Min Wang
- Ejin Horo Banner Centre for Disease Prevention and Control, Ordos , Inner Mongolia , China 017200
| | - Mei-Qi Shi
- Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China 310029
| | - Zi-Hao Li
- Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China 310029
| | - Feng Zhao
- Institute of Nutrition and Health , Qingdao University , 308 Ningxia Road , Qingdao , China 266003
| | - Xiao-Juan Guo
- Institute of Lipids Medicine , Wenzhou Medical University , Chashan University Town, Wenzhou , China 325035
| | - Duo Li
- Institute of Nutrition and Health , Qingdao University , 308 Ningxia Road , Qingdao , China 266003
- Department of Food Science and Nutrition , Zhejiang University , Hangzhou , China 310029
| |
Collapse
|
29
|
Effect ofα-linolenic acid on 24-h ambulatory blood pressure in untreated high-normal and stage I hypertensive subjects. Br J Nutr 2018; 121:155-163. [DOI: 10.1017/s0007114518003094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractResults of intervention studies on the effects ofα-linolenic acid (ALA; C18 : 3n-3) on blood pressure (BP) are conflicting. Discrepancies between studies may be due to differences in study population, as subjects with increased baseline BP levels may be more responsive. Therefore, we examined specifically the effects of ALA on 24-h ambulatory blood pressure (ABP) in (pre-)hypertensive subjects. In a double-blind, randomised, placebo-controlled parallel study, fifty-nine overweight and obese adults (forty males and nineteen females) with (pre-)hypertension (mean age of 60 (sd8) years) received daily 10 g refined cold-pressed flaxseed oil, providing 4·7 g (approximately 2 % of energy) ALA (n29) or 10 g of high-oleic sunflower oil as control (n30) for 12 weeks. Compliance was excellent as indicated by vial count and plasma phospholipid fatty-acid composition. Compared with control, the changes of –1·4 mmHg in mean arterial pressure (MAP; 24 h ABP) after flaxseed oil intake (95 % CI –4·8, 2·0 mmHg,P=0·40) of –1·5 mmHg in systolic BP (95 % CI –6·0, 3·0 mmHg,P=0·51) and of –1·4 mmHg in diastolic BP (95 % CI –4·2, 1·4 mmHg,P=0·31) were not statistically significant. Also, no effects were found for office BP and for MAP, systolic BP, and diastolic BP when daytime and night-time BP were analysed separately and for night-time dipping. In conclusion, high intake of ALA, about 3–5 times recommended daily intakes, for 12 weeks does not significantly affect BP in subjects with (pre-)hypertension.
Collapse
|
30
|
Thota RN, Ferguson JJA, Abbott KA, Dias CB, Garg ML. Science behind the cardio-metabolic benefits of omega-3 polyunsaturated fatty acids: biochemical effects vs. clinical outcomes. Food Funct 2018; 9:3576-3596. [PMID: 29904777 DOI: 10.1039/c8fo00348c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lower incidence of cardiovascular disease (CVD) in the Greenland Inuit, Northern Canada and Japan has been attributed to their consumption of seafood rich in long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA). While a large majority of pre-clinical and intervention trials have demonstrated heart health benefits of LCn-3PUFA, some studies have shown no effects or even negative effects. LCn-3PUFA have been shown to favourably modulate blood lipid levels, particularly a reduction in circulating levels of triglycerides. High density lipoprotein-cholesterol (HDL-C) levels are elevated following dietary supplementation with LCn-3PUFA. Although LCn-3PUFA have been shown to increase low-density lipoprotein-cholesterol (LDL-C) levels, the increase is primarily in the large-buoyant particles that are less atherogenic than small-dense LDL particles. The anti-inflammatory effects of LCn-3PUFA have been clearly outlined with inhibition of NFkB mediated cytokine production being the main mechanism. In addition, reduction in adhesion molecules (intercellular adhesion molecule, ICAM and vascular cell adhesion molecule 1, VCAM-1) and leukotriene production have also been demonstrated following LCn-3PUFA supplementation. Anti-aggregatory effects of LCn-3PUFA have been a subject of controversy, however, recent studies showing sex-specific effects on platelet aggregation have helped resolve the effects on hyperactive platelets. Improvements in endothelium function, blood flow and blood pressure after LCn-3PUFA supplementation add to the mechanistic explanation on their cardio-protective effects. Modulation of adipose tissue secretions including pro-inflammatory mediators and adipokines by LCn-3PUFA has re-ignited interest in their cardiovascular health benefits. The aim of this narrative review is to filter out the reasons for possible disparity between cohort, mechanistic, pre-clinical and clinical studies. The focus of the article is to provide possible explanation for the observed controversies surrounding heart health benefits of LCn-3PUFA.
