1
|
Padilla-Bórquez DL, Matuz-Flores MG, Hernández-Bello J, Rosas-Rodríguez JA, Turrubiates-Hernández FJ, García-Arellano S, González-Estevez G, Ceja-Galvez HR, Oregon-Romero E, López-Reyes A, Muñoz-Valle JF. Influence of previous COVID-19 exposure and vaccine type (CoronaVac, ChAdOx1 nCov-19 or BNT162b2) on antibody and cytokine (Th1 or Th2) responses. Hum Vaccin Immunother 2024; 20:2394265. [PMID: 39246041 PMCID: PMC11385164 DOI: 10.1080/21645515.2024.2394265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
To achieve global herd immunity, widespread vaccination is the most effective strategy. Vaccines stimulate the immune system, generating cytokines and chemokines, isotype antibodies, and neutralizing antibodies; all these molecules collectively provide a more comprehensive characterization of the immune response post-vaccination. We conducted a longitudinal study in northwestern Mexico, involving 120 individuals before vaccination and after the first dose of the SARS-CoV-2 vaccine, and 46 individuals after their second dose. Our findings reveal that antibody levels stabilize over time; cytokine levels generally increase following the first dose but decrease after the second dose and higher than normal levels in IgG1 and IgG3 concentrations are present. Most of the innate cytokines determined in this study were higher after the first dose of the vaccine. Regardless of previous infection history, this finding suggests that the first dose of the vaccine is crucial and may stimulate immunity by enhancing the innate immune response. Conversely, increased levels of IL-4, indicative of a Th2 response, were found in individuals without prior exposure to the virus and in those vaccinated with CoronaVac. These results suggest that the immune response to COVID-19 vaccines is multi-faceted, with preexisting immunity potentiating a more robust innate response. Vaccine type plays a critical role, with genetic vaccines favoring a Th1 response and inactivated vaccines like CoronaVac skewing toward a Th2 profile.
Collapse
Affiliation(s)
- Diana Lourdes Padilla-Bórquez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Mónica Guadalupe Matuz-Flores
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, México
| | - Francisco Javier Turrubiates-Hernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Guillermo González-Estevez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Hazael Ramiro Ceja-Galvez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| | - Alberto López-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Ciudad de México, México
| | - Jose Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, México
| |
Collapse
|
2
|
Yang J, Wu S, Li X, Wang X, Zhang XS, Hou L. Parameter identifiability of a within-host SARS-CoV-2 epidemic model. Infect Dis Model 2024; 9:975-994. [PMID: 38881537 PMCID: PMC11180336 DOI: 10.1016/j.idm.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Parameter identification involves the estimation of undisclosed parameters within a system based on observed data and mathematical models. In this investigation, we employ DAISY to meticulously examine the structural identifiability of parameters of a within-host SARS-CoV-2 epidemic model, taking into account an array of observable datasets. Furthermore, Monte Carlo simulations are performed to offer a comprehensive practical analysis of model parameters. Lastly, sensitivity analysis is employed to ascertain that decreasing the replication rate of the SARS-CoV-2 virus and curbing the infectious period are the most efficacious measures in alleviating the dissemination of COVID-19 amongst hosts.
Collapse
Affiliation(s)
- Junyuan Yang
- Complex Systems Research Center, Shanxi University, Taiyuan, 030006, China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006, China
| | - Sijin Wu
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Taiyuan, 030006, China
| | - Xuezhi Li
- School of Mathematics and Science, Henan Normal University, Xinxiang, 453000, China
| | - Xiaoyan Wang
- School of Information, Shanxi University of Finance and Economics, Taiyuan, 030006, China
| | - Xue-Song Zhang
- Agriculture and Animal Husbandry Technology Promotion Center of Xingan League, Xingan League, 137400, China
| | - Lu Hou
- Agriculture and Animal Husbandry Technology Promotion Center of Xingan League, Xingan League, 137400, China
| |
Collapse
|
3
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Boix-Besora A, Gòdia F, Cervera L. Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients' Sera. Vaccines (Basel) 2023; 11:1641. [PMID: 38005972 PMCID: PMC10675557 DOI: 10.3390/vaccines11111641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.
