1
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2025; 30:1034-1046. [PMID: 39237722 PMCID: PMC11835755 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
2
|
Kamsrijai U, Charoensup R, Jaidee W, Hawiset T, Thaweethee-Sukjai B, Praman S. Cannabidiol/cannabidiolic acid-rich hemp (Cannabis sativa L.) extract attenuates cognitive impairments and glial activations in rats exposed to chronic stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119113. [PMID: 39551282 DOI: 10.1016/j.jep.2024.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemp (Cannabis sativa L.) is increasingly being recognized for its medicinal properties beside utilizing it for food, oil, and textile fibers. The high level of cannabidiol (CBD) content in hemp's flowers shows promising neuroprotective properties without causing psychotomimetic or addictive effects. Recently, products containing CBD and its precursor, cannabidiolic acid (CBDA), have been used to treat stress-related cognitive impairment. However, the therapeutic potential of hemp extract remains inadequately explored. AIM OF THE STUDY To investigate the effect of CBD/CBDA-rich hemp extract on learning and memory, neuroendocrine alterations, and hippocampal neuropathological changes in the chronic restraint stress model. MATERIALS AND METHODS Chronic restraint stress (CRS) was induced in male Wistar rats by immobilizing them in a restrainer for 6 h per day for 21 consecutive days. CBD/CBDA-rich hemp extract (10 and 30 mg/kg, intraperitoneal injection) was administered daily, 1 h before restraint. After the last day of CRS, behavioral tests for cognition were conducted using the Y-maze and object recognition tests. Serum corticosterone (CORT) levels were measured by ELISA. Histopathological changes, neuronal density, and the activation of microglia and astrocytes were visualized using cresyl violet and immunohistochemical staining. RESULTS A high dose of CBD/CBDA-rich hemp extract effectively ameliorated CRS-induced cognitive impairment and reversed HPA axis hyperactivity in CRS rats by reducing CORT levels and adrenal gland weight. Additionally, CBD/CBDA-rich hemp extract protected CRS-induced damage to hippocampal neurons. Further analysis showed that CBD/CBDA-rich hemp extract reduced specific markers of microglial activation (ionized calcium-binding adaptor molecule-1, Iba-1) and astrocytic structural protein (glial fibrillary acidic protein, GFAP) in CRS rats. CONCLUSION CBD/CBDA-rich hemp extracts remarkably reversed the stress-induced behavioral perturbations and hippocampal damage, suggesting its ameliorative effect on stress response.
Collapse
Affiliation(s)
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Integrative Medicine, Major of Applied Thai Traditional Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Wuttichai Jaidee
- Medicinal Plants Innovation Center of Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
3
|
Kovarova V, Bordes J, Mitra S, Narayan S, Springer M, Brix LM, Deussing JM, Schmidt MV. Deep phenotyping reveals CRH and FKBP51-dependent behavioral profiles following chronic social stress exposure in male mice. Neuropsychopharmacology 2025; 50:556-567. [PMID: 39438757 PMCID: PMC11736030 DOI: 10.1038/s41386-024-02008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The co-chaperone FKBP51, encoded by FKBP5 gene, is recognized as a psychiatric risk factor for anxiety and depressive disorders due to its crucial role in the stress response. Another key modulator in stress response regulation is the corticotropin releasing hormone (CRH), which is co-expressed with FKBP51 in many stress-relevant brain-regions and cell-types. Together, they intricately influence the balance of the hypothalamic-pituitary-adrenal (HPA) axis, one of the primary stress response systems. Previous research underscores the potential moderating effects these genes have on the regulation of the stressful life events towards the vulnerability of major depressive disorder (MDD). However, the specific function of FKBP51 in CRH-expressing neurons remains largely unexplored. Here, through deep behavioral phenotyping, we reveal heightened stress effects in mice lacking FKBP51 in CRH co-expressing neurons (CRHFKBP5-/-), particularly evident in social contexts. Our findings highlight the importance of considering cell-type specificity and context in comprehending stress responses and advocate for the utilization of machine-learning-driven phenotyping of mouse models. By elucidating these intricacies, we lay down the groundwork for personalized interventions aimed at enhancing stress resilience and individual well-being.
Collapse
Affiliation(s)
- Veronika Kovarova
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Shiladitya Mitra
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Margherita Springer
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea Maria Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
4
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025. [PMID: 39841560 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S S Tofani
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome, University College Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| |
Collapse
|
5
|
Buoso E, Masi M, Limosani RV, Oliviero C, Saeed S, Iulini M, Passoni FC, Racchi M, Corsini E. Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu. J Xenobiot 2025; 15:13. [PMID: 39846545 PMCID: PMC11755641 DOI: 10.3390/jox15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/22/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic substances that are able to interfere with hormonal systems and alter their physiological signaling. EDCs have been recognized as a public health issue due to their widespread use, environmental persistence and the potential levels of long-term exposure with implications in multiple pathological conditions. Their reported adverse effects pose critical concerns about their use, warranting their strict regulation. This is the case of bisphenol A (BPA), a well-known EDC whose tolerable daily intake (TDI) was re-evaluated in 2023 by the European Food Safety Authority (EFSA), and the immune system has been identified as the most sensitive to BPA exposure. Increasing scientific evidence indicates that EDCs can interfere with several hormone receptors, pathways and interacting proteins, resulting in a complex, cell context-dependent response that may differ among tissues. In this regard, the neuronal and immune systems are important targets of hormonal signaling and are now emerging as critical players in endocrine disruption. Here, we use BPA and its analogs as proof-of-concept EDCs to address their detrimental effects on the immune and nervous systems and to highlight complex interrelationships within the immune-neuroendocrine network (INEN). Finally, we propose that Receptor for Activated C Kinase 1 (RACK1), an important target for EDCs and a valuable screening tool, could serve as a central hub in our toxicology model to explain bisphenol-mediated adverse effects on the INEN.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02215, USA
| | - Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy;
| | - Roberta Valeria Limosani
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Chiara Oliviero
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Sabrina Saeed
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Francesca Carlotta Passoni
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy; (R.V.L.); (C.O.); (S.S.); (M.R.)
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Science, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.I.); (F.C.P.); (E.C.)
| |
Collapse
|
6
|
Lee S, Kim JH, Kim H, Kim SH, Park SS, Hong CW, Kwon KT, Lee SH, Kim KS, Choi H, Kim JB, Kim DJ. Investigating the effect of mindfulness training for stress management in military training: the relationship between the autonomic nervous system and emotional regulation. BMC Psychol 2025; 13:13. [PMID: 39773484 PMCID: PMC11706002 DOI: 10.1186/s40359-024-02322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Military personnel face an increased risk of developing mental disorders owing to the stressful environments they encounter. Effective stress management strategies are crucial to mitigate this risk. Mindfulness training (MT) is promising as a stress management approach in such demanding settings. This study uses a quantitative approach to investigate the impact of MT on the relationship between the autonomic nervous system (ANS) and emotional regulation. METHODS The study evaluated the effectiveness of MT in reducing stress among 86 military personnel. Participants were divided into two groups: MT (n = 42) and non-MT (n = 38). The study compared the two groups using measures of heart rate variability (HRV), a reliable indicator of ANS activity. RESULTS The MT group exhibited a significant increase in HRV (14.4%, p = 0.001) and alpha asymmetry (AA) in the frontal lobe (45.7%, p < 0.001) compared to the non-MT group. Notably, the MT group achieved significantly higher scores on the parachute landing fall (PLF) training performance (p < 0.001). These improvements in HRV, AA, and PLF performance were strongly correlated. Furthermore, AA fully mediated the relationship between HRV and PLF training performance. CONCLUSIONS The findings suggest that MT has a positive impact on stress resilience, potentially by mitigating anxiety and attention deficits induced by extreme stressors. These positive effects are facilitated by concurrent modulation of the frontal cortex and autonomic nervous system. Our findings provide insight into the neural mechanisms behind MT-induced stress reduction from the perspective of neuromodulation.
Collapse
Affiliation(s)
- Seho Lee
- Department of Artificial Intelligence, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
- Department of AI Convergence, University of Ulsan, 93, Daehak-ro, Nam-gu, 44610, Ulsan, Republic of Korea
| | - Jin Hyung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Sung Ha Kim
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Sung Soo Park
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Chang Woo Hong
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Ki Tae Kwon
- Chaplaincy, Capital Corps of ROK Army, 132, Bisan-dong, Dongan-gu, Anyang-si, Republic of Korea
| | - Seung Hun Lee
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Kyoung Soo Kim
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Hoon Choi
- Department of Doctrine Development, Army Consolidated Administrative School, ROK Army, 70, Yangjeongjukchon-ro, Yeongdong-gun, Chungcheongbuk-do, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Dong-Joo Kim
- Department of Artificial Intelligence, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
- Department of Brain and Cognitive Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
- Department of Neurology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Maula MI, Ammarullah MI, Nugwita CM, Faisal MS, Afif IY, Husaini FA, Lamura MDP, Jamari J, Winarni TI. Weighted Vest Combined With Vibrotactile Stimulations Decrease the Sympathetic Activity: A Repeated Measures Study. Health Sci Rep 2024; 7:e70194. [PMID: 39540026 PMCID: PMC11558260 DOI: 10.1002/hsr2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Background and Aims Mental and neurological disorders are a growing global concern, further intensified by the COVID-19 pandemic. Stress management techniques, such as deep pressure therapy, have gained attention, with weighted vests commonly used for anxiety relief. However, there is limited scientific evidence supporting their efficacy. This study aimed to rigorously assess the effectiveness of a weighted vest incorporating vibrotactile stimulation in reducing anxiety by measuring physiological indicators-pulse rate and skin conductance (SC)-as well as subjective comfort ratings. Methods A total of 30 final-semester college students participated in the study. Participants wore a vibrotactile-weighted vest, and both pulse rate and skin conductance (SC) were measured to gauge anxiety levels. Additionally, participants rated their comfort using a Comfort Rating Scale (CRS). Changes in pulse rate and SC were statistically analyzed, and effect sizes (Cohen's d) were calculated to assess the magnitude of the intervention's impact. Results The weighted vest with vibrotactile stimulation resulted in a significant reduction in both pulse rate (dpulse = 0.23-0.62) and SC (dsc = 0.32-0.66), indicating a small to medium effect size in anxiety reduction. Subjective evaluations of the vest using the CRS revealed low scores on discomfort-related items, with participants rating unfavorable statements between 1.5/10 and 4.6/10, suggesting overall comfort during use. Conclusion This study provides compelling evidence that vibrotactile-weighted vests effectively reduce anxiety, as indicated by both physiological measures and subjective comfort ratings. The findings support the potential of this intervention as a formal therapeutic tool for stress and anxiety reduction. Further research may explore long-term effects and broader applications in clinical settings.