Collapse
Affiliation(s)
- Rohith N Thota
- Nutraceuticals Research Program, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | |
Collapse
|
31
|
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018. [DOI: 10.1161/hyp.0000000000000065 10.1016/j.jacc.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Abraham C, Speth RC. The relationship between omega‐3 fatty acids and blood pressure. JOURNAL OF PHARMACEUTICAL HEALTH SERVICES RESEARCH 2018. [DOI: 10.1111/jphs.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christy Abraham
- Halmos College of Natural Sciences and Oceanography Nova Southeastern University Fort Lauderdale FL USA
- College of Psychology Nova Southeastern University Fort Lauderdale FLUSA
- College of Pharmacy Nova Southeastern University Fort Lauderdale FL USA
| | - Robert C. Speth
- College of Pharmacy Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
33
|
Reddan JM, White DJ, Macpherson H, Scholey A, Pipingas A. Glycerophospholipid Supplementation as a Potential Intervention for Supporting Cerebral Structure in Older Adults. Front Aging Neurosci 2018; 10:49. [PMID: 29563868 PMCID: PMC5845902 DOI: 10.3389/fnagi.2018.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 01/13/2023] Open
Abstract
Modifying nutritional intake through supplementation may be efficacious for altering the trajectory of cerebral structural decline evident with increasing age. To date, there have been a number of clinical trials in older adults whereby chronic supplementation with B vitamins, omega-3 fatty acids, or resveratrol, has been observed to either slow the rate of decline or repair cerebral tissue. There is also some evidence from animal studies indicating that supplementation with glycerophospholipids (GPL) may benefit cerebral structure, though these effects have not yet been investigated in adult humans. Despite this paucity of research, there are a number of factors predicting poorer cerebral structure in older humans, which GPL supplementation appears to beneficially modify or protect against. These include elevated concentrations of homocysteine, unbalanced activity of reactive oxygen species both increasing the risk of oxidative stress, increased concentrations of pro-inflammatory messengers, as well as poorer cardio- and cerebrovascular function. As such, it is hypothesized that GPL supplementation will support cerebral structure in older adults. These cerebral effects may influence cognitive function. The current review aims to provide a theoretical basis for future clinical trials investigating the effects of GPL supplementation on cerebral structural integrity in older adults.
