1
|
Stitz J. Development of HIV-1 vectors pseudotyped with envelope proteins of other retroviruses. Virology 2025; 602:110300. [PMID: 39577275 DOI: 10.1016/j.virol.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
In the past three decades, human immunodeficiency virus type 1 (HIV-1)-derived vectors were evolved and became indispensable to transduce therapeutic genes into a range of different target cell types to facilitate a variety of gene therapeutic strategies. To achieve this, i) the biosafety profile of the vectors was incrementally enhanced and ii) the CD4-restricted tropism mediated by the envelope proteins (Env) of the parental virus needed to be directed towards recruitment of other receptors expressed on the desired target cells. Here, a closer look is first taken at the development of vector components and the mechanisms of Env incorporation into particles. While envelope proteins originating from a broad range of very diverse virus species were successfully utilized, members of the Retroviridae family most frequently provided Env or further engineered variants thereof to form transduction-competent HIV-1 pseudotype vector particles. The development of these vectors is reviewed and anticipated to further contribute to the future progression of somatic gene therapy.
Collapse
Affiliation(s)
- Jörn Stitz
- Research Group Medical Biotechnology & Bioengineering, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Campusplatz 1, 51379, Leverkusen, Germany.
| |
Collapse
|
2
|
Kutle I, Polten R, Stalp JL, Hachenberg J, Todzey F, Hass R, Zimmermann K, von der Ohe J, von Kaisenberg C, Neubert L, Kamp JC, Schaudien D, Seyda AK, Hillemanns P, Klapdor R, Morgan MA, Schambach A. Anti-Mesothelin CAR-NK cells as a novel targeted therapy against cervical cancer. Front Immunol 2024; 15:1485461. [PMID: 39781381 PMCID: PMC11707549 DOI: 10.3389/fimmu.2024.1485461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Resistance to the currently available treatment paradigms is one of the main factors that contributes to poor outcomes in patients with advanced cervical cancer. Novel targeted therapy approaches might enhance the patient's treatment outcome and are urgently needed for this malignancy. While chimeric-antigen receptor (CAR)-based adoptive immunotherapy displays a promising treatment strategy for liquid cancers, their use against cervical cancer is largely unexplored. This study used alpharetroviral SIN vectors to equip natural killer (NK) cells with a third-generation CAR (including CD28 and 4-1BB co-stimulatory domains) targeting Mesothelin, which was identified to be highly expressed on primary human cervical cancer tissues and cervical cancer cell lines in this and other studies. Anti-Mesothelin CAR-NK cells demonstrated high cytotoxicity against cervical cancer cells in 2D and 3D culture models, which corresponded to increased degranulation of CAR-NK-92 cells upon exposure to Mesothelin+ target cells. Mesothelin- cervical cancer cells were generated by CRISPR-Cas9-mediated knockout and used to show target antigen specificity of anti-Mesothelin CAR-NK-92 cells and primary NK cells derived from different healthy donors in co-culture experiments. Combination of anti-Mesothelin CAR-NK-92 cells with chemotherapy revealed increased elimination of cancer cells as compared to monotherapy settings. Our findings indicate the promise of anti-Mesothelin CAR-NK cells as a potential treatment option against cervical cancer, as well as other Mesothelin+ malignancies.
Collapse
Affiliation(s)
- Ivana Kutle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Robert Polten
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Jan Lennart Stalp
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Jens Hachenberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Felix Todzey
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Juliane von der Ohe
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | | | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jan C. Kamp
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, ITEM, Hannover, Germany
| | - Ann-Kathrin Seyda
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Rüdiger Klapdor
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
- Department of Gynecology and Obstetrics, Albertinen Hospital Hamburg, Hamburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Wang F, Huang Y, Li J, Zhou W, Wang W. Targeted gene delivery systems for T-cell engineering. Cell Oncol (Dordr) 2024; 47:1537-1560. [PMID: 38753155 DOI: 10.1007/s13402-024-00954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 06/27/2024] Open
Abstract
T lymphocytes are indispensable for the host systems of defense against pathogens, tumors, and environmental threats. The therapeutic potential of harnessing the cytotoxic properties of T lymphocytes for antigen-specific cell elimination is both evident and efficacious. Genetically engineered T-cells, such as those employed in CAR-T and TCR-T cell therapies, have demonstrated significant clinical benefits in treating cancer and autoimmune disorders. However, the current landscape of T-cell genetic engineering is dominated by strategies that necessitate in vitro T-cell isolation and modification, which introduce complexity and prolong the development timeline of T-cell based immunotherapies. This review explores the complexities of gene delivery systems designed for T cells, covering both viral and nonviral vectors. Viral vectors are known for their high transduction efficiency, yet they face significant limitations, such as potential immunogenicity and the complexities involved in large-scale production. Nonviral vectors, conversely, offer a safer profile and the potential for scalable manufacturing, yet they often struggle with lower transduction efficiency. The pursuit of gene delivery systems that can achieve targeted gene transfer to T cell without the need for isolation represents a significant advancement in the field. This review assesses the design principles and current research progress of such systems, highlighting the potential for in vivo gene modification therapies that could revolutionize T-cell based treatments. By providing a comprehensive analysis of these systems, we aim to contribute valuable insights into the future development of T-cell immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - JiaQian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
4
|
Renner A, Stahringer A, Ruppel KE, Fricke S, Koehl U, Schmiedel D. Development of KoRV-pseudotyped lentiviral vectors for efficient gene transfer into freshly isolated immune cells. Gene Ther 2024; 31:378-390. [PMID: 38684788 PMCID: PMC11257948 DOI: 10.1038/s41434-024-00454-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Allogeneic cell therapies, such as those involving macrophages or Natural Killer (NK) cells, are of increasing interest for cancer immunotherapy. However, the current techniques for genetically modifying these cell types using lenti- or gamma-retroviral vectors present challenges, such as required cell pre-activation and inefficiency in transduction, which hinder the assessment of preclinical efficacy and clinical translation. In our study, we describe a novel lentiviral pseudotype based on the Koala Retrovirus (KoRV) envelope protein, which we identified based on homology to existing pseudotypes used in cell therapy. Unlike other pseudotyped viral vectors, this KoRV-based envelope demonstrates remarkable efficiency in transducing freshly isolated primary human NK cells directly from blood, as well as freshly obtained monocytes, which were differentiated to M1 macrophages as well as B cells from multiple donors, achieving up to 80% reporter gene expression within three days post-transduction. Importantly, KoRV-based transduction does not compromise the expression of crucial immune cell receptors, nor does it impair immune cell functionality, including NK cell viability, proliferation, cytotoxicity as well as phagocytosis of differentiated macrophages. Preserving immune cell functionality is pivotal for the success of cell-based therapeutics in treating various malignancies. By achieving high transduction rates of freshly isolated immune cells before expansion, our approach enables a streamlined and cost-effective automated production of off-the-shelf cell therapeutics, requiring fewer viral particles and less manufacturing steps. This breakthrough holds the potential to significantly reduce the time and resources required for producing e.g. NK cell therapeutics, expediting their availability to patients in need.
Collapse
Affiliation(s)
- Alexander Renner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Anika Stahringer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Katharina Eva Ruppel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, CIMD, Leipzig, Deutschland
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Department for Cell and Gene Therapy Development, Leipzig, Germany.
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
5
|
Manu AA, Owusu IA, Oyawoye FO, Languon S, Barikisu IA, Tawiah-Eshun S, Quaye O, Donkor KJ, Paemka L, Amegatcher GA, Denyoh PM, Oduro-Mensah D, Awandare GA, Quashie PK. Development and utility of a SARS-CoV-2 pseudovirus assay for compound screening and antibody neutralization assays. Heliyon 2024; 10:e31392. [PMID: 38826759 PMCID: PMC11141373 DOI: 10.1016/j.heliyon.2024.e31392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Background The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. Methods To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. Results We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. Significance This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.
Collapse
Affiliation(s)
- Aaron A. Manu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Irene A. Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Fatima O. Oyawoye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT, USA
| | - Ibrahim Anna Barikisu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Sylvia Tawiah-Eshun
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Kwaku Jacob Donkor
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Gloria A. Amegatcher
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, Korle bu, University of Ghana, Legon, Accra, Ghana
| | - Prince M.D. Denyoh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Daniel Oduro-Mensah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- Department of Biochemistry, Cell, and Molecular Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Peter K. Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, United Kingdom
| |
Collapse
|
6
|
Ritter M, Canus L, Gautam A, Vallet T, Zhong L, Lalande A, Boson B, Gandhi A, Bodoirat S, Burlaud-Gaillard J, Freitas N, Roingeard P, Barr JN, Lotteau V, Legros V, Mathieu C, Cosset FL, Denolly S. The low-density lipoprotein receptor and apolipoprotein E associated with CCHFV particles mediate CCHFV entry into cells. Nat Commun 2024; 15:4542. [PMID: 38806525 PMCID: PMC11133370 DOI: 10.1038/s41467-024-48989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.
Collapse
Affiliation(s)
- Maureen Ritter
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lola Canus
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anupriya Gautam
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas Vallet
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Li Zhong
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alexandre Lalande
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Apoorv Gandhi
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Sergueï Bodoirat
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - John N Barr
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Vincent Legros
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, Marcy-l'Etoile, France
| | - Cyrille Mathieu
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
7
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
8
|
Thimmiraju SR, Kimata JT, Pollet J. Pseudoviruses, a safer toolbox for vaccine development against enveloped viruses. Expert Rev Vaccines 2024; 23:174-185. [PMID: 38164690 DOI: 10.1080/14760584.2023.2299380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Pseudoviruses are recombinant, replication-incompetent, viral particles designed to mimic the surface characteristics of native enveloped viruses. They are a safer, and cost-effective research alternative to live viruses. With the potential emergence of the next major infectious disease, more vaccine scientists must become familiar with the pseudovirus platform as a vaccine development tool to mitigate future outbreaks. AREAS COVERED This review aims at vaccine developers to provide a basic understanding of pseudoviruses, list their production methods, and discuss their utility to assess vaccine efficacy against enveloped viral pathogens. We further illustrate their usefulness as wet-lab simulators for emerging mutant variants, and new viruses to help prepare for current and future viral outbreaks, minimizing the need for gain-of-function experiments with highly infectious or lethal enveloped viruses. EXPERT OPINION With this platform, researchers can better understand the role of virus-receptor interactions and entry in infections, prepare for dangerous mutations, and develop effective vaccines.