Collapse
Affiliation(s)
- Mohamad Izzur Maula
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
- Department of Manufacturing Engineering TechnologyAkademi Inovasi IndonesiaSalatigaCentral JavaIndonesia
| | - Muhammad Imam Ammarullah
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - Chandra Maulana Nugwita
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - Muhammad Sultan Faisal
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - Ilham Yustar Afif
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas Muhammadiyah SemarangSemarangCentral JavaIndonesia
| | - Farhan Ali Husaini
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - M. Danny Pratama Lamura
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - Jamari Jamari
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Mechanical Engineering, Faculty of EngineeringUniversitas DiponegoroSemarangIndonesia
| | - Tri Indah Winarni
- Undip Biomechanics Engineering & Research Centre (UBM‐ERC)Universitas DiponegoroSemarangCentral JavaIndonesia
- Department of Anatomy, Faculty of MedicineUniversitas DiponegoroSemarangCentral JavaIndonesia
- Center for Biomedical Research (CEBIOR), Faculty of MedicineUniversitas DiponegoroSemarangCentral JavaIndonesia
| |
Collapse
|
8
|
Eladawy RM, Ahmed LA, Salem MB, Hammam OA, Mohamed AF, Salem HA, El-Sayed RM. Impact of different gastric acid suppressants on chronic unpredictable mild stress-induced cognitive impairment in rats: A possible involvement of gut dysbiosis. Toxicol Appl Pharmacol 2024; 492:117126. [PMID: 39406336 DOI: 10.1016/j.taap.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Recently, clinical evidence indicates that gastric acid suppressants are associated with an increased risk of the development of cognitive impairment and dementia, especially in elderly patients and those with mild cognitive impairment. Therefore, the aim of this research was to explore the impact of different gastric acid suppressants use, famotidine (Famo), esomeprazole (Esome) and vonoprazan (Vono) in the absence or the presence of chronic unpredictable mild stress (CUMS) on several memory tasks with examination of the role of gut dysbiosis. In the present study, rats received famotidine (3.7 mg/kg/day, p.o.) or esomeprazole (3.7 mg/kg/day, p.o.) or vonoprazan (1.85 mg/kg/day, p.o.) for 7 weeks with or without exposure to CUMS. Remarkably, CUMS with different acid suppressants caused a significant decrease in all memory tasks in late CUMS in the current investigation. CUMS with acid suppressants also revealed a marked alteration in the fecal Firmicutes/Bacteroidetes ratio compared to CUMS alone. This gut microbiome alteration was associated with an alteration in gut membrane integrity, as revealed by colonic histopathology and an elevation of systemic inflammatory markers. Besides, upregulation of hippocampal amyloid β and p-tau proteins and modification of brain histopathology were noticed. Our findings support the detrimental effect of gastric acid suppressants, especially proton pump inhibitors, on cognitive impairment in the presence of stress, with the possible involvement of gut dysbiosis.
Collapse
Affiliation(s)
- Reem M Eladawy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch, Arish 45511, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Olfat A Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed F Mohamed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| | - Hesham A Salem
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab M El-Sayed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch, Arish 45511, Egypt
| |
Collapse
|
9
|
Joodaki M, Radahmadi M, Alaei H. Comparative Evaluation of Antidepressant and Anxiolytic Effects of Escitalopram, Crocin, and their Combination in Rats. Adv Biomed Res 2024; 13:99. [PMID: 39717248 PMCID: PMC11665166 DOI: 10.4103/abr.abr_259_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2024] Open
Abstract
Background Chronic stress can lead to anxiety and depression. Escitalopram is a selective serotonin reuptake inhibitor (SSRI), and crocin is a natural compound derived from saffron. Both of them are used to treat these disorders in clinical and traditional medicine, respectively. This study compared the antidepressant and anxiolytic effects of escitalopram, crocin, and their combination in rats. Materials and Methods Rats were divided into nine groups: control, sham, rest-depression, depression-rest, depression-crocin, depression-escitalopram10, depression-escitalopram20, depression-escitalopram10-crocin, and depression-escitalopram20-crocin. Forced swimming and open field tests (FST and OFT, respectively) were used to evaluate depression, anxiety, and locomotor activity. Results In the FST, the immobility time on day 28 significantly decreased in all depressed groups that received escitalopram, crocin, and their combination compared to the rest-depression group. Whereas, conversely, the time spent at the center in the OFT was significantly higher in similar comparisons. The total distance traveled by the OFT was significantly lower in all depressed groups, except for the depression-escitalopram10 and depression-escitalopram20 groups. The total distance traveled was significantly higher in the depression-escitalopram20 compared to the rest-depression group. Conclusion Crocin, both doses of escitalopram and their combination, reduced depression. A high dose of escitalopram, with and without crocin, was partially more effective than a low dose of escitalopram in reversing depression. There was anxiety-like behavior observed after inducing depression with and without a recovery period. Whereas, crocin alone and both doses of escitalopram, with and without crocin, decreased anxiety-like behaviors in subjects with depression. This effect may be attributed to a modulation of brain neurotransmitter ratios.
Collapse
Affiliation(s)
- Mehran Joodaki
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Pike NM, Floyd RG. Stress in United States school psychologists: Development and preliminary psychometric properties of the School Psychologist Distress Inventory. J Sch Psychol 2024; 106:101351. [PMID: 39251323 DOI: 10.1016/j.jsp.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 09/11/2024]
Abstract
School psychologists have many roles and responsibilities that often lead to high stress levels. Wise (1985) authored the School Psychologists and Stress Inventory (SPSI), but it has not been updated substantially since its publication. We developed two studies to address the stressors faced by currently practicing school psychologists. Study 1 included 229 practicing school psychologists who evaluated the relevancy of the SPSI items and who listed five highly stressful events experienced considering the current context of practice. Based on these results, 13 SPSI items were removed, 21 SPSI items were revised, and 12 new items were added. The resulting measure, the School Psychologist Distress Inventory (SPDI), consists of 33 items and an additional item addressing overall stress. Study 2 examined validity evidence associated with the SPDI score structure. Using data from a sample of 350 practicing school psychologists, a sequence of exploratory factor analytic methods indicated the presence of a general factor of distress as well as four more specific factors, including Heavy Workload, Student Needs, Lack of Professional Support, and Parental and Legal Conflicts. Convergent relations and discriminant relations were evident between (a) SPDI total and subscales and (b) measures reflecting general stress level, role stressors, role overload, and job satisfaction. Examination of SPDI scores revealed they were not significantly related to age in years, educational levels, or school-psychologist-to-student ratio by state; however, lack of professional support was statistically significantly but weakly related to years of experience. Student needs were significantly more stressful across participants in the Western region of the United States than the Midwest region. Results from these two studies suggest the promise of using the SPDI to examine general and specific experiences of school psychologists' distress and they reveal that distress across school psychologists is remarkably high-especially in the area associated with having a heavy workload. Additional research with more racially and ethnically diverse samples of school psychologists would enhance confidence in using the SPDI as a measure of distress. Results suggest an urgent need to address structural influences on stress and personal coping strategies employed by school psychologists.
Collapse
|
11
|
Paat YF, Hope TL, Ferreira-Pinto JB, Olvera Alvarez H. A Bio-Psycho-Social Approach to Understanding Optimism and Pessimism in Response to Stress. Eur J Investig Health Psychol Educ 2024; 14:2671-2685. [PMID: 39452171 PMCID: PMC11506870 DOI: 10.3390/ejihpe14100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Stress is widely known to have debilitating effects on physical health and mental wellbeing, particularly on one's coping styles, personality traits, and outlook on life. Cumulative and chronic stress, which can serve as a triggering or aggravating factor for many pathological disorders if left unaddressed, has been linked to many life-threatening diseases. While many studies have looked at how optimism and pessimism are used as a form of coping mechanism, few have examined how different bio-psycho-social reactions to stress shape the level of optimism and pessimism. Using a sample of adult individuals aged 18 and older in the United States (n = 3361), this study addressed the following research questions: (1) What types of stress are predictive of optimism and pessimism? (2) Which responses to stress and coping mechanisms are most predictive of optimism and pessimism? (3) Do optimism and pessimism share the same stress-related risk and protective factors? Overall, this study found that while optimism and pessimism share conceptual similarities, they are not necessarily influenced by the same stress mechanisms. Stress, whether personal or financial, was associated with a negative outlook on life. This study showed that having good sleep quality and a lower number of psychological stress symptoms was linked to increasing optimism and reducing pessimism, while overeating or eating unhealthily was connected to both optimism and pessimism. Additionally, this study found that exercise/walking and emotional support mediated the effects of the responses to stress on the respondents' level of optimism and pessimism.