Collapse
Affiliation(s)
- Jeffery M Reddan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2017; 71:e13-e115. [PMID: 29133356 DOI: 10.1161/hyp.0000000000000065] [Citation(s) in RCA: 1615] [Impact Index Per Article: 230.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Williamson JD, Wright JT. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2017; 71:e127-e248. [PMID: 29146535 DOI: 10.1016/j.jacc.2017.11.006] [Citation(s) in RCA: 3139] [Impact Index Per Article: 448.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
|
37
|
Colussi G, Catena C, Novello M, Bertin N, Sechi LA. Impact of omega-3 polyunsaturated fatty acids on vascular function and blood pressure: Relevance for cardiovascular outcomes. Nutr Metab Cardiovasc Dis 2017; 27:191-200. [PMID: 27692558 DOI: 10.1016/j.numecd.2016.07.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/25/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
AIMS To overview the effects of omega-3 polyunsaturated fatty acids (PUFA) on blood vessels and blood pressure (BP) and their relevance for cardiovascular prevention. DATA SYNTHESIS The importance of omega-3 PUFA for the cardiovascular system has come under the spotlight during the last decades. These fatty acids are present in variable amounts in cell membranes of mammal species, and their content affects a variety of cellular functions. Evidence obtained in animal and human studies suggests that omega-3 PUFA affect many steps of the atherosclerotic process. In blood vessels, omega-3 PUFA improve endothelial function; promote vasodilatation through relaxation of smooth muscle cells; exert antioxidant, anti-inflammatory, and antithrombotic actions; delay development of plaques and increase their stability; and decrease wall stiffening. Omega-3 PUFA might affect BP, and studies conducted with ambulatory monitoring suggest that supplementation with these fatty acids decreases the average 24-h BP levels. This effect on BP is related to the pretreatment membrane content of omega-3 PUFA, and this might explain some inconsistencies among intervention trials. Meta-analyses indicate that omega-3 PUFA have a mild but significant BP lowering effect. While encouraging results were initially obtained with the use of omega-3 PUFA supplements in secondary prevention trials, meta-analyses have not confirmed the ability of these fatty acids to decrease the risk of coronary heart and cerebrovascular disease. CONCLUSIONS Omega-3 PUFA are associated with significant improvement in vascular function and lowering of BP. However, the evidence currently supporting the role of these fatty acids in cardiovascular prevention is weak and needs further investigation.
Collapse
Affiliation(s)
- G Colussi
- Internal Medicine, Department of Experimental and Medical Sciences, University of Udine, Udine, Italy
| | - C Catena
- Internal Medicine, Department of Experimental and Medical Sciences, University of Udine, Udine, Italy
| | - M Novello
- Internal Medicine, Department of Experimental and Medical Sciences, University of Udine, Udine, Italy
| | - N Bertin
- Internal Medicine, Department of Experimental and Medical Sciences, University of Udine, Udine, Italy
| | - L A Sechi
- Internal Medicine, Department of Experimental and Medical Sciences, University of Udine, Udine, Italy.
| |
Collapse
|
38
|
Sveinsdottir K, Martinsdottir E, Ramel A. Blood pressure-lowering effects of long chain n-3 fatty acids from meals enriched with liquid fish oil and from microencapsulated powder. Int J Food Sci Nutr 2016; 67:1017-23. [PMID: 27457968 DOI: 10.1080/09637486.2016.1208733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Diet plays an important role in the etiology of hypertension. Blood pressure (BP)-lowering properties of long chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) are promising. The aim was to investigate whether different formulations of fish oil differently affect blood pressure in community-dwelling adults. The hypothesis was that fish oil formulations would improve BP in comparison with a placebo. METHODS In this 4-week randomized, placebo-controlled, doubly-blinded dietary intervention study, participants (N = 99, >50 years) from the capital area of Iceland were randomized into three groups. Group 1 (n = 38) received 6 meals/week fortified with a liquid fish oil and placebo powder. Group 2 (n = 30) received conventional (unfortified) meals and microencapsulated powder. Group 3 (n = 31) was the control group which received conventional meals and placebo powder. Calculated on a weekly basis, the amount of EPA + DHA provided was 1.5 g/d. Systolic (SBP) and diastolic BP (DBP) were measured before and after the intervention period. RESULTS Seventy-seven subjects finished the study (77.8%). Drop-out rates were not different between groups. According to multivariate statistics, endpoint SBP was lower in Group 1 (-7.0 mmHg, p = 0.037) and in Group 2 (-7.2 mmHg, p = 0.037) as compared with Group 3. There was no significant difference in DBP between the groups. CONCLUSION Our study shows that LC n-3 PUFA from microencapsulated powder are equally effective to meaningfully reduce SBP as LC n-3 PUFA from meals enriched with liquid fish oil in comparison with a control group.