Collapse
Affiliation(s)
- Syamala R Thimmiraju
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Radhakrishnan H, Newmyer SL, Ssemadaali MA, Javitz HS, Bhatnagar P. Primary T-cell-based delivery platform for in vivo synthesis of engineered proteins. Bioeng Transl Med 2024; 9:e10605. [PMID: 38193126 PMCID: PMC10771566 DOI: 10.1002/btm2.10605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 01/10/2024] Open
Abstract
Primary T cell has been transformed into a cell-based delivery platform that synthesizes complex biologics at the disease site with spatiotemporal resolution. This broadly applicable technology can circumvent toxicities due to systemic administration of biologics that necessitates the use of high doses and may diffuse to the healthy tissues. Its clinical translation, however, has been impeded by manufacturing bottlenecks. In this work, a range of process parameters were investigated for increasing the production yield of the primary T cells engineered for delivery function. Compared to the common spinoculation-based method, the transduction yield was enhanced ~2.5-fold by restricting the transduction reaction volume for maximizing the lentivector-to-T-cell contact. Cell density and cytokines used in the expansion process were adjusted to achieve >100-fold expansion of the T-cell-based delivery platform in 14 days, and the function of these cells was validated in vivo using intraperitoneally implanted tumor cells. The primary T-cell-based delivery platform has human applications because it can be scaled and administrated to express a broad range of therapeutic proteins (e.g., cytokines, interferons, enzymes, agonists, and antagonists) at the disease site, obviating the need for systemic delivery of large doses of these proteins.
Collapse
|
10
|
Ciulean IS, Fischer J, Quaiser A, Bach C, Abken H, Tretbar US, Fricke S, Koehl U, Schmiedel D, Grunwald T. CD44v6 specific CAR-NK cells for targeted immunotherapy of head and neck squamous cell carcinoma. Front Immunol 2023; 14:1290488. [PMID: 38022580 PMCID: PMC10667728 DOI: 10.3389/fimmu.2023.1290488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a major challenge for current therapies. CAR-T cells have shown promising results in blood cancers, however, their effectiveness against solid tumors remains a hurdle. Recently, CD44v6-directed CAR-T cells demonstrated efficacy in controlling tumor growth in multiple myeloma and solid tumors such as HNSCC, lung and ovarian adenocarcinomas. Apart from CAR-T cells, CAR-NK cells offer a safe and allogenic alternative to autologous CAR-T cell therapy. In this paper, we investigated the capacity of CAR-NK cells redirected against CD44v6 to execute cytotoxicity against HNSCC. Anti-CD44v6 CAR-NK cells were generated from healthy donor peripheral blood-derived NK cells using gamma retroviral vectors (gRVs). The NK cell transduction was optimized by exploring virus envelope proteins derived from the baboon endogenous virus envelope (BaEV), feline leukemia virus (FeLV, termed RD114-TR) and gibbon ape leukemia virus (GaLV), respectively. BaEV pseudotyped gRVs induced the highest transduction rate compared to RD114-TR and GaLV envelopes as measured by EGFP and surface CAR expression of transduced NK cells. CAR-NK cells showed a two- to threefold increase in killing efficacy against various HNSCC cell lines compared to unmodified, cytokine-expanded primary NK cells. Anti-CD44v6 CAR-NK cells were effective in eliminating tumor cell lines with high and low CD44v6 expression levels. Overall, the improved cytotoxicity of CAR-NK cells holds promise for a therapeutic option for the treatment of HNSCC. However, further preclinical trials are necessary to test in vivo efficacy and safety, as well to optimize the treatment regimen of anti-CD44v6 CAR-NK cells against solid tumors.
Collapse
Affiliation(s)
- Ioana Sonya Ciulean
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Joe Fischer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andrea Quaiser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Bach
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, Regensburg, Germany
| | - Uta Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Dominik Schmiedel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
11
|
Rauch-Wirth L, Renner A, Kaygisiz K, Weil T, Zimmermann L, Rodriguez-Alfonso AA, Schütz D, Wiese S, Ständker L, Weil T, Schmiedel D, Münch J. Optimized peptide nanofibrils as efficient transduction enhancers for in vitro and ex vivo gene transfer. Front Immunol 2023; 14:1270243. [PMID: 38022685 PMCID: PMC10666768 DOI: 10.3389/fimmu.2023.1270243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a groundbreaking immunotherapy for cancer. However, the intricate and costly manufacturing process remains a hurdle. Improving the transduction rate is a potential avenue to cut down costs and boost therapeutic efficiency. Peptide nanofibrils (PNFs) serve as one such class of transduction enhancers. PNFs bind to negatively charged virions, facilitating their active engagement by cellular protrusions, which enhances virion attachment to cells, leading to increased cellular entry and gene transfer rates. While first-generation PNFs had issues with aggregate formation and potential immunogenicity, our study utilized in silico screening to identify short, endogenous, and non-immunogenic peptides capable of enhancing transduction. This led to the discovery of an 8-mer peptide, RM-8, which forms PNFs that effectively boost T cell transduction rates by various retroviral vectors. A subsequent structure-activity relationship (SAR) analysis refined RM-8, resulting in the D4 derivative. D4 peptide is stable and assembles into smaller PNFs, avoiding large aggregate formation, and demonstrates superior transduction rates in primary T and NK cells. In essence, D4 PNFs present an economical and straightforward nanotechnological tool, ideal for refining ex vivo gene transfer in CAR-T cell production and potentially other advanced therapeutic applications.
Collapse
Affiliation(s)
- Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Renner
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Zimmermann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Armando A. Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Dominik Schmiedel
- Department for Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
13
|
Wang Y, Zhou Z, Wu X, Li T, Wu J, Cai M, Nie J, Wang W, Cui Z. Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:1-27. [PMID: 36920689 DOI: 10.1007/978-981-99-0113-5_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Pseudotyped viruses have been constructed for many viruses. They can mimic the authentic virus and have many advantages compared to authentic viruses. Thus, they have been widely used as a surrogate of authentic virus for viral function analysis, detection of neutralizing antibodies, screening viral entry inhibitors, and others. This chapter reviewed the progress in the field of pseudotyped viruses in general, including the definition and the advantages of pseudotyped viruses, their potential usage, different strategies or vectors used for the construction of pseudotyped viruses, and factors that affect the construction of pseudotyped viruses.
Collapse
Affiliation(s)
- Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| | - Zehua Zhou
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Xi Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd., Beijing, China
| | - Meina Cai
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wenbo Wang
- Division of Monoclonal Antibody Products, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
14
|
Ratnapriya S, Braun AR, Cervera H, Carlson D, Ding S, Paulson C, Mishra N, Sachs JN, Aldrich C, Finzi A, Herschhorn A. Broad Tricyclic Ring Inhibitors Block SARS-CoV-2 Spike Function Required for Viral Entry. ACS Infect Dis 2022; 8:2045-2058. [PMID: 36153947 PMCID: PMC9528568 DOI: 10.1021/acsinfecdis.1c00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/29/2023]
Abstract
The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells requires binding of the viral spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor, which triggers subsequent conformational changes to facilitate viral and cellular fusion at the plasma membrane or following endocytosis. Here, we experimentally identified selective and broad inhibitors of SARS-CoV-2 entry that share a tricyclic ring (or similar) structure. The inhibitory effect was restricted to early steps during infection and the entry inhibitors interacted with the receptor binding domain of the SARS-CoV-2 spike but did not significantly interfere with receptor (ACE2) binding. Instead, some of these compounds induced conformational changes or affected spike assembly and blocked SARS-CoV-2 spike cell-cell fusion activity. The broad inhibitors define a highly conserved binding pocket that is present on the spikes of SARS-CoV-1, SARS-CoV-2, and all circulating SARS-CoV-2 variants tested and block SARS-CoV spike activity required for mediating viral entry. These compounds provide new insights into the SARS-CoV-2 spike topography, as well as into critical steps on the entry pathway, and can serve as lead candidates for the development of broad-range entry inhibitors against SARS-CoVs.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Anthony R. Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Héctor Cervera
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Danielle Carlson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Carolyn Paulson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States; Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Courtney Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 8-101 WDH, 308 Harvard Street SE, Minneapolis, MN, 55455, United States; Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
- The College of Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
15
|
Rahnama R, Christodoulou I, Bonifant CL. Gene-Based Natural Killer Cell Therapies for the Treatment of Pediatric Hematologic Malignancies. Hematol Oncol Clin North Am 2022; 36:745-768. [PMID: 35773048 PMCID: PMC10158845 DOI: 10.1016/j.hoc.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Pediatric blood cancers are among the most common malignancies that afflict children. Intensive chemotherapy is not curative in many cases, and novel therapies are urgently needed. NK cells hold promise for use as immunotherapeutic effectors due to their favorable safety profile, intrinsic cytotoxic properties, and potential for genetic modification that can enhance specificity and killing potential. NK cells can be engineered to express CARs targeting tumor-specific antigens, to downregulate inhibitory and regulatory signals, to secrete cytokine, and to optimize interaction with small molecule engagers. Understanding NK cell biology is key to designing immunotherapy for clinical translation.