Collapse
Affiliation(s)
- Yok-Fong Paat
- Department of Social Work, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Trina L. Hope
- Department of Sociology, University of Oklahoma, Norman, OK 73019, USA
| | - João B. Ferreira-Pinto
- Dean’s Office, College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | | |
Collapse
|
12
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
13
|
Gonzalez PM, Jenkins AR, LaMalfa KS, Kangas BD. Chronic ecologically relevant stress effects on reverse-translated touchscreen assays of reward responsivity and attentional processes in male rats: Implications for depression. J Neurochem 2024; 168:2190-2200. [PMID: 38922872 PMCID: PMC11449663 DOI: 10.1111/jnc.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Stagnation in the development of novel therapeutic strategies for treatment-resistant depression has encouraged continued interest in improving preclinical methods. One tactic prioritizes the reverse translation of behavioral tasks developed to objectively quantify depressive phenotypes in patient populations for their use in laboratory animals via touchscreen technology. After cross-species concordance in task outcomes under healthy conditions is confirmed, construct validity can be further enhanced by identifying environmental stressors that reliably produce deficits in task performance that resemble those in depressive participants. The present studies characterized in male rats the ability of two chronic ecologically relevant stressors, inescapable ice water or isolated restraint, to produce depressive-like behavioral phenotypes in the Probabilistic Reward Task (PRT) and Psychomotor Vigilance Task (PVT). These tasks previously have been reverse-translated using touchscreen technology for rodents and nonhuman primates to objectively quantify, respectively, reward responsivity (anhedonia) and attentional processes (impaired cognitive function), each of which are core features of major depressive disorder. In the PRT, both inescapable ice water and isolated restraint produced persistent anhedonic phenotypes compared to non-stressed control performance (i.e., significantly blunted response bias for the richly rewarded stimulus). In the PVT, both chronic stressors impaired attentional processing, revealed by increases in titrated reaction times; however, these deficits largely subsided by the end of the chronic condition. Taken together, these findings confirm the ability of reverse-translated touchscreen tasks to effectively generate behavioral phenotypes that exhibit expected deficits in performance outcomes following exposure to chronic ecologically relevant stress. In turn, this approach is well positioned to appraise the ability of candidate therapeutics to attenuate or reverse such behavioral deficits and, thereby, contribute to preclinical medications development for treatment-resistant depression.
Collapse
Affiliation(s)
| | - Amaya R Jenkins
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | | | - Brian D Kangas
- Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
14
|
Miller CN, Li Y, Beier KT, Aoto J. Acute stress causes sex-dependent changes to ventral subiculum synapses, circuitry, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606264. [PMID: 39131353 PMCID: PMC11312572 DOI: 10.1101/2024.08.02.606264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Experiencing a single severe stressor is sufficient to drive sexually dimorphic psychiatric disease development. The ventral subiculum (vSUB) emerges as a site where stress may induce sexually dimorphic adaptations due to its sex-specific organization and pivotal role in stress integration. Using a 1-hr acute restraint stress model, we uncover that stress causes a net decrease in vSUB activity in females that is potent, long-lasting, and driven by adrenergic receptor signaling. By contrast, males exhibit a net increase in vSUB activity that is transient and driven by corticosterone signaling. We further identified sex-dependent changes in vSUB output to the bed nucleus of the stria terminalis and in anxiety-like behavior in response to stress. These findings reveal striking changes in psychiatric disease-relevant brain regions and behavior following stress with sex-, cell-type, and synapse-specificity that contribute to our understanding of sex-dependent adaptations that may shape stress-related psychiatric disease risk.
Collapse
Affiliation(s)
- Carley N Miller
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuan Li
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA 92697
- Department of Biomedical Engineering, University of California, Irvine, CA, USA 92697
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA 92697
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Turner M. Neurobiological and psychological factors to depression. Int J Psychiatry Clin Pract 2024; 28:114-127. [PMID: 39101692 DOI: 10.1080/13651501.2024.2382091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Major Depressive Disorder (MDD) is a common condition with complex psychological and biological background. While its aetiology is still unclear, chronic stress stands amongst major risk factors to MDD pathogenesis. When researching on MDD, it is necessary to be familiar with the neurobiological effects of several prominent contributors to the chronic stress factor experienced across hypothalamic-pituitary-adrenal (HPA) axis, neurotransmission, immune system reflexivity, and genetic alterations. Bi-directional flow of MDD pathogenesis suggests that psychological factors produce biological effects. Here, a summary of how the MDD expresses its mechanisms of action across an overactive HPA axis, the negative impacts of reduced neurotransmitter functions, the inflammatory responses and their gene x environment interactions. This paper builds on these conceptual factors and their input towards the MDD symptomatology with a purpose of synthesising the current findings and create an integrated view of the MDD pathogenesis. Finally, relevant treatment implications will be summarised, along with recommendations to a multimodal clinical practice.
Collapse
Affiliation(s)
- Malini Turner
- School of Health, University of New England, Armidale, Australia
- Biomedical Sciences, Endeavour College of Natural Health, Brisbane, Australia
| |
Collapse
|
16
|
Xu J, Zhou L, Chen Z, Wang Y, Xu F, Kuang Q, Zhang Y, Zheng H. Bacillus coagulans and Clostridium butyricum synergistically alleviate depression in a chronic unpredictable mild stress mouse model through altering gut microbiota and prefrontal cortex gene expression. Front Pharmacol 2024; 15:1393874. [PMID: 38855745 PMCID: PMC11158626 DOI: 10.3389/fphar.2024.1393874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction: The prevalence of major depressive disorder (MDD) has gradually increased and has attracted widespread attention. The aim of this study was to investigate the effect of a probiotic compound consisting of Bacillus coagulans and Clostridium butyricum, on a mouse depression model. Methods: Mice were subjected to chronic unpredictable mild stress (CUMS) and then treated with the probiotics at different concentrations. And mice received behavior test such as forced swimming test and tail suspension test. After that, all mice were sacrificed and the samples were collected for analysis. Moreover, prefrontal cortex (PFC) gene expression and the gut microbiota among different groups were also analyzed. Results: Probiotics improved depressive-like behavior in CUMS mice, as indicated by decreased immobility time (p < 0.05) in the forced swimming test and tail suspension test. probiotics intervention also increased the level of 5-hydroxytryptamine (5-HT) in the prefrontal cortex and decreased the adrenocorticotropic hormone (ACTH) level in serum. In addition, by comparing the PFC gene expression among different groups, we found that the genes upregulated by probiotics were enriched in the PI3K-Akt signaling pathway in the prefrontal cortex. Moreover, we found that downregulated genes in prefrontal cortex of CUMS group such as Sfrp5 and Angpt2, which were correlated with depression, were reversed by the probiotics. Furthermore, the probiotics altered the structure of the gut microbiota, and reversed the reduction of cob(II)yrinate a,c-diamide biosynthesis I pathway in CUMS group. Several species like Bacteroides caecimuris and Parabacteroides distasoni, whose abundance was significantly decreased in the CUMS group but reversed after the probiotics intervention, showed significantly positive correlation with depression associated genes such as Tbxas1 and Cldn2. Discussion: These findings suggested that CUMS-induced depression-like behavior can be alleviated by the probiotics, possibly through alterations in the PFC gene expression and gut microbiota.
Collapse
Affiliation(s)
- Jingyi Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Zhaowei Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Fang Xu
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qun Kuang
- Jiangsu Limited Company of Suwei Microbiology, Wuxi, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
- The Academician Workstation, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
17
|
Shang Z, Liu N, Ouyang H, Cai X, Yan W, Wang J, Zhan J, Jia Y, Xing C, Huang L, Wu L, Liu W. Sex-based differences in brain morphometry under chronic stress: A pilot MRI study. Heliyon 2024; 10:e30354. [PMID: 38726160 PMCID: PMC11079087 DOI: 10.1016/j.heliyon.2024.e30354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Background Sex-based differences are known to be a significant feature of chronic stress; however, the morphological mechanisms of the brain underlying these differences remain unclear. The present study aimed to use magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) to investigate the effects of sex on gray matter volume (GMV) changes under conditions of chronic stress. Methods A total of 32 subjects were included for analysis in the present study: 16 participants experiencing chronic stress and 16 healthy controls. T1-weighted (T1WI) images from a 3 T MRI scanner were extracted from the OpenfMRI database. Images were segmented into gray matter using VBM analysis. A two-way analysis of variance (ANOVA) with a 2 × 2 full factorial design was used to evaluate the main and interaction effects of chronic stress and sex on GMV changes, and then post hoc testing was used to verify each simple effect. Results Two-way ANOVA showed a chronic stress × sex interaction effect on GMV. Simple effects analysis indicated that the GMV of the bilateral pre- and post-central gyri, the right cuneus and superior occipital gyrus was decreased in males, whereas that of the bilateral pre- and post-central gyri, the right superior occipital gyrus and the left middle frontal gyrus and orbital middle frontal gyrus was increased in females, under chronic stress. Additionally, in the control group, the GMV of the bilateral pre- and post-central gyri, the right cuneus and superior occipital gyrus was greater in males than females. While in the chronic stress group, the above sex-based differences were no longer significant. Conclusions This study preliminarily shows that there are significant differences in gray matter volume changes between males and females under chronic stress. These findings provide a basis for future studies investigating the volumetric mechanisms of sex differences under chronic stress.
