1
|
Gantseva AR, Gantseva ER, Sveshnikova AN, Panteleev MA, Kovalenko TA. Kinetic analysis of prothrombinase assembly and substrate delivery mechanisms. J Theor Biol 2024; 594:111925. [PMID: 39142600 DOI: 10.1016/j.jtbi.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations. We observed the inhibitory effect of large FVa concentrations and this effect was phospholipid concentration-dependent. We predicted that efficient FII activation occurred via formation of the ternary complex, in which FVa, FXa and FII were in the membrane-bound state. Prothrombin delivery was mostly membrane-dependent, but delivery from solution was predominant under conditions of phospholipid deficiency or FXa/FVa excess. Likewise, FXa delivery from solution was predominant in the case of FVa excess, but high FII did not switch the FXa delivery to the solution-dependent one. Additionally, the FXa delivery pathway did not depend on the phospholipid concentration, being the membrane-dependent one even in case of the phospholipid deficiency. These results suggest a flexible mechanism of prothrombinase functioning which utilizes different complex formation and even inhibitory mechanisms depending on conditions.
Collapse
Affiliation(s)
- A R Gantseva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast 141701, Russia
| | - E R Gantseva
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia
| | - T A Kovalenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia.
| |
Collapse
|
2
|
Yang S, Guo J, Xiong Y, Han G, Luo T, Peng S, Liu J, Hu T, Zha Y, Lin X, Tan Y, Zhang J. Unraveling the genetic and molecular landscape of sepsis and acute kidney injury: A comprehensive GWAS and machine learning approach. Int Immunopharmacol 2024; 137:112420. [PMID: 38851159 DOI: 10.1016/j.intimp.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This study aimed to explore the underlying mechanisms of sepsis and acute kidney injury (AKI), including sepsis-associated AKI (SA-AKI), a frequent complication in critically ill sepsis patients. METHODS GWAS data was analyzed for genetic association between AKI and sepsis. Then, we systematically applied three distinct machine learning algorithms (LASSO, SVM-RFE, RF) to rigorously identify and validate signature genes of SA-AKI, assessing their diagnostic and prognostic value through ROC curves and survival analysis. The study also examined the functional and immunological aspects of these genes, potential drug targets, and ceRNA networks. A mouse model of sepsis was created to test the reliability of these signature genes. RESULTS LDSC confirmed a positive genetic correlation between AKI and sepsis, although no significant shared loci were found. Bidirectional MR analysis indicated mutual increased risks of AKI and sepsis. Then, 311 key genes common to sepsis and AKI were identified, with 42 significantly linked to sepsis prognosis. Six genes, selected through LASSO, SVM-RFE, and RF algorithms, showed excellent predictive performance for sepsis, AKI, and SA-AKI. The models demonstrated near-perfect AUCs in both training and testing datasets, and a perfect AUC in a sepsis mouse model. Significant differences in immune cells, immune-related pathways, HLA, and checkpoint genes were found between high- and low-risk groups. The study identified 62 potential drug treatments for sepsis and AKI and constructed a ceRNA network. CONCLUSIONS The identified signature genes hold potential clinical applications, including prognostic evaluation and targeted therapeutic strategies for sepsis and AKI. However, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Jing Guo
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Yunbiao Xiong
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tao Luo
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Tieyi Hu
- Department of Neurology, the Affiliated Dazu Hospital of Chongqing Medical University , China
| | - Yan Zha
- Guizhou University Medical College, Guiyang 550025, Guizhou Province, China; Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China.
| |
Collapse
|
3
|
Mohammed BM, Basore K, Summers B, Pelc LA, Di Cera E. Structural architecture of the acidic region of the B domain of coagulation factor V. J Thromb Haemost 2024; 22:709-714. [PMID: 38007061 PMCID: PMC10922652 DOI: 10.1016/j.jtha.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Coagulation factor (F)V features an A1-A2-B-A3-C1-C2 domain organization and functions as the inactive precursor of FVa, a component of the prothrombinase complex required for rapid thrombin generation in the penultimate step of the coagulation cascade. An intramolecular interaction within the large B domain (residues 710-1545) involves the basic region (BR, residues 963-1008) and acidic region (AR, residues 1493-1537) and locks FV in its inactive state. However, structural information on this important regulatory interaction or on the separate architecture of the AR and BR remains elusive due to conformational disorder of the B domain. OBJECTIVES To reveal the structure of the BR-AR interaction or of its separate components. METHODS The structure of FV is solved by cryogenic electron microscopy. RESULTS A new 3.05 Å resolution cryogenic electron microscopy structure of FV confirms the overall organization of the A and C domains but resolves the segment 1507 to 1545 within a largely disordered B domain. The segment contains most of the AR and is organized as recently reported in FV short, a spliced variant of FV with a significantly shorter and less disordered B domain. CONCLUSION The similar architecture of the AR in FV and FV short provides structural context for physiologically important interactions of this region with the BR in FV and with the basic C-terminal end of tissue factor pathway inhibitor α in FV short.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Katherine Basore
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Brock Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
4
|
Stojanovski BM, Mohammed BM, Di Cera E. The Prothrombin-Prothrombinase Interaction. Subcell Biochem 2024; 104:409-423. [PMID: 38963494 DOI: 10.1007/978-3-031-58843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The hemostatic response to vascular injury entails a sequence of proteolytic events where several inactive zymogens of the trypsin family are converted to active proteases. The cascade starts with exposure of tissue factor from the damaged endothelium and culminates with conversion of prothrombin to thrombin in a reaction catalyzed by the prothrombinase complex composed of the enzyme factor Xa, cofactor Va, Ca2+, and phospholipids. This cofactor-dependent activation is paradigmatic of analogous reactions of the blood coagulation and complement cascades, which makes elucidation of its molecular mechanism of broad significance to the large class of trypsin-like zymogens to which prothrombin belongs. Because of its relevance as the most important reaction in the physiological response to vascular injury, as well as the main trigger of pathological thrombotic complications, the mechanism of prothrombin activation has been studied extensively. However, a molecular interpretation of this mechanism has become available only recently from important developments in structural biology. Here we review current knowledge on the prothrombin-prothrombinase interaction and outline future directions for the study of this key reaction of the coagulation cascade.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Stojanovski BM, Di Cera E. Monitoring prothrombin activation in plasma through loss of Förster resonance energy transfer. J Thromb Haemost 2023; 21:1769-1778. [PMID: 36931601 DOI: 10.1016/j.jtha.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Current assays that monitor thrombin generation in plasma rely on fluorogenic substrates to follow the kinetics of zymogen activation, which may be complicated by substrate cleavage from other proteases. In addition, these assays depend on activation following cleavage at the prothrombin R320 site and fail to report the cleavage at the alternative R271 site, leading to the shedding of the auxiliary Gla and kringle domains of prothrombin. OBJECTIVES To develop a plasma assay that directly monitors prothrombin activation independent of fluorogenic substrate hydrolysis. METHODS Cleavage at the R271 site of prothrombin is monitored through loss of Förster resonance energy transfer in plasma coagulated along the extrinsic or intrinsic pathway. RESULTS The availability of factor (F)V in plasma strongly influences the rate of prothrombin activation. The rate of thrombin formation is equally perturbed in FV or prothrombin-depleted plasma, implicating that the thrombin-catalyzed feedback reactions that amplify the coagulation response play an important role in generating sufficient amounts of FVa required for the assembly of prothrombinase. Congenital deficiencies in FVIII and FIX significantly slow down cleavage at R271 in plasma coagulated along the extrinsic and intrinsic pathways. Prothrombin activation in FXI-deficient plasma is only perturbed when coagulation is triggered along the intrinsic pathway. CONCLUSION The Förster resonance energy transfer assay enables direct monitoring of prothrombin activation through cleavage at R271 without the need for fluorogenic substrates. The assay is sensitive enough to assess how deficiencies in coagulation factors affect thrombin formation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
6
|
Miyazawa K, Fogelson AL, Leiderman K. Inhibition of platelet-surface-bound proteins during coagulation under flow I: TFPI. Biophys J 2023; 122:99-113. [PMID: 36403087 PMCID: PMC9822800 DOI: 10.1016/j.bpj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Blood coagulation is a self-repair process regulated by activated platelet surfaces, clotting factors, and inhibitors. Tissue factor pathway inhibitor (TFPI) is one such inhibitor, well known for its inhibitory action on the active enzyme complex comprising tissue factor (TF) and activated clotting factor VII. This complex forms when TF embedded in the blood vessel wall is exposed by injury and initiates coagulation. A different role for TFPI, independent of TF:VIIa, has recently been discovered whereby TFPI binds a partially cleaved form of clotting factor V (FV-h) and impedes thrombin generation on activated platelet surfaces. We hypothesized that this TF-independent inhibitory mechanism on platelet surfaces would be a more effective platform for TFPI than the TF-dependent one. We examined the effects of this mechanism on thrombin generation by including the relevant biochemical reactions into our previously validated mathematical model. Additionally, we included the ability of TFPI to bind directly to and inhibit platelet-bound FXa. The new model was sensitive to TFPI levels and, under some conditions, TFPI could completely shut down thrombin generation. This sensitivity was due entirely to the surface-mediated inhibitory reactions. The addition of the new TFPI reactions increased the threshold level of TF needed to elicit a strong thrombin response under flow, but the concentration of thrombin achieved, if there was a response, was unchanged. Interestingly, we found that direct binding of TFPI to platelet-bound FXa had a greater anticoagulant effect than did TFPI binding to FV-h alone, but that the greatest effects occurred if both reactions were at play. The model includes activated platelets' release of FV species, and we explored the impact of varying the FV/FV-h composition of the releasate. We found that reducing the zymogen FV fraction of this pool, and thus increasing the fraction that is FV-h, led to acceleration of thrombin generation.