Collapse
|
16
|
Soldierer M, Bister A, Haist C, Thivakaran A, Cengiz SC, Sendker S, Bartels N, Thomitzek A, Smorra D, Hejazi M, Uhrberg M, Scheckenbach K, Monzel C, Wiek C, Reinhardt D, Niktoreh N, Hanenberg H. Genetic Engineering and Enrichment of Human NK Cells for CAR-Enhanced Immunotherapy of Hematological Malignancies. Front Immunol 2022; 13:847008. [PMID: 35464442 PMCID: PMC9022481 DOI: 10.3389/fimmu.2022.847008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
The great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, off-the-shelf usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient. However, in contrast to T cells, manufacturing suitable CAR NK cell products is challenging, as standard techniques for genetically engineering NK cells are still being defined. In this study, we have established optimal lentiviral transduction of primary human NK cells by systematically testing different internal promoters for lentiviral CAR vectors and comparing lentiviral pseudotypes and viral entry enhancers. We have additionally modified CAR constructs recognizing standard target antigens for acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) therapy—CD19, CD33, and CD123—to harbor a CD34-derived hinge region that allows efficient detection of transduced NK cells in vitro and in vivo and also facilitates CD34 microbead-assisted selection of CAR NK cell products to >95% purity for potential clinical usage. Importantly, as most leukemic blasts are a priori immunogenic for activated primary human NK cells, we developed an in vitro system that blocks the activating receptors NKG2D, DNAM-1, NKp30, NKp44, NKp46, and NKp80 on these cells and therefore allows systematic testing of the specific killing of CAR NK cells against ALL and AML cell lines and primary AML blasts. Finally, we evaluated in an ALL xenotransplantation model in NOD/SCID-gamma (NSG) mice whether human CD19 CAR NK cells directed against the CD19+ blasts are relying on soluble or membrane-bound IL15 production for NK cell persistence and also in vivo leukemia control. Hence, our study provides important insights into the generation of pure and highly active allogeneic CAR NK cells, thereby advancing adoptive cellular immunotherapy with CAR NK cells for human malignancies further.
Collapse
Affiliation(s)
- Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Arthur Bister
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Corinna Haist
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sevgi Can Cengiz
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Bartels
- Department of Experimental Medical Physics, Heinrich Heine University, Düsseldorf, Germany
| | - Antonia Thomitzek
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Denise Smorra
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Maryam Hejazi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Cornelia Monzel
- Department of Experimental Medical Physics, Heinrich Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Shi R, Jia S, Liu H, Nie H. Clinical grade lentiviral vector purification and quality control requirements. J Sep Sci 2022; 45:2093-2101. [PMID: 35247228 DOI: 10.1002/jssc.202100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
Lentiviral vectors have been proven to be a powerful tool in gene therapies that includes the ability to perform long-term gene editing in both dividing and non-dividing cells. In order to meet the rising demand of clinical grade lentiviral vectors for future clinical trials and requirements by regulatory agencies, new methods and technologies were developed, including the rapid optimization of production and purification processes. However, gaps still exist in achieving ideal yields and recovery rates in large-scale manufacturing process steps. The downstream purification process is a critical step required to obtain sufficient quantity and high-quality lentiviral vectors products, which is challenged by the low stability of the LV particles and large production volumes associated with the manufacturing process. This review summarizes the most recent and promising technologies and enhancements used in the large-scale purification process step of LV manufacturing and aims to provide a significant contribution towards the achievement of providing sufficient quantity and quality of LVs in scalable processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruina Shi
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Shenghua Jia
- Immunochina Pharmaceutical Co., Ltd., Beijing, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Honggang Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,Analytical Instrumental Center, Peking University, Beijing, China
| |
Collapse
|
18
|
Palamarchuk AI, Alekseeva NA, Streltsova MA, Ustiuzhanina MO, Kobyzeva PA, Kust SA, Grechikhina MV, Boyko AA, Shustova OA, Sapozhnikov AM, Kovalenko EI. Increased Susceptibility of the CD57 - NK Cells Expressing KIR2DL2/3 and NKG2C to iCasp9 Gene Retroviral Transduction and the Relationships with Proliferative Potential, Activation Degree, and Death Induction Response. Int J Mol Sci 2021; 22:ijms222413326. [PMID: 34948123 PMCID: PMC8709225 DOI: 10.3390/ijms222413326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
Nowadays, the use of genetically modified NK cells is a promising strategy for cancer immunotherapy. The additional insertion of genes capable of inducing cell suicide allows for the timely elimination of the modified NK cells. Different subsets of the heterogenic NK cell population may differ in proliferative potential, in susceptibility to genetic viral transduction, and to the subsequent induction of cell death. The CD57−NKG2C+ NK cells are of special interest as potential candidates for therapeutic usage due to their high proliferative potential and certain features of adaptive NK cells. In this study, CD57− NK cell subsets differing in KIR2DL2/3 and NKG2C expression were transduced with the iCasp9 suicide gene. The highest transduction efficacy was observed in the KIR2DL2/3+NKG2C+ NK cell subset, which demonstrated an increased proliferative potential with prolonged cultivation. The increased transduction efficiency of the cell cultures was associated with the higher expression level of the HLA-DR activation marker. Among the iCasp9-transduced subsets, KIR2DL2/3+ cells had the weakest response to the apoptosis induction by the chemical inductor of dimerization (CID). Thus, KIR2DL2/3+NKG2C+ NK cells showed an increased susceptibility to the iCasp9 retroviral transduction, which was associated with higher proliferative potential and activation status. However, the complete elimination of these cells with CID is impeded.
Collapse
Affiliation(s)
- Anastasia I. Palamarchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Nadezhda A. Alekseeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria A. Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria O. Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina A. Kobyzeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Sofya A. Kust
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Maria V. Grechikhina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Anna A. Boyko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Olga A. Shustova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Alexander M. Sapozhnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
| | - Elena I. Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, st. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (A.I.P.); (N.A.A.); (M.A.S.); (M.O.U.); (P.A.K.); (S.A.K.); (M.V.G.); (A.A.B.); (O.A.S.); (A.M.S.)
- Correspondence: ; Tel.: +7-495-330-40-11
| |
Collapse
|
19
|
Rudek LS, Zimmermann K, Galla M, Meyer J, Kuehle J, Stamopoulou A, Brand D, Sandalcioglu IE, Neyazi B, Moritz T, Rossig C, Altvater B, Falk CS, Abken H, Morgan MA, Schambach A. Generation of an NFκB-Driven Alpharetroviral "All-in-One" Vector Construct as a Potent Tool for CAR NK Cell Therapy. Front Immunol 2021; 12:751138. [PMID: 34804035 PMCID: PMC8595471 DOI: 10.3389/fimmu.2021.751138] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapeutics are increasingly applied in oncology. Especially chimeric antigen receptor (CAR) T cells are successfully used to treat several B cell malignancies. Efforts to engineer CAR T cells for improved activity against solid tumors include co-delivery of pro-inflammatory cytokines in addition to CARs, via either constitutive cytokine expression or inducible cytokine expression triggered by CAR recognition of its target antigen-so-called "T cells redirected for universal cytokine-mediated killing" (TRUCKs) or fourth-generation CARs. Here, we tested the hypothesis that TRUCK principles could be expanded to improve anticancer functions of NK cells. A comparison of the functionality of inducible promoters responsive to NFAT or NFκB in NK cells showed that, in contrast to T cells, the inclusion of NFκB-responsive elements within the inducible promoter construct was essential for CAR-inducible expression of the transgene. We demonstrated that GD2CAR-specific activation induced a tight NFκB-promoter-driven cytokine release in NK-92 and primary NK cells together with an enhanced cytotoxic capacity against GD2+ target cells, also shown by increased secretion of cytolytic cytokines. The data demonstrate biologically relevant differences between T and NK cells that are important when clinically translating the TRUCK concept to NK cells for the treatment of solid malignancies.
Collapse
Affiliation(s)
- Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Andriana Stamopoulou
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Daniel Brand
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - I Erol Sandalcioglu
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Christine S Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Center Transplantation, Hannover Medical School, Hannover, Germany
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology, Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Page A, Hubert J, Fusil F, Cosset FL. Exploiting B Cell Transfer for Cancer Therapy: Engineered B Cells to Eradicate Tumors. Int J Mol Sci 2021; 22:9991. [PMID: 34576154 PMCID: PMC8468294 DOI: 10.3390/ijms22189991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Nowadays, cancers still represent a significant health burden, accounting for around 10 million deaths per year, due to ageing populations and inefficient treatments for some refractory cancers. Immunotherapy strategies that modulate the patient's immune system have emerged as good treatment options. Among them, the adoptive transfer of B cells selected ex vivo showed promising results, with a reduction in tumor growth in several cancer mouse models, often associated with antitumoral immune responses. Aside from the benefits of their intrinsic properties, including antigen presentation, antibody secretion, homing and long-term persistence, B cells can be modified prior to reinfusion to increase their therapeutic role. For instance, B cells have been modified mainly to boost their immuno-stimulatory activation potential by forcing the expression of costimulatory ligands using defined culture conditions or gene insertion. Moreover, tumor-specific antigen presentation by infused B cells has been increased by ex vivo antigen loading (peptides, RNA, DNA, virus) or by the sorting/ engineering of B cells with a B cell receptor specific to tumor antigens. Editing of the BCR also rewires B cell specificity toward tumor antigens, and may trigger, upon antigen recognition, the secretion of antitumor antibodies by differentiated plasma cells that can then be recognized by other immune components or cells involved in tumor clearance by antibody-dependent cell cytotoxicity or complement-dependent cytotoxicity for example. With the expansion of gene editing methodologies, new strategies to reprogram immune cells with whole synthetic circuits are being explored: modified B cells can sense disease-specific biomarkers and, in response, trigger the expression of therapeutic molecules, such as molecules that counteract the tumoral immunosuppressive microenvironment. Such strategies remain in their infancy for implementation in B cells, but are likely to expand in the coming years.