Collapse
Affiliation(s)
| | | | - Alfons Ramel
- a The Icelandic Food and Biotech R&D Institute , Reykjavik , Iceland ;,b Unit for Nutrition Research , National University Hospital & Faculty of Food Science and Nutrition, University of Iceland , Reykjavik , Iceland
| |
Collapse
|
39
|
Vonder Haar C, Peterson TC, Martens KM, Hoane MR. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 2016; 1640:114-129. [PMID: 26723564 PMCID: PMC4870112 DOI: 10.1016/j.brainres.2015.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
40
|
Megson IL, Whitfield PD, Zabetakis I. Lipids and cardiovascular disease: where does dietary intervention sit alongside statin therapy? Food Funct 2016; 7:2603-14. [PMID: 27109548 DOI: 10.1039/c6fo00024j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Seven Countries Study suggested an association between serum cholesterol and cardiovascular disease (CVD). However, the association was not consistent across the various cohorts of participants in different countries; while it was very clear in US and Northern European cohorts, it was weak in Southern European and Japanese cohorts. Nevertheless, the study triggered research into cholesterol-lowering drug strategies, ultimately leading to the development of statins amongst others. Clinical evidence in support of statins is strong and the vast majority of the medical community advocate these drugs as highly effective first-line therapeutics in primary and secondary prevention of CVD. However, growing evidence of side-effects associated with statins in a significant proportion of patients suggests that these drugs are not a universal solution to CVD. There is a need, therefore, to revisit the evidence and to re-appraise the relative importance of cholesterol amongst many other lipids as potential modulators of atherogenesis. In this review, we assess the relative merits of statin therapy in CVD versus dietary interventions that impact on lipids other than cholesterol, including omega-3 fatty acids and polar lipid fractions of various foods (e.g. fish and olive oil). We conclude that careful design around the lipid components of dietary interventions presents a credible alternative in patients who are intolerant to statins or averse to taking such drugs.
Collapse
Affiliation(s)
- Ian L Megson
- Department of Diabetes & Cardiovascular Science, University of the Highlands & Islands, UK
| | | | | |
Collapse
|
41
|
Minihane AM, Armah CK, Miles EA, Madden JM, Clark AB, Caslake MJ, Packard CJ, Kofler BM, Lietz G, Curtis PJ, Mathers JC, Williams CM, Calder PC. Consumption of Fish Oil Providing Amounts of Eicosapentaenoic Acid and Docosahexaenoic Acid That Can Be Obtained from the Diet Reduces Blood Pressure in Adults with Systolic Hypertension: A Retrospective Analysis. J Nutr 2016; 146:516-23. [PMID: 26817716 DOI: 10.3945/jn.115.220475] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/17/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although many randomized controlled trials (RCTs) have examined the effects of the n-3 (ω-3) fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) on blood pressure (BP) and vascular function, the majority have used doses of EPA+DHA of >3 g/d, which are unlikely to be achieved by dietary manipulation. OBJECTIVE The objective was to examine, by using a retrospective analysis from a multicenter RCT, the impact of recommended EPA+DHA intakes achievable through diet on systolic and diastolic BPs and microvascular function in adults in the United Kingdom. METHODS In a double-blind, placebo-controlled RCT, healthy men and women (n = 312) consumed a control oil or fish oil (FO) providing 0.7 or 1.8 g EPA+DHA/d, in random order, each for 8 wk. Fasting BP and microvascular function (using laser Doppler iontophoresis) were assessed and plasma collected for the quantification of markers of vascular function. Participants were retrospectively genotyped for the endothelial nitric oxide synthase (eNOS) rs1799983 variant. RESULTS No effects of n-3 fatty acid treatment or any treatment × eNOS genotype interactions were evident in the group as a whole for any of the clinical or biochemical outcomes. Assessment of response according to hypertension status at baseline indicated a significant (P = 0.046) FO-induced reduction (mean: 5 mm Hg) in systolic BP, specifically in those with isolated systolic hypertension (n = 31). No dose response was observed. CONCLUSIONS These findings indicate that in adults with isolated systolic hypertension, daily doses of EPA+DHA as low as 0.7 g show clinically meaningful BP reductions, which, at a population level, could be associated with lower cardiovascular disease risk. Confirmation of findings in an RCT in which participants are prospectively recruited on the basis of BP status is required to draw definite conclusions.
