1
|
Carey LM, Ghodrati S, France CP. Discriminative stimulus properties of Cannabis sativa terpenes in rats. Behav Pharmacol 2024; 35:161-171. [PMID: 38660819 PMCID: PMC11095836 DOI: 10.1097/fbp.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cannabis is a pharmacologically complex plant consisting of hundreds of potentially active compounds. One class of compounds present in cannabis that has received little attention are terpenes. Traditionally thought to impart aroma and flavor to cannabis, it has become increasingly recognized that terpenes might exert therapeutic effects themselves. Several recent reports have also indicated terpenes might behave as cannabinoid type 1 (CB1) receptor agonists. This study aimed to investigate whether several terpenes present in cannabis produce discriminative stimulus effects similar to or enhance the effects of Δ 9 -tetrahydrocannabinol (THC). Subsequent experiments explored other potential cannabimimetic effects of these terpenes. Rats were trained to discriminate THC from vehicle while responding under a fixed-ratio 10 schedule of food presentation. Substitution testing was performed with the CB receptor agonist JWH-018 and the terpenes linalool, limonene, γ-terpinene and α-humulene alone. Terpenes were also studied in combination with THC. Finally, THC and terpenes were tested in the tetrad assay to screen for CB1-receptor agonist-like effects. THC and JWH-018 dose-dependently produced responding on the THC-paired lever. When administered alone, none of the terpenes produced responding predominantly on the THC-paired lever. When administered in combination with THC, none of the terpenes enhanced the potency of THC, and in the case of α-humulene, decreased the potency of THC to produce responding on the THC-paired lever. While THC produced effects in all four tetrad components, none of the terpenes produced effects in all four components. Therefore, the terpenes examined in this report do not have effects consistent with CB1 receptor agonist properties in the brain.
Collapse
Affiliation(s)
- Lawrence M. Carey
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Saba Ghodrati
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Charles P. France
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Raus de Baviera D, Ruiz-Canales A, Barrajón-Catalán E. Cistus albidus L.-Review of a Traditional Mediterranean Medicinal Plant with Pharmacological Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:2988. [PMID: 37631199 PMCID: PMC10458491 DOI: 10.3390/plants12162988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cistus albidus L. (Cistaceae) is a medicinal plant that has been used therapeutically since ancient times in the Mediterranean basin for its important pharmacological properties. The ability of C. albidus to produce large quantities of a wide range of natural metabolites makes it an attractive source of raw material. The main constituents with bioactive functions that exert pharmacological effects are terpenes and polyphenols, with more than 200 identified compounds. The purpose of this review is to offer a detailed account of the botanical, ethnological, phytochemical, and pharmacological characteristics of C. albidus with the aim of encouraging additional pharmaceutical investigations into the potential therapeutic benefits of this medicinal plant. This review was carried out using organized searches of the available literature up to July 2023. A detailed analysis of C. albidus confirms its traditional use as a medicinal plant. The outcome of several studies suggests a deeper involvement of certain polyphenols and terpenes in multiple mechanisms such as inflammation and pain, with a potential application focus on neurodegenerative diseases and disorders. Other diseases such as prostate cancer and leukemia have already been researched with promising results for this plant, for which no intoxication has been reported in humans.
Collapse
Affiliation(s)
- Daniel Raus de Baviera
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Antonio Ruiz-Canales
- Department of Engineering, Area of Agroforestry, Miguel Hernández University, 03312 Orihuela, Spain; (D.R.d.B.); (A.R.-C.)
| | - Enrique Barrajón-Catalán
- Institute for Research, Development and Innovation in Health Biotechnology, Miguel Hernández University, 03202 Elche, Spain
- Department of Pharmacy, Elche University Hospital-FISABIO, 03203 Elche, Spain
| |
Collapse
|
3
|
de Sousa DP, Damasceno ROS, Amorati R, Elshabrawy HA, de Castro RD, Bezerra DP, Nunes VRV, Gomes RC, Lima TC. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023; 13:1144. [PMID: 37509180 PMCID: PMC10377445 DOI: 10.3390/biom13071144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In this review, we provide an overview of the current understanding of the main mechanisms of pharmacological action of essential oils and their components in various biological systems. A brief introduction on essential oil chemistry is presented to better understand the relationship of chemical aspects with the bioactivity of these products. Next, the antioxidant, anti-inflammatory, antitumor, and antimicrobial activities are discussed. The mechanisms of action against various types of viruses are also addressed. The data show that the multiplicity of pharmacological properties of essential oils occurs due to the chemical diversity in their composition and their ability to interfere with biological processes at cellular and multicellular levels via interaction with various biological targets. Therefore, these natural products can be a promising source for the development of new drugs.
Collapse
Affiliation(s)
- Damião P de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Renan Oliveira S Damasceno
- Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via Gobetti 83, 40129 Bologna, Italy
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Ricardo D de Castro
- Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Daniel P Bezerra
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador 40296-710, Brazil
| | - Vitória Regina V Nunes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Rebeca C Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Brazil
| | - Tamires C Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, Brazil
| |
Collapse
|
4
|
In vitro and in silico analysis of the Anopheles anticholinesterase activity of terpenoids. Parasitol Int 2023; 93:102713. [PMID: 36455706 DOI: 10.1016/j.parint.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Anopheles gambiae, An. coluzzii, An. arabiensis, and An. funestus are major vectors in high malaria endemic African regions. Various terpenoid classes form the main chemical constituent repository of essential oils, many of which have been shown to possess insecticidal effects against Anopheles species. The current study aimed to assess the bioactivity of terpenoids including four sesquiterpene alcohols, farnesol, (-)-α-bisabolol, cis-nerolidol, and trans-nerolidol; a phenylpropanoid, methyleugenol, and a monoterpene, (R)-(+)-limonene, using the larvicidal screening assay against the four Anopheles species. The mechanism of action was investigated through in vitro acetylcholinesterase inhibition assay and in silico molecular modelling. All six terpenoids showed potent larvicidal activity against the four Anopheles species. Insights into the mechanism of action revealed that the six terpenoids are strong AChE inhibitors against An. funestus and An. arabiensis, while there was a moderate inhibitory activity against An. gambiae AChE, but very weak activity against An. coluzzii. Interestingly, in the in silico study, farnesol established a favourable hydrogen bonding interaction with a conserved amino acid residue, Cys447, at the entrance to the active site gorge. While (-)-α-bisabolol and methyleugenol displayed a strong interaction with the catalytic Ser360 and adjacent amino acid residues; but sparing the mutable Gly280 residue that confers resistance to the current anticholinesterase insecticides. As a result, this study identified farnesol, (-)-α-bisabolol, and methyleugenol as selective bioinsecticidal agents with potent Anopheles AChE inhibition. These terpenoids present as natural compounds for further development as anticholinesterase bioinsecticides.
Collapse
|
5
|
Marangoni JA, da Costa Pinto JV, Kassuya CAL, de Oliveira Junior PC, Dos Santos SM, Cardoso CAL, Silva RMMF, Espíndola da Silva M, Machado CD, Manfron J, Formagio ASN. Geographical variation in the chemical composition, anti-inflammatory activity of the essential oil, micromorphology and histochemistry of Schinus terebinthifolia Raddi. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115786. [PMID: 36206869 DOI: 10.1016/j.jep.2022.115786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schinus terebinthifolia Raddi (Anacardiaceae) is rich in essential oil, distinguished by a predominance of monoterpenes and sesquiterpenes, it being widely used in traditional medicine for the treatment of inflammations. AIM OF STUDY This study's objective was to investigate the chemical composition of the essential oil of S. terebinthifolia (EOST) collected in six states of Brazil, evaluate its anti-inflammatory effects in mice, and analyze the histochemistry and micromorphology of leaves and stems. MATERIALS AND METHODS Aerial parts of S. terebinthifolia were collected in six states of Brazil, and the essential oil was extracted by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). The histochemistry and micromorphology of leaves and stems were performed using standard reagents, light and field emission scanning electron microscopy, beyond energy-dispersive X-ray spectroscopy. The EOST were evaluated for anti-inflammatory activity and hyperalgesia using the carrageenan-induced paw edema methodology. RESULTS The EOST showed variation across the six states in its yield (0.40%-0.86%) and chemical composition: hydrocarbon monoterpenes (28.76%-47.73%), sesquiterpenes, (31.43%-41.76%), oxygenated monoterpenes (14.31%-19.57%), and oxygenated sesquiterpenes (4.87%-14.38%). Both α-pinene and limonene were predominant constituents of essential in five regions, except for one state where α-phellandrene and limonene were the dominant components. A comprehensive description of the leaf and stem micromorphology and histochemistry was performed. In the in vivo testing, all EOST samples exerted antiedematogenic and anti-hyperalgesic effects, when tested in a carrageenan-induced paw inflammation (mechanical and thermal hyperalgesia) model with oral doses of 30 mg/kg. CONCLUSION Our results indicate that the EOST samples collected in six Brazilian states differed in their chemical composition but not their anti-inflammatory and antihyperalgesic effects, which was correlated with the synergistic effect of its components, collaborating the etnhopharmacologycal use of this plant due to its an anti-inflammatory effect. Also, micromorphology and histochemistry of leaves and stems presented in this study provide anatomical and microchemical information, which aids species identification.