Collapse
Affiliation(s)
| | | | | | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, F-69007 Lyon, France; (A.P.); (J.H.); (F.F.)
| |
Collapse
|
21
|
Designing Lentiviral Vectors for Gene Therapy of Genetic Diseases. Viruses 2021; 13:v13081526. [PMID: 34452394 PMCID: PMC8402868 DOI: 10.3390/v13081526] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Lentiviral vectors are the most frequently used tool to stably transfer and express genes in the context of gene therapy for monogenic diseases. The vast majority of clinical applications involves an ex vivo modality whereby lentiviral vectors are used to transduce autologous somatic cells, obtained from patients and re-delivered to patients after transduction. Examples are hematopoietic stem cells used in gene therapy for hematological or neurometabolic diseases or T cells for immunotherapy of cancer. We review the design and use of lentiviral vectors in gene therapy of monogenic diseases, with a focus on controlling gene expression by transcriptional or post-transcriptional mechanisms in the context of vectors that have already entered a clinical development phase.
Collapse
|
22
|
Streltsova MA, Ustiuzhanina MO, Barsov EV, Kust SA, Velichinskii RA, Kovalenko EI. Telomerase Reverse Transcriptase Increases Proliferation and Lifespan of Human NK Cells without Immortalization. Biomedicines 2021; 9:biomedicines9060662. [PMID: 34207853 PMCID: PMC8229856 DOI: 10.3390/biomedicines9060662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/24/2022] Open
Abstract
NK cells are the first line of defense against viruses and malignant cells, and their natural functionality makes these cells a promising candidate for cancer cell therapy. The genetic modifications of NK cells, allowing them to overcome some of their inherent limitations, such as low proliferative potential, can enable their use as a therapeutic product. We demonstrate that hTERT-engineered NK cell cultures maintain a high percentage of cells in the S/G2 phase for an extended time after transduction, while the life span of NK cells is measurably extended. Bulk and clonal NK cell cultures pre-activated in vitro with IL-2 and K562-mbIL21 feeder cells can be transduced with hTERT more efficiently compared with the cells activated with IL-2 alone. Overexpressed hTERT was functionally active in transduced NK cells, which displayed upregulated expression of the activation marker HLA-DR, and decreased expression of the maturation marker CD57 and activating receptor NKp46. Larger numbers of KIR2DL2/3+ cells in hTERT-engineered populations may indicate that NK cells with this phenotype are more susceptible to transduction. The hTERT-modified NK cells demonstrated a high natural cytotoxic response towards K562 cells and stably expressed Ki67, a proliferation marker. Overall, our data show that ectopic hTERT expression in NK cells enhances their activation and proliferation, extends in vitro life span, and can be a useful tool in developing NK-based cancer cell therapies.
Collapse
Affiliation(s)
- Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Maria O. Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | | | - Sofya A. Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Rodion A. Velichinskii
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (M.A.S.); (M.O.U.); (S.A.K.); (R.A.V.)
- Correspondence:
| |
Collapse
|
23
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
24
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
25
|
Hoerster K, Uhrberg M, Wiek C, Horn PA, Hanenberg H, Heinrichs S. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Front Immunol 2021; 11:586168. [PMID: 33584651 PMCID: PMC7878547 DOI: 10.3389/fimmu.2020.586168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Cellular immunotherapy using chimeric antigen receptors (CARs) so far has almost exclusively used autologous peripheral blood-derived T cells as immune effector cells. However, harvesting sufficient numbers of T cells is often challenging in heavily pre-treated patients with malignancies and perturbed hematopoiesis and perturbed hematopoiesis. Also, such a CAR product will always be specific for the individual patient. In contrast, NK cell infusions can be performed in non-HLA-matched settings due to the absence of alloreactivity of these innate immune cells. Still, the infused NK cells are subject to recognition and rejection by the patient's immune system, thereby limiting their life-span in vivo and undermining the possibility for multiple infusions. Here, we designed genome editing and advanced lentiviral transduction protocols to render primary human NK cells unsusceptible/resistant to an allogeneic response by the recipient's CD8+ T cells. After knocking-out surface expression of HLA class I molecules by targeting the B2M gene via CRISPR/Cas9, we also co-expressed a single-chain HLA-E molecule, thereby preventing NK cell fratricide of B2M-knockout (KO) cells via "missing self"-induced lysis. Importantly, these genetically engineered NK cells were functionally indistinguishable from their unmodified counterparts with regard to their phenotype and their natural cytotoxicity towards different AML cell lines. In co-culture assays, B2M-KO NK cells neither induced immune responses of allogeneic T cells nor re-activated allogeneic T cells which had been expanded/primed using irradiated PBMNCs of the respective NK cell donor. Our study demonstrates the feasibility of genome editing in primary allogeneic NK cells to diminish their recognition and killing by mismatched T cells and is an important prerequisite for using non-HLA-matched primary human NK cells as readily available, "off-the-shelf" immune effectors for a variety of immunotherapy indications in human cancer.
Collapse
Affiliation(s)
- Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatrics III, University Children’s Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
26
|
Page A, Fusil F, Cosset FL. Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses 2020; 12:v12121427. [PMID: 33322556 PMCID: PMC7764518 DOI: 10.3390/v12121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.
Collapse
|
27
|
Naeimi Kararoudi M, Tullius BP, Chakravarti N, Pomeroy EJ, Moriarity BS, Beland K, Colamartino ABL, Haddad E, Chu Y, Cairo MS, Lee DA. Genetic and epigenetic modification of human primary NK cells for enhanced antitumor activity. Semin Hematol 2020; 57:201-212. [PMID: 33256913 PMCID: PMC7809645 DOI: 10.1053/j.seminhematol.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
Cancer immunotherapy using genetically modified immune cells such as those expressing chimeric antigen receptors has shown dramatic outcomes in patients with refractory and relapsed malignancies. Natural killer (NK) cells as a member of the innate immune system, possessing both anticancer (cytotoxic) and proinflammatory (cytokine) responses to cancers and rare off-target toxicities have great potential for a wide range of cancer therapeutic settings. Therefore, improving NK cell antitumor activity through genetic modification is of high interest in the field of cancer immunotherapy. However, gene manipulation in primary NK cells has been challenging because of broad resistance to many genetic modification methods that work well in T cells. Here we review recent successful approaches for genetic and epigenetic modification of NK cells including epigenetic remodeling, transposons, mRNA-mediated gene delivery, lentiviruses, and CRISPR gene targeting.
Collapse
Affiliation(s)
- Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH
| | - Brian P Tullius
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH
| | - Nitin Chakravarti
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Emily J Pomeroy
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN
| | | | - Kathie Beland
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | | | - Elie Haddad
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY
| | - Dean A Lee
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute of Nationwide Children's Hospital, Columbus, OH.
| |
Collapse
|
28
|
Munis AM. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020; 12:v12101106. [PMID: 33003635 PMCID: PMC7599719 DOI: 10.3390/v12101106] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
29
|
Hu J, Gao Q, He C, Huang A, Tang N, Wang K. Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes Dis 2020; 7:551-557. [PMID: 32837985 PMCID: PMC7366953 DOI: 10.1016/j.gendis.2020.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative virus of the coronavirus disease 2019 (COVID-19) pandemic. To establish a safe and convenient assay system for studying entry inhibitors and neutralizing antibodies against SARS-CoV-2, we constructed a codon-optimized, full-length C-terminal mutant spike (S) gene of SARS-CoV-2. We generated a luciferase (Luc)-expressing pseudovirus containing the wild-type or mutant S protein of SARS-CoV-2 in the envelope-defective HIV-1 backbone. The key parameters for this pseudovirus-based assay, including the S mutants and virus incubation time, were optimized. This pseudovirus contains a Luc reporter gene that enabled us to easily quantify virus entry into angiotensin-converting enzyme 2 (ACE2)-expressing 293T cells. Cathepsin (Cat)B/L inhibitor E−64d could significantly block SARS-CoV-2 pseudovirus infection in 293T-ACE2 cells. Furthermore, the SARS-CoV-2 spike pseudotyped virus could be neutralized by sera from convalescent COVID-19 patients or recombinant ACE2 with the fused Fc region of human IgG1. Thus, we developed a pseudovirus-based assay for SARS-CoV-2, which will be valuable for evaluating viral entry inhibitors and neutralizing antibodies against this highly pathogenic virus.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Changlong He
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
30
|
Page A, Fusil F, Cosset FL. Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers (Basel) 2020; 12:E962. [PMID: 32295072 PMCID: PMC7226531 DOI: 10.3390/cancers12040962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cancers represent highly significant health issues and the options for their treatment are often not efficient to cure the disease. Immunotherapy strategies have been developed to modulate the patient's immune system in order to eradicate cancerous cells. For instance, passive immunization consists in the administration at high doses of exogenously produced monoclonal antibodies directed either against tumor antigen or against immune checkpoint inhibitors. Its main advantage is that it provides immediate immunity, though during a relatively short period, which consequently requires frequent injections. To circumvent this limitation, several approaches, reviewed here, have emerged to induce in vivo antibody secretion at physiological doses. Gene delivery vectors, such as adenoviral vectors or adeno-associated vectors, have been designed to induce antibody secretion in vivo after in situ cell modification, and have driven significant improvements in several cancer models. However, anti-idiotypic antibodies and escape mutants have been detected, probably because of both the continuous expression of antibodies and their expression by unspecialized cell types. To overcome these hurdles, adoptive transfer of genetically modified B cells that secrete antibodies either constitutively or in a regulated manner have been developed by ex vivo transgene insertion with viral vectors. Recently, with the emergence of gene editing technologies, the endogenous B cell receptor loci of B cells have been modified with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas-9) system to change their specificity in order to target a given antigen. The expression of the modified BCR gene hence follows the endogenous regulation mechanisms, which may prevent or at least reduce side effects. Although these approaches seem promising for cancer treatments, major questions, such as the persistence and the re-activation potential of these engineered cells, remain to be addressed in clinically relevant animal models before translation to humans.