Collapse
Affiliation(s)
- Kenji Miyazawa
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Karin Leiderman
- Mathematics Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
7
|
Lin HY, Lin CY, Kuo SF, Lin JS, Lin PT, Huang YC, Hsieh HN, Shen MC. Congenital factor V deficiency in Taiwan: identification of a novel variant p.Tyr1813 ∗ and two variants specific to East Asians. Blood Coagul Fibrinolysis 2023; 34:8-13. [PMID: 35946468 PMCID: PMC9799032 DOI: 10.1097/mbc.0000000000001162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/24/2022] [Indexed: 01/07/2023]
Abstract
Congenital coagulation factor V deficiency (FVD) is a rare, autosomal recessive bleeding disorder. We characterized the clinical presentations, laboratory features, and genetic alterations of Taiwanese patients with FVD. From 1983 to 2010, five women, one man, and one boy diagnosed with FVD were enrolled in this study. The factor V coagulant activity was determined using a one-stage prothrombin time-based test. The factor V antigen level was measured in an ELISA. Sanger sequencing was performed for genetic analyses of F5 , the gene responsible for the disease. One novel and de novo F5 genetic variant, p.Tyr1813 ∗ , was identified. Based on the presence of a premature termination codon with a resultant truncated factor V-protein lacking an intact light chain fragment, the variant is pathogenic. In addition, we identified seven variants previously found to cause FVD. Among them, p.Gly420Cys and p.Asp96His were repeatedly detected in five and four patients, respectively. Both variants are found to be specific to the East Asian populations. Various FVD-associated bleeding manifestations were observed, predominantly mucocutaneous bleeding and hypermenorrhea. All patients exhibited very low factor V coagulant activity (<1-2.5 IU/dl, reference range: 60-133 IU/dl). The factor V antigen level was less than 2% in six patients (reference range: 75-157%). The novel F5 genetic variant p.Tyr1813 ∗ and two distinct, East Asians-specific, recurrent variants p.Gly420Cys and p.Asp96His were identified among seven index patients with FVD in Taiwan. Our clinical and laboratory findings support the reported features of FVD.
Collapse
Affiliation(s)
- Hsuan-Yu Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ching-Yeh Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Su-Feng Kuo
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Jen-Shiou Lin
- Department of Laboratory Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Po-Te Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chih Huang
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Han-Ni Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Ching Shen
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Laboratory Medicine, and Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
8
|
Maximiliano CL, Jaime GC, Armando VL, Vega IL, Victoria HG, Erika MH. Mechanisms Contributing to Acquired Activated Protein C Resistance in Patients Treated with Thalidomide: A Molecular Dynamics Study. Cardiovasc Hematol Disord Drug Targets 2023; 22:237-244. [PMID: 36694314 DOI: 10.2174/1871529x23666230123121602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION There is a high incidence of venous thromboembolism (VTE) in patients with Multiple Myeloma (MM), however; until now, the exact mechanisms behind VTE in MM are unknown, and some of the elements that may play a significant role are the treatment with an immunomodulator (IMiD) and acquired resistance to activated protein C (APC). OBJECTIVE The study aims to reveal the possible mechanisms linked to the reduced antithrombotic activity of APC associated with thalidomide. METHODS The molecular docking approach was used to ascertain the in silico inhibitory potential of thalidomide on the APC protease domain in the architecture of the catalytic triad and its interaction with major substrate binding sites. RESULTS The coupling showed that the inhibitory activity of thalidomide depends on the induction of structural changes in the protease domain of APC, at the level of the Ser/His/Asp catalytic triad, as a result of a significant increase between the distances of CαAsp102 and Cα Ser195 (11.175 angstroms, increase 14.83%) and between CαSer195 and CαHis57 (9.478 angstroms, increase 13.78 %). This can result in an inefficient transfer of the proton between these residues, the other possible mechanism of inhibition, is a potential reduced binding of the substrate as a result of a direct interaction through a carbon-hydrogen bond on His57, an H-bond on Arg306, and a carbon hydrogen bond on Arg506. CONCLUSION We demonstrate the in silico inhibitory potential of thalidomide on APC, through two possible inhibition mechanisms, a pathophysiologically relevant finding to understand the factors that can affect the stability and functions of APC in vivo.
Collapse
Affiliation(s)
- Correa Lara Maximiliano
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | - García Chavez Jaime
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vega Lopez Armando
- Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Israel Lara Vega
- Environmental Toxicology Laboratory, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Martinez Hernandez Erika
- Homeostasis and Thrombosis Clinic, Centro Medico Nacional "La Raza", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Di Cera E, Mohammed BM, Pelc LA, Stojanovski BM. Cryo-EM structures of coagulation factors. Res Pract Thromb Haemost 2022; 6:e12830. [PMID: 36349261 PMCID: PMC9630041 DOI: 10.1002/rth2.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
Abstract
A State of the Art lecture titled "Cryo-EM structures of coagulation factors" was presented at the ISTH Congress in 2022. Cryogenic electron microscopy (cryo-EM) is a revolutionary technique capable of solving the structure of high molecular weight proteins and their complexes, unlike nuclear magnetic resonance (NMR), and under conditions not biased by crystal contacts, unlike X-ray crystallography. These features are particularly relevant to the analysis of coagulation factors that are too big for NMR and often recalcitrant to X-ray investigation. Using cryo-EM, we have solved the structures of coagulation factors V and Va, prothrombinase on nanodiscs, and the prothrombin-prothrombinase complex. These structures have advanced basic knowledge in the field of thrombosis and hemostasis, especially on the function of factor V and the molecular mechanism for prothrombin activation, and set the stage for exciting new lines of investigation. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bassem M. Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Leslie A. Pelc
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Bosko M. Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| |
Collapse
|
10
|
Ayombil F, Petrillo T, Kim H, Camire RM. Regulation of Factor V by the Anticoagulant Protease Activated Protein C: Influence of the B-domain and TFPIα. J Biol Chem 2022; 298:102558. [DOI: 10.1016/j.jbc.2022.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
11
|
Ruben EA, Summers B, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood 2022; 139:3463-3473. [PMID: 35427420 PMCID: PMC9203702 DOI: 10.1182/blood.2022015807] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The intrinsic and extrinsic pathways of the coagulation cascade converge to a common step where the prothrombinase complex, comprising the enzyme factor Xa (fXa), the cofactor fVa, Ca2+ and phospholipids, activates the zymogen prothrombin to the protease thrombin. The reaction entails cleavage at 2 sites, R271 and R320, generating the intermediates prethrombin 2 and meizothrombin, respectively. The molecular basis of these interactions that are central to hemostasis remains elusive. We solved 2 cryogenic electron microscopy (cryo-EM) structures of the fVa-fXa complex, 1 free on nanodiscs at 5.3-Å resolution and the other bound to prothrombin at near atomic 4.1-Å resolution. In the prothrombin-fVa-fXa complex, the Gla domains of fXa and prothrombin align on a plane with the C1 and C2 domains of fVa for interaction with membranes. Prothrombin and fXa emerge from this plane in curved conformations that bring their protease domains in contact with each other against the A2 domain of fVa. The 672ESTVMATRKMHDRLEPEDEE691 segment of the A2 domain closes on the protease domain of fXa like a lid to fix orientation of the active site. The 696YDYQNRL702 segment binds to prothrombin and establishes the pathway of activation by sequestering R271 against D697 and directing R320 toward the active site of fXa. The cryo-EM structure provides a molecular view of prothrombin activation along the meizothrombin pathway and suggests a mechanism for cleavage at the alternative R271 site. The findings advance our basic knowledge of a key step of coagulation and bear broad relevance to other interactions in the blood.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | | | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Soule EE, Yu H, Olson L, Naqvi I, Kumar S, Krishnaswamy S, Sullenger BA. Generation of an anticoagulant aptamer that targets factor V/Va and disrupts the FVa-membrane interaction in normal and COVID-19 patient samples. Cell Chem Biol 2022; 29:215-225.e5. [PMID: 35114109 PMCID: PMC8808741 DOI: 10.1016/j.chembiol.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.
Collapse
Affiliation(s)
- Erin E. Soule
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Haixiang Yu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Lyra Olson
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Ibtehaj Naqvi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shekhar Kumar
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sriram Krishnaswamy
- The Children’s Hospital of Philadelphia, Division of Hematology, Department of Pediatrics, The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruce A. Sullenger
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA,Corresponding author
| |
Collapse
|
13
|
Dahlbäck B, Tran S. The preAR2 region (1458-1492) in factor V-Short is crucial for the synergistic TFPIα-cofactor activity with protein S and the assembly of a trimolecular factor Xa-inhibitory complex comprising FV-Short, protein S, and TFPIα. J Thromb Haemost 2022; 20:58-68. [PMID: 34623729 DOI: 10.1111/jth.15547] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Factor V-Short (FV756-1458) is a natural splice variant in which 702 residues are deleted from the B domain. It exposes an acid region (AR2; 1493-1537) that binds tissue factor pathway inhibitor alpha (TFPIα). Protein S also interacts with TFPIα and serves as TFPIα-cofactor in factor Xa (FXa) inhibition. FV-Short and protein S function as synergistic TFPIα-cofactors in inhibition of FXa. FV810-1492 is an artificial FV-Short variant that cannot synergize with protein S as TFPIα cofactor even though it contains AR2 and binds TFPIα. OBJECTIVE To elucidate the mechanisms for the synergism between FV756-1458 and protein S as TFPIα cofactors. METHODS Four FV-Short variants were created, FV756-1458 and FV712-1458 contained the preAR2 region (1458-1492), whereas FV810-1492 and FV713-1492 lacked this region. The synergistic TFPIα cofactor activity between FV-Short variants and protein S was analyzed by FXa-inhibition. A microtiter-based assay tested binding between FV-Short variants, protein S, and TFPIα. RESULTS The two preAR2-containing FV-Short variants were active as synergistic TFPIα cofactors, whereas the other two were inactive. All variants bound to TFPIα. None of the FV-Short variants bound directly to protein S. The combination of TFPIα and preAR2-containing FV-Short variants bound protein S, whereas TFPIα together with the preAR2-minus variants did not. Protein S potentiated TFPIα-binding to the preAR2-containing variants and binding between TFPIα and protein S was stimulated only by the preAR2-containing variants. CONCLUSION The preAR2 region is demonstrated to be crucial for the synergistic TFPIα-cofactor activity between FV-Short and protein S and for the assembly of a trimolecular FXa-inhibitory complex comprising FV-Short, protein S, and TFPIα.