Collapse
Affiliation(s)
- Janaine Alberto Marangoni
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados UFGD, MS, Brazil
| | | | | | | | | | | | | | - Marcia Espíndola da Silva
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados UFGD, MS, Brazil
| | - Camila Dias Machado
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, UEPG, PR, Brazil
| | - Jane Manfron
- Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, UEPG, PR, Brazil
| | - Anelise Samara Nazari Formagio
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados UFGD, MS, Brazil; Faculty of Health Sciences, Federal University of Grande Dourados UFGD, MS, Brazil.
| |
Collapse
|
6
|
Schoss K, Kočevar Glavač N, Kreft S. Volatile Compounds in Norway Spruce ( Picea abies) Significantly Vary with Season. PLANTS (BASEL, SWITZERLAND) 2023; 12:188. [PMID: 36616317 PMCID: PMC9824094 DOI: 10.3390/plants12010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Norway spruce (Picea abies) is one of the most important commercial conifer species naturally distributed in Europe. In this paper, the composition and abundance of essential oil and hydrosol from the needles and branches of P. abies were investigated with an additional evaluation of changes related to different times of the year, annual shoots and branches, and differences in composition under different microenvironments. Essential oils and hydrosols obtained via hydrodistillation were analyzed using gas chromatography-mass spectrometry (GC-MS), where 246 compounds in essential oil and 53 in hydrosols were identified. The relative amounts of monoterpenes, sesquiterpenes, and diterpenes in essential oil changed significantly during the year, with the highest peak of monoterpenes observed in April (72%), the highest abundance of sesquiterpenes observed in August (21%), and the highest abundance of diterpenes observed in June (27%). The individual compound with the highest variation was manool, with variation from 1.5% (April) to 18.7% (June). Our results also indicate that the essential oil with the lowest allergenic potential (lowest quantity of limonene and linalool) was obtained in late spring or summer. Location had no significant influence on composition, while the method of collection for distillation (whole branch or annual shoots) had a minor influence on the composition. All nine main compounds identified in the hydrosol samples were oxygenated monoterpenes. The composition of P. abies hydrosol was also significantly affected by season. The method of preparing the branches for distillation did not affect the composition of P. abies hydrosol, while the location had a minor effect on composition.
Collapse
|
7
|
Espinoza LC, Valarezo E, Fábrega MJ, Rodríguez-Lagunas MJ, Sosa L, Calpena AC, Mallandrich M. Characterization and In Vivo Anti-Inflammatory Efficacy of Copal ( Dacryodes peruviana (Loes.) H.J. Lam) Essential Oil. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223104. [PMID: 36432834 PMCID: PMC9696342 DOI: 10.3390/plants11223104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Essential oils are natural aromatic substances that contain complex mixtures of many volatile compounds frequently used in pharmaceutical and cosmetic industries. Dacryodes peruviana (Loes.) H.J. Lam is a native species from Ecuador whose anti-inflammatory activity has not been previously reported, thus the aim of this study was to evaluate the anti-inflammatory activity of D. peruviana essential oil. To that end, essential oil from D. peruviana fruits was isolated by hydrodistillation and characterized physically and chemically. The tolerance of the essential oil was analyzed by cytotoxicity studies using human keratinocytes. The anti-inflammatory activity was evaluated by an arachidonic acid-induced edema model in mouse ear. The predominant compounds in D. peruviana essential oil were α-phellandrene, limonene, and α-pinene, with the three compounds reaching approximately 83% of the total composition. Tolerance studies showed high biocompatibility of this essential oil with human keratinocytes. In vivo studies demonstrated a moisturizing effect and an alleviation of several events occurred during the inflammatory process after topical treatment with D. peruviana essential oil such as decline in skin edema; reduction in leukocytic infiltrate; and decrease in inflammatory cytokines TNFα, IL-8, IL-17A, and IL-23. Therefore, this essential oil could be an attractive treatment for skin inflammation.
Collapse
Affiliation(s)
- Lupe Carolina Espinoza
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Eduardo Valarezo
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - María José Fábrega
- Department of Experimental and Health Sciences, Parc of Biomedic Research of Barcelona, Pompeu Fabra University, 08003 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Ana Cristina Calpena
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
8
|
A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Sci Pharm 2022. [DOI: 10.3390/scipharm90040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aromatic essential oils play a significant role in pharmaceuticals, food additives, cosmetics, and perfumery. Essential oils mostly comprise aliphatic hydrocarbons, monoterpenoids, sesquiterpenoids and diterpenes. Plant extracts comprise a complex mixture of terpenes, terpenoids, aliphatic and phenol-derived aromatic components. Terpenes are a significant class of hydrocarbons with numerous health benefits. These biological functions of essential oil components are examined in vitro and in vivo studies. Some studies evaluated the properties and functions of α-phellandrene (α-PHE). Detailed evaluation to determine the functions of α-PHE over a spectrum of health care domains needs to be initiated. Its possible mechanism of action in a biological system could reveal the future opportunities and challenges in using α-PHE as a pharmaceutical candidate. The biological functions of α-PHE are reported, including anti-microbial, insecticidal, anti-inflammatory, anti-cancer, wound healing, analgesic, and neuronal responses. The present narrative review summarizes the synthesis, biotransformation, atmospheric emission, properties, and biological activities of α-PHE. The literature review suggests that extended pre-clinical studies are necessary to develop α-PHE-based adjuvant therapeutic approaches.
Collapse
|
9
|
Reyes-Pérez V, Granados-Soto V, Linares E, Bye R, Mata R, Deciga-Campos M. Anti-inflammatory and anti-allodynic activities in mice of the essential oil and desmethylisoencecalin from Zinnia grandiflora Nuttall. JOURNAL OF ESSENTIAL OIL RESEARCH 2022. [DOI: 10.1080/10412905.2022.2118880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Valeria Reyes-Pérez
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Edelmira Linares
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Robert Bye
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Myrna Deciga-Campos
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
11
|
Odieka AE, Obuzor GU, Oyedeji OO, Gondwe M, Hosu YS, Oyedeji AO. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022; 27:1689. [PMID: 35268790 PMCID: PMC8911748 DOI: 10.3390/molecules27051689] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.
Collapse
Affiliation(s)
- Anwuli Endurance Odieka
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Gloria Ukalina Obuzor
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria;
| | | | - Mavuto Gondwe
- Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Yiseyon Sunday Hosu
- Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
12
|
Malagón O, Cartuche P, Montaño A, Cumbicus N, Gilardoni G. A New Essential Oil from the Leaves of the Endemic Andean Species Gynoxys miniphylla Cuatrec. (Asteraceae): Chemical and Enantioselective Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030398. [PMID: 35161379 PMCID: PMC8839257 DOI: 10.3390/plants11030398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/08/2023]
Abstract
A previously uninvestigated essential oil (EO) was distilled from Gynoxys miniphylla Cuatrec. (Asteraceae) and submitted to chemical and enantioselective analyses. The qualitative and quantitative analyses were conducted by GC-MS and GC-FID, over two orthogonal columns (5%-phenyl-methylpolysiloxane and polyethylene glycol stationary phases). Major constituents (≥2%) were, on both columns, respectively, as follows: α-phellandrene (16.1-17.2%), α-pinene (14.0-15.0%), germacrene D (13.3-14.8%), trans-myrtanol acetate (8.80%), δ-cadinene (4.2-4.6%), β-phellandrene (3.3-2.8%), (E)-β-caryophyllene (3.1-2.0%), o-cymene (2.4%), α-cadinol (2.3-2.6%), and α-humulene (1.7-2.0%). All the quantified compounds corresponded to 93.5-97.3% by weight of the whole essential oil, with monoterpenes counting for 53.8-55.6% of the total, and sesquiterpenes for 38.5-41.4%. For what concerns the enantioselective analyses, the chiral components were investigated through a β-cyclodextrin-based enantioselective column (2,3-diethyl-6-tert-butyldimethylsilyl-β-cyclodextrin). A total of six chiral metabolites were analysed and the respective enantiomeric excess calculated as follows: (1S,5S)-(-)-α-pinene (98.2%), (1S,5S)-(-)-β-pinene (11.9%), (1R,5R)-(+)-sabinene (14.0%), (R)-(-)-α-phellandrene (100.0%), (R)-(-)-β-phellandrene (100.0%), and (S)-(-)-germacrene D (95.5%). According to the chemical composition and enantiomeric distribution of major compounds, this EO can be considered promising as a cholinergic, antiviral and, probably, analgesic product.
Collapse
Affiliation(s)
- Omar Malagón
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja 110107, Ecuador; (O.M.); (P.C.); (A.M.)
| | - Patricio Cartuche
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja 110107, Ecuador; (O.M.); (P.C.); (A.M.)
| | - Angel Montaño
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja 110107, Ecuador; (O.M.); (P.C.); (A.M.)
| | - Nixon Cumbicus
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja 110107, Ecuador;
| | - Gianluca Gilardoni
- Departamento de Química, Universidad Técnica Particular de Loja (UTPL), Calle Marcelino Champagnat s/n, Loja 110107, Ecuador; (O.M.); (P.C.); (A.M.)
- Correspondence: or
| |
Collapse
|
13
|
El-Nashar HAS, Mostafa NM, Abd El-Ghffar EA, Eldahshan OA, Singab ANB. The genus Schinus (Anacardiaceae): a review on phytochemicals and biological aspects. Nat Prod Res 2021; 36:4839-4857. [PMID: 34886735 DOI: 10.1080/14786419.2021.2012772] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The genus Schinus belongs to family 'Anacardiaceae' and includes about 29 species originating from South America, distributed to Peru, Chile, Argentina, Brazil and Paraguay and cultivated in Egypt. Traditionally, Schinus plants are used to alleviate several and diverse diseases including rheumatism, hypertension, ulcers, gastric distress, menstrual disorders, gonorrhea, bronchitis, gingivitis, conjunctivitis, dysentery, wounds, urinary tract, and eye infections. Several phytochemical studies on the Schinus plants revealed presence of diverse bioactive compounds such as flavonoids, bioflavonoids, phenolic acids, tannins, catechins, terpenoids and essential oils. Besides, some Schinus species and their isolated active compounds showed important biological activities such as antibacterial, antifungal, insecticidal, antiparasitic, analgesic, cytotoxic, antitumor, antioxidant, antihypertensive, anti-inflammatory, antimycobacterial, anti-Parkinson, anti-allergic, antiviral, wound healing, chemoprotective, anthelmintic and hepatoprotective. This review attempts to summarize the phytochemical profile and biological activities of Schinus species that could guide researchers to undertake further investigation.