Collapse
Affiliation(s)
- Arnau Boix-Besora
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | |
Collapse
|
5
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
6
|
Rostami-Far Z, Rahmani K, Mansouri K, Khadem Erfan MB, Shaveisi-Zadeh F, Nikkhoo B. Genetic Regulation of Interleukin-6 and Interleukin-10 in COVID-19 Infection. Rep Biochem Mol Biol 2023; 12:284-293. [PMID: 38317818 PMCID: PMC10838592 DOI: 10.61186/rbmb.12.2.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2024]
Abstract
Background The role and regulation mechanisms of the interleukin-6 and 10 (IL6 and IL-10) serum levels and the interaction between CD4+ and CD8+ lymphocytes with SARS-COV-2 IgM and IgG in the context of COVID-19 infection are not fully understood. Methods This study was conducted on 45 COVID-19 patients and 45 healthy individuals. The IL-6 and IL-10 promoter methylation, IL-6 and IL-10 gene expression, SARS-COV-2 IgM, and IgG antibodies and CD4+ and CD8+ lymphocytes were studied by qMSP-PCR, Real-time PCR, ELISA, and flow cytometry techniques, respectively. Results The male ratio and mean age of critically ill patients' group were significantly higher in compared to controls (P< 0.05). IL-6 gene expression and serum levels were significantly increased in patients compared to controls (P=0.002, 0.001), but IL-6 promoter methylation was not significantly decreased in patients (P=0.835). The IL-10 promoter methylation and expression were not different between cases and controls (0.326, 0.455), but serum IL-10 levels were higher in patients (P< 0.001). The CD4+ and CD8+ lymphocytes decreased (P< 0.001) and mean SARS-COV-2 IgG increased (P=0.002) in the patients compared to controls. Conclusions The COVID-19 disease result in severe complications in men and elderly. The serum levels of interleukin-6 and 10 increases in COVID-19 infection, and the gene expression of these two interleukins underlying in this increase. The serum levels of IL-6, IL-10 and SARS-COV-2 IgG as well as CD4+ and CD8+ lymphocyte counts should be investigated to monitor patients and predict the course of disease.
Collapse
Affiliation(s)
- Zahra Rostami-Far
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan university of medical science, Sanandaj, Iran.
| | - Khaled Rahmani
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Bagher Khadem Erfan
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Farhad Shaveisi-Zadeh
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahram Nikkhoo
- Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
7
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bodie NM, Hashimoto R, Connolly D, Chu J, Takayama K, Uhal BD. Design of a chimeric ACE-2/Fc-silent fusion protein with ultrahigh affinity and neutralizing capacity for SARS-CoV-2 variants. Antib Ther 2023; 6:59-74. [PMID: 36741194 PMCID: PMC9889962 DOI: 10.1093/abt/tbad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Background As SARS-CoV-2 continues to mutate into Variants of Concern (VOC), there is growing and urgent need to develop effective antivirals to combat COVID-19. Monoclonal antibodies developed earlier are no longer capable of effectively neutralizing currently active VOCs. This report describes the design of variant-agnostic chimeric molecules consisting of an Angiotensin-Converting Enzyme 2 (ACE-2) domain mutated to retain ultrahigh affinity binding to a wide variety of SARS-CoV-2 variants, coupled to an Fc-silent immunoglobulin domain that eliminates antibody-dependent enhancement and extends biological half-life. Methods Molecular modeling, Surrogate Viral Neutralization tests (sVNTs) and infection studies of human airway organoid cultures were performed with synthetic chimeras, SARS-CoV-2 spike protein mimics and SARS-CoV-2 Omicron variants B.1.1.214, BA.1, BA.2 and BA.5. Results ACE-2 mutations L27, V34 and E90 resulted in ultrahigh affinity binding of the LVE-ACE-2 domain to the widest variety of VOCs, with KDs of 93 pM and 73 pM for binding to the Alpha B1.1.7 and Omicron B.1.1.529 variants, and notably, 78fM, 133fM and 1.81pM affinities to the Omicron BA.2, BA2.75 and BQ.1.1 subvariants, respectively. sVNT assays revealed titers of ≥4.9 ng/ml, for neutralization of recombinant viral proteins corresponding to the Alpha, Delta and Omicron variants. The values above were obtained with LVE-ACE-2/mAB chimeras containing the FcRn-binding Y-T-E sequence which extends biological half-life 3-4-fold. Conclusions The ACE-2-mutant/Fc silent fusion proteins described have ultrahigh affinity to a wide variety of SARS-CoV-2 variants including Omicron. It is proposed that these chimeric ACE-2/mABs will constitute variant-agnostic and cost-effective prophylactics against SARS-CoV-2, particularly when administered nasally.