Collapse
Affiliation(s)
- Björn Dahlbäck
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| | - Sinh Tran
- Department of Translational Medicine, Lund University, University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
An engineered activated factor V for the prevention and treatment of acute traumatic coagulopathy and bleeding in mice. Blood Adv 2021; 6:959-969. [PMID: 34861695 PMCID: PMC8945312 DOI: 10.1182/bloodadvances.2021005257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
superFVa arrests severe bleeding and prevents the development of ATC after trauma. superFVa therapy restores functional hemostasis when initiated after onset of ATC caused by traumatic bleeding.
Acute traumatic coagulopathy (ATC) occurs in approximately 30% of patients with trauma and is associated with increased mortality. Excessive generation of activated protein C (APC) and hyperfibrinolysis are believed to be driving forces for ATC. Two mouse models were used to investigate whether an engineered activated FV variant (superFVa) that is resistant to inactivation by APC and contains a stabilizing A2-A3 domain disulfide bond can reduce traumatic bleeding and normalize hemostasis parameters in ATC. First, ATC was induced by the combination of trauma and shock. ATC was characterized by activated partial thromboplastin time (APTT) prolongation and reductions of factor V (FV), factor VIII (FVIII), and fibrinogen but not factor II and factor X. Administration of superFVa normalized the APTT, returned FV and FVIII clotting activity levels to their normal range, and reduced APC and thrombin-antithrombin (TAT) levels, indicating improved hemostasis. Next, a liver laceration model was used where ATC develops as a consequence of severe bleeding. superFVa prophylaxis before liver laceration reduced bleeding and prevented APTT prolongation, depletion of FV and FVIII, and excessive generation of APC. Thus, prophylactic administration of superFVa prevented the development of ATC. superFVa intervention started after the development of ATC stabilized bleeding, reversed prolonged APTT, returned FV and FVIII levels to their normal range, and reduced TAT levels that were increased by ATC. In summary, superFVa prevented ATC and traumatic bleeding when administered prophylactically, and superFVa stabilized bleeding and reversed abnormal hemostasis parameters when administered while ATC was in progress. Thus, superFVa may be an attractive strategy to intercept ATC and mitigate traumatic bleeding.
Collapse
|
15
|
Cohen CT, Turner NA, Moake JL. Human endothelial cells and fibroblasts express and produce the coagulation proteins necessary for thrombin generation. Sci Rep 2021; 11:21852. [PMID: 34750441 PMCID: PMC8575941 DOI: 10.1038/s41598-021-01360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
In a previous study, we reported that human endothelial cells (ECs) express and produce their own coagulation factors (F) that can activate cell surface FX without the additions of external proteins or phospholipids. We now describe experiments that detail the expression and production in ECs and fibroblasts of the clotting proteins necessary for formation of active prothrombinase (FV-FX) complexes to produce thrombin on EC and fibroblast surfaces. EC and fibroblast thrombin generation was identified by measuring: thrombin activity; thrombin-antithrombin complexes; and the prothrombin fragment 1.2 (PF1.2), which is produced by the prothrombinase cleavage of prothrombin (FII) to thrombin. In ECs, the prothrombinase complex uses surface-attached FV and γ-carboxyl-glutamate residues of FX and FII to attach to EC surfaces. FV is also on fibroblast surfaces; however, lower fibroblast expression of the gene for γ-glutamyl carboxylase (GGCX) results in production of vitamin K-dependent coagulation proteins (FII and FX) with reduced surface binding. This is evident by the minimal surface binding of PF1.2, following FII activation, of fibroblasts compared to ECs. We conclude that human ECs and fibroblasts both generate thrombin without exogenous addition of coagulation proteins or phospholipids. The two cell types assemble distinct forms of prothrombinase to generate thrombin.
Collapse
Affiliation(s)
- Clay T Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
16
|
Maag A, Sharma P, Schuijt TJ, Kopatz WF, Kruijswijk D, Marquart JA, van der Poll T, Hackeng TM, Nicolaes GAF, Meijers JCM, Bos MHA, van ’t Veer C. Structure-function of anticoagulant TIX-5, the inhibitor of factor Xa-mediated FV activation. J Thromb Haemost 2021; 19:1697-1708. [PMID: 33829620 PMCID: PMC8360041 DOI: 10.1111/jth.15329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/05/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prothrombinase complex consists of factors Xa (FXa) and Va (FVa) on an anionic phospholipid surface and converts prothrombin into thrombin. Both coagulation factors require activation before complex assembly. We recently identified TIX-5, a unique anticoagulant tick protein that specifically inhibits FXa-mediated activation of FV. Because TIX-5 inhibited thrombin generation in blood plasma, it was concluded that FV activation by FXa contributes importantly to coagulation. OBJECTIVE We aimed to unravel the structure-function relationships of TIX-5. METHOD We used a structure model generated based on homology with the allergen Der F7. RESULTS Tick inhibitor of factor Xa toward FV was predicted to consist of a single rod formed by several beta sheets wrapped around a central C-terminal alpha helix. By mutagenesis we could show that two hydrophobic loops at one end of the rod mediate the phospholipid binding of TIX-5. On the other end of the rod an FV interaction region was identified on one side, whereas on the other side an EGK sequence was identified that could potentially form a pseudosubstrate of FXa. All three interaction sites were important for the anticoagulant properties of TIX-5 in a tissue factor-initiated thrombin generation assay as well as in the inhibition of FV activation by FXa in a purified system. CONCLUSION The structure-function properties of TIX-5 are in perfect agreement with a protein that inhibits the FXa-mediated activation on a phospholipid surface. The present elucidation of the mechanism of action of TIX-5 will aid in deciphering the processes involved in the initiation phase of blood coagulation.
Collapse
Affiliation(s)
- Anja Maag
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdam Infection and Immunity InstituteAmsterdamThe Netherlands
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenThe Netherlands
| | - Priyanka Sharma
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdam Infection and Immunity InstituteAmsterdamThe Netherlands
| | - Tim J. Schuijt
- Hospital Gelderse Vallei EdeClinical Chemistry and Hematology LaboratoryEdeThe Netherlands
| | - Wil F. Kopatz
- Department of Experimental Vascular MedicineAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniëlle Kruijswijk
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdam Infection and Immunity InstituteAmsterdamThe Netherlands
| | - J. Arnoud Marquart
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
| | - Tom van der Poll
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdam Infection and Immunity InstituteAmsterdamThe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM) Maastricht UniversityMaastrichtThe Netherlands
| | - Gerry A. F. Nicolaes
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM) Maastricht UniversityMaastrichtThe Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular MedicineAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenThe Netherlands
| | - Cornelis van ’t Veer
- Amsterdam UMCUniversity of AmsterdamCenter for Experimental and Molecular MedicineAmsterdam Infection and Immunity InstituteAmsterdamThe Netherlands
| |
Collapse
|
17
|
Schreuder M, Liu X, Cheung KL, Reitsma PH, Nicolaes GAF, Bos MHA. ptFVa ( Pseudonaja Textilis Venom-Derived Factor Va) Retains Structural Integrity Following Proteolysis by Activated Protein C. Arterioscler Thromb Vasc Biol 2021; 41:2263-2276. [PMID: 34162230 PMCID: PMC8288481 DOI: 10.1161/atvbaha.121.316038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: The Australian snake venom ptFV (Pseudonaja textilis venom-derived factor V) variant retains cofactor function despite APC (activated protein C)-dependent proteolysis. Here, we aimed to unravel the mechanistic principles by determining the role of the absent Arg306 cleavage site that is required for the inactivation of FVa (mammalian factor Va). Approach and Results: Our findings show that in contrast to human FVa, APC-catalyzed proteolysis of ptFVa at Arg306 and Lys507 does not abrogate ptFVa cofactor function. Remarkably, the structural integrity of APC-proteolyzed ptFVa is maintained indicating that stable noncovalent interactions prevent A2-domain dissociation. Using Molecular Dynamics simulations, we uncovered key regions located in the A1 and A2 domain that may be at the basis of this remarkable characteristic. Conclusions: Taken together, we report a completely novel role for uniquely adapted regions in ptFVa that prevent A2 domain dissociation. As such, these results challenge our current understanding by which strict regulatory mechanisms control FVa activity.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| | - Xiaosong Liu
- Maastricht University, Department of Biochemistry, the Netherlands (X.L.)
| | - Ka Lei Cheung
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| | - Pieter H Reitsma
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.).,VarmX B.V, Leiden, the Netherlands (P.H.R.)
| | | | - Mettine H A Bos
- Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands (M.S., K.L.C., P.H.R., M.H.A.B.)