Collapse
Affiliation(s)
- Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Eman A Abd El-Ghffar
- Department of Biology, Collage of Science, Taibah University, Saudi Arabia.,Department of Zoology, Faculty of Sciences, Ain Shams University, Abbassia, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
14
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
15
|
Velasques J, Crispim BDA, Vasconcelos AAD, Bajay MM, Cardoso CAL, Barufatti A, do Carmo Vieira M. Genetic and chemodiversity in native populations of Schinus terebinthifolia Raddi along the Brazilian Atlantic forest. Sci Rep 2021; 11:20487. [PMID: 34650068 PMCID: PMC8516881 DOI: 10.1038/s41598-021-00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/06/2021] [Indexed: 11/09/2022] Open
Abstract
Schinus terebinthifolia is a species native to different ecoregions in the Brazilian Atlantic Forest. The plant is listed on the National Relation of Medicinal Plants and recommended as phytomedicine, however while extractive exploitation prevails as the main route of raw material a significant variation of compounds will be detected. To assure the expansion of productive chain it is important to start by studying population diversity and chemical variations. We used SSR markers for studies of genetic structure among populations from dense ombrophilous forest (ES); the deciduous seasonal forest (SM); the savanna (DOU) and the sandbanks (ITA and MSP), and compared the results to their chemical profiles of essential oil. Genetic structure revealed differences among populations and significant fixation rates. Pairwise studies and Bayesian analysis showed similarities between ITA and SM and between DOU and MSP, proving that the patterns of distribution for the species do not follow the isolation by distance or similarity by environmental conditions. The comparison between PCA of genotypes and chemodiversity reinforces the unique profile for each population despite the environmental similarity observed and genetic analysis. The most divergent genotype and chemical group was found at the ombrophilous forest, strong evidence that we should undertake conservation efforts to prevent losses of biodiversity in that area.
Collapse
Affiliation(s)
- Jannaina Velasques
- Programa de Pós-Graduação em Biossistemas, Universidade Federal do Sul da Bahia, Itabuna, Bahia, Brazil.
| | - Bruno do Amaral Crispim
- Programa de Pós-Graduação em Biodiversidade e Meio Ambiente, Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Adrielle Ayumi de Vasconcelos
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Miklos Maximiliano Bajay
- Departamento de Engenharia de Pesca e Biologia, Universidade do Estado de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Claudia Andrea Lima Cardoso
- Programa de Pós Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
| | - Alexeia Barufatti
- Programa de Pós-Graduação em Biodiversidade e Meio Ambiente, Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Maria do Carmo Vieira
- Programa de Pós-Graduação em Agronomia, Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
16
|
Liktor-Busa E, Keresztes A, LaVigne J, Streicher JM, Largent-Milnes TM. Analgesic Potential of Terpenes Derived from Cannabis sativa. Pharmacol Rev 2021; 73:98-126. [PMID: 34663685 PMCID: PMC11060501 DOI: 10.1124/pharmrev.120.000046] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pain prevalence among adults in the United States has increased 25% over the past two decades, resulting in high health-care costs and impacts to patient quality of life. In the last 30 years, our understanding of pain circuits and (intra)cellular mechanisms has grown exponentially, but this understanding has not yet resulted in improved therapies. Options for pain management are limited. Many analgesics have poor efficacy and are accompanied by severe side effects such as addiction, resulting in a devastating opioid abuse and overdose epidemic. These problems have encouraged scientists to identify novel molecular targets and develop alternative pain therapeutics. Increasing preclinical and clinical evidence suggests that cannabis has several beneficial pharmacological activities, including pain relief. Cannabis sativa contains more than 500 chemical compounds, with two principle phytocannabinoids, Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Beyond phytocannabinoids, more than 150 terpenes have been identified in different cannabis chemovars. Although the predominant cannabinoids, Δ9-THC and CBD, are thought to be the primary medicinal compounds, terpenes including the monoterpenes β-myrcene, α-pinene, limonene, and linalool, as well as the sesquiterpenes β-caryophyllene and α-humulene may contribute to many pharmacological properties of cannabis, including anti-inflammatory and antinociceptive effects. The aim of this review is to summarize our current knowledge about terpene compounds in cannabis and to analyze the available scientific evidence for a role of cannabis-derived terpenes in modern pain management. SIGNIFICANCE STATEMENT: Decades of research have improved our knowledge of cannabis polypharmacy and contributing phytochemicals, including terpenes. Reform of the legal status for cannabis possession and increased availability (medicinal and recreational) have resulted in cannabis use to combat the increasing prevalence of pain and may help to address the opioid crisis. Better understanding of the pharmacological effects of cannabis and its active components, including terpenes, may assist in identifying new therapeutic approaches and optimizing the use of cannabis and/or terpenes as analgesic agents.
Collapse
Affiliation(s)
| | - Attila Keresztes
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - Justin LaVigne
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | - John M Streicher
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
17
|
Eddin LB, Jha NK, Meeran MFN, Kesari KK, Beiram R, Ojha S. Neuroprotective Potential of Limonene and Limonene Containing Natural Products. Molecules 2021; 26:4535. [PMID: 34361686 PMCID: PMC8348102 DOI: 10.3390/molecules26154535] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflammation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its safety profile, and various mechanisms of action make this monoterpene a favorable molecule to be developed as a nutraceutical for preventive purposes and as an alternative agent or adjuvant to modern therapeutic drugs in curbing the onset and progression of neurodegenerative diseases. This manuscript presents a comprehensive review of the available scientific literature discussing the pharmacological activities of limonene or plant products containing limonene which attribute to the protective and therapeutic ability in neurodegenerative disorders. This review has been compiled based on the existing published articles confined to limonene or limonene-containing natural products investigated for their neurotherapeutic or neuroprotective potential. All the articles available in English or the abstract in English were extracted from different databases that offer an access to diverse journals. These databases are PubMed, Scopus, Google Scholar, and Science Direct. Collectively, this review emphasizes the neuroprotective potential of limonene against neurodegenerative and other neuroinflammatory diseases. The available data are indicative of the nutritional use of products containing limonene and the pharmacological actions and mechanisms of limonene and may direct future preclinical and clinical studies for the development of limonene as an alternative or complementary phytomedicine. The pharmacophore can also provide a blueprint for further drug discovery using numerous drug discovery tools.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India;
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; (L.B.E.); (M.F.N.M.); (R.B.)
| |
Collapse
|
18
|
Antispasmodic, antidepressant and anxiolytic effects of extracts from Schinus lentiscifolius Marchand leaves. J Tradit Complement Med 2021; 12:141-151. [PMID: 35528474 PMCID: PMC9072823 DOI: 10.1016/j.jtcme.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022] Open
Abstract
Schinus lentiscifolius (Anacardiaceae) is widely used in folk medicine for treating gastrointestinal and emotional complaints but there are no scientific studies that support these uses. This work aims at evaluating the antispasmodic and central effects of S. lentiscifolius as well as the flavonoids presence in the tincture (SchT) and the composition of the essential oil (SchO). SchT inhibited the concentration-response curves (CRC) of carbachol and calcium in a non-competitive way in isolated rat intestine, bladder and uterus. SchT also non-competitively inhibited the CRC of histamine in guinea-pig intestine and the CRCs of serotonin and oxytocin in rat uterus. Isoquercetin and rutin were identified in SchT. The behavioral effects of SchT, SchO and infusion of S. lentiscifolius leaves (SchW) were tested in mice. These extracts showed an anxiolytic-like effect in the novelty-suppressed feeding test, which was reversed by flumazenil except in SchO-treated mice. Only SchO reduced the spontaneous locomotor function in the open field test. Also, SchT and SchW decreased immobility time in both, the tail suspension (TST) and forced swimming tests, while SchO produced the same effect in the TST. d-limonene and α-santalol were the main components found in SchO. The results demonstrated that extracts obtained from S. lentiscifolius leaves were effective as intestinal, urinary and uterine antispasmodics. SchT and SchW exhibited anxiolytic and antidepressant properties without sedation, whereas SchO showed also sedative properties. Therefore, the present study gives preclinical support to the traditional use of this plant for gastrointestinal and depressive or emotional symptoms. Schinus lentiscifolius is popularly consumed for its medicinal properties but there are no scientific studies in this regard. •We evaluated its effects on visceral smooth muscle and central nervous system. Our findings reinforce its traditional uses. •In addition, we propose possible new therapeutic applications.