Collapse
Affiliation(s)
- Zhilei Shang
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Nianqi Liu
- Faculty of Psychology, Institute of Educational Science, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Ouyang
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Xiaojie Cai
- Department of Radiology, Changshu Hospital Affiliated to Suzhou University, Changshu, 215500, China
| | - Wenjie Yan
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Jing Wang
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Jingye Zhan
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Yanpu Jia
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Chenqi Xing
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Lijun Huang
- Department of Radiology, Changshu Hospital Affiliated to Suzhou University, Changshu, 215500, China
| | - Lili Wu
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| | - Weizhi Liu
- Lab for Post-traumatic Stress Disorder, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
- The Emotion & Cognition Lab, Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
18
|
Bernad BC, Tomescu MC, Anghel T, Lungeanu D, Enătescu V, Bernad ES, Nicoraș V, Arnautu DA, Hogea L. Epigenetic and Coping Mechanisms of Stress in Affective Disorders: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:709. [PMID: 38792892 PMCID: PMC11122772 DOI: 10.3390/medicina60050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
This review aims to explore the intricate relationship among epigenetic mechanisms, stress, and affective disorders, focusing on how early life experiences and coping mechanisms contribute to susceptibility to mood disorders. Epigenetic factors play a crucial role in regulating gene expression without altering the DNA (deoxyribonucleic acid) sequence, and recent research has revealed associations between epigenetic changes and maladaptive responses to stress or psychiatric disorders. A scoping review of 33 studies employing the PRISMA-S (Preferred Reporting Items for Systematic Reviews and Meta-Analyses-Statement) guidelines investigates the role of stress-induced epigenetic mechanisms and coping strategies in affective disorder occurrence, development, and progression. The analysis encompasses various stress factors, including childhood trauma, work-related stress, and dietary deficiencies, alongside epigenetic changes, such as DNA methylation and altered gene expression. Findings indicate that specific stress-related genes frequently exhibit epigenetic changes associated with affective disorders. Moreover, the review examines coping mechanisms in patients with bipolar disorder and major depressive disorder, revealing mixed associations between coping strategies and symptom severity. While active coping is correlated with better outcomes, emotion-focused coping may exacerbate depressive or manic episodes. Overall, this review underscores the complex interplay among genetic predisposition, environmental stressors, coping mechanisms, and affective disorders. Understanding these interactions is essential for developing targeted interventions and personalized treatment strategies for individuals with mood disorders. However, further research is needed to elucidate specific genomic loci involved in affective disorders and the clinical implications of coping strategies in therapeutic settings.
Collapse
Affiliation(s)
- Brenda-Cristiana Bernad
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
- Department of Internal Medicine, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Timisoara Municipal Clinical Emergency Hospital, 300040 Timișoara, Romania
| | - Teodora Anghel
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
| | - Diana Lungeanu
- Center for Modeling Biological Systems and Data Analysis, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Department of Functional Sciences, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania
| | - Virgil Enătescu
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
- Clinic of Psychiatry, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania
| | - Elena Silvia Bernad
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania
- Ist Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania;
- Center for Laparoscopy, Laparoscopic Surgery and In Vitro Fertilization, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Vlad Nicoraș
- Ist Clinic of Obstetrics and Gynecology, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timișoara, Romania;
| | - Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (M.-C.T.); (D.-A.A.)
- Department of Internal Medicine, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Institute of Cardiovascular Diseases Timișoara, 300310 Timișoara, Romania
| | - Lavinia Hogea
- Center for Neuropsychology and Behavioral Medicine, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania; (T.A.); (L.H.)
- Department of Neuroscience, “Victor Babes” University of Medicine and Pharmacy from Timișoara, 300041 Timișoara, Romania;
| |
Collapse
|
19
|
Marazziti D, Fantasia S, Palermo S, Arone A, Massa L, Gambini M, Carmassi C. Main Biological Models of Resilience. CLINICAL NEUROPSYCHIATRY 2024; 21:115-134. [PMID: 38807984 PMCID: PMC11129343 DOI: 10.36131/cnfioritieditore20240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Objective Resilience is a complex process of adaptation to new conditions that would permit a positive outcome after adversities, traumas or other sources of stress. However, despite the growing interest in this topic, there is no universally accepted definition and no comprehensive bio-behavioural model. This systematic review aims to provide an overview of the main biological models that have been theorized to date, with a focus on new alternative theories to improve our understanding of the mechanisms underlying the development and strengthening of resilience, with potential implications for the prevention of some psychopathological disorders. Method This review was conducted according to PRISMA guidelines and includes 185 studies published in English in PubMed and Embase up to December 2023. Results Most studies use the stress-related model, which conceptualizes resilience as the absence of symptoms after the stressful event and mainly deal with the differences between stress-prone and resilient phenotypes in animals exposed to stress. However, the results of this search seem to suggest that resilience might be an independent construct with biological bases rooted in the stress system and the social brain, and widely sculptured by individual and environmental factors, especially early life events and affiliation. Conclusions This work contributes to ongoing efforts to understand the intricate mechanisms of resilience, while highlighting the potential of improving social relationships since our birth to promote coping strategies towards stress and traumas, and even a peaceful world.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Sara Fantasia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Stefania Palermo
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Alessandro Arone
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Lucia Massa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Matteo Gambini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Claudia Carmassi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Yi L, Lin X, She X, Gao W, Wu M. Chronic stress as an emerging risk factor for the development and progression of glioma. Chin Med J (Engl) 2024; 137:394-407. [PMID: 38238191 PMCID: PMC10876262 DOI: 10.1097/cm9.0000000000002976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 02/21/2024] Open
Abstract
ABSTRACT Gliomas tend to have a poor prognosis and are the most common primary malignant tumors of the central nervous system. Compared with patients with other cancers, glioma patients often suffer from increased levels of psychological stress, such as anxiety and fear. Chronic stress (CS) is thought to impact glioma profoundly. However, because of the complex mechanisms underlying CS and variability in individual tolerance, the role of CS in glioma remains unclear. This review suggests a new proposal to redivide the stress system into two parts. Neuronal activity is dominant upstream. Stress-signaling molecules produced by the neuroendocrine system are dominant downstream. We discuss the underlying molecular mechanisms by which CS impacts glioma. Potential pharmacological treatments are also summarized from the therapeutic perspective of CS.
Collapse
Affiliation(s)
- Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Xiaoling She
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minghua Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
21
|
Xu K, Ren Y, Zhao S, Feng J, Wu Q, Gong X, Chen J, Xie P. Oral D-ribose causes depressive-like behavior by altering glycerophospholipid metabolism via the gut-brain axis. Commun Biol 2024; 7:69. [PMID: 38195757 PMCID: PMC10776610 DOI: 10.1038/s42003-023-05759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
Our previous work has shown that D-ribose (RIB)-induced depressive-like behaviors in mice. However, the relationship between variations in RIB levels and depression as well as potential RIB participation in depressive disorder is yet unknown. Here, a reanalysis of metabonomics data from depressed patients and depression model rats is performed to clarify whether the increased RIB level is positively correlated with the severity of depression. Moreover, we characterize intestinal epithelial barrier damage, gut microbial composition and function, and microbiota-gut-brain metabolic signatures in RIB-fed mice using colonic histomorphology, 16 S rRNA gene sequencing, and untargeted metabolomics analysis. The results show that RIB caused intestinal epithelial barrier impairment and microbiota-gut-brain axis dysbiosis. These microbial and metabolic modules are consistently enriched in peripheral (fecal, colon wall, and serum) and central (hippocampus) glycerophospholipid metabolism. In addition, three differential genera (Lachnospiraceae_UCG-006, Turicibacter, and Akkermansia) and two types of glycerophospholipids (phosphatidylcholine and phosphatidylethanolamine) have greater contributions to the overall correlations between differential genera and glycerophospholipids. These findings suggest that the disturbances of gut microbiota by RIB may contribute to the onset of depressive-like behaviors via regulating glycerophospholipid metabolism, and providing new insight for understanding the function of microbiota-gut-brain axis in depression.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, 400016, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Qingyuan Wu
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, 404031, Chongqing, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, 400016, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
22
|
MacKay M, Yang BH, Dursun SM, Baker GB. The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder. Curr Neuropharmacol 2024; 22:866-883. [PMID: 36815632 PMCID: PMC10845093 DOI: 10.2174/1570159x21666230222092029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/24/2023] Open
Abstract
A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.
Collapse
Affiliation(s)
- Marnie MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Bohan H. Yang
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Marconi E, Monti L, Fredda G, Kotzalidis GD, Janiri D, Zani V, Vitaletti D, Simone MV, Piciollo S, Moriconi F, Di Pietro E, Popolo R, Dimaggio G, Veredice C, Sani G, Chieffo DPR. Outpatient care for adolescents' and young adults' mental health: promoting self- and others' understanding through a metacognitive interpersonal therapy-informed psychological intervention. Front Psychiatry 2023; 14:1221158. [PMID: 38025443 PMCID: PMC10651761 DOI: 10.3389/fpsyt.2023.1221158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Psychological distress may result in impairment and difficulty understanding oneself and others. Thus, addressing metacognitive issues in psychotherapy may improve psychopathology in adolescents and young adults (AYAs). We aimed to compare metacognitive interpersonal therapy (MIT)-informed psychotherapy with other treatment-as-usual (TAU) therapies. Methods We administered the Global Assessment of Functioning (GAF) scale, the Clinical Global Impressions-Severity (CGI-S) scale, and the Brief Psychiatric Rating Scale (BPRS) at baseline (BL) and at treatment termination (the endpoint was at 6 months and any last results obtained before that term were carried forward in analyzes). Patients received concomitant psychiatric and psychological treatment. Results Sixty AYAs were involved in the study. There was a significant reduction in symptomatology after the intervention. Twelve patients (17%) dropped out; treatment adherence was 83%. In the MIT group, 2 patients dropped out (11%), and in the TAU group, 9 patients dropped out (19%). All scales showed a significant reduction in symptoms between baseline (BL) and the 6-month endpoint: GAF (χ2 = 6.61, p < 0.001), BPRS (χ2 = 6.77, p < 0.001), and CGI (χ2 = 7.20, p < 0.001). There was a greater efficacy for the MIT group in terms of symptom reduction on the BPRS (t = 2.31; p < 0.05). Conclusion The study confirmed the efficacy of early and integrated care in adolescence and suggested greater symptom reduction for a psychotherapeutic intervention focused on stimulating mentalization skills. The study indicates the usefulness of this type of approach in the treatment of adolescent psychopathology. Due to the small sample size, the results need replication.