| |
Collapse
|
18
|
Ruben EA, Rau MJ, Fitzpatrick JAJ, Di Cera E. Cryo-EM structures of human coagulation factors V and Va. Blood 2021; 137:3137-3144. [PMID: 33684942 PMCID: PMC8176766 DOI: 10.1182/blood.2021010684] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Coagulation factor V (fV) is the precursor of fVa, which, together with fXa, Ca2+, and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. We solved the cryogenic electron microscopy (cryo-EM) structures of human fV and fVa at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly, but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding fXa, and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain that is responsible for prothrombin binding. Ordering of this region and full exposure of the fXa epitope emerge as necessary steps in the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of fV and fVa and pioneer the analysis of coagulation factors by cryo-EM.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| | | | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging
- Department of Cell Biology and Physiology, and
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO; and
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO
| |
Collapse
|
19
|
Zhang DL, Xue F, Dou XQ, Liu XF, Fu RF, Chen YF, Liu W, Jia YJ, Wang YH, Xiao ZJ, Zhang L, Yang RC. [Clinical and genetic analyses of hereditary factor Ⅴ deficiency cases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:302-307. [PMID: 33979974 PMCID: PMC8120128 DOI: 10.3760/cma.j.issn.0253-2727.2021.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 11/05/2022]
Abstract
Objective: To analyze the clinical phenotype and molecular pathogenesis of nine patients with hereditary factor Ⅴ (FⅤ) deficiency. Methods: Nine patients with hereditary FⅤ deficiency who were admitted to the Institute of Hematology and Blood Diseases Hospital from April 1999 to September 2019 were analyzed. The activated partial thromboplastin time, prothrombin time, and FⅤ procoagulant activity (FⅤ∶C) were measured for phenotypic diagnosis. High-throughput sequencing was employed for the F5 gene mutation screening, Sanger sequencing was adopted to confirm candidate variants and parental carrying status, Swiss-model was used for three-dimensional structure analysis, and ClustalX v.2.1 was used for homologous analysis. Results: The FⅤ∶C of the nine patients ranged from 0.1 to 10.6. Among them, eight had a hemorrhage history, with kin/mucosal bleeding as the most common symptom (three cases, 37.5%) , whereas one case had no bleeding symptom. There were five homozygotes and four compound heterozygotes. A total of 12 pathogenic or likely pathogenic mutations were detected, of which c.6100C>A/p.Pro2034Thr, c.6575T>C/p.Phe2192Ser, c.1600_1601delinsTG/p. Gln534*, c.4713C>A/p.Tyr1571*, and c.952+5G>C were reported for the first time. Conclusion: The newly discovered gene mutations enriched the F5 gene mutation spectrum associated with hereditary FⅤ deficiency. High-throughput sequencing could be an effective method to detect F5 gene mutations.
Collapse
Affiliation(s)
- D L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - F Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Q Dou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X F Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - R F Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y F Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y J Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y H Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Z J Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - R C Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
20
|
Petrillo T, Ayombil F, Van't Veer C, Camire RM. Regulation of factor V and factor V-short by TFPIα: Relationship between B-domain proteolysis and binding. J Biol Chem 2021; 296:100234. [PMID: 33376137 PMCID: PMC7948760 DOI: 10.1074/jbc.ra120.016341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963–1008 and acidic region 2, AR2; 1493–1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which forms of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ∼1 nM) to TFPIα-BR, which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (μM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full-length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.
Collapse
Affiliation(s)
- Teodolinda Petrillo
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Francis Ayombil
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cornelis Van't Veer
- Center of Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rodney M Camire
- Division of Hematology and the Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
21
|
Abstract
The formation of membrane-bound complexes between specific coagulation factors at different cell surfaces is required for effective blood clotting. The most important of these complexes, the intrinsic Tenase and Prothrombinase complexes, are formed on the activated platelet surface during the propagation phase of coagulation. These two complexes are highly specific in their assembly mechanism and function modulated by anionic membranes, thus offering desirable targets for pharmaceutical interventions. Factor V (FV) and factor VIII (FVIII) are highly homologous non-enzymatic proteins. In their active state, FVa and FVIIIa serve as cofactors for the respective serine proteases factor Xa (FXa) and factor IXa (FIXa), significantly increasing their catalytic activity. This is achieved by forming well organized membrane-bound complexes at the phosphatidylserine rich activated platelet membrane in the presence of Ca2+ ions. The tenase (FVIIIa/FIXa) complex, catalyzes the proteolytic conversion of FX to FXa. Subsequently the prothrombinase (FVa/FXa) complex catalyzes the conversion of prothrombin to thrombin, required for efficient blood clotting. Although significant knowledge of FV and FVIII biochemistry and regulation has been achieved, the molecular mechanisms of their function are yet to be defined. Understanding the geometric assembly of the tenase and prothrombinase complexes is paramount in defining the structural basis of bleeding and thrombotic disorders. Such knowledge will enable the design of efficient pro- and anticoagulant therapies critical for regulating abnormal hemostasis. In this chapter, we will summarize the findings to date, showing our achievement in the field and outlining the future findings required to grasp the complexity of these proteins.
Collapse
Affiliation(s)
- Svetla Stoilova-McPhie
- Center for Nanoscale Systems (CNS), Laboratory For Integrated Sciences and Engineering (LISE), Faculty of Art and Sciences (FAS), Harvard University, 11 Oxford Street, Cambridge, MA, 02138, England, UK.
| |
Collapse
|
22
|
Gierula M, Ahnström J. Anticoagulant protein S-New insights on interactions and functions. J Thromb Haemost 2020; 18:2801-2811. [PMID: 32702208 DOI: 10.1111/jth.15025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 01/21/2023]
Abstract
Protein S is a critical regulator of coagulation that functions as a cofactor for the activated protein C (APC) and tissue factor pathway inhibitor (TFPI) pathways. It also has direct anticoagulant functions, inhibiting the intrinsic tenase and prothrombinase complexes. Through these functions, protein S regulates coagulation during both its initiation and its propagation phases. The importance of protein S in hemostatic regulation is apparent from the strong association between protein S deficiencies and increased risk for venous thrombosis. This is most likely because both APC and TFPIα are inefficient anticoagulants in the absence of any cofactors. The detailed molecular mechanisms involved in protein S cofactor functions remain to be fully clarified. However, recent advances in the field have greatly improved our understanding of these functions. Evidence suggests that protein S anticoagulant properties often depend on the presence of synergistic cofactors and the formation of multicomponent complexes on negatively charged phospholipid surfaces. Their high affinity binding to negatively charged phospholipids helps bring the anticoagulant proteins to the membranes, resulting in efficient and targeted regulation of coagulation. In this review, we provide an update on protein S and how it functions as a critical hemostatic regulator.
Collapse
|
23
|
Analysis of phenotype and genotype of a family with hereditary coagulation factor V deficiency caused by the compound heterozygous mutations. Blood Coagul Fibrinolysis 2020; 31:485-489. [PMID: 32833806 DOI: 10.1097/mbc.0000000000000946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: To analyze the causative gene and the molecular pathogenesis in a pedigree with compound hereditary coagulation factor V deficiency. Routine blood coagulation indexes and factor V antigen (FV:Ag) were detected by the one-stage clotting method and ELISA. Function of the mutant protein was evaluated by the method Calibrated Automated Thrombogram (CAT). The factor V gene was amplified by PCR with direct sequencing. The possible impact of the mutations were analyzed by bioinformatics tools. The proband's factor V activity and FV:Ag were reduced to 3 and 6%. Gene sequencing revealed compound heterozygous mutations c.911G>A (Gly276Glu) in exon 6 and c.5343C>G (Ser1781Arg) in exon 16. The thrombin generation test showed that the mutant protein markedly decreased thrombin. Bioinformatics indicated that mutations were deleterious. The compound heterozygous mutations Gly276Glu and Ser1781Arg were responsible for the decrease of factor V activity and FV:Ag, of which Ser1781Arg was first reported in the world.
Collapse
|
24
|
Analysis of factor V in zebrafish demonstrates minimal levels needed for early hemostasis. Blood Adv 2020; 3:1670-1680. [PMID: 31167819 DOI: 10.1182/bloodadvances.2018029066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
In humans, coagulation factor V (FV) deficiency is a rare, clinically heterogeneous bleeding disorder, suggesting that genetic modifiers may contribute to disease expressivity. Zebrafish possess many distinct advantages including high fecundity, optical clarity, external development, and homology with the mammalian hemostatic system, features that make it ideal for genetic studies. Our aim was to study the role of FV in zebrafish through targeted mutagenesis and apply the model to the study of human F5 variants. CRISPR-mediated genome editing of the zebrafish f5 locus was performed, generating mutants homozygous for a 49 base pair deletion in exon 4. Thrombus formation secondary to vascular endothelial injury was absent in f5 -/- mutant embryos and larvae. Despite this severe hemostatic defect, homozygous mutants survived before succumbing to severe hemorrhage in adulthood. Human F5 variants of uncertain significance from patients with FV deficiency were evaluated, and the causative mutations identified and stratified by their ability to restore thrombus formation in larvae. Analysis of these novel mutations demonstrates variable residual FV function, with minimal activity being required to restore hemostasis in response to laser-induced endothelial injury. This in vivo evaluation may be beneficial for patients whose factor activity levels lack correlation with bleeding symptomatology, although limitations exist. Furthermore, homozygous mutant embryos tolerate what is a severe and lethal defect in mammals, suggesting the possibility of species-specific factors enabling survival, and allowing further study not possible in the mouse. Identification of these factors or other genetic modifiers could lead to novel therapeutic modalities.