Collapse
Affiliation(s)
- Anne M Minihane
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom;
| | - Christopher K Armah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Elizabeth A Miles
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jacqueline M Madden
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Allan B Clark
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Muriel J Caslake
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Bettina M Kofler
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Georg Lietz
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; and
| | - Peter J Curtis
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom; and
| | - Christine M Williams
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research (NIHR) Southampton Biomedical Research Centre at University Hospitals Southampton National Health Service (NHS) Foundation Trust and the University of Southampton, Southampton, United Kingdom
| |
Collapse
|
42
|
Gribble MO, Karimi R, Feingold BJ, Nyland JF, O'Hara TM, Gladyshev MI, Chen CY. Mercury, selenium and fish oils in marine food webs and implications for human health. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM. MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 2016; 96:43-59. [PMID: 26834292 PMCID: PMC4720108 DOI: 10.1017/s0025315415001356] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 05/04/2023]
Abstract
Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change.
Collapse
Affiliation(s)
- Matthew O. Gribble
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Beth J. Feingold
- Department of Environmental Health Sciences, University at Albany School of Public Health, State University of New York, Rensselaer, NY, USA
| | - Jennifer F. Nyland
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Todd M. O'Hara
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Michail I. Gladyshev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Celia Y. Chen
- Department of Biological Sciences – Dartmouth College, Hanover, NH, USA
| |
Collapse
|
43
|
Yang B, Shi MQ, Li ZH, Yang JJ, Li D. Fish, Long-Chain n-3 PUFA and Incidence of Elevated Blood Pressure: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2016; 8:nu8010058. [PMID: 26805877 PMCID: PMC4728669 DOI: 10.3390/nu8010058] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 02/05/2023] Open
Abstract
Results from prospective cohort studies on fish or long-chain (LC) n-3 polyunsaturated fatty acid (PUFA) intake and elevated blood pressure (EBP) are inconsistent. We aimed to investigate the summary effects. Pertinent studies were identified from PubMed and EMBASE database through October 2015. Multivariate-adjusted risk ratios (RRs) for incidence of EBP in the highest verses the bottom category of baseline intake of fish or LC n-3 PUFA were pooled using a random-effects meta-analysis. Over the follow-up ranging from 3 to 20 years, 20,497 EBP events occurred among 56,204 adults from eight prospective cohort studies. The summary RR (SRR) was 0.96 (95% CI: 0.81, 1.14; I² = 44.70%) for fish in four studies, and 0.73 (95% CI: 0.60, 0.89; I² = 75.00%) for LC n-3 PUFA in six studies (three studies for biomarker vs. three studies for diet). Circulating LC n-3 PUFA as biomarker was inversely associated with incidence of EBP (SRR: 0.67; 95% CI: 0.55, 0.83), especially docosahexaenoic acid (SRR: 0.64; 95% CI: 0.45, 0.88), whereas no significant association was found for dietary intake (SRR: 0.80; 95% CI: 0.58, 1.10). The present finding suggests that increased intake of docosahexaenoic acid to improve its circulating levels may benefit primary prevention of EBP.
Collapse
Affiliation(s)
- Bo Yang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Mei-Qi Shi
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China.
| | - Zi-Hao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Jun Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China.