Collapse
Affiliation(s)
| | | | - François-Loïc Cosset
- CIRICentre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; (A.P.); (F.F.)
| |
Collapse
|
31
|
Boudeffa D, Bertin B, Biek A, Mormin M, Leseigneur F, Galy A, Merten OW. Toward a Scalable Purification Protocol of GaLV-TR-Pseudotyped Lentiviral Vectors. Hum Gene Ther Methods 2020; 30:153-171. [PMID: 31516018 DOI: 10.1089/hgtb.2019.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lentiviral vectors (LV) that are used in research and development as well as in clinical trials are in majority vesicular stomatitis virus G glycoprotein (VSVg) pseudotyped. The predominance of this pseudotype choice for clinical gene therapy studies is largely due to a lack of purification schemes for pseudotypes other than VSVg. In this study, we report for the first time the development of a new downstream process protocol allowing high-yield production of stable and infectious gibbon ape leukemia virus (GaLV)-TR-LV particles. We identified critical conditions in tangential flow filtration (TFF) and chromatographic steps for preserving the infectivity/functionality of LV during purification. This was carried out by identifying for each step, the critical parameters affecting LV infectivity, including pH, salinity, presence of stabilizers, temperature, and by defining the optimal order of these steps. A three-step process was developed for GaLV-TR-LV purification consisting of one TFF and two chromatographic steps (ion-exchange chromatography and size exclusion chromatography) permitting recoveries of >27% of infectious particles. With this process, purified GaLV-pseudotyped LV enabled the transduction of 70% human CD34+ cells in the presence of the Vectofusin-1 peptide, whereas in the same conditions nonpurified vector transduced only 9% of the cells (multiplicity of infection 20). Our protocol will allow for the first time the purification of GaLV-TR-LV that are biologically active, stable, and with sufficient recovery in the perspective of preclinical studies and clinical applications. Obviously, further optimizations are required to improve final vector yields.
Collapse
Affiliation(s)
| | | | | | - Mirella Mormin
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | | - Anne Galy
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | |
Collapse
|
32
|
Baboon envelope LVs efficiently transduced human adult, fetal, and progenitor T cells and corrected SCID-X1 T-cell deficiency. Blood Adv 2020; 3:461-475. [PMID: 30755435 DOI: 10.1182/bloodadvances.2018027508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/13/2019] [Indexed: 01/15/2023] Open
Abstract
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Collapse
|
33
|
Müller S, Bexte T, Gebel V, Kalensee F, Stolzenberg E, Hartmann J, Koehl U, Schambach A, Wels WS, Modlich U, Ullrich E. High Cytotoxic Efficiency of Lentivirally and Alpharetrovirally Engineered CD19-Specific Chimeric Antigen Receptor Natural Killer Cells Against Acute Lymphoblastic Leukemia. Front Immunol 2020; 10:3123. [PMID: 32117200 PMCID: PMC7025537 DOI: 10.3389/fimmu.2019.03123] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Autologous chimeric antigen receptor-modified (CAR) T cells with specificity for CD19 showed potent antitumor efficacy in clinical trials against relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL). Contrary to T cells, natural killer (NK) cells kill their targets in a non-antigen-specific manner and do not carry the risk of inducing graft vs. host disease (GvHD), allowing application of donor-derived cells in an allogenic setting. Hence, unlike autologous CAR-T cells, therapeutic CD19-CAR-NK cells can be generated as an off-the-shelf product from healthy donors. Nevertheless, genetic engineering of peripheral blood (PB) derived NK cells remains challenging and optimized protocols are needed. In our study, we aimed to optimize the generation of CD19-CAR-NK cells by retroviral transduction to improve the high antileukemic capacity of NK cells. We compared two different retroviral vector platforms, the lentiviral and alpharetroviral, both in combination with two different transduction enhancers (Retronectin and Vectofusin-1). We further explored different NK cell isolation techniques (NK cell enrichment and CD3/CD19 depletion) to identify the most efficacious methods for genetic engineering of NK cells. Our results demonstrated that transduction of NK cells with RD114-TR pseudotyped retroviral vectors, in combination with Vectofusin-1 was the most efficient method to generate CD19-CAR-NK cells. Retronectin was potent in enhancing lentiviral/VSV-G gene delivery to NK cells but not alpharetroviral/RD114-TR. Furthermore, the Vectofusin-based transduction of NK cells with CD19-CARs delivered by alpharetroviral/RD114-TR and lentiviral/RD114-TR vectors outperformed lentiviral/VSV-G vectors. The final generated CD19-CAR-NK cells displayed superior cytotoxic activity against CD19-expressing target cells when compared to non-transduced NK cells achieving up to 90% specific killing activity. In summary, our findings present the use of RD114-TR pseudotyped retroviral particles in combination with Vectofusin-1 as a successful strategy to genetically modify PB-derived NK cells to achieve highly cytotoxic CD19-CAR-NK cells at high yield.
Collapse
Affiliation(s)
- Stephan Müller
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tobias Bexte
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Veronika Gebel
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Franziska Kalensee
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Eva Stolzenberg
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jessica Hartmann
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hanover, Germany.,Institute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hanover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Winfried S Wels
- German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Division of Veterinary Medicine, Paul-Ehrlich Institute, Langen, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,Division of Pediatric Stem Cell Transplantation and Immunology, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Colamartino ABL, Lemieux W, Bifsha P, Nicoletti S, Chakravarti N, Sanz J, Roméro H, Selleri S, Béland K, Guiot M, Tremblay-Laganière C, Dicaire R, Barreiro L, Lee DA, Verhoeyen E, Haddad E. Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Front Immunol 2019; 10:2873. [PMID: 31921138 PMCID: PMC6927467 DOI: 10.3389/fimmu.2019.02873] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
NK-cell resistance to transduction is a major technical hurdle for developing NK-cell immunotherapy. By using Baboon envelope pseudotyped lentiviral vectors (BaEV-LVs) encoding eGFP, we obtained a transduction rate of 23.0 ± 6.6% (mean ± SD) in freshly-isolated human NK-cells (FI-NK) and 83.4 ± 10.1% (mean ± SD) in NK-cells obtained from the NK-cell Activation and Expansion System (NKAES), with a sustained transgene expression for at least 21 days. BaEV-LVs outperformed Vesicular Stomatitis Virus type-G (VSV-G)-, RD114- and Measles Virus (MV)- pseudotyped LVs (p < 0.0001). mRNA expression of both BaEV receptors, ASCT1 and ASCT2, was detected in FI-NK and NKAES, with higher expression in NKAES. Transduction with BaEV-LVs encoding for CAR-CD22 resulted in robust CAR-expression on 38.3 ± 23.8% (mean ± SD) of NKAES cells, leading to specific killing of NK-resistant pre-B-ALL-RS4;11 cell line. Using a larger vector encoding a dual CD19/CD22-CAR, we were able to transduce and re-expand dual-CAR-expressing NKAES, even with lower viral titer. These dual-CAR-NK efficiently killed both CD19KO- and CD22KO-RS4;11 cells. Our results suggest that BaEV-LVs may efficiently enable NK-cell biological studies and translation of NK-cell-based immunotherapy to the clinic.
Collapse
Affiliation(s)
- Aurelien B. L. Colamartino
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - William Lemieux
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Panojot Bifsha
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Simon Nicoletti
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
- INSERM U1163 and CNRS ERL 8254, Medicine Faculty, Paris Descartes University, Necker Hospital, Paris, France
| | - Nitin Chakravarti
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joaquín Sanz
- Institute for Bio-computation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
| | - Hugo Roméro
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Silvia Selleri
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Kathie Béland
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Mélanie Guiot
- Pierre and Marie Curie University (PMCU) Paris 6, Paris, France
- Assistance Publique Hopitaux De Paris (AP-HP), Paris, France
| | - Camille Tremblay-Laganière
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Renée Dicaire
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Luis Barreiro
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
- Genetics Section, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Dean A. Lee
- Center for Childhood Cancer and Blood Disorders, Research Institute of Nationwide Children's Hospital, Columbus, OH, United States
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS UMR 5308, Lyon, France
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Elie Haddad
- Department of Microbiology, Infectiology and Immunology, University of Montréal, Montréal, QC, Canada
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, University of Montréal, Montréal, QC, Canada
| |
Collapse
|
35
|
Radek C, Bernadin O, Drechsel K, Cordes N, Pfeifer R, Sträßer P, Mormin M, Gutierrez-Guerrero A, Cosset FL, Kaiser AD, Schaser T, Galy A, Verhoeyen E, Johnston IC. Vectofusin-1 Improves Transduction of Primary Human Cells with Diverse Retroviral and Lentiviral Pseudotypes, Enabling Robust, Automated Closed-System Manufacturing. Hum Gene Ther 2019; 30:1477-1493. [PMID: 31578886 PMCID: PMC6919281 DOI: 10.1089/hum.2019.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/21/2019] [Indexed: 01/07/2023] Open
Abstract
Cell and gene therapies are finally becoming viable patient treatment options, with both T cell- and hematopoietic stem cell (HSC)-based therapies being approved to market in Europe. However, these therapies, which involve the use of viral vector to modify the target cells, are expensive and there is an urgent need to reduce manufacturing costs. One major cost factor is the viral vector production itself, therefore improving the gene modification efficiency could significantly reduce the amount of vector required per patient. This study describes the use of a transduction enhancing peptide, Vectofusin-1®, to improve the transduction efficiency of primary target cells using lentiviral and gammaretroviral vectors (LV and RV) pseudotyped with a variety of envelope proteins. Using Vectofusin-1 in combination with LV pseudotyped with viral glycoproteins derived from baboon endogenous retrovirus, feline endogenous virus (RD114), and measles virus (MV), a strongly improved transduction of HSCs, B cells and T cells, even when cultivated under low stimulation conditions, could be observed. The formation of Vectofusin-1 complexes with MV-LV retargeted to CD20 did not alter the selectivity in mixed cell culture populations, emphasizing the precision of this targeting technology. Functional, ErbB2-specific chimeric antigen receptor-expressing T cells could be generated using a gibbon ape leukemia virus (GALV)-pseudotyped RV. Using a variety of viral vectors and target cells, Vectofusin-1 performed in a comparable manner to the traditionally used surface-bound recombinant fibronectin. As Vectofusin-1 is a soluble peptide, it was possible to easily transfer the T cell transduction method to an automated closed manufacturing platform, where proof of concept studies demonstrated efficient genetic modification of T cells with GALV-RV and RD114-RV and the subsequent expansion of mainly central memory T cells to a clinically relevant dose.