Collapse
|
25
|
Billoir P, Feugray G, Chrétien MH, Duchez VLC. Thrombin generation assay is a useful pre‐operative tool to predict non‐bleeding risk in a patient with mild factor V deficiency. Transfus Med 2020; 30:408-409. [DOI: 10.1111/tme.12680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paul Billoir
- Vascular Hemostasis Unit, Normandie Univ, UNIROUEN, INSERM U1096, Rouen University Hospital Rouen France
| | | | | | - Véronique Le Cam Duchez
- Vascular Hemostasis Unit, Normandie Univ, UNIROUEN, INSERM U1096, Rouen University Hospital Rouen France
| |
Collapse
|
26
|
Park CH, Park MS, Lee KO, Kim SH, Park YS, Kim HJ. Congenital factor V deficiency from compound heterozygous mutations with a novel variant c.2426del (p.Pro809Hisfs*2) in the F5 gene: A case report. Medicine (Baltimore) 2020; 99:e18947. [PMID: 32000417 PMCID: PMC7004762 DOI: 10.1097/md.0000000000018947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Congenital factor V deficiency (FVD) is a rare bleeding disorder characterized by low or undetectable plasma factor V (FV) levels leading to mild to severe bleeding symptoms. Currently, more than 100 mutations have been reported in F5. We herein report a patient with FVD from mutations in the F5 gene. PATIENT CONCERNS A 52-year-old man with prolonged prothrombin time and activated partial thromboplastin time corrected by mixing test on preoperative screening. His past medical or family history was not remarkable. DIAGNOSIS Factor assays revealed a markedly reduced FV activity at 7%. Other factors were not decreased. DNA sequencing analysis to detect F5 gene mutations showed the patient was compound heterozygous for c.286G>C (p.Asp96His) and c.2426del (p.Pro809Hisfs*2). Asp96His was previously described missense mutation and Pro809Hisfs*2 was a novel deleterious mutation. INTERVENTIONS Fresh-frozen plasma was administered to supplement FV before surgery. OUTCOMES Subsequent factor assays revealed temporarily increased FV activity at 33%. CONCLUSION As was the case in our patient, genotype-phenotype correlations are poor in FVD, and molecular genetic test is necessary to confirm the diagnosis.
Collapse
Affiliation(s)
- Chang-Hun Park
- Department of Laboratory Medicine and Genetics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon
| | - Min-Seung Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Ki-O Lee
- Samsung Biomedical Research Institute, Samsung Medical Center
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Young Shil Park
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
27
|
Wang W, Zhang K, Zhang H, Li M, Zhao Y, Wang B, Xin W, Yang W, Zhang J, Yue S, Yang X. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining. Med Sci Monit 2019; 25:9949-9962. [PMID: 31875420 PMCID: PMC6944040 DOI: 10.12659/msm.917068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background In an atherosclerotic artery wall, monocyte-derived macrophages are the principal mediators that respond to pathogens and inflammation. The present study aimed to investigate potential genetic changes in gene expression between normal tissue-resident macrophages and atherosclerotic macrophages in the human body. Material/Methods The expression profile data of GSE7074 acquired from the Gene Expression Omnibus (GEO) database, which includes the transcriptome of 4 types of macrophages, was downloaded. Differentially expressed genes (DEGs) were identified using R software, then we performed functional enrichment, protein-protein interaction (PPI) network construction, key node and module analysis, and prediction of microRNAs (miRNAs)/transcription factors (TFs) targeting genes. Results After data processing, 236 DEGs were identified, including 21 upregulated genes and 215 downregulated genes. The DEG set was enriched in 22 significant Gene Ontology (GO) terms and 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the PPI network constructed with these DEGs comprised 6 key nodes with degrees ≥8. Key nodes in the PPI network and simultaneously involved in the prime modules, including rhodopsin (RHO), coagulation factor V (F5), and bestrophin-1 (BEST1), are promising for the prediction of atherosclerotic plaque formation. Furthermore, in the miRNA/TF-target network, hsa-miR-3177-5p might be involved in the pathogenesis of atherosclerosis via regulating BEST1, and the transcription factor early growth response-1 (EGR1) was found to be a potential promoter in atherogenesis. Conclusions The identified key hub genes, predicted miRNAs/TFs, and underlying molecular mechanisms may be involved in atherogenesis, thus potentially contributing to the treatment and diagnosis of patients with atherosclerotic disease.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| |
Collapse
|
28
|
Winter WE, Greene DN, Beal SG, Isom JA, Manning H, Wilkerson G, Harris N. Clotting factors: Clinical biochemistry and their roles as plasma enzymes. Adv Clin Chem 2019; 94:31-84. [PMID: 31952574 DOI: 10.1016/bs.acc.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to describe structure and function of the multiple proteins of the coagulation system and their subcomponent domains. Coagulation is the process by which flowing liquid blood plasma is converted to a soft, viscous gel entrapping the cellular components of blood including red cells and platelets and thereby preventing extravasation of blood. This process is triggered by the minimal proteolysis of plasma fibrinogen. This transforms the latter to sticky fibrin monomers which polymerize into a network. The proteolysis of fibrinogen is a function of the trypsin-like enzyme termed thrombin. Thrombin in turn is activated by a cascade of trypsin-like enzymes that we term coagulation factors. In this review we examine the mechanics of the coagulation cascade with a view to the structure-function relationships of the proteins. We also note that two of the factors have no trypsin like protease domain but are essential cofactors or catalysts for the proteases. This review does not discuss the major role of platelets except to highlight their membrane function with respect to the factors. Coagulation testing is a major part of routine diagnostic clinical pathology. Testing is performed on specimens from individuals either with bleeding or with thrombotic disorders and those on anticoagulant medications. We examine the basic in-vitro laboratory coagulation tests and review the literature comparing the in vitro and in vivo processes. In vitro clinical testing typically utilizes plasma specimens and non-physiological or supraphysiological activators. Because the review focuses on coagulation factor structure, a brief overview of the evolutionary origins of the coagulation system is included.
Collapse
Affiliation(s)
- William E Winter
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - Dina N Greene
- Laboratory Services, Kaiser Permanente, Renton, WA, United States
| | - Stacy G Beal
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | - James A Isom
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States
| | | | | | - Neil Harris
- University of Florida, Department of Pathology, Immunology & Laboratory Medicine, Gainesville, FL, United States.
| |
Collapse
|
29
|
Schreuder M, Reitsma PH, Bos MHA. Blood coagulation factor Va's key interactive residues and regions for prothrombinase assembly and prothrombin binding. J Thromb Haemost 2019; 17:1229-1239. [PMID: 31102425 PMCID: PMC6851895 DOI: 10.1111/jth.14487] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022]
Abstract
Blood coagulation factor Va serves an indispensable role in hemostasis as cofactor for the serine protease factor Xa. In the presence of an anionic phospholipid membrane and calcium ions, factors Va and Xa assemble into the prothrombinase complex. Following formation of the ternary complex with the macromolecular zymogen substrate prothrombin, the latter is rapidly converted into thrombin, the key regulatory enzyme of coagulation. Over the years, multiple binding sites have been identified in factor Va that play a role in the interaction of the cofactor with factor Xa, prothrombin, or the anionic phospholipid membrane surface. In this review, an overview of the currently available information on these interactive sites in factor Va is provided, and data from biochemical approaches and 3D structural protein complex models are discussed. The structural models have been generated in recent years and provide novel insights into the molecular requirements for assembly of both the prothrombinase and the ternary prothrombinase-prothrombin complexes. Integrated knowledge of functionally important regions in factor Va will allow for a better understanding of factor Va cofactor activity.
Collapse
Affiliation(s)
- Mark Schreuder
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Pieter H. Reitsma
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
30
|
Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front Neurol 2019; 10:409. [PMID: 31068896 PMCID: PMC6491577 DOI: 10.3389/fneur.2019.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in understanding the complex interactions between the coagulation system and inflammation and autoimmunity. Increased blood-brain-barrier (BBB) permeability, a key event in the pathophysiology of multiple sclerosis (MS), leads to the irruption into the central nervous system of blood components that include virtually all coagulation/hemostasis factors. Besides their cytotoxic deposition and role as a possible trigger of the coagulation cascade, hemostasis components cause inflammatory response and immune activation, sustaining neurodegenerative events in MS. Early studies showing the contribution of altered hemostasis in the complex pathophysiology of MS have been strengthened by recent studies using methodologies that permitted deeper investigation. Fibrin(ogen), an abundant protein in plasma, has been identified as a key contributor to neuroinflammation. Perturbed fibrinolysis was found to be a hallmark of progressive MS with abundant cortical fibrin(ogen) deposition. The immune-modulatory function of the intrinsic coagulation pathway still remains to be elucidated in MS. New molecular details in key hemostasis components participating in MS pathophysiology, and particularly involved in inflammatory and immune responses, could favor the development of novel therapeutic targets to ameliorate the evolution of MS. This review article introduces essential information on coagulation factors, inhibitors, and the fibrinolytic pathway, and highlights key aspects of their involvement in the immune system and inflammatory response. It discusses how hemostasis components are (dys)regulated in MS, and summarizes histopathological post-mortem human brain evidence, as well as cerebrospinal fluid, plasma, and serum studies of hemostasis and fibrinolytic pathways in MS. Studies of disease-modifying treatments as potential modifiers of coagulation factor levels, and case reports of autoimmunity affecting hemostasis in MS are also discussed.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States.,Clinical Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
31
|
Meidert AS, Kinzinger J, Möhnle P, Pekrul I, Spiekermann K, Thorsteinsdottir J, Briegel J, Huge V. Perioperative Management of a Patient with Severe Factor V Deficiency Presenting with Chronic Subdural Hematoma: A Clinical Report. World Neurosurg 2019; 127:409-413. [PMID: 30999086 DOI: 10.1016/j.wneu.2019.04.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Severe factor V deficiency is an extremely rare coagulation disorder. Patients with factor V activity <5% usually become symptomatic in early childhood. CASE DESCRIPTION We report the case of an 82-year-old woman with incidentally diagnosed severe factor V deficiency, who developed a symptomatic chronic subdural hematoma, requiring burr hole craniostomy. Successful management was achieved by a multidisciplinary approach. Preoperatively, factor V activity was increased from 2% to 50% by administration of 25 mL/kg body weight of fresh frozen plasma over 30 minutes under close cardiopulmonary monitoring in the intensive care unit. Straight afterward, the patient was transferred to the operating room where surgery was performed under general anesthesia. Burr hole craniostomy could be performed without perioperative complications. In the postoperative days, there was no relevant recurrence of the subdural hematoma in the follow-up computed tomography scans under frequent control of coagulation parameters. However, despite further transfusion of fresh frozen plasma, factor V activity did not increase >16%. The patient was discharged without any neurologic deficits. In a hemostaseologic follow-up 2 months after surgery, factor V activity <1% was confirmed with evidence of a factor V inhibitor in the modified Bethesda assay. Most likely, the patient suffered from an acquired form of factor V deficiency with preformed antibodies that had been boosted by the initial treatment with fresh frozen plasma. CONCLUSIONS We conclude that in this rare bleeding disorder, intracranial surgery was successfully managed because of a thoroughly planned perioperative therapeutic strategy. However, if there is time prior to surgery, a full checkup of the bleeding disorder is advisable.
