1
|
Ahn W, Han J, Kim N, Hwang YH, Kim W, Lee Y, Lee DY, Cheong IW, Han K, Nam GH, Kim IS, Lee EJ. Hierarchical protein nano-crystalline hydrogel with extracellular vesicles for ectopic lymphoid structure formation. Biomaterials 2025; 318:123166. [PMID: 39933315 DOI: 10.1016/j.biomaterials.2025.123166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Among cancer therapies, immune checkpoint blockade (ICB) has emerged as a prominent approach, substantially enhancing anti-tumor immune responses. However, the efficacy of ICB is often limited in the absence of a pre-existing immune response within the tumor microenvironment. Here, we introduce a novel hierarchical protein hydrogel platform designed to facilitate the formation of artificial tertiary lymphoid structures (aTLS), thereby improving ICB efficacy. Through the integration of self-assembling ferritin protein nanocages, rec1-resilin protein, and CP05 peptide, our hierarchical hydrogels provide a structurally supportive and functionally adaptive scaffold capable of on-demand self-repair in response to mild thermal treatments. The effective encapsulation of extracellular vesicles (EVs) via the CP05 peptide ensures the formation of aTLS with germinal center-like structures within the hierarchical hydrogel. We demonstrate that, combined with ICB therapy, EV-loaded hierarchical hydrogels also induce the TLS within the tumor, markedly promoting immune responses against ICB-resistant tumor. This bioactive hydrogel platform offers a versatile tool for enhancing a broad range of immunotherapies, with potential applications extending beyond TLS to other frameworks that support complex tissue architectures.
Collapse
Affiliation(s)
- Wonkyung Ahn
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jihoon Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Nayeon Kim
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeong Ha Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Wonjun Kim
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yeram Lee
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Yun Lee
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In Woo Cheong
- Department of Applied Chemistry, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Koohee Han
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gi-Hoon Nam
- Department of Biochemistry & Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02842, Republic of Korea; Chemical & Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Chemical Engineering and Applied Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Shen SR, Huang ZQ, Yang YD, Han JB, Fang ZM, Guan Y, Xu JC, Min JL, Wang Y, Wu GJ, Xiao ZX, Luo W, Huang ZQ, Liang G. JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7. Acta Pharmacol Sin 2025:10.1038/s41401-024-01437-y. [PMID: 39833306 DOI: 10.1038/s41401-024-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025] Open
Abstract
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGFβ-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGFβ-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Si-Rui Shen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhu-Qi Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yu-Die Yang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ji-Bo Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Zi-Min Fang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yue Guan
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jia-Chen Xu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ju-Lian Min
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhong-Xiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, 325600, China
| | - Wu Luo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Zhou-Qing Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| |
Collapse
|
3
|
Huang J, Liu H, Liu Z, Wang Z, Xu H, Li Z, Huang S, Yang X, Shen Y, Yu F, Li Y, Zhu J, Li W, Wang L, Kong W, Fu Y. Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice. J Clin Invest 2025; 135:e178198. [PMID: 39817456 PMCID: PMC11735105 DOI: 10.1172/jci178198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 11/15/2024] [Indexed: 01/30/2025] Open
Abstract
The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell-mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients. Specific elimination of CX3CR1+ cells by diphtheria toxin in Cx3cr1-CreERT2iDTRF/+Fbn1C1041G/+ mice efficiently ameliorated TAA progression. Administering the monoclonal antibodies to respectively neutralize TNF-α and IGF1 produced by CX3CR1+ cells from MFS patients greatly suppressed the cocultured MFS patient-specific induced pluripotent stem cell-derived VSMC inflammation. BM transplantation and parabiosis revealed that CX3CR1+ macrophages are mainly originated from BM-derived monocytes. Targeting TNF-α and IGF1 in CX3CR1+ macrophages via shRNA lentivirus transduction in BM cells efficiently suppressed TAA development in BM-transplanted Fbn1C1041G/+ mice. Application of the CCR2 antagonist RS504393 to inhibit monocyte infiltration markedly reduced the accumulation of CX3CR1+ macrophages and subsequently alleviated TAA progression in Fbn1C1041G/+ mice. In summary, CX3CR1+ macrophages mainly located in aortic intima mediate TAA formation by paracrinally causing VSMC inflammation, and targeting them offers a potential antiinflammatory therapeutic strategy for MFS-related TAA.