Collapse
|
19
|
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021; 12:669638. [PMID: 34054540 PMCID: PMC8155682 DOI: 10.3389/fphar.2021.669638] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are frequently encountered in many neurological disorders, such as Alzheimer’s and Parkinson diseases along with epilepsy, migraine, essential tremors, and stroke. The most common comorbid diagnoses in neurological diseases are depression and anxiety disorders along with cognitive impairment. Whether the underlying reason is due to common neurochemical mechanisms or loss of previous functioning level, comorbidities are often overlooked. Various treatment options are available, such as pharmacological treatments, cognitive-behavioral therapy, somatic interventions, or electroconvulsive therapy. However oral antidepressant therapy may have some disadvantages, such as interaction with other medications, low tolerability due to side effects, and low efficiency. Natural compounds of plant origin are extensively researched to find a better and safer alternative treatment. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, phenolic acids as well as lipids have significant potential in in vitro and in vivo models of psychiatric disorders. In this review, various efficacy of natural products in in vitro and in vivo studies on neuroprotective and their roles in psychiatric disorders are examined and their neuro-therapeutic potentials are shed light.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Irem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Elif Carpar
- Department of Psychiatry, Private French La Paix Hospital, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Potici, Italy
| |
Collapse
|
20
|
Branquinho LS, Verdan MH, Santos ED, Neves SCD, Oliveira RJ, Cardoso CAL, Kassuya CAL. Aqueous extract from leaves of Doliocarpus dentatus (Aubl.) Standl. relieves pain without genotoxicity activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113440. [PMID: 33022341 DOI: 10.1016/j.jep.2020.113440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the State of Mato Grosso do Sul, the watery sap of Doliocarpus dentatus is used to alleviate thirst, and the leaves of this species are used to relieve pain and swelling associated with inflammatory processes. AIM OF THE STUDY This study aimed to analyze the compounds of the leaves from the aqueous extract of D. dentatus (EADd) and evaluate its toxicogenetic and pain relief effects in animal models. MATERIALS AND METHODS Compounds were identified in EADd by UHPLC-HRMS (Ultra high-performance liquid chromatography coupled to high resolution mass spectrometry). The oral dose of 17 mg/kg EADd, calculated according to ethnopharmacological uses, and doses between 30 and 300 mg/kg were used to test Swiss mice in formalin- and acetic acid-induced models of pain and behavior. EADd (100-2000 mg/kg) was assayed in mice by comet, micronucleus, and phagocytosis tests and by peripheral leukocyte counts. RESULTS Phenolic compounds and flavonoids as well as trigonelline and isoquercetin were identified in EADd. All oral doses of EADd exhibited antinociceptive activity, as indicated by a decrease in pain in both phases, a decrease in cold hypersensitivity induced by formalin, and a decrease in abdominal contortions induced by acetic acid. EADd did not alter the exploratory, motor or motivational activities of the animals. The comet and micronucleus tests indicated that EADd was not genotoxic and did not change the phagocytic activity or peripheral leukocyte count. CONCLUSIONS These results demonstrate that EADd could act as an antinociceptive agent that does not present genotoxicity. This study should contribute to justifying, in part, the popular use of D. dentatus in pain management, ensuring its safe use.
Collapse
Affiliation(s)
- Lidiane Schultz Branquinho
- School of Health Sciences, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | - Maria Helena Verdan
- Postgraduate Program in Chemistry, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | - Elisangela Dos Santos
- School of Health Sciences, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil.
| | | | | | - Cláudia Andrea Lima Cardoso
- Postgraduate Program in Chemistry, Federal University of Grande Dourados - Dourados, Mato Grosso do Sul State, Brazil; Center of Studies in Natural Resources, State University of Mato Grosso Do Sul - Dourados, Mato Grosso do Sul State, Brazil.
| | | |
Collapse
|
21
|
Lorigooini Z, Boroujeni SN, Sayyadi-Shahraki M, Rahimi-Madiseh M, Bijad E, Amini-khoei H. Limonene through Attenuation of Neuroinflammation and Nitrite Level Exerts Antidepressant-Like Effect on Mouse Model of Maternal Separation Stress. Behav Neurol 2021; 2021:8817309. [PMID: 33564342 PMCID: PMC7864762 DOI: 10.1155/2021/8817309] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
METHODS Mice were randomly divided into experimental groups as follows: the control group received normal saline and MS groups received normal saline, limonene (10 and 20 mg/kg), L-NAME (10 mg/kg), L-arginine (L-arg) (75 mg/kg), limonene (10 mg/kg) plus L-NAME, and limonene (20 mg/kg) plus L-arg. Behavioral tests including the forced swimming test (FST), open field test (OFT), and splash test were performed. Finally, serum and hippocampal nitrite levels as well as the expression of inflammatory genes (IL-1β and TNF-α) in the hippocampus were measured. RESULTS We showed that MS caused depressive-like behavior. Treatment of MS mice with limonene reduced the duration of immobility time in FST and increases the grooming activity time in the splash test. Limonene also reduces serum and brain nitrite levels and reduces the expression of IL-1β and TNF-α in the hippocampus. We found that L-NAME potentiated the effects of a subeffective dose of limonene. CONCLUSION We concluded that the antidepressant-like effects of limonene are probably mediated through inhibition of neuroinflammation and attenuation of nitrite levels in the hippocampus.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Sayyadi-Shahraki
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
22
|
Nagoor Meeran M, Seenipandi A, Javed H, Sharma C, Hashiesh HM, Goyal SN, Jha NK, Ojha S. Can limonene be a possible candidate for evaluation as an agent or adjuvant against infection, immunity, and inflammation in COVID-19? Heliyon 2021; 7:e05703. [PMID: 33490659 PMCID: PMC7810623 DOI: 10.1016/j.heliyon.2020.e05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite the tremendous social preventive measures. The therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. The identification of candidate drugs effective for COVID-19 is crucial, thus many natural products including phytochemicals are also being proposed for repurposing and evaluated for their potential in COVID-19. Among numerous phytochemicals, limonene (LMN), a dietary terpene of natural origin has been recently showed to target viral proteins in the in-silico studies. LMN is one of the main compounds identified in many citrus plants, available and accessible in diets and well-studied for its therapeutic benefits. Due to dietary nature, relative safety and efficacy along with favorable physicochemical properties, LMN has been suggested to be a fascinating candidate for further investigation in COVID-19. LMN showed to modulate numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. We hypothesized that given the pathogenesis of COVID-19 involving infection, inflammation, and immunity, LMN may have potential to limit the severity and progression of the disease owing to its immunomodulatory, anti-inflammatory, and antiviral properties. The present article discusses the possibilities of LMN in SARS-CoV-2 infections based on its immunomodulatory, anti-inflammatory, and antiviral properties. Though, the suggestion on the possible use of LMN in COVID-19 remains inconclusive until the in-silico effects confirmed in the experimental studies and further proof of the concept studies. The candidature of LMN in COVID-19 treatment somewhat appear speculative but cannot be overlooked provided favorable physiochemical and druggable properties. The safety and efficacy of LMN are necessary to be established in preclinical and clinical studies before making suggestions for use in humans.
Collapse
Affiliation(s)
- M.F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - A. Seenipandi
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
23
|
Zhang Y, Long Y, Yu S, Li D, Yang M, Guan Y, Zhang D, Wan J, Liu S, Shi A, Li N, Peng W. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol Res 2020; 164:105376. [PMID: 33316383 DOI: 10.1016/j.phrs.2020.105376] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.
Collapse
Affiliation(s)
- Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Shuang Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 330004, China
| | - Dingkun Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Ai Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
24
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
25
|
Valarezo E, Ojeda-Riascos S, Cartuche L, Andrade-González N, González-Sánchez I, Meneses MA. Extraction and Study of the Essential Oil of Copal ( Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1658. [PMID: 33256174 PMCID: PMC7760007 DOI: 10.3390/plants9121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Essential oils are highly demanded substances worldwide. They can be used without modification due to their different chemical and biological properties or as natural sources of chemical compounds. The limit in the use of these metabolites is their low yield. In the present investigation, the essential oil of fruits from Dacryodes peruviana collected in the Ecuadorian Amazon was extracted and studied. The essential oil was released from the plant matrix and isolated by hydrodistillation. The yields obtained were 4.8 ± 0.2% and 11.3 ± 0.2% for fresh and dried fruits, respectively, one of the highest yields on record to date. Twenty-five chemical compounds were identified by GC/MS and GC/FID techniques. The principal constituent was α-phellandrene, with 50.32 ± 3.32%. The antimicrobial activity of the oil was assayed against five Gram negative bacteria, two Gram positive bacteria and two fungi. The essential oil exerted a moderate activity against Staphylococcus aureus. The repellent activity of the oil was assayed against mosquitoes (Diptera: Culicidae); the samples with 3%, 2% and 1% essential oil were class 4, and the sample with 0.5% showed to be class 3. The essential oil showed a weak antioxidant activity through the DPPH and ABTS methods.
Collapse
Affiliation(s)
- Eduardo Valarezo
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 110150, Ecuador; (S.O.-R.); (L.C.); (N.A.-G.); (I.G.-S.); (M.A.M.)
| | | | | | | | | | | |
Collapse
|
26
|
Ramos DDBM, Araújo MTDMF, Araújo TCDL, Silva YA, Dos Santos ACLA, E Silva MG, Paiva PMG, Mendes RL, Napoleão TH. Antinociceptive activity of Schinus terebinthifolia leaf lectin (SteLL) in sarcoma 180-bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112952. [PMID: 32416247 DOI: 10.1016/j.jep.2020.112952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolia Raddi leaves have been used in folk medicine due to several properties, including antitumor and analgesic effects. The variable efficacy and adverse effects of analgesic drugs have motivated the search for novel antinociceptive agents. It has been reported that the S. terebinthifolia leaf lectin (SteLL) has antitumor activity against sarcoma 180 in mice. AIM OF THE STUDY This work aimed to evaluate whether SteLL would reduce cancer pain using an orthotopic tumor model. MATERIALS AND METHODS A sarcoma 180 cell suspension was inoculated into the right hind paws of mice, and the treatments (150 mM NaCl, negative control; 10 mg/kg morphine, positive control; or SteLL at 1 and 2 mg/kg) were administered intraperitoneally 24 h after cell inoculation up to 14 days. Spontaneous nociception, mechanical hyperalgesia, and hot-plate tests were performed. Further, the volume and weight of the tumor-bearing paws were measured. RESULTS SteLL (2 mg/kg) improved limb use during ambulation. The lectin (1 and 2 mg/kg) also inhibited mechanical hyperalgesia and increased the latency time during the hot-plate test. Naloxone was found to reverse this effect, indicating the involvement of opioid receptors. The tumor-bearing paws of mice treated with SteLL exhibited lower volume and weight. CONCLUSION SteLL reduced hyperalgesia due to sarcoma 180 in the paws of mice, and this effect can be related to its antitumor action.