Collapse
Affiliation(s)
- Agnes S Meidert
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany.
| | - Johannes Kinzinger
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany
| | - Patrick Möhnle
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany; Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, University Hospital of Munich (LMU), Munich, Germany
| | - Isabell Pekrul
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany; Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology, University Hospital of Munich (LMU), Munich, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine III (Hematology and Oncology), University Hospital of Munich (LMU), Munich, Germany
| | - Jun Thorsteinsdottir
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| | - Josef Briegel
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany
| | - Volker Huge
- Department of Anaesthesiology, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
32
|
Derous D, Mitchell SE, Green CL, Wang Y, Han JDJ, Chen L, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: X. Transcriptomic Responses of Epididymal Adipose Tissue. J Gerontol A Biol Sci Med Sci 2019; 73:279-288. [PMID: 28575190 PMCID: PMC5861923 DOI: 10.1093/gerona/glx101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
Calorie restriction (CR) leads to a remarkable decrease in adipose tissue mass and increases longevity in many taxa. Since the discovery of leptin, the secretory abilities of adipose tissue have gained prominence in the responses to CR. We quantified transcripts of epididymal white adipose tissue of male C57BL/6 mice exposed to graded levels of CR (0–40% CR) for 3 months. The numbers of differentially expressed genes (DEGs) involved in NF-κB, HIF1-α, and p53 signaling increased with increasing levels of CR. These pathways were all significantly downregulated at 40% CR relative to 12 h ad libitum feeding. In addition, graded CR had a substantial impact on DEGs associated with pathways involved in angiogenesis. Of the 497 genes differentially expressed with graded CR, 155 of these genes included a signal peptide motif. These putative signaling proteins were involved in the response to ketones, TGF-β signaling, negative regulation of insulin secretion, and inflammation. This accords with the previously established effects of graded CR on glucose homeostasis in the same mice. Overall these data suggest reduced levels of adipose tissue under CR may contribute to the protective impact of CR in multiple ways linked to changes in a large population of secreted proteins.
Collapse
Affiliation(s)
- Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Yingchun Wang
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
| | - Jing Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences, Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Luonan Chen
- Key laboratory of Systems Biology, Innovation Center for Cell Signalling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle
- Department of Biology, University of Washington, Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
- State Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing, China
- Address correspondence to: John R. Speakman, PhD, DSc, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK. E-mail:
| |
Collapse
|
33
|
Understanding the Impact of Aberrant Splicing in Coagulation Factor V Deficiency. Int J Mol Sci 2019; 20:ijms20040910. [PMID: 30791524 PMCID: PMC6412230 DOI: 10.3390/ijms20040910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/23/2022] Open
Abstract
Rare inherited coagulation disorders (RICDs) are congenital deficiencies of the plasma proteins that are involved in blood coagulation, which generally lead to lifelong bleeding manifestations. These diseases are generally qualitative and/or quantitative defects that are associated with monoallelic or biallelic mutations in the relevant gene. Among RICDs, factor V (FV) deficiency is one of the least characterized at the molecular level. Here, we investigated four unrelated patients with reduced plasma FV levels (three severe, one mild), which were associated with a moderately severe bleeding tendency. Sequence analysis of the FV gene identified seven different variants, five hitherto unknown (p.D1669G, c.5789-11C>A, c.5789-12C>A, c.5789-5T>G, and c.6528G>C), and two previously reported (c.158+1G>A and c.5789G>A). The possible pathogenic role of the newly identified missense variant was studied by in silico approaches. The remaining six genetic defects (all putative splicing mutations) were investigated for their possible effects on pre-mRNA splicing by transient transfection experiments in HeLa cells with plasmids expressing appropriate hybrid minigenes. The preparation of minigene constructs was instrumental to demonstrate that the two adjacent variants c.5789-11C>A and c.5789-12C>A are indeed present in cis in the analyzed FV-deficient patient (thus leading to the c.5789-11_12CC>AA mutation). Ex vivo experiments demonstrated that each variant causes either a skipping of the relevant exon or the activation of cryptic splice sites (exonic or intronic), eventually leading to the introduction of a premature termination codon.
Collapse
|
34
|
Bradford HN, Krishnaswamy S. Occlusion of anion-binding exosite 2 in meizothrombin explains its impaired ability to activate factor V. J Biol Chem 2019; 294:2422-2435. [PMID: 30578302 DOI: 10.1074/jbc.ra118.006510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
The proteolytic conversion of factor V to factor Va is central for amplified flux through the blood coagulation cascade. Heterodimeric factor Va is produced by cleavage at three sites in the middle of factor V by thrombin, yielding an N terminus-derived heavy chain and a C terminus-derived light chain. Here, we show that light chain formation resulting from the C-terminal cleavage is the rate-limiting step in the formation of fully cleaved Va. This rate-limiting step also corresponded to and was sufficient for the ability of cleaved factor V to bind Xa and assemble into the prothrombinase complex. Meizothrombin, the proteinase intermediate in thrombin formation, cleaves factor V more slowly than does thrombin, resulting in a pronounced defect in the formation of the light chain. A ∼100-fold reduced rate of meizothrombin-mediated light chain formation by meizothrombin corresponded to equally slow production of active cofactor and an impaired ability to amplify flux through the coagulation cascade initiated in plasma. We show that this defect arises from the occlusion of anion-binding exosite 2 in the catalytic domain by the covalently retained propiece in meizothrombin. Our findings provide structural insights into the prominent role played by exosite 2 in the rate-limiting step of factor V activation. They also bear on how factor V is converted into a cofactor capable of assembling into prothrombinase.
Collapse
Affiliation(s)
- Harlan N Bradford
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and
| | - Sriram Krishnaswamy
- From the Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104 and .,the Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
35
|
Kalita B, Singh S, Patra A, Mukherjee AK. Quantitative proteomic analysis and antivenom study revealing that neurotoxic phospholipase A 2 enzymes, the major toxin class of Russell's viper venom from southern India, shows the least immuno-recognition and neutralization by commercial polyvalent antivenom. Int J Biol Macromol 2018; 118:375-385. [PMID: 29924981 DOI: 10.1016/j.ijbiomac.2018.06.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
The proteome composition of Russell's viper venom (RVV) from southern India (SI) was investigated by 1D-SDS-PAGE of venom followed by tandem mass spectrometry analysis of protein bands. A total of 66 proteins belonging to 14 snake venom protein families were identified by LC-MS/MS analysis against Viperidae (taxid 8689) protein entries from the non-redundant NCBI database. Phospholipase A2 (43.25%) and snaclec (14.57%) represented the most abundant enzymatic and non-enzymatic proteins, respectively. SI RVV was characterized as containing a higher quantity of PLA2 and a lower amount of Kunitz-type serine protease inhibitors, in comparison to RVV from other regions of the Indian subcontinent. The enzymatic activities, pharmacological properties, and clinical manifestations of RV envenomation in SI were well correlated with its proteome composition; however, ATPase, ADPase, and hyaluronidase enzymes were not identified by LC-MS/MS analysis, owing to paucity of the existing database. Neurological symptoms exhibited by RV-bite patients in SI were correlated to the presence of abundant neurotoxic phospholipase A2 enzymes (15.66%) in SI RVV. Neutralization studies, immunological cross-reactivity, and antivenomics studies unequivocally demonstrated the poor recognition and lowest neutralization of PLA2 enzymes by commercial polyvalent antivenom, which is a major concern for the treatment of RV-envenomed patients in SI.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Sudeepa Singh
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
36
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
37
|
Kalita B, Patra A, Das A, Mukherjee AK. Proteomic Analysis and Immuno-Profiling of Eastern India Russell's Viper ( Daboia russelii) Venom: Correlation between RVV Composition and Clinical Manifestations Post RV Bite. J Proteome Res 2018; 17:2819-2833. [PMID: 29938511 DOI: 10.1021/acs.jproteome.8b00291] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The proteomes of Russell's viper venom (RVV) from Burdwan (RVV B) and Nadia (RVV N), the two districts of West Bengal, eastern India (EI), were investigated by gel-filtration chromatography (GFC) followed by tandem mass spectrometry of tryptic fragments of the fractions. A total of 73 and 69 proteins belonging to 15 snake venom protein families were identified in RVV B and RVV N, respectively, by MS/MS search against Viperidae (taxid 8689) protein entries of the nonredundant NCBI database. The minor differences in venom composition of both the EI RV were established unequivocally by their biochemical and pharmacological properties and by SDS-PAGE, gel filtration chromatography, and LC-MS/MS analyses. The composition of EI RVVs was well correlated with published reports on the pathophysiology of RV-envenomed patients from this part of the country. Venom-antivenom cross-reactivity determined by ELISA, Western blotting, and antivenomics approaches demonstrated poor recognition of low molecular mass (<20 kDa) RVV proteins by commercial polyvalent antivenoms, which was substantiated by neutralization of RVV enzymes by antivenom.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784028 , Assam , India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784028 , Assam , India
| | - Anjali Das
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784028 , Assam , India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology , Tezpur University , Tezpur 784028 , Assam , India
| |
Collapse
|
38
|
Saliba W, Warwar A, Kotler A, Cohen S, Stein N, Rennert G, Ornstein DL, Preis M. Association of factor V activity with risk of venous thromboembolism and atherothrombotic cardiovascular events: A retrospective population-based cohort study. Thromb Res 2018; 168:14-19. [DOI: 10.1016/j.thromres.2018.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
|
39
|
Shafia S, Zargar MH, Khan N, Ahmad R, Shah ZA, Asimi R. High prevalence of factor V Leiden and prothrombin G20101A mutations in Kashmiri patients with venous thromboembolism. Gene 2018; 654:1-9. [PMID: 29454086 DOI: 10.1016/j.gene.2018.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
AIM The genetic variants of the factor V (G1691A), prothrombin (G20210A) and MTHFR (C677T) genes have been widely implicated as inherited risk factors for developing venous thrombosis. This study was undertaken to reveal the frequency of these mutations in Kashmiri patients with venous thromboembolism. METHODOLOGY A case-control study was designed with 250 VTE patients and 250 healthy controls. The mutations were analysed using ARMS-PCR and PCR-RFLP approach. RESULT The factor V Leiden G1691A mutation was found in 17/250 (6.8%) VTE patients and prothrombin G20210A mutation was found in 7/250 (2.8%) VTE patients while no mutation was found in any of the healthy controls. Both the mutations were found to be significantly associated with the increased risk of VTE (p = 0.0001 and 0.0150 respectively) while no association of VTE risk with MTHFR C677T polymorphism was found (p = 0.53). CONCLUSION The increased frequency of factor V Leiden G1691A and prothrombin G20210A mutation in VTE patients indicates a significant role of these mutations in the development of VTE in our population. We therefore suggest the routine screening of these two mutations as thrombophilic markers in Kashmiri patients with venous thromboembolism.