Collapse
MESH Headings
- Animals
- Mice
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Macrophages/metabolism
- Macrophages/pathology
- Macrophages/immunology
- Marfan Syndrome/pathology
- Marfan Syndrome/genetics
- Marfan Syndrome/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/immunology
- Humans
- Disease Progression
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice, Transgenic
- Male
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Adipokines
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing, China
| | - Zhujiang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhenting Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanshi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Shan Huang
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing, China
| | - Wei Li
- Department of Vascular Surgery, Peking University People’s Hospital, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
4
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Lorenc P, Sikorska A, Molenda S, Guzniczak N, Dams-Kozlowska H, Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed Pharmacother 2024; 180:117585. [PMID: 39442237 DOI: 10.1016/j.biopha.2024.117585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is one of the cancer hallmarks and is a critical process in tumor growth and metastasis. The pivotal role of angiogenesis in cancer development has made antiangiogenic treatment a promising strategy for cancer therapy. To develop an effective therapy, it is essential to understand the basics of the physiological and tumor angiogenesis process. This review presents the primary factors related to physiological and tumor angiogenesis and the mechanisms of angiogenesis in tumors. We summarize potential molecular targets for cancer treatment by focusing on the vasculature, with the VEGF/VEGFR pathway being one of the most important and well-studied. Additionally, we present the advantages and limitations of currently used clinical protocols for cancer treatment targeting the VEGF/VEGFR pathway.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Agata Sikorska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Sara Molenda
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland
| | - Anna Florczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61‑866, Poland.
| |
Collapse
|
6
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
7
|
Xu Q, Liu Y, Tian X, Xia X, Zhang Y, Zhang X, Wang Y, Sun P, Meng X, Wang A. Monocyte Chemoattractant Protein-1, Inflammatory Biomarkers, and Prognosis of Patients With Ischemic Stroke or Transient Ischemic Attack: Fndings From a Nationwide Registry Study. J Am Heart Assoc 2024; 13:e035820. [PMID: 39119971 DOI: 10.1161/jaha.124.035820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recent Mendelian randomization and meta-analysis highlight the relevance of MCP-1 (monocyte chemoattractant protein-1) in stroke. We aimed to investigate the associations between MCP-1 and clinical outcomes in patients with ischemic stroke or transient ischemic attack and test whether inflammation mediates or jointly contributes to the relationships. METHODS AND RESULTS A total of 10 700 patients from the Third China National Stroke Registry study were included. Multivariable Cox regression was used for recurrent stroke and all-cause death, and logistic regression was used for poor functional outcome. Mediation analyses were performed to clarify whether inflammation mediates the associations. After adjusting for potential confounders, low MCP-1 level (<337.6 pg/mL) was associated with a reduced risk of all-cause death (hazard ratio [HR], 0.65 [95% CI, 0.51-0.82]) and poor functional outcome (odds ratio, 0.81 [95% CI, 0.70-0.94]) but was not associated with recurrent stroke (HR, 1.10 [95% CI, 0.95-1.27]), compared with high MCP-1 level (≥337.6 pg/mL). The association between MCP-1 and all-cause death was partially mediated by highly sensitive C-reactive protein, interleukin-6, and YKL-40 (Chitinase-3-like protein 1; mediated proportion: 7.4%, 10.5%, and 7.4%, respectively). The corresponding mediated proportion for poor functional outcome was 9.9%, 17.1%, and 7.1%, respectively. Patients with combined high levels of MCP-1 and inflammatory biomarkers had the highest risks of all-cause death and poor functional outcome. CONCLUSIONS Low plasma MCP-1 level was associated with decreased risks of all-cause mortality and poor functional outcome after ischemic stroke or transient ischemic attack. Inflammation partially mediated and jointly contributed to the associations.