Collapse
Affiliation(s)
- Neil M Bodie
- Paradigm Immunotherapeutics Inc., Monrovia, CA 91016, USA
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan
| | - David Connolly
- College of Osteopathic Medicine, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer Chu
- Innovation Lab, ACROBiosystems, 1 Innovation Way, Newark, DE 19711, USA
| | - Kazuo Takayama
- To whom correspondence should be addressed. Bruce D. Uhal, Department of Physiology, Michigan State University, 3197 Biomedical and Physical Sciences Building, 567 Wilson Road, East Lansing, MI 48824, USA. and Kazuo Takayama, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan.
| | - Bruce D Uhal
- To whom correspondence should be addressed. Bruce D. Uhal, Department of Physiology, Michigan State University, 3197 Biomedical and Physical Sciences Building, 567 Wilson Road, East Lansing, MI 48824, USA. and Kazuo Takayama, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 6068507, Japan.
| |
Collapse
|
9
|
Matveeva O, Nechipurenko Y, Lagutkin D, Yegorov YE, Kzhyshkowska J. SARS-CoV-2 infection of phagocytic immune cells and COVID-19 pathology: Antibody-dependent as well as independent cell entry. Front Immunol 2022; 13:1050478. [PMID: 36532011 PMCID: PMC9751203 DOI: 10.3389/fimmu.2022.1050478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Our review summarizes the evidence that COVID-19 can be complicated by SARS-CoV-2 infection of immune cells. This evidence is widespread and accumulating at an increasing rate. Research teams from around the world, studying primary and established cell cultures, animal models, and analyzing autopsy material from COVID-19 deceased patients, are seeing the same thing, namely that some immune cells are infected or capable of being infected with the virus. Human cells most vulnerable to infection include both professional phagocytes, such as monocytes, macrophages, and dendritic cells, as well as nonprofessional phagocytes, such as B-cells. Convincing evidence has accumulated to suggest that the virus can infect monocytes and macrophages, while data on infection of dendritic cells and B-cells are still scarce. Viral infection of immune cells can occur directly through cell receptors, but it can also be mediated or enhanced by antibodies through the Fc gamma receptors of phagocytic cells. Antibody-dependent enhancement (ADE) most likely occurs during the primary encounter with the pathogen through the first COVID-19 infection rather than during the second encounter, which is characteristic of ADE caused by other viruses. Highly fucosylated antibodies of vaccinees seems to be incapable of causing ADE, whereas afucosylated antibodies of persons with acute primary infection or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to an abortive infection followed by host cell pyroptosis, and a massive inflammatory cascade. This scenario has the most experimental evidence. Other scenarios are also possible, for which the evidence base is not yet as extensive, namely productive infection of immune cells or trans-infection of other non-immune permissive cells. The chance of a latent infection cannot be ruled out either.
Collapse
Affiliation(s)
- Olga Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Denis Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases under the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk, Russia
| |
Collapse
|
10
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, Guan X, Qiu HJ, Li Y. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses 2022; 14:v14081739. [PMID: 36016361 PMCID: PMC9412366 DOI: 10.3390/v14081739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kehui Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangyu Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (Y.L.)