Collapse
Affiliation(s)
- Dalila de Brito Marques Ramos
- Campus Amilcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brazil; Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | | | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
27
|
Antonelli M, Donelli D, Barbieri G, Valussi M, Maggini V, Firenzuoli F. Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186506. [PMID: 32906736 PMCID: PMC7559006 DOI: 10.3390/ijerph17186506] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
The aim of this research work is to analyze the chemistry and diversity of forest VOCs (volatile organic compounds) and to outline their evidence-based effects on health. This research work was designed as a narrative overview of the scientific literature. Inhaling forest VOCs like limonene and pinene can result in useful antioxidant and anti-inflammatory effects on the airways, and the pharmacological activity of some terpenes absorbed through inhalation may be also beneficial to promote brain functions by decreasing mental fatigue, inducing relaxation, and improving cognitive performance and mood. The tree composition can markedly influence the concentration of specific VOCs in the forest air, which also exhibits cyclic diurnal variations. Moreover, beneficial psychological and physiological effects of visiting a forest cannot be solely attributed to VOC inhalation but are due to a global and integrated stimulation of the five senses, induced by all specific characteristics of the natural environment, with the visual component probably playing a fundamental role in the overall effect. Globally, these findings can have useful implications for individual wellbeing, public health, and landscape design. Further clinical and environmental studies are advised, since the majority of the existing evidence is derived from laboratory findings.
Collapse
Affiliation(s)
- Michele Antonelli
- Terme di Monticelli, 43022 Monticelli Terme PR, Italy
- Institute of Public Health, University of Parma, 43125 Parma PR, Italy
- Correspondence:
| | - Davide Donelli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
- AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia RE, Italy
| | - Grazia Barbieri
- Binini Partners S.r.l. Engineering and Architecture, 42121 Reggio Emilia RE, Italy;
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), Norwich NR3 1HG, UK;
| | - Valentina Maggini
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| | - Fabio Firenzuoli
- CERFIT, Careggi University Hospital, 50139 Firenze FI, Italy; (D.D.); (V.M.); (F.F.)
| |
Collapse
|
28
|
Noor AAM, Yusuf SM, Wahab WNAWA, Adam MFIC, Sul’ain MD. Evaluation on composition, antioxidant and toxicity of Melaleuca cajuputi leaves. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00479-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Wu R, Wang H, Lv X, Shen X, Ye G. Rapid action of mechanism investigation of Yixin Ningshen tablet in treating depression by combinatorial use of systems biology and bioinformatics tools. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112827. [PMID: 32276008 DOI: 10.1016/j.jep.2020.112827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yixin Ningshen tablet is a CFDA-approved TCM formula for treating depression clinically. However, little is known about its active compounds and related potential target proteins, so far, no researches have been performed to investigate its mechanism of action for the treatment of depression. AIM OF THE STUDY Here we develop an original bioinformatics pipeline composed of text mining tools, database querying and systems biology combinatorial analysis, which is applied to rapidly explore the mechanism of action of Yixin Ningshen tablet in treating depression. MATERIALS AND METHODS Text mining and database query were applied to identify active compounds in Yixin Ningshen tablet for the treatment of depression. Then SwissTargetPrediction was used to predict their potential target proteins. PubMed was retrieved to summarize known depression related systems biology results. Ingenuity Pathway Analysis (IPA) tools and STRING were applied to construct a compound-target protein-gene protein-differential protein-differential metabolite network with the integration of compound-target interaction and systems biology results, as well as enrich the target proteins related pathways. ChEMBL and CDOCKER were used to validate the compound-target interactions. RESULTS 62 active compounds and their 286 potential target proteins were identified in Yixin Ningshen tablet for the treatment of depression. The construction of compound-target protein-gene protein-differential protein-differential metabolite network shrinked the number of potential target proteins from 286 to 133. Pathway enrichment analysis of target proteins indicated that Neuroactive ligand-receptor interaction, Calcium signaling pathway, Serotonergic synapse, cAMP signaling pathway and Gap junction were the common primary pathways regulated by both Yixin Ningshen Tablet and anti-depressant drugs, and MAPK, Relaxin, AGE-RAGE, Estrogen, HIF-1, Jak-STAT signaling pathway, Endocrine resistance, Arachidonic acid metabolism and Regulation of actin cytoskeleton were the specifically main pathways regulated by Yixin Ningshen tablet for the treatment of depression. Further validations based on references and molecular docking results demonstrated that Yixin Ningshen tablet could primarily target MAPT, CHRM1 and DRD1, thus regulating serotonergic neurons, cholinergic transmission, norepinephrine and dopamine reuptake for the treatment of depression. CONCLUSIONS This study displays the power of extensive mining of public data and bioinformatical repositories to provide answers for a specific pharmacological question. It furthermore demonstrates how the usage of such a combinatorial approach is advantageous for the biologist in terms of experimentation time and costs.
Collapse
Affiliation(s)
- Ruoming Wu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Huijun Wang
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China; The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xing Lv
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 310000, China.
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, 201203, China.
| |
Collapse
|
30
|
Wanas AS, Radwan MM, Chandra S, Lata H, Mehmedic Z, Ali A, Baser KHC, Demirci B, ElSohly MA. Chemical Composition of Volatile Oils of Fresh and Air-Dried Buds of Cannabis chemovars, Their Insecticidal and Repellent Activities. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20926729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The volatile oils of fresh and air-dried buds of 3 different varieties of Cannabis, namely, high cannabidiol (CBD) chemotype, intermediate CBD/tetrahydrocannabinol (THC) chemotype, and high THC chemotype were prepared by hydrodistillation. Gas chromatography analysis of the volatile oils resulted in the identification of 71 compounds, of which 33 were monoterpenes and 38 were sesquiterpenes. The volatile oil obtained from the THC chemotype showed an increase in the ratio of the sesquiterpenes to monoterpenes content. The content of terpinolene was dramatically decreased upon drying of THC chemotype. Moderate increase in β-caryophyllene and caryophyllene oxide was observed. However, there was no detectable change in the percentage of monoterpenes and sesquiterpenes content in both the intermediate type and CBD chemotype upon drying. The insecticidal activity of the volatile oils was evaluated. The oil obtained from the fresh and dried high CBD cannabis showed good biting deterrent activity at 10 ug/cm2 compared with N, N-diethyl-meta-toluamide at 4.78 µg/cm2, and good larvicidal activity.
Collapse
Affiliation(s)
- Amira S. Wanas
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed M. Radwan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Suman Chandra
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Hemant Lata
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Zlatko Mehmedic
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Abbas Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - KHC Baser
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, Cyprus
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA
| |
Collapse
|
31
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
32
|
Lima MDCL, de Araújo JIF, Gonçalves Mota C, Magalhães FEA, Campos AR, da Silva PT, Rodrigues THS, Matos MGC, de Sousa KC, de Sousa MB, Saker-Sampaio S, Pereira AL, Teixeira EH, Dos Santos HS. Antinociceptive Effect of the Essential Oil of Schinus terebinthifolius (female) Leaves on Adult Zebrafish ( Danio rerio). Zebrafish 2020; 17:112-119. [PMID: 32105571 DOI: 10.1089/zeb.2019.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Schinus terebinthifolius Raddi (Anacardiaceae) is popularly known in Brazil as aroeira-da-praia and has pharmacological use as an astringent, antidiarrheal, anti-inflammatory, depurative, diuretic, and antifebrile agent. Although the neuropathic antinociceptive potential of S. terebinthifolius fruits has already been investigated, this study is the first one to analyze the acute antinociceptive effect of the essential oil of S. terebinthifolius (female) leaves (EOFSt) on adult zebrafish. EOFSt was submitted to antioxidant activity evaluation by two methods (ferrous ion-chelating capacity [FIC] and β-carotene). The animals (n = 6/group) were treated orally (20 μL) with EOFSt (0.1, 0.5, or 1.0 mg/mL) or vehicle (0.9% sodium chloride [NaCl]; 20 μL), and submitted to nociception (formalin, cinnamaldehyde, capsaicin, glutamate, acidic saline, and hypertonic saline). Possible neuromodulation mechanisms, as well motor alterations and toxicity were also evaluated. In the FIC assay, EOFSt showed ferrous ion-chelating capacity in ∼40% to 90%. Regarding the β-carotene bleaching assay, EOFSt showed inhibition in a 58% to 80% range. Oral administration of EOFSt showed no acute toxicity and did not alter the locomotor system of aZF, and reduced the nociceptive behavior in all tested models. These effects of EOFSt were significantly similar to those of morphine, used as a positive control. The antinociceptive effect of EOFSt was inhibited by naloxone, L-NAME, ketamine, camphor, ruthenium red, and amiloride. The antinociceptive effect of the EOFSt cornea was inhibited by capsazepine. EOFSt has the pharmacological potential for acute pain treatment and this effect is modulated by the opioid system, NMDA receptors, and transient receptor potential ankyrin 1 (TRPA1), transient receptor potential vanilloid 1 (TRPV1), and acid-sensing ion channels. The EOFSt also has the pharmacological potential for corneal pain treatment and this effect is modulated by the TRPV1 channel.