Collapse
Affiliation(s)
| | - Ornellie Bernadin
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Nicole Cordes
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rita Pfeifer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Pia Sträßer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Mirella Mormin
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Alejandra Gutierrez-Guerrero
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | - François-loïc Cosset
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
| | | | - Thomas Schaser
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Anne Galy
- Integrare Research Unit UMR_S951, Genethon, INSERM, University Evry, EPHE, Evry, France
| | - Els Verhoeyen
- CIRI—International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111, Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, CNRS, UMR5308, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | |
Collapse
|
36
|
Castro V, Calvo G, Ávila-Pérez G, Dreux M, Gastaminza P. Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle. Cells 2019; 8:cells8111456. [PMID: 31752156 PMCID: PMC6912735 DOI: 10.3390/cells8111456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidic acid into diacylglycerol, has been implicated in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family on HCV infection, by determining the impact of the lipin2 silencing on viral replication. Our data reveal that lipin2 silencing interferes with HCV virion secretion at late stages of the infection, without significantly affecting viral replication or assembly. Moreover, uninfected lipin2-, but not lipin1-deficient cells display alterations in mitochondrial and Golgi apparatus morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Finally, our data suggest a broader function of lipin2 for replication of HCV and other RNA viruses, in contrast with the specific impact of lipin1 silencing on HCV replication. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Gema Calvo
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France;
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
- Correspondence: ; Tel.: +34-91-585-4678; Fax: +34-91-585-4506
| |
Collapse
|
37
|
Mekkaoui L, Ferrari M, Mattiuzzo G, Ma B, Nannini F, Onuoha S, Kotsopoulou E, Takeuchi Y, Pule M. Generation of a neutralizing antibody against RD114-pseudotyped viral vectors. J Gen Virol 2019; 101:1008-1018. [PMID: 31702531 DOI: 10.1099/jgv.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The feline endogenous RD114 glycoprotein has proved to be an attractive envelope to pseudotype both retroviral and lentiviral vectors. As a surface protein, its detection on packaging cells as well as viral particles would be useful in different fields of its use. To address this, we generated a monoclonal antibody against RD114 by immunization of rats, termed 22F10. Once seroconversion was confirmed, purified 22F10 was cloned into murine Fc and characterized with a binding affinity of 10nM. The antibody was used to detect RD114 and its variant envelopes on different stable viral packaging cell lines (FLYRD18 and WinPac-RD). 22F10 was also shown to prevent the infections of different strains of RD-pseudotyped vectors but not related envelope glycoproteins by blocking cell surface receptor binding. We are the first to report the neutralization of viral particles by a monoclonal αRD114 antibody.
Collapse
Affiliation(s)
- L Mekkaoui
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - M Ferrari
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - G Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | - B Ma
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - F Nannini
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - S Onuoha
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - E Kotsopoulou
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - Y Takeuchi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, WC1E 6BT, UK.,National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | | |
Collapse
|
38
|
Tomás HA, Mestre DA, Rodrigues AF, Guerreiro MR, Carrondo MJT, Coroadinha AS. Improved GaLV-TR Glycoproteins to Pseudotype Lentiviral Vectors: Impact of Viral Protease Activity in the Production of LV Pseudotypes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:1-8. [PMID: 31528654 PMCID: PMC6742969 DOI: 10.1016/j.omtm.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023]
Abstract
Lentiviral vectors (LVs) are excellent tools for gene transfer into mammalian cells. It is noteworthy that the first gene therapy treatment using LVs was approved for commercialization in 2017. The G glycoprotein from rhabdovirus vesicular stomatitis virus (VSV-G) is the glycoprotein most used to pseudotype LVs, due to its high efficiency in transducing several cell types and its resistance to viral vector purification and storage conditions. However, VSV-G expression induces cytotoxicity, which limits LV production to short periods. As alternative to VSV-G, γ-retrovirus glycoproteins (4070A derived, GaLV derived, and RD114 derived) have been used to pseudotype both γ-retroviral vectors (RVs) and LVs. These glycoproteins do not induce cytotoxicity, allowing the development of stable LV producer cells. Additionally, these LV pseudotypes present higher transduction efficiencies of hematopoietic stem cells when compared to VSV-G. Here, new 4070A-, RD114-TR-, and GaLV-TR-derived glycoproteins were developed with the aim of improving its cytoplasmic tail R-peptide cleavage and thus increase LV infectious titers. The new glycoproteins were tested in transient LV production using the wild-type or the less active T26S HIV-1 protease. The GaLV-TR-derived glycoproteins were able to overcome titer differences observed between LV production using wild-type and T26S protease. Additionally, these glycoproteins were even able to increase LV titers, evidencing its potential as an alternative glycoprotein to pseudotype LVs.
Collapse
Affiliation(s)
- Hélio A Tomás
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniel A Mestre
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Rodrigues
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel R Guerreiro
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, New University of Lisbon, Lisbon, Portugal
| |
Collapse
|
39
|
Ozog S, Chen CX, Simpson E, Garijo O, Timberlake ND, Minder P, Verhoeyen E, Torbett BE. CD46 Null Packaging Cell Line Improves Measles Lentiviral Vector Production and Gene Delivery to Hematopoietic Stem and Progenitor Cells. Mol Ther Methods Clin Dev 2019; 13:27-39. [PMID: 30603655 PMCID: PMC6310745 DOI: 10.1016/j.omtm.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
Abstract
Lentiviral vectors (LVs) pseudotyped with the measles virus hemagglutinin (H) and fusion (F) glycoproteins have been reported to more efficiently transduce hematopoietic stem and progenitor cells (HSPCs) compared with vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped LVs. However, a limit to H/F LV use is the low titer of produced vector. Here we show that measles receptor (CD46) expression on H/F transfected HEK293T vector-producing cells caused adjacent cell membrane fusion, resulting in multinucleate syncytia formation and death prior to peak vector production, leading to contaminating cell membranes that co-purified with LV. H/F LVs produced in CD46 null HEK293T cells, generated by CRISPR/Cas9-mediated knockout of CD46, produced 2-fold higher titer vector compared with LVs produced in CD46+ HEK293T cells. This resulted in approximately 2- to 3-fold higher transduction of HSPCs while significantly reducing target cell cytotoxicity caused by producer cell contaminates. Improved H/F LV entry into HSPCs and distinct entry mechanisms compared with VSV-G LV were also observed by confocal microscopy. Given that vector production is a major source of cost and variability in clinical trials of gene therapy, we propose that the use of CD46 null packaging cells may help to address these challenges.
Collapse
Affiliation(s)
- Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Craig X. Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Bishops School, La Jolla, CA 92037, USA
| | - Elizabeth Simpson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Olivia Garijo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nina D. Timberlake
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Petra Minder
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Els Verhoeyen
- CIRI–International Center for Infectiology Research, Team EVIR, Université de Lyon, Lyon, France
- Inserm, U1111; Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1; CNRS, UMR5308, Lyon, France
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | - Bruce E. Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Oberschmidt O, Morgan M, Huppert V, Kessler J, Gardlowski T, Matthies N, Aleksandrova K, Arseniev L, Schambach A, Koehl U, Kloess S. Development of Automated Separation, Expansion, and Quality Control Protocols for Clinical-Scale Manufacturing of Primary Human NK Cells and Alpharetroviral Chimeric Antigen Receptor Engineering. Hum Gene Ther Methods 2019; 30:102-120. [PMID: 30997855 PMCID: PMC6590729 DOI: 10.1089/hgtb.2019.039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In cellular immunotherapies, natural killer (NK) cells often demonstrate potent antitumor effects in high-risk cancer patients. But Good Manufacturing Practice (GMP)-compliant manufacturing of clinical-grade NK cells in high numbers for patient treatment is still a challenge. Therefore, new protocols for isolation and expansion of NK cells are required. In order to attack resistant tumor entities, NK cell killing can be improved by genetic engineering using alpharetroviral vectors that encode for chimeric antigen receptors (CARs). The aim of this work was to demonstrate GMP-grade manufacturing of NK cells using the CliniMACS® Prodigy device (Prodigy) with implemented applicable quality controls. Additionally, the study aimed to define the best time point to transduce expanding NK cells with alpharetroviral CAR vectors. Manufacturing and clinical-scale expansion of primary human NK cells were performed with the Prodigy starting with 8-15.0 × 109 leukocytes (including 1.1–2.3 × 109 NK cells) collected by small-scale lymphapheresis (n = 3). Positive fraction after immunoselection, in-process controls (IPCs), and end product were quantified by flow cytometric no-wash, single-platform assessment, and gating strategy using positive (CD56/CD16/CD45), negative (CD14/CD19/CD3), and dead cell (7-aminoactinomycine [7-AAD]) discriminators. The three runs on the fully integrated manufacturing platform included immunomagnetic separation (CD3 depletion/CD56 enrichment) followed by NK cell expansion over 14 days. This process led to high NK cell purities (median 99.1%) and adequate NK cell viabilities (median 86.9%) and achieved a median CD3+ cell depletion of log −3.6 after CD3 depletion and log −3.7 after immunomagnetic CD3 depletion and consecutive CD56 selection. Subsequent cultivation of separated NK cells in the CentriCult® chamber of Prodigy resulted in approximately 4.2–8.5-fold NK cell expansion rates by adding of NK MACS® basal medium containing NK MACS® supplement, interleukin (IL)-2/IL-15 and initial IL-21. NK cells expanded for 14 days revealed higher expression of natural cytotoxicity receptors (NKp30, NKp44, NKp46, and NKG2D) and degranulation/apoptotic markers and stronger cytolytic properties against K562 compared to non-activated NK cells before automated cultivation. Moreover, expanded NK cells had robust growth and killing activities even after cryopreservation. As a crucial result, it was possible to determine the appropriate time period for optimal CAR transduction of cultivated NK cells between days 8 and 14, with the highest anti-CD123 CAR expression levels on day 14. The anti-CD123 CAR NK cells showed retargeted killing and degranulation properties against CD123-expressing KG1a target cells, while basal cytotoxicity of non-transduced NK cells was determined using the CD123-negative cell line K562. Time-lapse imaging to monitor redirected effector-to-target contacts between anti-CD123 CAR NK and KG1a showed long-term effector–target interaction. In conclusion, the integration of the clinical-scale expansion procedure in the automated and closed Prodigy system, including IPC samples and quality controls and optimal time frames for NK cell transduction with CAR vectors, was established on 48-well plates and resulted in a standardized GMP-compliant overall process.