Collapse
Affiliation(s)
- Qin Xu
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Yuanliang Liu
- Department of Neurology The Second People's Hospital of Guiyang Guizhou China
| | - Xue Tian
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
| | - Yijun Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China
- Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Ping Sun
- Department of Neurology The Second People's Hospital of Guiyang Guizhou China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| |
Collapse
|
8
|
Morales-Guadarrama G, Méndez-Pérez EA, García-Quiroz J, Avila E, Ibarra-Sánchez MJ, Esparza-López J, García-Becerra R, Larrea F, Díaz L. The Inhibition of the FGFR/PI3K/Akt Axis by AZD4547 Disrupts the Proangiogenic Microenvironment and Vasculogenic Mimicry Arising from the Interplay between Endothelial and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:13770. [PMID: 37762073 PMCID: PMC10531243 DOI: 10.3390/ijms241813770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.
Collapse
Affiliation(s)
- Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Edgar A. Méndez-Pérez
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - María J. Ibarra-Sánchez
- Unidad de Bioquímica Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - José Esparza-López
- Unidad de Bioquímica Dr. Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (G.M.-G.)
| |
Collapse
|
9
|
Alexander A, Herz J, Calvier L. Reelin through the years: From brain development to inflammation. Cell Rep 2023; 42:112669. [PMID: 37339050 PMCID: PMC10592530 DOI: 10.1016/j.celrep.2023.112669] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.
Collapse
Affiliation(s)
- Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Zhang M, Liu J, Mao A, Ning G, Cao Y, Zhang W, Wang Q. Tmem88 confines ectodermal Wnt2bb signaling in pharyngeal arch artery progenitors for balancing cell cycle progression and cell fate decision. NATURE CARDIOVASCULAR RESEARCH 2023; 2:234-250. [PMID: 39195996 DOI: 10.1038/s44161-023-00215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/06/2023] [Indexed: 08/29/2024]
Abstract
Pharyngeal arch artery (PAA) progenitors undergo proliferative expansion and angioblast differentiation to build vessels connecting the heart with the dorsal aortae. However, it remains unclear whether and how these two processes are orchestrated. Here we demonstrate that Tmem88 is required to fine-tune PAA progenitor proliferation and differentiation. Loss of zebrafish tmem88a/b leads to an excessive expansion and a failure of differentiation of PAA progenitors. Moreover, tmem88a/b deficiency enhances cyclin D1 expression in PAA progenitors via aberrant Wnt signal activation. Mechanistically, cyclin D1-CDK4/6 promotes progenitor proliferation through accelerating the G1/S transition while suppressing angioblast differentiation by phosphorylating Nkx2.5/Smad3. Ectodermal Wnt2bb signaling is confined by Tmem88 in PAA progenitors to ensure a balance between proliferation and differentiation. Therefore, the proliferation and angioblast differentiation of PAA progenitors manifest an inverse relationship and are delicately regulated by cell cycle machinery downstream of the Tmem88-Wnt pathway.
Collapse
Affiliation(s)
- Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
11
|
Fang B, Wang X, Sun Y, Xiong X, Meng X, Li W, Yi Z. Hypoxia-induced CCL2/CCR2 axis in adipose-derived stem cells (ADSCs) promotes angiogenesis by human dermal microvascular endothelial cells (HDMECs) in flap tissues. J Physiol Biochem 2023:10.1007/s13105-023-00944-6. [PMID: 36786974 DOI: 10.1007/s13105-023-00944-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023]
Abstract
Flap expansion has become an important method widely used in wound repair and organ reconstruction. However, distal skin flap ischemic necrosis remains a problematic complication. In this study, integrative bioinformatics analyses indicated the upregulation of C-C motif chemokine ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) in reperfusion-exposed skin flap tissues. In adipose-derived stem cells (ADSCs, CD90-positive, CD29-positive, CD34-negative, and CD106-negative) exposed to hypoxia, HIF-1α and CCL2 levels were significantly elevated. Conditioned medium (CM) from hypoxia-stimulated ADSCs promoted HDMEC proliferation, migration, and tube formation, partially inhibited by sh-CCL2-induced CCL2 knockdown or neutralized antibody-induced CCL2 depletion in ADSCs. Consistently, CCL2, CCR2, TNF-α, TLR2, and TLR4 protein levels in HDMECs were significantly increased by hypoxia-treated ADSCs CM, and partially decreased by sh-CCL2-induced CCL2 knockdown or neutralizing antibody-induced CCL2 knockdown in ADSCs. In the flap expansion model, ADSCs transplantation significantly improved flap survival and angiogenesis by endothelial cells in flap tissues, whereas CCL2 knockdown in ADSCs partially eliminated the improvement by ADSCs transplantation; overexpression of CCL2 in ADSCs further promoted the effects of ADSCs transplantation on skin flap. In conclusion, the CCL2/CCR2 axis in ADSCs could be induced by hypoxia, promoting HDMEC proliferation, migration, and tube formation and improving flap survival and angiogenesis in flap tissues.