Collapse
Affiliation(s)
- Maria da Conceição L Lima
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - José Ismael F de Araújo
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Carolina Gonçalves Mota
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Francisco Ernani A Magalhães
- Laboratory of Natural Product Bioprospecting and Biotechnology (LBPNB), Ceara State University, Department of Chemistry, Campus CECITEC, Tauá, Brazil
| | - Adriana R Campos
- Experimental Biology Nucleus (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Priscila T da Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil
| | | | | | - Karolina C de Sousa
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Márcia B de Sousa
- Institute of Exact and Nature Sciences, Biological Sciences Course, University of the Integration of Afro-Brazilian Lusophony, Redenção, Ceará, Brazil
| | - Silvana Saker-Sampaio
- Laboratory of Marine Natural Products, Department of Fishing Engineering, Federal University of Ceara, Fortaleza, Brazil
| | - Anna L Pereira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Edson H Teixeira
- Integrated Laboratory of Biomolecules (LIBS), Federal University of Ceara, Department of Pathology and Legal Medicine, Fortaleza, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Brazil.,Science and Technology Center-Chemistry Course, State University of Vale do Acarau, Sobral, Brazil
| |
Collapse
|
33
|
Schinus terebinthifolius Essential Oil Attenuates Scopolamine-Induced Memory Deficits via Cholinergic Modulation and Antioxidant Properties in a Zebrafish Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5256781. [PMID: 31885652 PMCID: PMC6914997 DOI: 10.1155/2019/5256781] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Schinus terebinthifolius is a plant well recognized for its therapeutic profile such as anti-inflammatory and antitumor activities, promoting antibacterial activity and antioxidant and antidiabetic properties. This study aimed at examining whether Schinus terebinthifolius memory-enhancing activities are mediated by cholinergic and brain antioxidant systems in a scopolamine zebrafish model. Schinus terebinthifolius essential oil (10, 25, and 50 μL/L) was delivered to zebrafish by immersion in water for 8 days. Memory deficits were induced by scopolamine (100 μM) administration. Zebrafish were divided into seven groups (n = 15/group): vehicle group, scopolamine (100 μM) group, Schinus terebinthifolius essential oil groups (STF; 10, 25, and 50 μL/L), the imipramine group (IMP; 20 mg/L, as the positive control in the NTT test), and the donepezil group (DP; 10 mg/L, as the positive control in the Y-maze test). Memory status was estimated by the novel tank diving test (NTT) and the Y-maze test and finally was validated by comparison with imipramine (20 mg/L) and donepezil (10 mg/L). Gas chromatography-mass spectrometry (GC-MS) was used to detect oil compounds. Brain levels of acetylcholinesterase (AChE) and antioxidant enzymes were measured. After being exposed to Schinus terebinthifolius essential oil, the scopolamine zebrafish exhibited an improvement of memory processes in the NTT and Y-maze tests. The essential oil attenuated the elevated level of AChE and brain oxidative stress. Schinus terebinthifolius essential oil was found to support memory formation through the inhibition of the AChE activity and decreasing oxidative stress in the scopolamine-treated zebrafish brains.
Collapse
|
34
|
Tang XP, Guo XH, Geng D, Weng LJ. d-Limonene protects PC12 cells against corticosterone-induced neurotoxicity by activating the AMPK pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103192. [PMID: 31103492 DOI: 10.1016/j.etap.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
The stress-induced hormone corticosterone initiates oxidative stress and inflammatory responses, culminating in cell apoptosis and neurological changes. We assessed the effects of d-Limonene on a PC12 cellular model of corticosterone-induced neurotoxicity, and whether these effects involved the AMP-activated protein kinase (AMPKα) pathway. PC12 cells were treated with corticosterone with or without d-limonene for 24 h. Western blots were performed to measure activation of AMPK pathway members [Silent mating type information regulation 2 homolog-1 (SIRT1), AMPKα, and nuclear factor (NFκB)], reactive oxygen species, inflammatory cytokines, and markers of apoptosis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) was used to measure cell death after treatment. d-Limonene reversed the effects of corticosterone on PC12 cells: it decreased the levels of malondialdehyde (MDA) and nitric oxide (NO), activities of NADPH oxidase (p67-phox and p47-phox), expression of pro-inflammatory markers [inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α)], and expression of pro-apoptotic proteins [Bcl2 associated with X protein (Bax) and cleaved caspase-3)]. d-Limonene also increased levels of the antioxidant enzymes superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1) and the anti-apoptotic protein Bcl-2 while decreasing the number of TUNEL-positive cells. d-limonene significantly activated AMPKα and suppressed NF-κB nuclear translocation through up-regulation of SIRT1. Addition of compound C, an AMPK inhibitor, severely weakened these neuroprotective effects of d-limonene. d-Limonene has a neuroprotective effect on corticosterone-induced PC12 cell injury induced by activating the AMPKα signaling pathway, and thereby inhibiting reactive oxygen species and inflammatory factors. These data suggest that d-limonene might protect against neuronal death to improve depressive symptoms.
Collapse
Affiliation(s)
- Xue-Ping Tang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Xiao-Hua Guo
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Lian-Jin Weng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
35
|
Baron EP. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2019; 58:1139-1186. [PMID: 30152161 DOI: 10.1111/head.13345] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Comprehensive literature reviews of historical perspectives and evidence supporting cannabis/cannabinoids in the treatment of pain, including migraine and headache, with associated neurobiological mechanisms of pain modulation have been well described. Most of the existing literature reports on the cannabinoids Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), or cannabis in general. There are many cannabis strains that vary widely in the composition of cannabinoids, terpenes, flavonoids, and other compounds. These components work synergistically to produce wide variations in benefits, side effects, and strain characteristics. Knowledge of the individual medicinal properties of the cannabinoids, terpenes, and flavonoids is necessary to cross-breed strains to obtain optimal standardized synergistic compositions. This will enable targeting individual symptoms and/or diseases, including migraine, headache, and pain. OBJECTIVE Review the medical literature for the use of cannabis/cannabinoids in the treatment of migraine, headache, facial pain, and other chronic pain syndromes, and for supporting evidence of a potential role in combatting the opioid epidemic. Review the medical literature involving major and minor cannabinoids, primary and secondary terpenes, and flavonoids that underlie the synergistic entourage effects of cannabis. Summarize the individual medicinal benefits of these substances, including analgesic and anti-inflammatory properties. CONCLUSION There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain-specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease-targeted therapies.
Collapse
Affiliation(s)
- Eric P Baron
- Department of Neurology, Center for Neurological Restoration - Headache and Chronic Pain Medicine, Cleveland Clinic Neurological Institute, Cleveland, OH, 44195, USA
| |
Collapse
|
36
|
Dos Santos da Rocha P, de Araújo Boleti AP, do Carmo Vieira M, Carollo CA, da Silva DB, Estevinho LM, Dos Santos EL, de Picoli Souza K. Microbiological quality, chemical profile as well as antioxidant and antidiabetic activities of Schinus terebinthifolius Raddi. Comp Biochem Physiol C Toxicol Pharmacol 2019; 220:36-46. [PMID: 30797984 DOI: 10.1016/j.cbpc.2019.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Schinus terebinthifolius Raddi, commonly known as Brazilian peppertree, is a plant species widely used in Brazilian traditional medicine for various purposes. The objective of this study was to assess the microbiological quality, safety, chemical profile as well as antioxidant and antidiabetic potentials of different parts of S. terebinthifolius. Microbiological analysis of the methanolic extracts of the roots (MESR), stem bark (MESB) and leaves (MESL) of S. terebinthifolius showed no microbial growth. The concentrations of phenolic compounds, phenolic acids and flavonoids were determined by spectrophotometry. The phenolic compounds of the MESL were identified by liquid chromatography coupled to a diode array detector and mass spectrometer (LC-DAD-MS). The antioxidant activities of the extracts were analyzed by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS+), fluorescence recovery after photobleaching (FRAP), reducing power, β-carotene bleaching and malondialdehyde (MDA) assays in human erythrocytes. The antidiabetic properties of the extracts were demonstrated in vitro by their inhibition of the α-glucosidase enzyme and their anti-glycation activity via fructose and glyoxal. After showing no acute toxicity in vivo, MESL was able to lower postprandial glycemia after glucose overload in normoglycemic mice as well as the water and feed intake, liver weight, glycemia and serum levels of glycated hemoglobin, aspartate transaminase (AST) and alanine transaminase (ALT) in diabetic mice. Overall, S. terebinthifolius extracts showed microbiological safety along with antioxidant and antidiabetic activities, likely mediated by its chemical constituents, such as gallic acid, gallotannins and glycosylated flavonols.
Collapse
Affiliation(s)
- Paola Dos Santos da Rocha
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Ana Paula de Araújo Boleti
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Maria do Carmo Vieira
- Agricultural Sciences, Federal University of Grande Dourados, Rodovia Dourados-Itahum, Km 12, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Denise Brentan da Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Leticia Miranda Estevinho
- Polytechnic Institute of Bragança, Agricultural College of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
| | - Edson Lucas Dos Santos
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Kely de Picoli Souza
- Research group on Biotechnology and Bioprospecting Applied to Metabolism, Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil.
| |
Collapse
|
37
|
Ogunwande IA, Avoseh ON, Igile DO, Lawal OA, Ascrizzi R, Guido F. Chemical Constituents, Anti-nociceptive and Anti-inflammatory Activities of Essential Oil of Phyllanthus muellerianus. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19846356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to characterize the chemical composition and to evaluate the anti-inflammatory and anti-nociceptive properties of the essential oil from the leaves of Phyllanthus muellerianus (Kuntze) Exell. The essential oil was hydrodistilled and characterized by gas chromatography-flame ionization detection and gas chromatography coupled with mass spectrometry analyses. The anti-inflammatory activity was evaluated on carrageenan-induced rat paw edema while the anti-nociceptive test was based on hot plate analysis. The hydrodistillation afforded 0.09% (dry weight basis) of pale yellow oil. Thirty-eight compounds representing 94.8% were identified in the oil. The major components of the oil were hexahydrofarnesyl acetone (11.6%), isocaryophyllene (9.8%), and limonene (9.4%). The oils of P. muellerianus displayed anti-nociceptive effect at a rate independent of reaction time and dose ( P < 0.001). The rate of inhibition increased exponentially as the dose increases with optimum activity at 400 mg/kg. The carrageenan-induced edema model revealed the suppression of inflammatory mediators at a very high significant value ( P < 0.001) for all doses, showing activity comparable to a standard drug at 4 hours after carrageenan injection. Collectively, the essential oils depressed the nociceptors and most likely acted as centrally mediated opioid analgesics while the anti-inflammatory mechanisms of the oil might be related to the decrease in the level of iNOS, and cyclo-oxygenase-2 in the edema paw via the suppression of pro-inflammatory cytokines (TNF-α, IL1-β), NO, and PGE2 production. This study confirms the analgesics and inflammatory activities of P. muellerianus.