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
44
|
Xie RB, Liao PJ, Yin RX, Hu XJ, Huang J, Wei DX, Li H, Huang F, Yao LM, Pan SL, Yang DZ, Lin WX. Prevalence of hypertension and associated risk factors in Chinese Jing compared with Mulao populations. J Int Med Res 2015; 43:819-33. [PMID: 26475795 DOI: 10.1177/0300060515587579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/26/2015] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE *These authors contributed equally to this work. At present, they work at the Hezhou People's Hospital, Hezhou, China.To retrospectively compare differences in the prevalence of hypertension and associated risk factors between the Chinese Jing and Mulao populations. METHODS Subjects of Jing and Mulao ethnicities were surveyed using stratified randomized sampling. Demography, diet and lifestyle data were collected using standardized questionnaires. Several anthropometric parameters, blood pressure (BP) levels and serum lipid concentrations were obtained. RESULTS Data from 915 Jing and 911 Mulao subjects aged ≥ 35 years were included. Diastolic BP levels and prevalence of hypertension were lower, but prevalence of isolated systolic hypertension was higher, in the Jing compared with the Mulao population. Prevalence of hypertension in the age 60-69 years, body mass index (BMI) > 24 kg/m(2), and smoker subgroups was lower in the Jing compared with the Mulao populations. Prevalence of hypertension correlated with age, cigarette smoking, triglyceride level, waist circumference, sodium intake and total dietary fibre in the Jing population; hypertension prevalence also correlated with age, triglyceride level, BMI, total fat, sodium intake and total dietary fibre in the Mulao population (unconditional logistic regression analyses). CONCLUSIONS Prevalence of hypertension and associated risk factors were different between the two ethnic minorities, which might result from the combined effects of differences in their geographic, dietary, lifestyle, and genetic backgrounds.
Collapse
Affiliation(s)
- Rui-Bin Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Pei-Juan Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xi-Jiang Hu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jian Huang
- Department of General Practice, Jiangping Health Station of Dongxing City, Dongxing, China
| | - Dai-Xun Wei
- The Disease Control and Prevention Centre of Luocheng Mulao Autonomous County, Hechi, China
| | - Hui Li
- Clinical Laboratory of the Affiliated Cancer Hospital, Guangxi Medical University, Nanning, China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Li-Mei Yao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Premedical Sciences, Guangxi Medical University, Nanning, China
| | - De-Zhai Yang
- Department of Molecular Genetics, Medical Scientific Research Centre, Guangxi Medical University, Nanning, China
| | - Wei-Xiong Lin
- Department of Molecular Genetics, Medical Scientific Research Centre, Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Wolfram G, Bechthold A, Boeing H, Ellinger S, Hauner H, Kroke A, Leschik-Bonnet E, Linseisen J, Lorkowski S, Schulze M, Stehle P, Dinter J. Evidence-Based Guideline of the German Nutrition Society: Fat Intake and Prevention of Selected Nutrition-Related Diseases. ANNALS OF NUTRITION AND METABOLISM 2015; 67:141-204. [PMID: 26414007 DOI: 10.1159/000437243] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As nutrition-related chronic diseases have become more and more frequent, the importance of dietary prevention has also increased. Dietary fat plays a major role in human nutrition, and modification of fat and/or fatty acid intake could have a preventive potential. The aim of the guideline of the German Nutrition Society (DGE) was to systematically evaluate the evidence for the prevention of the widespread diseases obesity, type 2 diabetes mellitus, dyslipoproteinaemia, hypertension, metabolic syndrome, coronary heart disease (CHD), stroke, and cancer through the intake of fat or fatty acids. The main results can be summarized as follows: it was concluded with convincing evidence that a reduced intake of total and saturated fat as well as a larger intake of polyunsaturated fatty acids (PUFA) at the expense of saturated fatty acids (SFA) reduces the concentration of total and low-density lipoprotein cholesterol in plasma. Furthermore, there is convincing evidence that a high intake of trans fatty acids increases risk of dyslipoproteinaemia and that a high intake of long-chain polyunsaturated n-3 fatty acids reduces the triglyceride concentration in plasma. A high fat intake increases the risk of obesity with probable evidence when total energy intake is not controlled for (ad libitum diet). When energy intake is controlled for, there is probable evidence for no association between fat intake and risk of obesity. A larger intake of PUFA at the expense of SFA reduces risk of CHD with probable evidence. Furthermore, there is probable evidence that a high intake of long-chain polyunsaturated n-3 fatty acids reduces risk of hypertension and CHD. With probable evidence, a high trans fatty acid intake increases risk of CHD. The practical consequences for current dietary recommendations are described at the end of this article.