Collapse
Affiliation(s)
- Elisa Marconi
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Laura Monti
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giulia Fredda
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Georgios D. Kotzalidis
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), University of Rome “La Sapienza”, Rome, Italy
| | - Delfina Janiri
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Zani
- Catholic University of the Sacred Heart–Rome, Rome, Italy
| | | | | | | | - Federica Moriconi
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Raffaele Popolo
- Center for Metacognitive Interpersonal Therapy, Rome, Italy
- Department of Mental Health, Rome, Italy
| | | | - Chiara Veredice
- Pediatric Neuropsychiatry Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Psychiatry, Department of Neuroscience, Head, Neck and Thorax, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Institute of Psychiatry, Department of Neuroscience, Catholic University of the Sacred Heart–Rome, Rome, Italy
| | - Daniela Pia Rosaria Chieffo
- Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Life Sciences and Public Health Department, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
24
|
Saini R, Das RC, Chatterjee K, Srivastava K, Khera A, Agrawal S. Augmenting mental health literacy of troops in a large military station: A novel approach. Ind Psychiatry J 2023; 32:S166-S173. [PMID: 38370959 PMCID: PMC10871393 DOI: 10.4103/ipj.ipj_233_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Mental health literacy (MHL) helps in acknowledging the symptoms at an early stage, thus promoting prompt management of negative stress behaviors. Despite the central thrust towards augmentation of MHL of troops, there is a paucity of available literature on the subject matter, especially in the Indian context. Current research explores the efficacy of a standardized Information Education and Communication (IEC) module for the promotion of MHL among troops. Materials and Methods 1200 soldiers posted in a large military station underwent a psycho-educational module about stress and related mental health conditions in an open-label experimental study. Data was collected using a simple demographic tool and a specially constructed Armed Forces Medical College (AFMC) mental health awareness questionnaire. The same sample was studied before the IEC activity, immediately after the IEC activity, and again after six months. Results Community-based psycho-educational module helped in improvement in MHL and the gains were stable at six months. Conclusions Well-standardized and structured module was found to be an effective strategy for improving MHL. The authors consider this study as seminal for bringing objectivity to mental health promotional programs in the Armed Forces.
Collapse
Affiliation(s)
- Rajiv Saini
- Department of Psychiatry, Command Hospital (Western Command), Panchkhula, Haryana, India
| | - R. C. Das
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Kaushik Chatterjee
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Kalpana Srivastava
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Anurag Khera
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Sunil Agrawal
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
25
|
Tran I, Gellner AK. Long-term effects of chronic stress models in adult mice. J Neural Transm (Vienna) 2023; 130:1133-1151. [PMID: 36786896 PMCID: PMC10460743 DOI: 10.1007/s00702-023-02598-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders, such as major depression, anxiety disorders, and post-traumatic stress disorder, tend to be long-term conditions in whose development and maintenance stress are central pathogenic factors. Translational mouse models are widely used in neuropsychiatric research, exploiting social and non-social stressors to investigate the mechanisms underlying their detrimental effects. However, most studies focus on the short-term consequences of chronic stress, whereas only a few are interested in the long-term course. This is counterintuitive given the human conditions that preclinical models are designed to mimic. In this review, we have summarized the limited work to date on long-term effects of chronic stress in mice models. First, the different models are presented and a definition of short- vs. long-term sequelae is proposed. On this basis, behavioral, endocrine, and vegetative effects are addressed before examining data on cellular and molecular alterations in the brain. Finally, future directions for research on the long-term effects of stress are discussed.
Collapse
Affiliation(s)
- Inès Tran
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne-Kathrin Gellner
- Institute of Physiology II, Medical Faculty, University of Bonn, Bonn, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Cullens M, James C, Liu M, Vydyanathan A, Shaparin N, Schatman M, Hascalovici J. Defining Personas of People Living with Chronic Pain: An Ethnographic Research Study. J Pain Res 2023; 16:2803-2816. [PMID: 37600078 PMCID: PMC10438436 DOI: 10.2147/jpr.s420742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Pain is the leading reason for which people seek medical care in the United States, and chronic pain (CP) affects approximately 50 million people in the US Pain perception is deeply personal, is highly correlated with behavioral and emotional disorders, and is greatly influenced by physiological and environmental factors. The patient-provider relationship can have profound implications for clinical outcomes within the context of treating CP. However, limited access to pain specialists, the complex nature of many CP-causing conditions, the absence of instruments for objective pain measurement, and the need to foster a trust-based patient-provider relationship throughout treatment pose unique challenges. Objective To support a more optimal CP care delivery system that leverages a healthy therapeutic patient-provider relationship, we systematically gathered deeper knowledge of the behaviors, interpersonal dynamics, home environment, values, and mindsets of people who experience CP. Methods We employed ethnographic research methods to collect and analyze data on views, habits, strategies, attitudes, and life circumstances of a range of participants living with CP. We aggregated, analyzed, and summarized participant data to identify trends and similarities. Results Our findings suggest that patients can be broadly categorized into five predominant pain typologies, or "personas", which are characterized by respective symptom durations, care management preferences, values, communication styles, and behaviors. Conclusion Identifying CP personas may enhance the ability to personalize CP care and help foster more robust therapeutic relationships, which may lead to greater trust, improved patient satisfaction, and better clinical outcomes.
Collapse
Affiliation(s)
| | - Cyan James
- Clearing Relief Labs Inc., New York City, NY, USA
| | - Meran Liu
- Clearing Relief Labs Inc., New York City, NY, USA
| | - Amaresh Vydyanathan
- Relief Medical Group P.A, New York City, NY, USA
- Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, NY, USA
| | - Naum Shaparin
- Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Multidisciplinary Pain Program, Montefiore Medical Center, Bronx, NY, USA
- The Arthur S. Abramson Department of Physical Medicine and Rehabilitation, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Schatman
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Population Health – Division of Medical Ethics, NYU Grossman School of Medicine, New York City, NY, USA
| | - Jacob Hascalovici
- Relief Medical Group P.A, New York City, NY, USA
- Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Arthur S. Abramson Department of Physical Medicine and Rehabilitation, Albert Einstein College of Medicine, Bronx, NY, USA
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
27
|
Ben-Shachar M, Daniel T, Wollman A, Govindaraj S, Aviel-Ronen S, Pinhasov A, Rosenzweig T. Inherited stress resiliency prevents the development of metabolic alterations in diet-induced obese mice. Obesity (Silver Spring) 2023; 31:2043-2056. [PMID: 37318065 DOI: 10.1002/oby.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Chronic stress promotes obesity and metabolic comorbidities. The ability of individuals to cope with stress may serve as an important parameter in the development of obesity-related metabolic outcomes. The aim of this study was to clarify whether differences in stress response affect metabolic health under obesity. METHODS The study was performed in a selectively bred mouse model of social dominance (Dom) and submissiveness (Sub), which exhibit stress resilience or vulnerability, respectively. Mice were given a high-fat diet (HFD) or standard diet, followed by physiological, histological, and molecular analyses. RESULTS The HFD caused hyperleptinemia, glucose intolerance, insulin resistance, steatosis of the liver and pancreas, and brown adipose tissue whitening in Sub mice, whereas Dom mice were protected from these consequences of the HFD. The HFD increased circulating levels of interleukin (IL)-1β and induced the expression of proinflammatory genes in the liver and in epididymal white adipose tissue of Sub mice, with no changes in Dom mice. The Cox2 inhibitor celecoxib (15 mg/kg/d) reduced serum IL-1β, improved glucose tolerance and insulin sensitivity, and prevented hepatic and brown adipose tissue whitening in HFD-fed Sub mice. CONCLUSIONS The extent of stress resiliency is associated with inflammation and contributes to population heterogeneity in the development of healthy or unhealthy obesity.
Collapse
Affiliation(s)
| | - Tehila Daniel
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ayala Wollman
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Pathology Department, Sheba Medical Center, Ramat-Gan, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Tovit Rosenzweig
- Department of Molecular Biology, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
28
|
Huang CN, Chen YM, Xiao XY, Zhou HL, Zhu J, Qin HM, Jiang X, Li Z, Zhuang T, Zhang GS. Pregabalin can interact synergistically with Kv7 channel openers to exert antinociception in mice. Eur J Pharmacol 2023:175870. [PMID: 37353189 DOI: 10.1016/j.ejphar.2023.175870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Chronic pain is a common public health problem and remains an unmet medical need. Currently available analgesics usually have limited efficacy for the treatment of chronic pain, including neuropathic pain and persistent inflammatory pain, or they are accompanied by many adverse side effects. The voltage-gated calcium channel blocker (pregabalin) and potassium channel openers (flupirtine and retigabine) have been widely used for the management of chronic pain, but their effectiveness in combination is unclear. In this research, we evaluated the antinociceptive effects of pregabalin in combination with flupirtine or retigabine in carrageenan-induced inflammatory pain and paclitaxel-induced peripheral neuropathy in mice using the von Frey test. Isobolographic analysis indicated that pregabalin exerted synergistic antinociceptive effects when combined with flupirtine or retigabine in neuropathic and inflammatory pain models. Furthermore, the antinociceptive effects of pregabalin, flupirtine/retigabine, and their combinations were significantly attenuated by the Kv7 channel blocker XE991. The favored dose ratio between pregabalin and flupirtine/retigabine in combinations was also investigated. Finally, we evaluated the motor coordination of their combinations using the rotarod test, and the outcomes underpinned their safety. Collectively, our results support the potential use of pregabalin in combination with flupirtine or retigabine to alleviate chronic pain.