| |
Collapse
|
12
|
High viral loads: what drives fatal cases of COVID-19 in vaccinees? - an autopsy study. Mod Pathol 2022; 35:1013-1021. [PMID: 35365771 PMCID: PMC8974809 DOI: 10.1038/s41379-022-01069-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023]
Abstract
The rate of SARS-CoV-2 infections in vaccinees has become a relevant serious issue. This study aimed to determine the causes of death, histological organ alteration, and viral spread in relation to demographic, clinical-pathological, viral variants, and vaccine types for deceased individuals with proven SARS-CoV-2 infection after vaccination who died between January and November 2021. Twenty-nine consecutively collected cases were analyzed and compared to 141 nonvaccinated control cases. Autopsies were performed on 16 partially and 13 fully vaccinated individuals. Most patients were elderly and suffered from several relevant comorbidities. Real-time RT-PCR (RT-qPCR) identified a significantly increased rate of generalized viral dissemination within organ systems in vaccinated cases versus nonvaccinated cases (45% vs. 16%, respectively; P = 0.008) mainly with Ct-values of higher than 25 in non-respiratory samples. However, vaccinated cases also showed high viral loads, reaching Ct-values below 10, especially in the upper airways and lungs. This was accompanied by high rates of pulmonal bacterial or mycotic superinfections and the occurrence of immunocompromising factors, such as malignancies, immunosuppressive drug intake, or decreased immunoglobulin levels. All these findings were particularly accentuated in partially vaccinated patients compared to fully vaccinated individuals. The virus dissemination observed in our case study may indicate that patients with an impaired immune system have a decreased ability to eliminate the virus. However, the potential role of antibody-dependent enhancement must also be ruled out in future studies. Fatal cases of COVID-19 in vaccinees were rare and often associated with severe comorbidities or other immunosuppressive conditions.
Collapse
|
13
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
14
|
Glab-ampai K, Kaewchim K, Thavorasak T, Saenlom T, Thepsawat W, Mahasongkram K, Thueng-In K, Sookrung N, Chaicumpa W, Chulanetra M. Targeting Emerging RNA Viruses by Engineered Human Superantibody to Hepatitis C Virus RNA-Dependent RNA Polymerase. Front Microbiol 2022; 13:926929. [PMID: 35935185 PMCID: PMC9355540 DOI: 10.3389/fmicb.2022.926929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRp) is a unique and highly conserved enzyme across all members of the RNA virus superfamilies. Besides, humans do not have a homolog of this protein. Therefore, the RdRp is an attractive target for a broadly effective therapeutic agent against RNA viruses. In this study, a formerly generated cell-penetrating human single-chain antibody variable fragment (superantibody) to a conformational epitope of hepatitis C virus (HCV) RdRp, which inhibited the polymerase activity leading to the HCV replication inhibition and the host innate immunity restoration, was tested against emerging/reemerging RNA viruses. The superantibody could inhibit the replication of the other members of the Flaviviridae (DENV serotypes 1−4, ZIKV, and JEV), Picornaviridae (genus Enterovirus: EV71, CVA16), and Coronaviridae (genus Alphacoronavirus: PEDV, and genus Betacoronavirus: SARS-CoV-2 (Wuhan wild-type and the variants of concern), in a dose-dependent manner, as demonstrated by the reduction of intracellular viral RNAs and numbers of the released infectious particles. Computerized simulation indicated that the superantibody formed contact interfaces with many residues at the back of the thumb domain (thumb II site, T2) of DENV, ZIKV, JEV, EV71, and CVA16 and fingers and thumb domains of the HCV and coronaviruses (PEDV and SARS-CoV-2). The superantibody binding may cause allosteric change in the spatial conformation of the enzyme and disrupt the catalytic activity, leading to replication inhibition. Although the speculated molecular mechanism of the superantibody needs experimental support, existing data indicate that the superantibody has high potential as a non-chemical broadly effective anti-positive sense-RNA virus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Techit Thavorasak
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Translational Medicine Program, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Monrat Chulanetra,
| |
Collapse
|
15
|
Glab-ampai K, Kaewchim K, Saenlom T, Thepsawat W, Mahasongkram K, Sookrung N, Chaicumpa W, Chulanetra M. Human Superantibodies to 3CL pro Inhibit Replication of SARS-CoV-2 across Variants. Int J Mol Sci 2022; 23:ijms23126587. [PMID: 35743031 PMCID: PMC9223907 DOI: 10.3390/ijms23126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, β, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent.