Collapse
|
46
|
ω-3 Fatty Acids and Cardiovascular Diseases: Effects, Mechanisms and Dietary Relevance. Int J Mol Sci 2015; 16:22636-61. [PMID: 26393581 PMCID: PMC4613328 DOI: 10.3390/ijms160922636] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
ω-3 fatty acids (n-3 FA) have, since the 1970s, been associated with beneficial health effects. They are, however, prone to lipid peroxidation due to their many double bonds. Lipid peroxidation is a process that may lead to increased oxidative stress, a condition associated with adverse health effects. Recently, conflicting evidence regarding the health benefits of intake of n-3 from seafood or n-3 supplements has emerged. The aim of this review was thus to examine recent literature regarding health aspects of n-3 FA intake from fish or n-3 supplements, and to discuss possible reasons for the conflicting findings. There is a broad consensus that fish and seafood are the optimal sources of n-3 FA and consumption of approximately 2-3 servings per week is recommended. The scientific evidence of benefits from n-3 supplementation has diminished over time, probably due to a general increase in seafood consumption and better pharmacological intervention and acute treatment of patients with cardiovascular diseases (CVD).
Collapse
|
47
|
McCartney DMA, Byrne DG, Turner MJ. Dietary contributors to hypertension in adults reviewed. Ir J Med Sci 2014; 184:81-90. [PMID: 25150713 DOI: 10.1007/s11845-014-1181-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/09/2014] [Indexed: 02/07/2023]
Abstract
Recent national surveys which measured respondents' blood pressure (BP) levels have shown a high prevalence of hypertension amongst the Irish population, with approximately two-thirds of men and over half of women aged 45 years and over affected. Higher prevalence rates are observed with advancing age. Established diet- and lifestyle-related risk factors for hypertension such as high salt intake, high alcohol consumption and physical inactivity are pervasive in Ireland and are believed to contribute significantly to the high national prevalence of this condition. Additional dietary deficits have been implicated in the development of hypertension, however, including low fruit and vegetable intake, low dairy food consumption and low intake of oily fish. Deficiencies of single micro-nutrients such as folate, riboflavin, vitamin C and vitamin D have also been recently recognised as risk factors for hypertension. For each of these factors, there is evidence that the food and nutrient intakes of many Irish adults fall short of the ideal. These dietary and nutritional deficits, when superimposed on Ireland's existing health-subversive behaviours and escalating rates of obesity, constitute a potent constellation of risk factors for hypertension. However, they also represent viable and potentially effective targets for health promotion initiatives. This review aims to describe the main nutritional, dietary and lifestyle contributors to hypertension in Ireland with a view to informing future interventions aimed at alleviating Ireland's burden of hypertensive disease.
Collapse
Affiliation(s)
- D M A McCartney
- School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland,
| | | | | |
Collapse
|
48
|
Abstract
Elevated blood pressure arises from a combination of environmental and genetic factors and the interactions of these factors. A substantial body of evidence from animal studies, epidemiologic studies, meta-analyses, and randomized controlled trials has demonstrated that certain dietary patterns and individual dietary elements play a prominent role in the development of hypertension. Changes in diet can lower blood pressure, prevent the development of hypertension, and reduce the risk of hypertension-related complications. Dietary strategies for the prevention of hypertension include reducing sodium intake, limiting alcohol consumption, increasing potassium intake, and adopting an overall dietary pattern such as the DASH (Dietary Approaches to Stop Hypertension) diet or a Mediterranean diet. In order to reduce the burden of blood pressure-related complications, efforts that focus on environmental and individual behavioral changes that encourage and promote healthier food choices are warranted.