Collapse
Affiliation(s)
- Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Ling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue Jiang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zongzheng Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Gui-Sen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
29
|
Li L, Rana A, Li EM, Feng J, Li Y, Bruchas MR. Activity-dependent constraints on catecholamine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534970. [PMID: 37034631 PMCID: PMC10081217 DOI: 10.1101/2023.03.30.534970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Catecholamine signaling is thought to modulate cognition in an inverted-U relationship, but the mechanisms are unclear. We measured norepinephrine and dopamine release, postsynaptic calcium responses, and interactions between tonic and phasic firing modes under various stimuli and conditions. High tonic activity in vivo depleted catecholamine stores, desensitized postsynaptic responses, and decreased phasic transmission. Together this provides a clearer understanding of the inverted-U relationship, offering insights into psychiatric disorders and neurodegenerative diseases with impaired catecholamine signaling.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle WA 98145, USA
| | - Akshay Rana
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Equal contribution
| | - Esther M. Li
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle WA 98105, USA
- Equal contribution
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Michael R. Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
30
|
Salgirli Demirbas Y, Isparta S, Saral B, Keskin Yılmaz N, Adıay D, Matsui H, Töre-Yargın G, Musa SA, Atilgan D, Öztürk H, Kul BC, Şafak CE, Ocklenburg S, Güntürkün O. Acute and chronic stress alter behavioral laterality in dogs. Sci Rep 2023; 13:4092. [PMID: 36906713 PMCID: PMC10008577 DOI: 10.1038/s41598-023-31213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Dogs are one of the key animal species in investigating the biological mechanisms of behavioral laterality. Cerebral asymmetries are assumed to be influenced by stress, but this subject has not yet been studied in dogs. This study aims to investigate the effect of stress on laterality in dogs by using two different motor laterality tests: the Kong™ Test and a Food-Reaching Test (FRT). Motor laterality of chronically stressed (n = 28) and emotionally/physically healthy dogs (n = 32) were determined in two different environments, i.e., a home environment and a stressful open field test (OFT) environment. Physiological parameters including salivary cortisol, respiratory rate, and heart rate were measured for each dog, under both conditions. Cortisol results showed that acute stress induction by OFT was successful. A shift towards ambilaterality was detected in dogs after acute stress. Results also showed a significantly lower absolute laterality index in the chronically stressed dogs. Moreover, the direction of the first paw used in FRT was a good predictor of the general paw preference of an animal. Overall, these results provide evidence that both acute and chronic stress exposure can change behavioral asymmetries in dogs.
Collapse
Affiliation(s)
| | - Sevim Isparta
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany.
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Begum Saral
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Nevra Keskin Yılmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Deniz Adıay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hiroshi Matsui
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Hokkaido, Japan
| | - Gülşen Töre-Yargın
- Department of Industrial Design, Middle East Technical University, Ankara, Turkey
| | - Saad Adam Musa
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Durmus Atilgan
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hakan Öztürk
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Bengi Cinar Kul
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - C Etkin Şafak
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Sebastian Ocklenburg
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| | - Onur Güntürkün
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
32
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
33
|
Miranda L, Bordes J, Gasperoni S, Lopez JP. Increasing resolution in stress neurobiology: from single cells to complex group behaviors. Stress 2023; 26:2186141. [PMID: 36855966 DOI: 10.1080/10253890.2023.2186141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Stress can have severe psychological and physiological consequences. Thus, inappropriate regulation of the stress response is linked to the etiology of mood and anxiety disorders. The generation and implementation of preclinical animal models represent valuable tools to explore and characterize the mechanisms underlying the pathophysiology of stress-related psychiatric disorders and the development of novel pharmacological strategies. In this commentary, we discuss the strengths and limitations of state-of-the-art molecular and computational advances employed in stress neurobiology research, with a focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. Finally, we share our perspective on future directions in the fields of preclinical and human stress research.
Collapse
Affiliation(s)
- Lucas Miranda
- Department of Statistical Genetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Joeri Bordes
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Serena Gasperoni
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Juan Pablo Lopez
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Aquino GA, Sousa CNS, Medeiros IS, Almeida JC, Cysne Filho FMS, Santos Júnior MA, Vasconcelos SMM. Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice. J Basic Clin Physiol Pharmacol 2022; 33:789-801. [PMID: 34390639 DOI: 10.1515/jbcpp-2021-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/17/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). METHODS The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. RESULTS PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001-p<0.01), and an increase in the MDA level (p<0.001-p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). CONCLUSIONS Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.
Collapse
Affiliation(s)
- Gabriel A Aquino
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caren N S Sousa
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Ingridy S Medeiros
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Jamily C Almeida
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Francisco M S Cysne Filho
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Manuel A Santos Júnior
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia M M Vasconcelos
- Laboratório de Neuropsicofarmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
35
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|
36
|
Wang H, Zhao Y, Zhang Y, Yang T, Zhao S, Sun N, Tan H, Zhang H, Wang C, Fan H. Effect of Chlorogenic Acid via Upregulating Resolvin D1 Inhibiting the NF-κB Pathway on Chronic Restraint Stress-Induced Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10532-10542. [PMID: 35975781 DOI: 10.1021/acs.jafc.2c04593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic stress can cause chronic inflammatory injury to the liver. Chlorogenic acid (CGA) is known to have a wide range of biological activities and anti-inflammatory effects. Resolvin D1 (RvD1) is a polyunsaturated fatty acid derivative that has inhibitory effects on a variety of inflammatory diseases. However, whether CGA can inhibit liver inflammation in chronic stress through RvD1 remains unclear. In this work, male rats were subjected to restraint stress for 6 h every day and built a chronic stress model for 21 days. CGA (100 mg/kg) was administered intragastrically 1 h before restraint, with intraperitoneal injection of RvD1 inhibitor WRW4 (antagonist of FPR2, 0.1 mg/kg) or WRW4 solution every 2 days for 30 min before CGA administration. CGA reduced hepatic hemorrhage and inflammatory cell infiltration, alleviated hepatic injury, decreased the activation of the NF-κB pathway and the expression of interleukin 1β, interleukin 6, and tumor necrosis factor α in the liver, and increased RvD1 in the serum and liver. The therapeutic effect of CGA was blocked after WRW4 intervention. These results suggest that the protective effects of CGA mediate the NF-κB pathway by upregulating the generation of RvD1. Above all, this research demonstrates the liver protective effect of CGA and provides a potential treatment strategy for chronic inflammatory disease.
Collapse
Affiliation(s)
- Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yuntong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyuan Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haoyang Tan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
37
|
Dopamine and Beyond: Implications of Psychophysical Studies of Intracranial Self-Stimulation for the Treatment of Depression. Brain Sci 2022; 12:brainsci12081052. [PMID: 36009115 PMCID: PMC9406029 DOI: 10.3390/brainsci12081052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder is a leading cause of disability and suicide worldwide. Consecutive rounds of conventional interventions are ineffective in a significant sub-group of patients whose disorder is classified as treatment-resistant depression. Significant progress in managing this severe form of depression has been achieved through the use of deep brain stimulation of the medial forebrain bundle (MFB). The beneficial effect of such stimulation appears strong, safe, and enduring. The proposed neural substrate for this promising clinical finding includes midbrain dopamine neurons and a subset of their cortical afferents. Here, we aim to broaden the discussion of the candidate circuitry by exploring potential implications of a new “convergence” model of brain reward circuitry in rodents. We chart the evolution of the new model from its predecessors, which held that midbrain dopamine neurons constituted an obligatory stage of the final common path for reward seeking. In contrast, the new model includes a directly activated, non-dopaminergic pathway whose output ultimately converges with that of the dopaminergic neurons. On the basis of the new model and the relative ineffectiveness of dopamine agonists in the treatment of depression, we ask whether non-dopaminergic circuitry may contribute to the clinical efficacy of deep brain stimulation of the MFB.
Collapse
|
38
|
Paschke K, Austermann MI, Thomasius R. International Classification of Diseases-11-Based External Assessment of Social Media Use Disorder in Adolescents: Development and Validation of the Social Media Use Disorder Scale for Parents. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2022; 25:518-526. [PMID: 35796709 DOI: 10.1089/cyber.2022.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Social media use disorder (SMUD) is associated with substantial impairments in daily functioning, and adolescents are particularly at risk. The 11th revision of the International Classification of Diseases (ICD-11) criteria of gaming disorder (GD) could be shown to be suitable to describe SMUD in adolescents. Since adolescents' insight might be limited due to young age or symptom denial, it is essential to include their parents in the diagnostic process. The development and validation of a parental scale are, therefore, of great interest to clinicians and scientists. The Social Media Use Disorder Scale for Parents (SOMEDIS-P) was developed by clinical experts and validated in 944 parent-child dyads. Adolescents were 10-17 years old and frequently used social media (SM). Besides SM use times, standardized questionnaires were applied to assess SM use patterns according to ICD-11 and Diagnostic and Statistical Manual of Mental Disorders-5 criteria of (Internet) GD, psychological stress, and depressive symptoms in an online survey. Item structure was investigated by confirmatory factorial analysis. Receiver operating characteristic curve analyses to determine cutoff values and accordance with adolescent self-ratings were computed. A presumed two-factorial structure of SOMEDIS-P could be confirmed describing cognitive-behavioral symptoms and negative consequences. The instrument showed good to excellent internal consistency and criterion validity with moderate to strong correlations, excellent discriminatory characteristics, and moderate accordance with the adolescents' self-ratings. As the first successfully validated tool for the assessment of ICD-11-based SMUD in adolescents by parental judgment, SOMEDIS-P can make an important contribution to reliable SMUD screening in clinical practice and research.