Collapse
Affiliation(s)
- Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kanasap Kaewchim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.G.-a.); (K.K.); (T.S.); (W.T.); (K.M.); (N.S.); (W.C.)
- Correspondence: ; Tel.: +662-419-2934
| |
Collapse
|
16
|
Farouq MAH, Acevedo R, Ferro VA, Mulheran PA, Al Qaraghuli MM. The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. Int J Mol Sci 2022; 23:6078. [PMID: 35682757 PMCID: PMC9181534 DOI: 10.3390/ijms23116078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Antibodies play a crucial role in the immune response, in fighting off pathogens as well as helping create strong immunological memory. Antibody-dependent enhancement (ADE) occurs when non-neutralising antibodies recognise and bind to a pathogen, but are unable to prevent infection, and is widely known and is reported as occurring in infection caused by several viruses. This narrative review explores the ADE phenomenon, its occurrence in viral infections and evaluates its role in infection by SARS-CoV-2 virus, which causes coronavirus disease 2019 (COVID-19). As of yet, there is no clear evidence of ADE in SARS-CoV-2, though this area is still subject to further study.
Collapse
Affiliation(s)
- Mohammed A. H. Farouq
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Reinaldo Acevedo
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
| | - Paul A. Mulheran
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
| | - Mohammed M. Al Qaraghuli
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK; (P.A.M.); (M.M.A.Q.)
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK;
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| |
Collapse
|
17
|
Ahmad R, Haque M. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines (Basel) 2022; 10:vaccines10040614. [PMID: 35455363 PMCID: PMC9026643 DOI: 10.3390/vaccines10040614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The world has been stricken mentally, physically, and economically by the COVID-19 virus. However, while SARS-CoV-2 viral infection results in mild flu-like symptoms in most patients, a number of those infected develop severe illness. These patients require hospitalization and intensive care. The severe disease can spiral downwards with eventual severe damage to the lungs and failure of multiple organs, leading to the individual’s demise. It is necessary to identify those who are developing a severe form of illness to provide early management. Therefore, it is crucial to learn about the mechanisms and chemical mediators that lead to critical conditions in SARS-CoV-2 infection. This paper reviews studies regarding the individual chemical mediators, pathways, and means that contribute to worsening health conditions in SARS-CoV-2 infection. Abstract A significant part of the world population has been affected by the devastating SARS-CoV-2 infection. It has deleterious effects on mental and physical health and global economic conditions. Evidence suggests that the pathogenesis of SARS-CoV-2 infection may result in immunopathology such as neutrophilia, lymphopenia, decreased response of type I interferon, monocyte, and macrophage dysregulation. Even though most individuals infected with the SARS-CoV-2 virus suffer mild symptoms similar to flu, severe illness develops in some cases, including dysfunction of multiple organs. Excessive production of different inflammatory cytokines leads to a cytokine storm in COVID-19 infection. The large quantities of inflammatory cytokines trigger several inflammation pathways through tissue cell and immune cell receptors. Such mechanisms eventually lead to complications such as acute respiratory distress syndrome, intravascular coagulation, capillary leak syndrome, failure of multiple organs, and, in severe cases, death. Thus, to devise an effective management plan for SARS-CoV-2 infection, it is necessary to comprehend the start and pathways of signaling for the SARS-CoV-2 infection-induced cytokine storm. This article discusses the current findings of SARS-CoV-2 related to immunopathology, the different paths of signaling and other cytokines that result in a cytokine storm, and biomarkers that can act as early signs of warning for severe illness. A detailed understanding of the cytokine storm may aid in the development of effective means for controlling the disease’s immunopathology. In addition, noting the biomarkers and pathophysiology of severe SARS-CoV-2 infection as early warning signs can help prevent severe complications.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Plot No 4 Road 8/9, Sector-1, Dhaka 1230, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