Collapse
Affiliation(s)
| | - Opeyemi N. Avoseh
- Department of Chemistry, Faculty of Science, Lagos State University, Ojo, LAG, Nigeria
| | - Daniel O. Igile
- Department of Chemistry, Faculty of Science, Lagos State University, Ojo, LAG, Nigeria
| | - Oladipupo A. Lawal
- Department of Chemistry, Faculty of Science, Lagos State University, Ojo, LAG, Nigeria
| | | | | |
Collapse
|
38
|
Carvalho AMS, Heimfarth L, Santos KA, Guimarães AG, Picot L, Almeida JRGS, Quintans JSS, Quintans-Júnior LJ. Terpenes as possible drugs for the mitigation of arthritic symptoms - A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:137-147. [PMID: 30668316 DOI: 10.1016/j.phymed.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arthritis is a syndrome associated with exacerbated inflammation, joint destruction and chronic pain and disability. Chronic treatment of arthritis is associated with several side effects and high abandonment. Therefore, there has been an ongoing search for alternative treatments to overcome these problems. PURPOSE Natural products, which are already widely used for their biological, cosmetic and pharmacotechnic properties, are a possible source for new drugs. Terpenes, a large class of organic compounds produced mainly by plants and trees, are a promising natural product and have already been shown to be effective in treating chronic pain, particularly of an inflammatory origin. STUDY DESIGN AND METHODS This review identifies the main terpenes with anti-arthritic activity reported in the last 10 years. A survey was conducted between December 2017 and June 2018 in the PUBMED, SCOPUS and Science Direct databases using combinations of the descriptors terpenes, arthritis and inflammation. RESULTS The results showed that terpenes have promising biological effects in relation to the treatment of arthritis, with the 24 terpenes identified in our survey being effective in the modulation of inflammatory mediators important to the physiopathology of arthritis, such as IL-6, IL-17, TNF-α, NFκB, and COX-2, among others. It is important to note that most of the studies used animal models, which limits, at least in part, the direct translation to humans of the experimental evidence produced by the studies. CONCLUSION Together, our finds suggest that terpenes can modulate the immuno-regulatory and destructive tissue events that underlie the clinical presentation and the progression of arthritis and are worthy of further clinical investigation.
Collapse
Affiliation(s)
- Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Klécia A Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Adriana G Guimarães
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France.
| | | | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| |
Collapse
|
39
|
Petrović J, Stojković D, Soković M. Terpene core in selected aromatic and edible plants: Natural health improving agents. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:423-451. [PMID: 31445600 DOI: 10.1016/bs.afnr.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aromatic plants synthesize and produce aromatic molecules, among these compounds some of them belong to terpenes and terpenoids. Plant species have specific genes involved in secondary metabolism which allows them to synthesize various compounds with terpene core. These kinds of plant species are also known as herbal drugs and they are primarily used as components in medicinal products or simply as health foods. This chapter will focus on terpene and terpenoid compounds found in selected edible and aromatic plants belonging to several plant families. Selected plant species are briefly discussed. Biologically active compounds with terpene core are most frequently found in essential oils of the edible and aromatic species, as well as they are separately isolated and identified from the extracts. Health beneficial effects coming from terpene compounds found in edible and aromatic plants are further presented and include antimicrobial, antiviral, cytotoxic, anticancer, anti-inflammatory and many other pharmacological activities.
Collapse
Affiliation(s)
- Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
40
|
de Souza MC, Vieira AJ, Beserra FP, Pellizzon CH, Nóbrega RH, Rozza AL. Gastroprotective effect of limonene in rats: Influence on oxidative stress, inflammation and gene expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:37-42. [PMID: 30668410 DOI: 10.1016/j.phymed.2018.09.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND In an increasing search for natural products that may heal the ulcers and avoid its recurrence, limonene appears as a promising candidate. HYPOTHESIS/PURPOSE The present study aimed to investigate the protective effect of limonene in ethanol-induced gastric ulcers, in addition, to investigate the involvement of antioxidant and anti-inflammatory activities, besides the modulation of gene expression. STUDY DESIGN Male Wistar rats were orally treated with vehicle (8% tween 80), carbenoxolone (100 mg/kg) or limonene (25, 50 or 100 mg/kg) and then orally received ethanol to induce gastric ulcers formation. METHODS The activity of myeloperoxidase (MPO) was measured. Levels of glutathione (GSH) and activities of glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured. We investigated the anti-inflammatory effect of limonene measuring the levels of pro-inflammatory cytokines tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), interleukin-1β (IL-1β) and anti-inflammatory cytokine interleukin-10 (IL-10) by ELISA. Additionally, we investigate through real-time PCR (qPCR) the gene expression of nuclear factor-kappa B (Nf-κb), Gpx, Il-1β, Mpo, and Il-10. RESULTS Our results showed that limonene 50 mg/kg was the lowest effective dose, offering 93% of reduction in gastric ulcer area compared with the vehicle. There was an increase in mucus production and higher preservation of gastric mucosa integrity after treatment with limonene.There was a reduction in the MPO activity, a biomarker of neutrophils infiltration, and an increase in GPx activity, suggesting an antioxidant effect. Limonene displayed anti-inflammatory activity through decreasing the levels of TNF-a, IL-6, and IL-1β and increasing the level of IL-10. Limonene could down-regulate the expression of Nf-κb, Il-1β, and Mpo and up-regulate the expression of Gpx. CONCLUSION Our results demonstrate that oral treatment with limonene exerts gastroprotection through local mucosal defense mechanisms, such as increasing the mucus production, modulation of the oxidative stress and inflammatory response and inhibition of Nf-κb expression.
Collapse
Affiliation(s)
- Matheus Chiaradia de Souza
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Ana Júlia Vieira
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Fernando Pereira Beserra
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Cláudia Helena Pellizzon
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Rafael Henrique Nóbrega
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Ariane Leite Rozza
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil.
| |
Collapse
|
41
|
Abukawsar MM, Saleh‐e‐In MM, Ahsan MA, Rahim MM, Bhuiyan MNH, Roy SK, Ghosh A, Naher S. Chemical, pharmacological and nutritional quality assessment of black pepper (Piper nigrumL.) seed cultivars. J Food Biochem 2018. [DOI: 10.1111/jfbc.12590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Md. Moshfekus Saleh‐e‐In
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Aminul Ahsan
- Institute of National Analytical Research and Services (INARS), BCSIR Laboratories, Bangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Matiur Rahim
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Md. Nurul Huda Bhuiyan
- Research Centre for Plant Growth and Development, School of Life SciencesUniversity of KwaZulu‐Natal Pietermaritzburg South Africa
- Food Toxicology Research SectionIFSTBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Sudhangshu Kumar Roy
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh
| | - Apu Ghosh
- Department of ChemistryJagannath University Dhaka Bangladesh
| | - Shamsun Naher
- Department of ChemistryJagannath University Dhaka Bangladesh
| |
Collapse
|
42
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
43
|
Baron EP, Lucas P, Eades J, Hogue O. Patterns of medicinal cannabis use, strain analysis, and substitution effect among patients with migraine, headache, arthritis, and chronic pain in a medicinal cannabis cohort. J Headache Pain 2018; 19:37. [PMID: 29797104 PMCID: PMC5968020 DOI: 10.1186/s10194-018-0862-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Medicinal cannabis registries typically report pain as the most common reason for use. It would be clinically useful to identify patterns of cannabis treatment in migraine and headache, as compared to arthritis and chronic pain, and to analyze preferred cannabis strains, biochemical profiles, and prescription medication substitutions with cannabis. METHODS Via electronic survey in medicinal cannabis patients with headache, arthritis, and chronic pain, demographics and patterns of cannabis use including methods, frequency, quantity, preferred strains, cannabinoid and terpene profiles, and prescription substitutions were recorded. Cannabis use for migraine among headache patients was assessed via the ID Migraine™ questionnaire, a validated screen used to predict the probability of migraine. RESULTS Of 2032 patients, 21 illnesses were treated with cannabis. Pain syndromes accounted for 42.4% (n = 861) overall; chronic pain 29.4% (n = 598;), arthritis 9.3% (n = 188), and headache 3.7% (n = 75;). Across all 21 illnesses, headache was a symptom treated with cannabis in 24.9% (n = 505). These patients were given the ID Migraine™ questionnaire, with 68% (n = 343) giving 3 "Yes" responses, 20% (n = 102) giving 2 "Yes" responses (97% and 93% probability of migraine, respectively). Therefore, 88% (n = 445) of headache patients were treating probable migraine with cannabis. Hybrid strains were most preferred across all pain subtypes, with "OG Shark" the most preferred strain in the ID Migraine™ and headache groups. Many pain patients substituted prescription medications with cannabis (41.2-59.5%), most commonly opiates/opioids (40.5-72.8%). Prescription substitution in headache patients included opiates/opioids (43.4%), anti-depressant/anti-anxiety (39%), NSAIDs (21%), triptans (8.1%), anti-convulsants (7.7%), muscle relaxers (7%), ergots (0.4%). CONCLUSIONS Chronic pain was the most common reason for cannabis use, consistent with most registries. The majority of headache patients treating with cannabis were positive for migraine. Hybrid strains were preferred in ID Migraine™, headache, and most pain groups, with "OG Shark", a high THC (Δ9-tetrahydrocannabinol)/THCA (tetrahydrocannabinolic acid), low CBD (cannabidiol)/CBDA (cannabidiolic acid), strain with predominant terpenes β-caryophyllene and β-myrcene, most preferred in the headache and ID Migraine™ groups. This could reflect the potent analgesic, anti-inflammatory, and anti-emetic properties of THC, with anti-inflammatory and analgesic properties of β-caryophyllene and β-myrcene. Opiates/opioids were most commonly substituted with cannabis. Prospective studies are needed, but results may provide early insight into optimizing crossbred cannabis strains, synergistic biochemical profiles, dosing, and patterns of use in the treatment of headache, migraine, and chronic pain syndromes.