Collapse
Affiliation(s)
- Kerstin Paschke
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maria Isabella Austermann
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Rainer Thomasius
- German Center for Addiction Research in Childhood and Adolescence (DZSKJ), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
39
|
Sex Differences in Comorbidity Combinations in the Swedish Population. Biomolecules 2022; 12:biom12070949. [PMID: 35883505 PMCID: PMC9313065 DOI: 10.3390/biom12070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
High comorbidity rates, especially mental–physical comorbidity, constitute an increasing health care burden, with women and men being differentially affected. To gain an overview of comorbidity rates stratified by sex across a range of different conditions, this study examines comorbidity patterns within and between cardiovascular, pulmonary, skin, endocrine, digestive, urogenital, musculoskeletal, neurological diseases, and psychiatric conditions. Self-report data from the LifeGene cohort of 31,825 participants from the general Swedish population (62.5% female, 18–84 years) were analyzed. Pairwise comorbidity rates of 54 self-reported conditions in women and men and adjusted odds ratios (ORs) for their comparison were calculated. Overall, the rate of pairwise disease combinations with significant comorbidity was higher in women than men (14.36% vs. 9.40%). Among psychiatric conditions, this rate was considerably high, with 41.76% in women and 39.01% in men. The highest percentages of elevated mental–physical comorbidity in women were found for musculoskeletal diseases (21.43%), digestive diseases (20.71%), and skin diseases (13.39%); in men, for musculoskeletal diseases (14.29%), neurological diseases (11.22%), and digestive diseases (10%). Implications include the need for integrating mental and physical health care services and a shift from a disease-centered to an individualized, patient-centered focus in clinical care.
Collapse
|
40
|
Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals (Basel) 2022; 12:ani12111337. [PMID: 35681802 PMCID: PMC9179521 DOI: 10.3390/ani12111337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Heat stress (HS) represents an environmental and socio-economic burden to the poultry industry worldwide. However, the underpinning mechanisms for HS responses are still not well defined. Here, we used a high-throughput analysis to determine the metabolite profiles in acute and chronic heat-stressed broilers in comparison with thermoneutral and pair-fed birds. The results showed that HS altered several duodenal metabolites in a duration-dependent manner and identified potential metabolite signatures. Abstract Heat stress (HS) is devastating to poultry production sustainability worldwide. In addition to its adverse effects on growth, welfare, meat quality, and mortality, HS alters the gut integrity, leading to dysbiosis and leaky gut syndrome; however, the underlying mechanisms are not fully defined. Here, we used a high-throughput mass spectrometric metabolomics approach to probe the metabolite profile in the duodenum of modern broilers exposed to acute (AHS, 2 h) or chronic cyclic (CHS, 8 h/day for 2 weeks) HS in comparison with thermoneutral (TN) and pair-fed birds. Ultra high performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC–HRMS) identified a total of 178 known metabolites. The trajectory analysis of the principal component analysis (PCA) score plots (both 2D and 3D maps) showed clear separation between TN and each treated group, indicating a unique duodenal metabolite profile in HS birds. Within the HS groups, partial least squares discriminant analysis (PLS-DA) displayed different clusters when comparing metabolite profiles from AHS and CHS birds, suggesting that the metabolite signatures were also dependent on HS duration. To gain biologically related molecule networks, the above identified duodenal metabolites were mapped into the Ingenuity Pathway Analysis (IPA) knowledge-base and analyzed to outline the most enriched biological functions. Several common and specific top canonical pathways were generated. Specifically, the adenosine nucleotide degradation and dopamine degradation pathways were specific for the AHS group; however, the UDP-D-xylose and UDP-D-glucuronate biosynthesis pathways were generated only for the CHS group. The top diseases enriched by the IPA core analysis for the DA metabolites, including cancer, organismal (GI) injury, hematological, cardiovascular, developmental, hereditary, and neurological disorders, were group-specific. The top altered molecular and cellular functions were amino acid metabolism, molecular transport, small molecule biochemistry, protein synthesis, cell death and survival, and DNA damage and repair. The IPA-causal network predicted that the upstream regulators (carnitine palmitoyltransferase 1B, CPT1B; histone deacetylase 11, HDAC11; carbonic anhydrase 9, CA9; interleukin 37, IL37; glycine N-methyl transferase, GNMT; GATA4) and the downstream mediators (mitogen-activated protein kinases, MAPKs; superoxide dismutase, SOD) were altered in the HS groups. Taken together, these data showed that, independently of feed intake depression, HS induced significant changes in the duodenal metabolite profile in a duration-dependent manner and identified a potential duodenal signature for HS.
Collapse
|
41
|
Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221092734. [PMID: 35434443 PMCID: PMC9008809 DOI: 10.1177/24705470221092734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Background Trauma and chronic stress are believed to induce and exacerbate psychopathology by disrupting glutamate synaptic strength. However, in vivo in human methods to estimate synaptic strength are limited. In this study, we established a novel putative biomarker of glutamatergic synaptic strength, termed energy-per-cycle (EPC). Then, we used EPC to investigate the role of prefrontal neurotransmission in trauma-related psychopathology. Methods Healthy controls (n = 18) and patients with posttraumatic stress (PTSD; n = 16) completed 13C-acetate magnetic resonance spectroscopy (MRS) scans to estimate prefrontal EPC, which is the ratio of neuronal energetic needs per glutamate neurotransmission cycle (VTCA/VCycle). Results Patients with PTSD were found to have 28% reduction in prefrontal EPC (t = 3.0; df = 32, P = .005). There was no effect of sex on EPC, but age was negatively associated with prefrontal EPC across groups (r = -0.46, n = 34, P = .006). Controlling for age did not affect the study results. Conclusion The feasibility and utility of estimating prefrontal EPC using 13C-acetate MRS were established. Patients with PTSD were found to have reduced prefrontal glutamatergic synaptic strength. These findings suggest that reduced glutamatergic synaptic strength may contribute to the pathophysiology of PTSD and could be targeted by new treatments.
Collapse
Affiliation(s)
- Lynnette A. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Lihong Jiang
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Prerana Purohit
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Anastasia Coppoli
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Christopher L. Averill
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Jeremy Roscoe
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Benjamin Kelmendi
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Henk M. De Feyter
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Robin A de Graaf
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Ralitza Gueorguieva
- Department of Biostatistics, School of Public Health, Yale University School of
Medicine, New Haven, CT, USA
| | - Gerard Sanacora
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - John H. Krystal
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA
| | - Douglas L. Rothman
- Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Graeme F. Mason
- Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Yale Magnetic Resonance Research Center, Department of Radiology and
Biomedical Imaging, Yale University School of
Medicine, New Haven, CT, USA
| | - Chadi G. Abdallah
- National Center for PTSD – Clinical Neurosciences Division, US
Department of Veterans Affairs, West Haven, CT, USA,Michael E. DeBakey VA Medical Center, Houston, TX, USA,Menninger Department of Psychiatry, Baylor College of Medicine, Houston, TX, USA,Department of Psychiatry, Yale University School of
Medicine, New Haven, CT, USA,Core for Advanced Magnetic Resonance Imaging (CAMRI), Baylor College of Medicine, Houston, TX, USA,Chadi G. Abdallah, Menninger Department of
Psychiatry, Baylor College of Medicine, 1977 Butler Blvd, E4187, Houston, TX
77030, USA.
| |
Collapse
|
42
|
Smith DT, Faber SC, Buchanan NT, Foster D, Green L. The Need for Psychedelic-Assisted Therapy in the Black Community and the Burdens of Its Provision. Front Psychiatry 2022; 12:774736. [PMID: 35126196 PMCID: PMC8811257 DOI: 10.3389/fpsyt.2021.774736] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Psychedelic medicine is an emerging field that examines entheogens, psychoactive substances that produce non-ordinary states of consciousness (NOSC). 3,4-methylenedioxymethamphetamine (MDMA) is currently in phase-3 FDA clinical trials in the United States (US) and Canada to treat the symptoms of posttraumatic stress disorder (PTSD). MDMA is used in conjunction with manualized therapy, because of its effectiveness in reducing fear-driven stimuli that contribute to trauma and anxiety symptoms. In 2017, the FDA designated MDMA as a "breakthrough therapy," signaling that it has advantages in safety, efficacy, and compliance over available medication for the treatment of trauma-, stress-, and anxiety-related disorders such as PTSD. In the US and Canada, historical and contemporary racial mistreatment is frequently experienced by Black people via a variety of macro and micro insults. Such experiences trigger physiological responses of anxiety and fear, which are associated with chronically elevated stress hormone levels (e.g., cortisol and epinephrine), similar to levels documented among those diagnosed with an anxiety disorder. This paper will explore the benefits of entheogens within psychedelic assisted-therapy and their potential benefits in addressing the sequelae of pervasive and frequent negative race-based experiences and promoting healing and thriving among Black, Indigenous and other People of Color (BIPOC). The author(s) discuss the ethical responsibility for providing psychedelic-assisted therapy within a culturally competent provider framework and the importance of psychedelic researchers to recruit and retain BIPOC populations in research and clinical training.
Collapse
Affiliation(s)
- Darron T. Smith
- Department of Sociology, The University of Memphis, Memphis, TN, United States
| | | | - NiCole T. Buchanan
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | | | - Lilith Green
- Department of Sociology, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
43
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
44
|
Neuroadaptations and TGF-β signaling: emerging role in models of neuropsychiatric disorders. Mol Psychiatry 2022; 27:296-306. [PMID: 34131268 PMCID: PMC8671568 DOI: 10.1038/s41380-021-01186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023]
Abstract
Neuropsychiatric diseases are manifested by maladaptive behavioral plasticity. Despite the greater understanding of the neuroplasticity underlying behavioral adaptations, pinpointing precise cellular mediators has remained elusive. This has stymied the development of pharmacological interventions to combat these disorders both at the level of progression and relapse. With increased knowledge on the putative role of the transforming growth factor (TGF- β) family of proteins in mediating diverse neuroadaptations, the influence of TGF-β signaling in regulating maladaptive cellular and behavioral plasticity underlying neuropsychiatric disorders is being increasingly elucidated. The current review is focused on what is currently known about the TGF-β signaling in the central nervous system in mediating cellular and behavioral plasticity related to neuropsychiatric manifestations.