Collapse
Affiliation(s)
- Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiancheng Wang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yang Sun
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Xiang Xiong
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianxi Meng
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhongjie Yi
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
12
|
López-Gutierrez J, Ramos-Payán R, Romero-Quintana JG, Ayala-Ham A, Castro-Salazar Y, Castillo-Ureta H, Jiménez-Gastélum G, Bermúdez M, Aguilar-Medina M. Evaluation of biocompatibility and angiogenic potential of extracellular matrix hydrogel biofunctionalized with the LL-37 peptide. Biomed Mater Eng 2023; 34:545-560. [PMID: 37393490 DOI: 10.3233/bme-230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Biomaterials must allow revascularization for a successful tissue regeneration process. Biomaterials formulated from the extracellular matrix (ECM) have gained popularity in tissue engineering because of their superior biocompatibility, and due to their rheological properties, ECM-hydrogels can be easily applied in damaged areas, allowing cell colonization and integration into the host tissue. Porcine urinary bladder ECM (pUBM) retains functional signaling and structural proteins, being an excellent option in regenerative medicine. Even some small molecules, such as the antimicrobial cathelicidin-derived LL-37 peptide have proven angiogenic properties. OBJECTIVE The objective of this study was to evaluate the biocompatibility and angiogenic potential of an ECM-hydrogel derived from the porcine urinary bladder (pUBMh) biofunctionalized with the LL-37 peptide (pUBMh/LL37). METHODS Macrophages, fibroblasts, and adipose tissue-derived mesenchymal stem cells (AD-MSC) were exposed pUBMh/LL37, and the effect on cell proliferation was evaluated by MTT assay, cytotoxicity by quantification of lactate dehydrogenase release and the Live/Dead Cell Imaging assays. Moreover, macrophage production of IL-6, IL-10, IL-12p70, MCP-1, INF-γ, and TNF-α cytokines was quantified using a bead-based cytometric array. pUBMh/LL37 was implanted directly by dorsal subcutaneous injection in Wistar rats for 24 h to evaluate biocompatibility, and pUBMh/LL37-loaded angioreactors were implanted for 21 days for evaluation of angiogenesis. RESULTS We found that pUBMh/LL37 did not affect cell proliferation and is cytocompatible to all tested cell lines but induces the production of TNF-α and MCP-1 in macrophages. In vivo, this ECM-hydrogel induces fibroblast-like cell recruitment within the material, without tissue damage or inflammation at 48 h. Interestingly, tissue remodeling with vasculature inside angioreactors was seen at 21 days. CONCLUSIONS Our results showed that pUBMh/LL37 is cytologically compatible, and induces angiogenesis in vivo, showing potential for tissue regeneration therapies.