Collapse
Affiliation(s)
- Eric P. Baron
- Center for Neurological Restoration - Headache and Chronic Pain Medicine, Department of Neurology, Cleveland Clinic Neurological Institute, 10524 Euclid Avenue, C21, Cleveland, OH 44195 USA
| | - Philippe Lucas
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
- Social Dimensions of Health, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 Canada
- Canadian Institute for Substance Use Research, 2300 McKenzie Ave, Victoria, BC V8N 5M8 Canada
| | - Joshua Eades
- Tilray, 1100 Maughan Rd, Nanaimo, BC V9X 1J2 Canada
| | - Olivia Hogue
- Section of Biostatistics, Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, JJN3, Cleveland, OH 44195 USA
| |
Collapse
|
44
|
Effects of Methanol Fraction from Leaves of Schinus terebinthifolius Raddi on Nociception and Spinal-Cord Oxidative Biomarkers in Rats with Neuropathic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5783412. [PMID: 29853960 PMCID: PMC5960562 DOI: 10.1155/2018/5783412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 01/05/2023]
Abstract
We determined the antioxidant potential of fractions obtained from leaves of Schinus terebinthifolius, a medicinal plant known in Brazil as aroeira, to select the fraction with the best yield and antioxidant performance. These qualities were found in the methanol fraction (MeF), which was administered intraperitoneally (20 mg/kg/day) for 3 and 10 days to rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. The MeF increased the mechanical and thermal thresholds that had been lowered by CCI. In parallel, the lumbosacral spinal cord showed an increase in superoxide dismutase but a decrease in glutathione peroxidase and glutathione-S-transferase activities in saline- and MeF-treated CCI rats. Catalase activity decreased only in saline-treated CCI rats for 10 days. Total thiols decreased in saline- and MeF-treated CCI rats. Ascorbic acid increased in these rats at day 3 but only in saline-treated CCI rats at day 10. No change was found in hydrogen peroxide and lipid hydroperoxide. Open-field and elevated plus-maze tests and blood parameters of liver function did not change. Thus, the MeF from leaves of S. terebinthifolius has an antinociceptive action with no toxic effects, and it affects oxidant biomarkers in the spinal cord of rats with CCI.
Collapse
|
45
|
Limonene: Aroma of innovation in health and disease. Chem Biol Interact 2018; 283:97-106. [PMID: 29427589 DOI: 10.1016/j.cbi.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease.
Collapse
|
46
|
Carneiro FB, Lopes PQ, Ramalho RC, Scotti MT, Santos SG, Soares LAL. Characterization of Leaf Extracts of Schinus terebinthifolius Raddi by GC-MS and Chemometric Analysis. Pharmacogn Mag 2017; 13:S672-S675. [PMID: 29142431 PMCID: PMC5669114 DOI: 10.4103/pm.pm_555_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Schinus terebinthifolius Raddi belongs to Anacardiacea family and is widely known as “aroeira.” This species originates from South America, and its extracts are used in folk medicine due to its therapeutic properties, which include antimicrobial, anti-inflammatory, and antipyretic effects. The complexity and variability of the chemical constitution of the herbal raw material establishes the quality of the respective herbal medicine products. Objective: Thus, the purpose of this study was to investigate the variability of the volatile compounds from leaves of S. terebinthifolius. Materials and Methods: The samples were collected from different states of the Northeast region of Brazil and analyzed with a gas chromatograph coupled to a mass spectrometer (GC-MS). The collected data were analyzed using multivariate data analysis. Results: The samples’ chromatograms, obtained by GC-MS, showed similar chemical profiles in a number of peaks, but some differences were observed in the intensity of these analytical markers. The chromatographic fingerprints obtained by GC-MS were suitable for discrimination of the samples; these results along with a statistical treatment (principal component analysis [PCA]) were used as a tool for comparative analysis between the different samples of S. terebinthifolius. Conclusion: The experimental data show that the PCA used in this study clustered the samples into groups with similar chemical profiles, which builds an appropriate approach to evaluate the similarity in the phytochemical pattern found in the different leaf samples. SUMMARY The leave extracts of Schinus terebinthifolius were obtained by turbo-extraction The extracts were partitioned with hexane and analyzed by GC-MS The chromatographic data were analyzed using the principal component analysis (PCA) The PCA plots showed the main compounds (phellandrene, limonene, and carene), which were used to group the samples from a different geographical location in accordance to their chemical similarity.
Abbreviations used: AL: Alagoas, BA: Bahia, CE: Ceará, CPETEC: Center for Weather Forecasting and Climate Studies, GC-MS: Gas chromatograph coupled to a mass spectrometer, MA: Maranhão, MVA: Multivariate data analysis, PB: Paraíba, PC1: Direction that describes the maximum variance of the original data, PC2: Maximum direction variance of the data in the subspace orthogonal to PC1, PCA: Principal component analysis, PE: Pernambuco, PI: Piauí, RN: Rio Grande do Norte, SE: Sergipe.
Collapse
Affiliation(s)
- Fabíola B Carneiro
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Pablo Q Lopes
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo C Ramalho
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus T Scotti
- Department of Chemistry, Federal University of Paraíba, João Pessoa, Brazil
| | - Sócrates G Santos
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Luiz A L Soares
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.,Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
47
|
Essential Oils and Their Constituents: An Alternative Source for Novel Antidepressants. Molecules 2017; 22:molecules22081290. [PMID: 28771213 PMCID: PMC6152054 DOI: 10.3390/molecules22081290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
Depression is a disease that has affected a high proportion of the world’s population and people of different ages, incapacitating them from good performance at work and in social relationships, and causing emotional disorders to millions of families. Therefore, the search for new therapeutic agents is considered a priority for the discovery of more effective forms of treatment. In this review, studies of essential oils and their constituents in experimental models related to depression are discussed. The mechanisms of action of the oils and the presence of psychoactive constituents in their chemical compositions are discussed. The data in the review show the therapeutic potential of essential oils and their chemical constituents for use in depressive disorders. Advanced studies using humans are needed to confirm the antidepressant properties described in animals.
Collapse
|
48
|
Araújo-Filho HG, Pereira EWM, Rezende MM, Menezes PP, Araújo AAS, Barreto RSS, Martins AOBPB, Albuquerque TR, Silva BAF, Alcantara IS, Coutinho HDM, Menezes IRA, Quintans-Júnior LJ, Quintans JSS. D-limonene exhibits superior antihyperalgesic effects in a β-cyclodextrin-complexed form in chronic musculoskeletal pain reducing Fos protein expression on spinal cord in mice. Neuroscience 2017; 358:158-169. [PMID: 28673718 DOI: 10.1016/j.neuroscience.2017.06.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
Chronic musculoskeletal pain is one of the main symptoms found in Fibromyalgia with unclear etiology and limited pharmacological treatment. The aim of this study was to complex LIM in β-cyclodextrin (LIM-βCD) and then evaluate its antihyperalgesic effect in an animal model of chronic musculoskeletal pain. Differential scanning calorimetry and scanning electron microscopy was used for the characterization of the inclusion complex. Male Swiss mice were used for experimental procedures where mechanical hyperalgesia, thermal hyperalgesia, muscular strength, Fos immunofluorescence was studied after induction of hyperalgesia. Mechanism of action was also investigated through tail flick test and capsaicin-induced nociception. Endothermic events and morphological changes showed that the slurry complex method was the best method for the complexation. After induction of hyperalgesia, the oral administration of LIM-βCD (50mg/kg) significantly increased the paw withdrawal threshold compared to uncomplexed limonene. Fos immunofluorescence showed that both compounds significantly decreased the number of Fos-positive cells in the dorsal horn. In nociceptive tests, FLU was able to reverse the antinociceptive effect of LIM-βCD. After intraplantar administration of capsaicin, LIM was able to significantly decrease time to lick. LIM-βCD has antihyperalgesic action superior to its uncomplexed form, with possible action in the dorsal horn of the spinal cord. These results suggest the possible applicability of LIM, uncomplexed or complexed with βCD, in conditions such as FM and neuropathic pain, for which there are currently only limited pharmacological options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Erik W M Pereira
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marília M Rezende
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Department of Health Education, Federal University of Sergipe, Largato, SE, Brazil
| | | | - Thaís R Albuquerque
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Bruno A F Silva
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Isabel S Alcantara
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | | | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Crato, Crato, CE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF). Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
49
|
Russo EB, Marcu J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. ADVANCES IN PHARMACOLOGY 2017; 80:67-134. [PMID: 28826544 DOI: 10.1016/bs.apha.2017.03.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam's professed "pharmacological treasure trove."
Collapse
Affiliation(s)
| | - Jahan Marcu
- Americans for Safe Access, Patient Focused Certification, Washington, DC, United States
| |
Collapse
|
50
|
Viscardi DZ, Oliveira VSD, Arrigo JDS, Piccinelli AC, Cardoso CA, Maldonade IR, Kassuya CA, Sanjinez-Argandoña EJ. Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|