Collapse
|
45
|
Gao J, Lai M, Fu W, Wang M, Thi TTM, Ning B, Fu W. Electroacupuncture Ameliorates Depressive-Like State and Synaptic Deficits Induced by Hyper-Cholinergic Tone During Chronic Stress in Rats. Med Sci Monit 2021; 27:e933833. [PMID: 34924558 PMCID: PMC8705070 DOI: 10.12659/msm.933833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is the leading cause of disability around the world. It is generally agreed that the central cholinergic system plays an important role in emotional regulation. Acetylcholine (ACh) is now a new target for antidepressants. Therefore, the aim of this study was to evaluate the effect of acupuncture on depressive behaviors, cholinergic tones, and synaptic plasticity in the prefrontal cortex (PFC) in chronic unpredictable mild stress (CUMS). MATERIAL AND METHODS We randomly divided 36 male Sprague-Dawley (SD) rats into the Normal group, Stress group, Physostigmine+stress (Phys+stress) group, and Electroacupuncture+physostigmine+stress (EA+Phys+stress) group. Rats underwent CUMS exposure for 42 days. After 28 days of CUMS, rats received physostigmine or EA treatment for 2 weeks. Rats in the Phys+stress and EA+Phys+stress group received an intraperitoneal injection of physostigmine (TOCRIS, UK, 5 mg/kg) daily. Rats in the EA+Phys+stress group also received EA stimulation at GV 20 (Baihui), GV 29 (Yintang), LI 4 (Hegu), and LR 3 (Taichong) daily for 2 weeks. RESULTS We found that EA ameliorated weight loss and the depressive-like behaviors in the sucrose preference test, novelty-suppressed feeding test, and open-field test. There was significantly decreased expression of ACh and increased expression of acetylcholinesterase (AChE) after EA treatment. Consistent with the behavior tests and cholinergic tones, there were increased spine density and expressions of synaptic proteins, including brain-derived neurotrophic factor (BDNF), glutamate receptor 1 (GluR1), glutamate receptor 2 (GluR2), postsynaptic density protein 95 (PSD95), and synapsin I in the PFC. CONCLUSIONS The results suggest that EA can reverse the depressive-like behaviors and synaptic deficits induced by hyper-cholinergic tone during chronic stress via the modulation of hyper-cholinergic tone.
Collapse
Affiliation(s)
- Jing Gao
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, PR China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Mingyin Lai
- Department of Traditional Chinese Medicine, Hai Nan Medical University, Haikou, Hainan, PR China
| | - Wen Fu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Mengyu Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Thanh Tam Mai Thi
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Baile Ning
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
| | - Wenbin Fu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, PR China
- Shenzhen Bao’an Research Center for Acupuncture and Moxibustion, Shenzhen, Guangdong, PR China
| |
Collapse
|
46
|
Nephew BC, Incollingo Rodriguez AC, Melican V, Polcari JJ, Nippert KE, Rashkovskii M, Linnell LB, Hu R, Ruiz C, King JA, Gardiner P. Depression predicts chronic pain interference in racially diverse, income-disadvantaged patients. PAIN MEDICINE 2021; 23:1239-1248. [PMID: 34908146 DOI: 10.1093/pm/pnab342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Chronic pain is one of the most common reasons adults seek medical care in the US, with prevalence estimates ranging from 11% to 40%. Mindfulness meditation has been associated with significant improvements in pain, depression, physical and mental health, sleep, and overall quality of life. Group medical visits are increasingly common and are effective at treating myriad illnesses, including chronic pain. Integrative Medical Group Visits (IMGV) combine mindfulness techniques, evidence based integrative medicine, and medical group visits and can be used as adjuncts to medications, particularly in diverse underserved populations with limited access to non-pharmacological therapies. OBJECTIVE AND DESIGN The objective of the present study was to use a blended analytical approach of machine learning and regression analyses to evaluate the potential relationship between depression and chronic pain in data from a randomized clinical trial of IMGV in diverse, income disadvantaged patients suffering from chronic pain and depression. METHODS The analytical approach used machine learning to assess the predictive relationship between depression and pain and identify and select key mediators, which were then assessed with regression analyses. It was hypothesized that depression would predict the pain outcomes of average pain, pain severity, and pain interference. RESULTS Our analyses identified and characterized a predictive relationship between depression and chronic pain interference. This prediction was mediated by high perceived stress, low pain self-efficacy, and poor sleep quality, potential targets for attenuating the adverse effects of depression on functional outcomes. CONCLUSIONS In the context of the associated clinical trial and similar interventions, these insights may inform future treatment optimization, targeting, and application efforts in racialized, income disadvantaged populations, demographics often neglected in studies of chronic pain. TRIAL REGISTRATION NCT from clinicaltrials.gov: 02262377.
Collapse
Affiliation(s)
- Benjamin C Nephew
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | | | - Veronica Melican
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Justin J Polcari
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Kathryn E Nippert
- Dept. of Social Science and Policy Studies, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Mikhail Rashkovskii
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Lilly-Beth Linnell
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Ruofan Hu
- Computer Science Dept., Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Carolina Ruiz
- Computer Science Dept., Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jean A King
- Dept. of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Paula Gardiner
- Dept. of Family Medicine and Community Health, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
47
|
Natale NR, Kent M, Fox N, Vavra D, Lambert K. Neurobiological effects of a probiotic-supplemented diet in chronically stressed male Long-Evans rats: Evidence of enhanced resilience. IBRO Neurosci Rep 2021; 11:207-215. [PMID: 34849506 PMCID: PMC8607205 DOI: 10.1016/j.ibneur.2021.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics that regulate the microbiome-gut-brain axis and provide mental health benefits to the host are referred to as psychobiotics. Preclinical studies have demonstrated psychobiotic effects on early life stress-induced anxiety- and depression-related behavior in rodents; however, the specific mechanisms remain ill-defined. In the current study, we investigated the effects of probiotic supplementation on neurobiological responses to chronic stress in adult male Long-Evans rats. Twenty-four rats were randomly assigned to probiotic (PB) or vehicle control (VEH) groups, then to either chronic unpredictable stress (CUS) or no-stress control (CON) conditions within each group (n = 6/subgroup). We hypothesized that PB supplementation would reduce markers of anxiety and enhance emotional resilience, especially in the CUS animals. In the cognitive uncertainty task, a nonsignificant trend was observed indicating that the PB-supplemented animals spent more time oriented toward the food reward than VEH animals. In the open-field task, CUS-PB animals spent more time in the center of the arena than CUS-VEH animals, an effect not observed between the two CON groups. In the swim task, the PB animals, regardless of stress assignment, exhibited increased floating, suggesting a conserved response in a challenging context. Focusing on the endocrine measures, higher dehydroepiandrosterone (DHEA)-to-corticosterone fecal metabolite ratios, a correlate of emotional resilience, were observed in PB animals. Further, PB animals exhibited reduced microglia immunoreactivity in the basolateral amygdala, possibly indicating a neuroprotective effect of PB supplements in this rodent model. These results provide evidence that PB supplementation interacts with stress exposure to influence adaptive responses associated with endocrine, neural, and behavioral indices of anxiety.
Collapse
Affiliation(s)
- Nick R. Natale
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Molly Kent
- Dept of Biology, Virginia Military Institute, Lexington, VA 24450, USA
| | - Nathan Fox
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Dylan Vavra
- Dept of Psychology, University of Richmond, VA 23173, USA
| | - Kelly Lambert
- Dept of Psychology, University of Richmond, VA 23173, USA
| |
Collapse
|
48
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
49
|
Jakhar J, Biswas PS, Kapoor M, Panghal A, Meena A, Fani H, Kharya P. Comparative study of the mental health impact of the COVID-19 pandemic on health care professionals in India. Future Microbiol 2021; 16:1267-1276. [PMID: 34674541 PMCID: PMC8544479 DOI: 10.2217/fmb-2021-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This study aimed to investigate how the psychological health of health care professionals (HCP) on COVID duty was different from those who were not directly in contact. Methodology: Of 473 (76%) randomly selected respondents (doctors and nurses) to a WhatsApp request message, 450 subjects' data were finally analyzed. Result: The prevalence of stress, anxiety and depression among HCP was 33.8, 38.9 and 43.6%, respectively. Compared with nonexposed professionals, COVID-19-exposed professionals had roughly double the score of these morbidities (t = 6.3, p < 0.001; t = 6.9, p < 0.001; t = 6.0, p < 0.001). Most worry (71.11%) was about the health of their family, followed by themselves (35.55%). Conclusion: The level of exposure, feelings of uncertainty and fear of infection emerged in our study as possible risk factors for psychological morbidities among HCP.
Collapse
Affiliation(s)
- Jitender Jakhar
- Resident, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Partha Sarathi Biswas
- Professor and Head, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Mahima Kapoor
- Associate Professor, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Amandeep Panghal
- Resident, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Amit Meena
- Resident, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Harsha Fani
- Resident, Department of Psychiatry, Maulana Azad Medical College (G B Pant Institute of PG Medical Education & Research, GIPMER), New Delhi, India
| | - Pradip Kharya
- Assistant Professor, Community Medicine & Family Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
50
|
Picard K, Bisht K, Poggini S, Garofalo S, Golia MT, Basilico B, Abdallah F, Ciano Albanese N, Amrein I, Vernoux N, Sharma K, Hui CW, C Savage J, Limatola C, Ragozzino D, Maggi L, Branchi I, Tremblay MÈ. Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain Behav Immun 2021; 97:423-439. [PMID: 34343616 DOI: 10.1016/j.bbi.2021.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.
Collapse
Affiliation(s)
- Katherine Picard
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kanchan Bisht
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Maria Teresa Golia
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Bernadette Basilico
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Fatima Abdallah
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Irmgard Amrein
- Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zurich, Switzerland
| | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Kaushik Sharma
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Chin Wai Hui
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Julie C Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Molecular Medicine Department, Université Laval, Québec City, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|