Collapse
Affiliation(s)
- Syed Shafia
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India
| | - Mahrukh H Zargar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India.
| | - Nabeela Khan
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India
| | - Rehana Ahmad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India
| | - Zafar Amin Shah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India
| | - Ravouf Asimi
- Department of Neurology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K PIN: 190011, India
| |
Collapse
|
40
|
|
41
|
Amara A, Mrad M, Sayeh A, Haggui A, Lahideb D, Fekih-Mrissa N, Haouala H, Nsiri B. Association of FV G1691A Polymorphism but not A4070G With Coronary Artery Disease. Clin Appl Thromb Hemost 2017; 24:330-337. [PMID: 29179580 PMCID: PMC6714679 DOI: 10.1177/1076029617744320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Coronary artery disease (CAD) is one of the chief causes of death in the world. Several
hypotheses have been promoted as for the origin of the disease, among which are genetic
predispositions and/or environmental factors. The aim of this study was to determine the
effect of factor V (FV) gene polymorphisms (Leiden, G1691A [FVL] and HR2 A4070G) and to
analyze their association with traditional risk factors in assessing the risk of CAD. Our
study population included 200 Tunisian patients with symptomatic CAD and a control group
of 300 participants matched for age and sex. All participants were genotyped for the FVL
and HR2 polymorphisms. Multivariate logistic regression was applied to analyze independent
factors associated with the risk of CAD. Our analysis showed that the FVL A allele
frequency (P < 10–3, odds ratio [OR] = 2.81, 95% confidence
interval [CI] = 1.6-4.9) and GA genotype (P < 10–3, OR =
4.03, 95% CI = 2.1-7.6) are significantly more prevalent among patients with CAD compared
to those controls and may be predisposing to CAD. We further found that the FVL mutation
is an independent risk factor whose effect is not modified by other factors (smoking,
diabetes, hypertension, dyslipidemia, and a family history of CAD) in increasing the risk
of the disease. However, analysis of FV HR2 variation does not show any statistically
significant association with CAD. The FVL polymorphism may be an independent risk factor
for CAD. However, further investigations on these polymorphisms and their possible
synergisms with traditional risk factors for CAD could help to ascertain better
predictability for CAD susceptibility.
Collapse
Affiliation(s)
- Ahmed Amara
- 1 Hôpital Militaire de Tunis, Service d'Hématologie, Laboratoire de Biologie Moléculaire, Montfleury, Tunisie.,2 Université Tunis el Manar, Faculté des Sciences de Tunis, Tunisie
| | - Meriem Mrad
- 1 Hôpital Militaire de Tunis, Service d'Hématologie, Laboratoire de Biologie Moléculaire, Montfleury, Tunisie.,2 Université Tunis el Manar, Faculté des Sciences de Tunis, Tunisie
| | - Aicha Sayeh
- 1 Hôpital Militaire de Tunis, Service d'Hématologie, Laboratoire de Biologie Moléculaire, Montfleury, Tunisie.,2 Université Tunis el Manar, Faculté des Sciences de Tunis, Tunisie
| | - Abdeddayem Haggui
- 3 Hôpital Militaire de Tunis, Service de Cardiologie, Montfleury, Tunisie.,4 Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunisie
| | - Dhaker Lahideb
- 3 Hôpital Militaire de Tunis, Service de Cardiologie, Montfleury, Tunisie.,4 Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunisie
| | - Najiba Fekih-Mrissa
- 1 Hôpital Militaire de Tunis, Service d'Hématologie, Laboratoire de Biologie Moléculaire, Montfleury, Tunisie.,5 Académie Militaire Fondouk Jédid, Nabeul, Tunisie
| | - Habib Haouala
- 3 Hôpital Militaire de Tunis, Service de Cardiologie, Montfleury, Tunisie.,4 Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunisie
| | - Brahim Nsiri
- 1 Hôpital Militaire de Tunis, Service d'Hématologie, Laboratoire de Biologie Moléculaire, Montfleury, Tunisie.,6 Université de Monastir, Faculté de Pharmacie, Monastir, Tunisie
| |
Collapse
|
42
|
Oliveira D, Alvarez-Flores M, Lopes A, Chudzinski-Tavassi A. Functional characterisation of Vizottin, the first factor Xa inhibitor purified from the leech Haementeria vizottoi. Thromb Haemost 2017; 108:570-8. [DOI: 10.1160/th12-04-0235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/17/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe strategic position of factor Xa (FXa) in blood coagulation makes it a compelling target for the development of new anticoagulants. Bloodsucking animals have in their salivary glands mixtures of anticoagulants, which could be used for designing novel antithrombotic compounds. Herein, we describe Vizottin, the first FXa inhibitor from the salivary complex of the leech Haementeria vizottoi. Vizottin was purified by gel filtration and reverse-phase chromatography, and shown to have anticoagulant effects in human plasma, prolonging the recalcification time in a dose-dependent manner (IC50 40 nM). Vizottin induced blood incoagulability in FX-deficient plasma, whereas in normal and reconstituted plasma, Vizottin doubled the prothrombin time at 160 nM. This peptide competitively inhibited human FXa (Ki 2 nM) like FXa inhibitors from other leeches, albeit via a distinct mechanism of action. At high concentrations, vizottin inhibited the amidolytic activity of factor VIIa/tissue factor (IC50 96.4 nM). Vizottin inhibited FXa in the prothrombinase complex and Gla-domainless FXa. Moreover, vizottin did not interfere with FX activation induced by RVV-X, a known enzyme that requires the Gla-domain of FX for activation. Competition experiments in the presence of FXa and GGACK-FXa (active site blocked) demonstrated that the inhibition of FXa by vizottin is through binding to the active site rather than an exosite. This novel inhibitor appears to exert its inhibitory effects through direct binding to the active site of FXa in a time-dependent manner, but not involving a tight-binding model. In this context, vizottin is a promising model for designing novel anticoagulants for the treatment of thrombotic diseases.
Collapse
|
43
|
Hirbawi J, Kalafatis M. Spellbinding Effects of the Acidic COOH-Terminus of Factor Va Heavy Chain on Prothrombinase Activity and Function. ACS OMEGA 2017; 2:5529-5537. [PMID: 29250609 PMCID: PMC5725915 DOI: 10.1021/acsomega.7b00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Human factor Va (hfVa) is the important regulatory subunit of prothrombinase. Recent modeling data have suggested a critical role for amino acid Arg701 of hfVa for human prothrombin (hPro) activation by prothrombinase. Furthermore, it has also been demonstrated that hfVa has a different effect than that of bovine fVa on prethrombin-1 activation by prothrombinase. The difference between the two cofactor molecules was also found within the Asn700-Arg701 dipeptide in the human factor V (hfV) molecule, which is replaced by the Asp-Glu sequence in bfV. As a consequence, we produced a recombinant hfV (rhfV) molecule with the substitution 700NR701→DE. rhfVNR→DE together with the wild-type molecule (rhfVWT) were expressed in COS7 cells, purified, and tested for their capability to function within prothrombinase. Kinetic studies showed that the Kd of rhfVaNR→DE for human fXa as well as the kcat and Km of prothrombinase made with rhfVaNR→DE for hPro activation were similar to the values obtained following hPro activation by prothrombinase made with rhfVaWT. Remarkably, sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses of hPro activation time courses demonstrated that the rate of cleavage of hPro by prothrombinase reconstituted with rhfVaNR→DE was significantly delayed with substantial accumulation of meizothrombin, and delayed thrombin generation, when compared to activation of hPro by prothrombinase made with rhfVaWT. These unanticipated results provide significant insights on the role of the carboxyl-terminal end of the heavy chain of hfVa for hPro cleavage and activation by prothrombinase and show that residues 700NR701 regulate at least in part the enzyme-substrate/product interaction during fibrin clot formation.