Collapse
Affiliation(s)
- Olaf Oberschmidt
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Michael Morgan
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | | | | | - Tanja Gardlowski
- 6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadine Matthies
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany
| | - Krasimira Aleksandrova
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Lubomir Arseniev
- 7 Institute for Cellular Therapeutics, Cellular Therapy Centre, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- 2 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,3 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,8 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ulrike Koehl
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,9 Institute of Clinical Immunology, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Stephan Kloess
- 1 Institute for Cellular Therapeutics, ATMP-GMP Development Unit, Hannover Medical School, Hannover, Germany.,6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
41
|
Sequence Determinants in Gammaretroviral Env Cytoplasmic Tails Dictate Virus-Specific Pseudotyping Compatibility. J Virol 2019; 93:JVI.02172-18. [PMID: 30894464 DOI: 10.1128/jvi.02172-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses can incorporate foreign glycoproteins to form infectious particles through a process known as pseudotyping. However, not all glycoproteins are compatible with all viruses. Despite the fact that viral pseudotyping is widely used, what makes a virus/glycoprotein pair compatible is poorly understood. To study this, we chose to analyze a gammaretroviral glycoprotein (Env) whose compatibility with different viruses could be modulated through small changes in its cytoplasmic tail (CT). One form of this glycoprotein is compatible with murine leukemia virus (MLV) particles but incompatible with human immunodeficiency virus type 1 (HIV-1) particles, while the second is compatible with HIV-1 particles but not with MLV particles. To decipher the factors affecting virus-specific Env incompatibility, we characterized Env incorporation, maturation, cell-to-cell fusogenicity, and virus-to-cell fusogenicity of each Env. The HIV-1 particle incompatibility correlated with less efficient cleavage of the R peptide by HIV-1 protease. However, the MLV particle incompatibility was more nuanced. MLV incompatibility appeared to be caused by lack of incorporation into particles, yet incorporation could be restored by further truncating the CT or by using a chimeric MLV Gag protein containing the HIV-1 MA without fully restoring infectivity. The MLV particle incompatibility appeared to be caused in part by fusogenic repression in MLV particles through an unknown mechanism. This study demonstrates that the Env CT can dictate functionality of Env within particles in a virus-specific manner.IMPORTANCE Viruses utilize viral glycoproteins to efficiently enter target cells during infection. How viruses acquire viral glycoproteins has been studied to understand the pathogenesis of viruses and develop safer and more efficient viral vectors for gene therapies. The CTs of viral glycoproteins have been shown to regulate various stages of glycoprotein biogenesis, but a gap still remains in understanding the molecular mechanism of glycoprotein acquisition and functionality regarding the CT. Here, we studied the mechanism of how specific mutations in the CT of a gammaretroviral envelope glycoprotein distinctly affect infectivity of two different viruses. Different mutations caused failure of glycoproteins to function in a virus-specific manner due to distinct fusion defects, suggesting that there are virus-specific characteristics affecting glycoprotein functionality.
Collapse
|
42
|
Perez-Vargas J, Amirache F, Boson B, Mialon C, Freitas N, Sureau C, Fusil F, Cosset FL. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat Commun 2019; 10:2098. [PMID: 31068585 PMCID: PMC6506506 DOI: 10.1038/s41467-019-10117-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) doesn't encode envelope proteins for packaging of its ribonucleoprotein (RNP) and typically relies on the surface glycoproteins (GPs) from hepatitis B virus (HBV) for virion assembly, envelopment and cellular transmission. HDV RNA genome can efficiently replicate in different tissues and species, raising the possibility that it evolved, and/or is still able to transmit, independently of HBV. Here we show that alternative, HBV-unrelated viruses can act as helper viruses for HDV. In vitro, envelope GPs from several virus genera, including vesiculovirus, flavivirus and hepacivirus, can package HDV RNPs, allowing efficient egress of HDV particles in the extracellular milieu of co-infected cells and subsequent entry into cells expressing the relevant receptors. Furthermore, HCV can propagate HDV infection in the liver of co-infected humanized mice for several months. Further work is necessary to evaluate whether HDV is currently transmitted by HBV-unrelated viruses in humans.
Collapse
Affiliation(s)
- Jimena Perez-Vargas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Fouzia Amirache
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Chloé Mialon
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Natalia Freitas
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - Camille Sureau
- Molecular Virology laboratory, Institut National de la Transfusion Sanguine (INTS), CNRS Inserm U1134, 6 rue Alexandre Cabanel, F-75739, Paris, France
| | - Floriane Fusil
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, F-69007, Lyon, France.
| |
Collapse
|
43
|
Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
In this study, we first investigated the effects of 3-methyladenine (3-MA), an autophagy inhibitor, and the inducer – rapamycin (RAPA) on the incidence of programmed cell death (PCD) symptoms during in vitro development of porcine somatic cell nuclear transfer (SCNT)-derived embryos. The expression of autophagy inhibitor mTOR protein was decreased in porcine SCNT blastocysts treated with 3MA. The abundance of the autophagy marker LC3 increased in blastocysts following RAPA treatment. Exposure of porcine SCNT-derived embryos to 3-MA suppressed their developmental abilities to reach the blastocyst stage. No significant difference in the expression pattern of PCD-related proteins was found between non-transfected dermal cell and transfected dermal cell groups. Additionally, the pattern of PCD in SCNT-derived blastocysts generated using SC and TSC was not significantly different, and in terms of porcine SCNT-derived embryo development rates and total blastocyst cell numbers, there was no significant difference between non-transfected cells and transfected cells. In conclusion, regulation of autophagy affected the development of porcine SCNT embryos. Regardless of the type of nuclear donor cells (transfected or non-transfected dermal cells) used for SCNT, there was no difference in the developmental potential and quantitative profiles of autophagy/apoptosis biomarkers between porcine transgenic and non-transgenic cloned embryos. These results led us to conclude that PCD is important for controlling porcine SCNT-derived embryo development, and that transfected dermal cells can be utilized as a source of nuclear donors for the production of transgenic cloned progeny in pigs.
Collapse
|
44
|
Park J, Inwood S, Kruthiventi S, Jenkins J, Shiloach J, Betenbaugh M. Progressing from transient to stable packaging cell lines for continuous production of lentiviral and gammaretroviral vectors. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Doyle T, Moncorgé O, Bonaventure B, Pollpeter D, Lussignol M, Tauziet M, Apolonia L, Catanese MT, Goujon C, Malim MH. The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nat Microbiol 2018; 3:1369-1376. [PMID: 30478388 PMCID: PMC6329445 DOI: 10.1038/s41564-018-0273-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Interferons (IFNs) mediate cellular defence against viral pathogens by upregulation of IFN-stimulated genes whose products interact with viral components or alter cellular physiology to suppress viral replication1-3. Among the IFN-stimulated genes that can inhibit influenza A virus (IAV)4 are the myxovirus resistance 1 GTPase5 and IFN-induced transmembrane protein 3 (refs 6,7). Here, we use ectopic expression and gene knockout to demonstrate that the IFN-inducible 219-amino acid short isoform of human nuclear receptor coactivator 7 (NCOA7) is an inhibitor of IAV as well as other viruses that enter the cell by endocytosis, including hepatitis C virus. NCOA7 interacts with the vacuolar H+-ATPase (V-ATPase) and its expression promotes cytoplasmic vesicle acidification, lysosomal protease activity and the degradation of endocytosed antigen. Step-wise dissection of the IAV entry pathway demonstrates that NCOA7 inhibits fusion of the viral and endosomal membranes and subsequent nuclear translocation of viral ribonucleoproteins. Therefore, NCOA7 provides a mechanism for immune regulation of endolysosomal physiology that not only suppresses viral entry into the cytosol from this compartment but may also regulate other V-ATPase-associated cellular processes, such as physiological adjustments to nutritional status, or the maturation and function of antigen-presenting cells.
Collapse
Affiliation(s)
- Tomas Doyle
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
- GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | | | | | - Darja Pollpeter
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Marion Lussignol
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Marine Tauziet
- IRIM, CNRS, Université de Montpellier, Montpellier, France
| | - Luis Apolonia
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Maria-Teresa Catanese
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Michael H Malim
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
46
|
Tijani M, Munis AM, Perry C, Sanber K, Ferraresso M, Mukhopadhyay T, Themis M, Nisoli I, Mattiuzzo G, Collins MK, Takeuchi Y. Lentivector Producer Cell Lines with Stably Expressed Vesiculovirus Envelopes. Mol Ther Methods Clin Dev 2018; 10:303-312. [PMID: 30182034 PMCID: PMC6118154 DOI: 10.1016/j.omtm.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023]
Abstract
Retroviral and lentiviral vectors often use the envelope G protein from the vesicular stomatitis virus Indiana strain (VSVind.G). However, lentivector producer cell lines that stably express VSVind.G have not been reported, presumably because of its cytotoxicity, preventing simple scale-up of vector production. Interestingly, we showed that VSVind.G and other vesiculovirus G from the VSV New Jersey strain (VSVnj), Cocal virus (COCV), and Piry virus (PIRYV) could be constitutively expressed and supported lentivector production for up to 10 weeks. All G-enveloped particles were robust, allowing concentration and freeze-thawing. COCV.G and PIRYV.G were resistant to complement inactivation, and, using chimeras between VSVind.G and COCV.G, the determinant for complement inactivation of VSVind.G was mapped to amino acid residues 136-370. Clonal packaging cell lines using COCV.G could be generated; however, during attempts to establish LV producer cells, vector superinfection was observed following the introduction of a lentivector genome. This could be prevented by culturing the cells with the antiviral drug nevirapine. As an alternative countermeasure, we demonstrated that functional lentivectors could be reconstituted by admixing supernatant from stable cells producing unenveloped virus with supernatant containing envelopes harvested from cells stably expressing VSVind.G, COCV.G, or PIRYV.G.