Collapse
|
49
|
Miller PE, Van Elswyk M, Alexander DD. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens 2014; 27:885-96. [PMID: 24610882 PMCID: PMC4054797 DOI: 10.1093/ajh/hpu024] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although a large body of literature has been devoted to examining the relationship between eicosapentaenoic and docosahexaenoic acids (EPA+DHA) and blood pressure, past systematic reviews have been hampered by narrow inclusion criteria and a limited scope of analytical subgroups. In addition, no meta-analysis to date has captured the substantial volume of randomized controlled trials (RCTs) published in the past 2 years. The objective of this meta-analysis was to examine the effect of EPA+DHA, without upper dose limits and including food sources, on blood pressure in RCTs. METHODS Random-effects meta-analyses were used to generate weighted group mean differences and 95% confidence intervals (CIs) between the EPA+DHA group and the placebo group. Analyses were conducted for subgroups defined by key subject or study characteristics. RESULTS Seventy RCTs were included. Compared with placebo, EPA+DHA provision reduced systolic blood pressure (−1.52mm Hg; 95% confidence interval (CI) = −2.25 to −0.79) and diastolic blood pressure (−0.99mm Hg; 95% CI = −1.54 to −0.44) in the meta-analyses of all studies combined. The strongest effects of EPA+DHA were observed among untreated hypertensive subjects (systolic blood pressure = −4.51mm Hg, 95% CI = −6.12 to −2.83; diastolic blood pressure = −3.05mm Hg, 95% CI = −4.35 to −1.74), although blood pressure also was lowered among normotensive subjects (systolic blood pressure = −1.25mm Hg, 95% CI = −2.05 to −0.46; diastolic blood pressure = −0.62mm Hg, 95% CI = −1.22 to −0.02). CONCLUSIONS Overall, available evidence from RCTs indicates that provision of EPA+DHA reduces systolic blood pressure, while provision of ≥2 grams reduces diastolic blood pressure.
Collapse
Affiliation(s)
- Paige E Miller
- Center for Epidemiology, Biostatistics, and Computational Biology, Exponent, Inc, Chicago, Illinois;
| | | | - Dominik D Alexander
- Center for Epidemiology, Biostatistics, and Computational Biology, Exponent, Inc, Boulder, Colorado
| |
Collapse
|
50
|
Shantakumari N, Eldeeb RA, Ibrahim SAM, Sreedharan J, Otoum S. Effect of PUFA on patients with hypertension: a hospital based study. Indian Heart J 2014; 66:408-14. [PMID: 25173198 DOI: 10.1016/j.ihj.2014.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 01/23/2014] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Hypertension affects more than a quarter of the global adult population. Studies conducted worldwide suggest an overall small, yet useful, role of omega-3 PUFAs in reducing blood pressure in hypertensive patients. However there is no substantial data in this regard from population based in Middle East and Asia. OBJECTIVES To determine the effects of (omega-3) PUFA supplementation on the blood pressure of hypertensive patient. To identify if male and female hypertensive patients respond differently to PUFA. To identify if response of hypertensive patients to PUFA varies with the duration of hypertension and co-existence of diabetes/dyslipidemia. MATERIALS AND METHODS This observational study was conducted among hypertensive patients visiting OPD of the Gulf Medical College Hospital, Ajman, UAE, during the period Jan-Dec 2012. A total of 100 hypertensive patients on treatment with their antihypertensive medications, 50 of whom were taking n-3 PUFA supplementation, were followed up for a period of 3 months. Comparisons were drawn between the BP recordings at the time of enrollment in the study and their follow up values 3 months after enrollment. RESULTS There was a statistically significant reduction in both the systolic and diastolic blood pressures after 3 months of PUFA therapy. The BP lowering effect of PUFA was more in males. A statistically significant reduction in BP was noted in non-diabetic patients and patients with long standing hypertension. CONCLUSION Findings of the study suggest that omega-3 PUFA dietary supplements augment the benefits of pharmacotherapy in hypertension.
Collapse
Affiliation(s)
- Nisha Shantakumari
- Asst. Professor, Department of Physiology, Gulf Medical University, Ajman, P.O. Box: 4184, United Arab Emirates.
| | - Rasha Ali Eldeeb
- Asst. Professor, Department of Physiology, Gulf Medical University, Ajman, P.O. Box: 4184, United Arab Emirates
| | | | | | - Sufian Otoum
- College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|