18
|
Tokiya M, Hara M, Matsumoto A, Ashenagar MS, Nakano T, Hirota Y. Association of Vaccine Confidence and Hesitancy in Three Phases of COVID-19 Vaccine Approval and Introduction in Japan. Vaccines (Basel) 2022; 10:vaccines10030423. [PMID: 35335055 PMCID: PMC8954745 DOI: 10.3390/vaccines10030423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding vaccine hesitancy, considering the target region and phase, is an urgent issue to quell the coronavirus disease (COVID-19) pandemic. This study aimed to monitor COVID-19 vaccine hesitancy in the Japanese population during the three phases of vaccine approval and introduction, and evaluate the association of vaccine hesitancy with vaccine confidence and literacy. We conducted web-based cross-sectional surveys during the three phases of COVID-19 vaccine introduction: January 2021, before approval; June, start of vaccination of the elderly; and September, when about 70% of the target population was vaccinated with at least one dose. There were 7210 participants, aged 20−80 years. We evaluated the association of vaccine hesitancy with vaccine confidence and literacy in the three phases using multivariate logistic regression analysis. The proportion of hesitancy in January, June, and September was 17.5%, 65.3%, and 19.4%, respectively. In any phase, lower vaccine confidence and literacy showed a higher adjusted odds ratio (AOR) of vaccine hesitancy in most items (AOR > 1, p < 0.001). Vaccine hesitancy in June had a different trend in perception of COVID-19 compared to that in the January and September surveys. The findings suggested that hesitancy increases transiently during vaccination introduction phases, and changes as the vaccination program progressed or waves of epidemic. Careful risk communication to increase vaccine confidence and literacy is essential to reduce vaccine hesitancy, especially in the introduction phase.
Collapse
Affiliation(s)
- Mikiko Tokiya
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (A.M.); (M.S.A.)
- Correspondence: ; Tel.: +81-952-34-2289
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (A.M.); (M.S.A.)
| | - Mohammad Said Ashenagar
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan; (A.M.); (M.S.A.)
| | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan;
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, Medical Co. LTA (SOUSEIKAI), Higashi-ku, Fukuoka 813-0017, Japan;
| |
Collapse
|
19
|
Muñoz-Valle JF, Sánchez-Zuno GA, Matuz-Flores MG, Hernández-Ramírez CO, Díaz-Pérez SA, Baños-Hernández CJ, Turrubiates-Hernández FJ, Vega-Magaña AN, Hernández-Bello J. Efficacy and Safety of Heterologous Booster Vaccination after Ad5-nCoV (CanSino Biologics) Vaccine: A Preliminary Descriptive Study. Vaccines (Basel) 2022; 10:vaccines10030400. [PMID: 35335032 PMCID: PMC8954152 DOI: 10.3390/vaccines10030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Several studies have reported the benefits and safety of heterologous vaccination among different approved vaccines; however, there are no specific reports on the effects of vaccination with the Ad5-nCoV and other vaccines of the same or different technologies. In the present study, we evaluated the neutralizing antibodies percentage against SARS-CoV-2 in Mexican patients immunized with the Ad5-nCoV vaccine six months after its application. Moreover, the effect of the heterologous vaccination with the Ad5-nCoV vaccine and a booster dose of ChAdOx1-S-Nov-19, Ad26.COV2.S, BNT162b2, or mRNA-127 were determined. Our results suggest that a heterologous regimen of one dose with Ad5-nCoV vaccine followed by a booster dose of a different vaccine is safe and induces a stronger humoral immune response.
Collapse
|
20
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Srivastav AK, Steindorf V, Stollenwerk N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev 2022; 40:65-92. [PMID: 35219611 PMCID: PMC8845267 DOI: 10.1016/j.plrev.2022.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.