Collapse
Affiliation(s)
- Maha Tijani
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Altar M. Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Christopher Perry
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Khaled Sanber
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Marta Ferraresso
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Michael Themis
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ilaria Nisoli
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K. Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
47
|
Das DK, Govindan R, Nikić-Spiegel I, Krammer F, Lemke EA, Munro JB. Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers. Cell 2018; 174:926-937.e12. [PMID: 29961575 PMCID: PMC6086748 DOI: 10.1016/j.cell.2018.05.050] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 01/02/2023]
Abstract
Influenza hemagglutinin (HA) is the canonical type I viral envelope glycoprotein and provides a template for the membrane-fusion mechanisms of numerous viruses. The current model of HA-mediated membrane fusion describes a static "spring-loaded" fusion domain (HA2) at neutral pH. Acidic pH triggers a singular irreversible conformational rearrangement in HA2 that fuses viral and cellular membranes. Here, using single-molecule Förster resonance energy transfer (smFRET)-imaging, we directly visualized pH-triggered conformational changes of HA trimers on the viral surface. Our analyses reveal reversible exchange between the pre-fusion and two intermediate conformations of HA2. Acidification of pH and receptor binding shifts the dynamic equilibrium of HA2 in favor of forward progression along the membrane-fusion reaction coordinate. Interaction with the target membrane promotes irreversible transition of HA2 to the post-fusion state. The reversibility of HA2 conformation may protect against transition to the post-fusion state prior to arrival at the target membrane.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.
| | - Ramesh Govindan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Ivana Nikić-Spiegel
- Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen, 72076 Tuebingen, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Edward A Lemke
- Departments of Biology and Chemistry, Pharmacy, and Geosciences, Johannes Gutenberg-University Mainz, Johannes-von-Mullerweg 6, 55128 Mainz, Germany; Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA.
| |
Collapse
|
48
|
Iyer RK, Bowles PA, Kim H, Dulgar-Tulloch A. Industrializing Autologous Adoptive Immunotherapies: Manufacturing Advances and Challenges. Front Med (Lausanne) 2018; 5:150. [PMID: 29876351 PMCID: PMC5974219 DOI: 10.3389/fmed.2018.00150] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022] Open
Abstract
Cell therapy has proven to be a burgeoning field of investigation, evidenced by hundreds of clinical trials being conducted worldwide across a variety of cell types and indications. Many cell therapies have been shown to be efficacious in humans, such as modified T-cells and natural killer (NK) cells. Adoptive immunotherapy has shown the most promise in recent years, with particular emphasis on autologous cell sources. Chimeric Antigen Receptor (CAR)-based T-cell therapy targeting CD19-expressing B-cell leukemias has shown remarkable efficacy and reproducibility in numerous clinical trials. Recent marketing approval of Novartis' Kymriah™ (tisagenlecleucel) and Gilead/Kite's Yescarta™ (axicabtagene ciloleucel) by the FDA further underscores both the promise and legwork to be done if manufacturing processes are to become widely accessible. Further work is needed to standardize, automate, close, and scale production to bring down costs and democratize these and other cell therapies. Given the multiple processing steps involved, commercial-scale manufacturing of these therapies necessitates tighter control over process parameters. This focused review highlights some of the most recent advances used in the manufacturing of therapeutic immune cells, with a focus on T-cells. We summarize key unit operations and pain points around current manufacturing solutions. We also review emerging technologies, approaches and reagents used in cell isolation, activation, transduction, expansion, in-process analytics, harvest, cryopreservation and thaw, and conclude with a forward-look at future directions in the manufacture of adoptive immunotherapies.
Collapse
Affiliation(s)
- Rohin K Iyer
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,General Electric Healthcare, Cell and Gene Therapy, Marlborough, MA, United States
| | - Paul A Bowles
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,General Electric Healthcare, Cell and Gene Therapy, Marlborough, MA, United States
| | - Howard Kim
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | - Aaron Dulgar-Tulloch
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,General Electric Healthcare, Cell and Gene Therapy, Marlborough, MA, United States
| |
Collapse
|
49
|
Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. J Virol 2018; 92:JVI.01982-17. [PMID: 29491159 DOI: 10.1128/jvi.01982-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes 500,000 deaths annually, in association with end-stage liver diseases. Investigations of the HCV life cycle have widened the knowledge of virology, and here we discovered that two piperazinylbenzenesulfonamides inhibit HCV entry into liver cells. The entry of HCV into host cells is a complex process that is not fully understood but is characterized by multiple spatially and temporally regulated steps involving several known host factors. Through a high-content virus infection screening analysis with a library of 1,120 biologically active chemical compounds, we identified SB258585, an antagonist of serotonin receptor 6 (5-HT6), as a new inhibitor of HCV entry in liver-derived cell lines as well as primary hepatocytes. A functional characterization suggested a role for this compound and the compound SB399885, which share similar structures, as inhibitors of a late HCV entry step, modulating the localization of the coreceptor tight junction protein claudin-1 (CLDN1) in a 5-HT6-independent manner. Both chemical compounds induced an intracellular accumulation of CLDN1, reflecting export impairment. This regulation correlated with the modulation of protein kinase A (PKA) activity. The PKA inhibitor H89 fully reproduced these phenotypes. Furthermore, PKA activation resulted in increased CLDN1 accumulation at the cell surface. Interestingly, an increase of CLDN1 recycling did not correlate with an increased interaction with CD81 or HCV entry. These findings reinforce the hypothesis of a common pathway, shared by several viruses, which involves G-protein-coupled receptor-dependent signaling in late steps of viral entry.IMPORTANCE The HCV entry process is highly complex, and important details of this structured event are poorly understood. By screening a library of biologically active chemical compounds, we identified two piperazinylbenzenesulfonamides as inhibitors of HCV entry. The mechanism of inhibition was not through the previously described activity of these inhibitors as antagonists of serotonin receptor 6 but instead through modulation of PKA activity in a 5-HT6-independent manner, as proven by the lack of 5-HT6 in the liver. We thus highlighted the involvement of the PKA pathway in modulating HCV entry at a postbinding step and in the recycling of the tight junction protein claudin-1 (CLDN1) toward the cell surface. Our work underscores once more the complexity of HCV entry steps and suggests a role for the PKA pathway as a regulator of CLDN1 recycling, with impacts on both cell biology and virology.
Collapse
|
50
|
Douam F, Fusil F, Enguehard M, Dib L, Nadalin F, Schwaller L, Hrebikova G, Mancip J, Mailly L, Montserret R, Ding Q, Maisse C, Carlot E, Xu K, Verhoeyen E, Baumert TF, Ploss A, Carbone A, Cosset FL, Lavillette D. A protein coevolution method uncovers critical features of the Hepatitis C Virus fusion mechanism. PLoS Pathog 2018; 14:e1006908. [PMID: 29505618 PMCID: PMC5854445 DOI: 10.1371/journal.ppat.1006908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/15/2018] [Accepted: 01/26/2018] [Indexed: 12/15/2022] Open
Abstract
Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses. Several virus-mediated molecular processes remain poorly described, which dampen the development of potent anti-viral therapies. Hence, new experimental strategies need to be undertaken to improve and accelerate our understanding of these processes. Here, as a proof of concept, we employ amino-acid coevolution as a tool to gain insights into the structural rearrangements of Hepatitis C Virus (HCV) envelope glycoproteins E1 and E2 during virus fusion with the cell membrane, and provide a basis for the inhibition of this process. Our coevolution analysis predicted that a specific domain of E2, the Back Layer (BL) is involved into significant conformational changes with E1 during the fusion of the HCV membrane with the cellular membrane. Consistently, a recombinant, soluble form of the BL was able to inhibit E1E2 fusogenic rearrangements and HCV infection. Moreover, predicted coevolution networks involving E1 and BL residues, as well as E1 and BL-adjacent residues, were found to modulate virus fusion. Our data shows that coevolution analysis is a powerful and underused approach that can provide significant insights into the functions and structural rearrangements of viral proteins. Importantly, this approach can also provide structural and molecular basis for the design of effective anti-viral drugs, and opens new perspectives to rapidly identify effective antiviral strategies against emerging and re-emerging viral pathogens.
Collapse
Affiliation(s)
- Florian Douam
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Floriane Fusil
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Margot Enguehard
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Linda Dib
- Molecular Phylogenetics and Speciation, Département d’écologie et évolution, Université de Lausanne, Lausanne, Suisse
| | - Francesca Nadalin
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Loïc Schwaller
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Gabriela Hrebikova
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Jimmy Mancip
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Laurent Mailly
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Carine Maisse
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
| | - Emilie Carlot
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Els Verhoeyen
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas F. Baumert
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton NJ, United States of America
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Institut Universitaire de France, Paris, France
- * E-mail: (FLC); (AC); (DL)
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail: (FLC); (AC); (DL)
| | - Dimitri Lavillette
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- CNRS UMR5557 Microbial ecology, Université Claude Bernard Lyon 1, INRA, UMR1418, Villeurbanne, France
- University of Lyon, Université Claude Bernard Lyon1, INRA, EPHE, IVPC, Viral Infections and Comparative Pathology, UMR754, Lyon, France
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (FLC); (AC); (DL)
| |
Collapse
|