Collapse
Affiliation(s)
- Jamila Hirbawi
- Department
of Chemistry and Center for Gene Regulation
in Health and Disease (GRHD), Cleveland
State University, Cleveland, Ohio 44115, United States
| | - Michael Kalafatis
- Department
of Chemistry and Center for Gene Regulation
in Health and Disease (GRHD), Cleveland
State University, Cleveland, Ohio 44115, United States
- Department
of Molecular Cardiology, Lerner Research
Institute, The Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
44
|
Strauss E, Mazzeffi M, Williams B, Key N, Tanaka K. Perioperative management of rare coagulation factor deficiency states in cardiac surgery. Br J Anaesth 2017; 119:354-368. [DOI: 10.1093/bja/aex198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2017] [Indexed: 01/21/2023] Open
|
45
|
Franchini M, Mannucci PM. Modifiers of clinical phenotype in severe congenital hemophilia. Thromb Res 2017; 156:60-64. [PMID: 28599169 DOI: 10.1016/j.thromres.2017.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
Abstract
Patients with inherited hemophilia A and B usually exhibit a bleeding tendency of a severity proportional to the degree of plasmatic deficiency of the coagulant activity of factor VIII (FVIII:C) and factor IX (FIX:C). Although patients with severe hemophilia (i.e., with FVIII:C and FIX:C levels <1IU/dL) are generally those with the most severe bleeding phenotype, it is common experience that a variable proportion of them experiences a milder bleeding tendency. In this review, we summarize the current knowledge on the possible mechanisms at the basis of the phenotypic heterogeneity of severe hemophilia, focusing in particular on the role of FVIII/FIX gene mutations and thrombophilic polymorphisms. Finally, the possible therapeutic implications of such modifiers will be analyzed.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantova, Italy.
| | - Pier Mannuccio Mannucci
- Scientific Direction, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
46
|
Santamaria S, Reglińska-Matveyev N, Gierula M, Camire RM, Crawley JTB, Lane DA, Ahnström J. Factor V has an anticoagulant cofactor activity that targets the early phase of coagulation. J Biol Chem 2017; 292:9335-9344. [PMID: 28420729 PMCID: PMC5454113 DOI: 10.1074/jbc.m116.769570] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 04/11/2017] [Indexed: 11/21/2022] Open
Abstract
Tissue factor pathway inhibitor (TFPI), the main inhibitor of initiation of coagulation, exerts an important anticoagulant role through the factor Xa (FXa)-dependent inhibition of tissue factor/factor VIIa. Protein S is a TFPI cofactor, enhancing the efficiency of FXa inhibition. TFPI can also inhibit prothrombinase assembly by directly interacting with coagulation factor V (FV), which has been activated by FXa. Because full-length TFPI associates with FV in plasma, we hypothesized that FV may influence TFPI inhibitory function. Using pure component FXa inhibition assays, we found that although FV alone did not influence TFPI-mediated FXa inhibition, it further enhanced TFPI in the presence of protein S, resulting in an ∼8-fold reduction in Ki compared with TFPI alone. A FV variant (R709Q/R1018Q/R1545Q, FVΔIIa) that cannot be cleaved/activated by thrombin or FXa also enhanced TFPI-mediated inhibition of FXa ∼12-fold in the presence of protein S. In contrast, neither activated FV nor recombinant B-domain-deleted FV could enhance TFPI-mediated inhibition of FXa in the presence of protein S, suggesting a functional contribution of the B domain. Using TFPI and protein S variants, we show further that the enhancement of TFPI-mediated FXa inhibition by protein S and FV depends on a direct protein S/TFPI interaction and that the TFPI C-terminal tail is not essential for this enhancement. In FXa-catalyzed prothrombin activation assays, both FV and FVΔIIa (but not activated FV) enhanced TFPI function in the presence of protein S. These results demonstrate a new anticoagulant (cofactor) function of FV that targets the early phase of coagulation before prothrombinase assembly.
Collapse
Affiliation(s)
- Salvatore Santamaria
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Natalia Reglińska-Matveyev
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Magdalena Gierula
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Rodney M Camire
- the Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, and.,the Center for Cell and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - James T B Crawley
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - David A Lane
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Josefin Ahnström
- From the Centre for Haematology, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom,
| |
Collapse
|
47
|
Camire RM. Rethinking events in the haemostatic process: role of factor V and TFPI. Haemophilia 2017; 22 Suppl 5:3-8. [PMID: 27405668 DOI: 10.1111/hae.13004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 01/02/2023]
Abstract
Regulatory mechanisms responsible for limiting blood clot formation are critical for maintaining normal haemostasis. Dysregulation can lead to bleeding (e.g. haemophilia) or thrombosis. New findings showing that tissue factor pathway inhibitor-alpha (TFPIα) binds coagulation factor V(a) and inhibits prothrombinase assembly highlights that our understanding of the initiation of coagulation is evolving. Work over the past decade on the biochemistry of FV activation has laid the groundwork for deciphering the mechanistic bases that may underpin how TFPIα mediates these anticoagulant effects. Collectively, these new findings are re-shaping our thinking about how coagulation is initiated at the site of injury. These ideas could have important clinical implications and help identify new ways to bias the coagulation response for the treatment of haemophilia and other disorders of the haemostatic process.
Collapse
Affiliation(s)
- R M Camire
- Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Kalita B, Patra A, Mukherjee AK. Unraveling the Proteome Composition and Immuno-profiling of Western India Russell's Viper Venom for In-Depth Understanding of Its Pharmacological Properties, Clinical Manifestations, and Effective Antivenom Treatment. J Proteome Res 2017; 16:583-598. [PMID: 27936776 DOI: 10.1021/acs.jproteome.6b00693] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The proteome composition of western India (WI) Russell's viper venom (RVV) was correlated with pharmacological properties and pathological manifestations of RV envenomation. Proteins in the 5-19 and 100-110 kDa mass ranges were the most predominate (∼35.1%) and least abundant (∼3.4%) components, respectively, of WI RVV. Non-reduced SDS-PAGE indicated the occurrence of multiple subunits, non-covalent oligomers, self-aggregation, and/or interactions among the RVV proteins. A total of 55 proteins belonging to 13 distinct snake venom families were unambiguously identified by ESI-LC-MS/MS analysis. Phospholipase A2 (32.5%) and Kunitz-type serine protease inhibitors (12.5%) represented the most abundant enzymatic and non-enzymatic proteins, respectively. However, ATPase, ADPase, and hyaluronidase, detected by enzyme assays, were not identified by proteomic analysis owing to limitations in protein database deposition. Several biochemical and pharmacological properties of WI RVV were also investigated. Neurological symptoms exhibited by some RV-bite patients in WI may be correlated to the presence of neurotoxic phospholipase A2 enzymes and Kunitz-type serine protease inhibitor complex in this venom. Monovalent antivenom was found to be better than polyvalent antivenom in immuno-recognition and neutralization of the tested pharmacological properties and enzyme activities of WI RVV; nevertheless, both antivenoms demonstrated poor cross-reactivity and neutralization of pharmacological activities shown by low-molecular-mass proteins (<18 kDa) of this venom.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur 784028, Assam, India
| |
Collapse
|
49
|
Mechanistic insight into the procoagulant activity of tumor-derived apoptotic vesicles. Biochim Biophys Acta Gen Subj 2016; 1861:286-295. [PMID: 27864149 DOI: 10.1016/j.bbagen.2016.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chemotherapy induces the release of apoptotic vesicles (ApoV) from the tumor plasma membrane. Tumor ApoV may enhance the risk of thrombotic events in cancer patients undergoing chemotherapy. However, the relative contribution of ApoV to coagulation and the pathways involved remain poorly characterized. In addition, this study sets out to compare the procoagulant activity of chemotherapy-induced ApoV with their cell of origin and to determine the mechanisms of ApoV-induced coagulation. METHODS We utilized human and murine cancer cell lines and chemotherapeutic agents to determine the requirement for the coagulation factors (tissue factor; TF, FII, FV, FVII, FVIII, FIX and phosphatidylserine) in the procoagulant activity of ApoV. The role of previously identified ApoV-associated FV was determined in a FV functional assay. RESULTS ApoV were significantly more procoagulant per microgram of protein compared to parental living or dying tumor cells. In the phase to peak fibrin generation, procoagulant activity was dependent on phosphatidylserine, TF expression, FVII and the prothrombinase complex. However, the intrinsic coagulation factors FIX and FVIII were dispensable. ApoV-associated FV could not support coagulation in the absence of supplied, exogenous FV. CONCLUSIONS ApoV are significantly more procoagulant than their parental tumor cells. ApoV require the extrinsic tenase and prothrombinase complex to activate the early phase of coagulation. Endogenous FV identified on tumor ApoV is serum-derived and functional, but is non-essential for ApoV-mediated fibrin generation. GENERAL SIGNIFICANCE This study clarifies the mechanisms of procoagulant activity of vesicles released from dying tumor cells.
Collapse
|
50
|
Discoidin Domains as Emerging Therapeutic Targets. Trends Pharmacol Sci 2016; 37:641-659. [DOI: 10.1016/j.tips.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
|