Collapse
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Konstantin B Blyuss
- VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Medina Allende s/n, Córdoba, 5000, Argentina
| | - Bob W Kooi
- University of Sussex, Department of Mathematics, Falmer, Brighton, UK
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
| |
Collapse
|
21
|
Kountouras J, Gialamprinou D, Kotronis G, Papaefthymiou A, Economidou E, Soteriades ES, Vardaka E, Chatzopoulos D, Tzitiridou-Chatzopoulou M, Papazoglou DD, Doulberis M. Ofeleein i mi Vlaptin-Volume II: Immunity Following Infection or mRNA Vaccination, Drug Therapies and Non-Pharmacological Management at Post-Two Years SARS-CoV-2 Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:309. [PMID: 35208631 PMCID: PMC8874934 DOI: 10.3390/medicina58020309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
The persistence of the coronavirus disease 2019 (COVID-19) pandemic has triggered research into limiting transmission, morbidity and mortality, thus warranting a comprehensive approach to guide balanced healthcare policies with respect to people's physical and mental health. The mainstay priority during COVID-19 is to achieve widespread immunity, which could be established through natural contact or vaccination. Deep knowledge of the immune response combined with recent specific data indicates the potential inferiority of induced immunity against infection. Moreover, the prevention of transmission has been founded on general non-pharmacological measures of protection, albeit debate exists considering their efficacy and, among other issues, their socio-psychological burden. The second line of defense is engaged after infection and is supported by a plethora of studied agents, such as antibiotics, steroids and non-steroid anti-inflammatory drugs, antiviral medications and other biological agents that have been proposed, though variability in terms of benefits and adverse events has not allowed distinct solutions, albeit certain treatments might have a role in prevention and/or treatment of the disease. This narrative review summarizes the existing literature on the advantages and weaknesses of current COVID-19 management measures, thus underlining the necessity of acting based on the classical principle of "ofeleein i mi vlaptin", that is, to help or not to harm.
Collapse
Affiliation(s)
- Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
| | - Dimitra Gialamprinou
- Second Neonatal Department and NICU, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Central Macedonia, Greece;
| | - Georgios Kotronis
- Department of Internal Medicine, General Hospital Aghios Pavlos of Thessaloniki, 55134 Thessaloniki, Central Macedonia, Greece;
| | - Apostolis Papaefthymiou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Department of Gastroenterology, University Hospital of Larisa, Mezourlo, 41110 Larisa, Thessaly, Greece
| | - Eleftheria Economidou
- School of Economics and Management, Healthcare Management Program, Open University of Cyprus, Nicosia 12794, Cyprus; (E.E.); (E.S.S.)
| | - Elpidoforos S. Soteriades
- School of Economics and Management, Healthcare Management Program, Open University of Cyprus, Nicosia 12794, Cyprus; (E.E.); (E.S.S.)
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Environmental and Occupational Medicine and Epidemiology (EOME), Boston, MA 02115, USA
| | - Elisabeth Vardaka
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Central Macedonia, Greece
| | - Dimitrios Chatzopoulos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Central Macedonia, Greece
| | - Dimitrios David Papazoglou
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54652 Thessaloniki, Central Macedonia, Greece; (A.P.); (E.V.); (D.C.); (M.T.-C.); (M.D.)
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| |
Collapse
|
22
|
Novel Neutralizing Epitope of PEDV S1 Protein Identified by IgM Monoclonal Antibody. Viruses 2022; 14:v14010125. [PMID: 35062329 PMCID: PMC8778753 DOI: 10.3390/v14010125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes devastating enteric disease that inflicts huge economic damage on the swine industry worldwide. A safe and highly effective PEDV vaccine that contains only the virus-neutralizing epitopes (not enhancing epitope), as well as a ready-to-use PEDV neutralizing antibody for the passive immunization of PEDV vulnerable piglets (during the first week of life) are needed, particularly for PEDV-endemic farms. In this study, we generated monoclonal antibodies (mAbs) to the recombinant S1 domain of PEDV spike (S) protein and tested their PEDV neutralizing activity by CPE-reduction assay. The mAb secreted by one hybrodoma clone (A3), that also bound to the native S1 counterpart from PEDV-infected cells (tested by combined co-immunoprecipitation and Western blotting), neutralized PEDV infectivity. Epitope of the neutralizing mAb (mAbA3) locates in the S1A subdomain of the spike protein, as identified by phage mimotope search and multiple sequence alignment, and peptide binding-ELISA. The newly identified epitope is shared by PEDV G1 and G2 strains and other alphacoronaviruses. In summary, mAbA3 may be useful as a ready-to-use antibody for passive immunization of PEDV-susceptible piglets, while the novel neutralizing epitope, together with other, previously known protective epitopes, have potential as an immunogenic cocktail for a safe, next-generation PEDV vaccine.
Collapse
|
23
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|