Collapse
Affiliation(s)
- Jorge López-Gutierrez
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Jose Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Alfredo Ayala-Ham
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Yolanda Castro-Salazar
- Faculty of Odontology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Hipolito Castillo-Ureta
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - German Jiménez-Gastélum
- Faculty of Biology, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Circuito Universitario Campus I, Chihuahua, Chihuahua, México
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan, Sinaloa, México
| |
Collapse
|
13
|
Freitas-Ribeiro S, Diogo GS, Oliveira C, Martins A, Silva TH, Jarnalo M, Horta R, Reis RL, Pirraco RP. Growth Factor-Free Vascularization of Marine-Origin Collagen Sponges Using Cryopreserved Stromal Vascular Fractions from Human Adipose Tissue. Mar Drugs 2022; 20:md20100623. [PMID: 36286447 PMCID: PMC9604698 DOI: 10.3390/md20100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The successful integration of transplanted three-dimensional tissue engineering (TE) constructs depends greatly on their rapid vascularization. Therefore, it is essential to address this vascularization issue in the initial design of constructs for perfused tissues. Two of the most important variables in this regard are scaffold composition and cell sourcing. Collagens with marine origins overcome some issues associated with mammal-derived collagen while maintaining their advantages in terms of biocompatibility. Concurrently, the freshly isolated stromal vascular fraction (SVF) of adipose tissue has been proposed as an advantageous cell fraction for vascularization purposes due to its highly angiogenic properties, allowing extrinsic angiogenic growth factor-free vascularization strategies for TE applications. In this study, we aimed at understanding whether marine collagen 3D matrices could support cryopreserved human SVF in maintaining intrinsic angiogenic properties observed for fresh SVF. For this, cryopreserved human SVF was seeded on blue shark collagen sponges and cultured up to 7 days in a basal medium. The secretome profile of several angiogenesis-related factors was studied throughout culture times and correlated with the expression pattern of CD31 and CD146, which showed the formation of a prevascular network. Upon in ovo implantation, increased vessel recruitment was observed in prevascularized sponges when compared with sponges without SVF cells. Immunohistochemistry for CD31 demonstrated the improved integration of prevascularized sponges within chick chorioalantoic membrane (CAM) tissues, while in situ hybridization showed human cells lining blood vessels. These results demonstrate the potential of using cryopreserved SVF combined with marine collagen as a streamlined approach to improve the vascularization of TE constructs.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
- Correspondence:
| |
Collapse
|
14
|
Kaizu X, Ying W, Mei-fang W, Li-ming L. 1,25-dihydroxyvitamin D 3 ameliorates high glucose-mediated proliferation, migration, and MCP-1 secretion of vascular smooth muscle cells by inhibiting MAPK phosphorylation. J Int Med Res 2022. [PMCID: PMC9478726 DOI: 10.1177/03000605221121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives To explore the impacts of 1,25-dihydroxyvitamin D3
(1,25(OH)2D3) on the proliferation,
migration, and monocyte chemoattractant protein-1 (MCP-1)
secretion of vascular smooth muscle cells (VSMCs) in a high
glucose environment and its possible mechanism. Methods We extracted VSMCs from the thoracic aorta of a male Sprague–Dawley
rats before culturing them in a 25-mM glucose-containing medium
in the presence or absence of 1,25(OH)2D3
(10−9 –10−7 M). Cell proliferation
was determined by bromodeoxyuridine incorporation assays.
Subsequently, cell migratory capacity was examined by performing
a transwell assay. An enzyme-linked immunosorbent assay was
conducted to assess MCP-1 levels. Protein levels of matrix
metalloproteinase-9 (MMP-9), mitogen-activated protein kinases
(MAPKs), cyclin D1, and phosphorylated MAPKs were determined by
immunoblotting. Results 1,25(OH)2D3 significantly suppressed the
proliferation, migration, and MCP-1 secretion of VSMCs mediated
by high glucose in a dose-dependent manner, diminished the
enhanced protein expression of MMP-9 and cyclin D1, and
attenuated MAPK phosphorylation. The p38 inhibitor SB203580 and
ERK1/2 inhibitor PD98059 suppressed high glucose-mediated
upregulation of MMP-9 and cyclin D1 protein expression and MCP-1
secretion, respectively. Conclusions 1,25(OH)2D3 ameliorates high glucose-mediated
proliferation, migration, and MCP-1 secretion of VSMCs by
inhibiting MAPK phosphorylation, implying a potential
therapeutic approach using 1,25(OH)2D3 for
diabetic macrovascular complications.
Collapse
Affiliation(s)
- Xu Kaizu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Wu Ying
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Wu Mei-fang
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| | - Lin Li-ming
- Department of Cardiology, Affiliated Hospital of Putian University, The Third Clinical Medical College of Fujian Medical University, Putian, China
| |
Collapse
|
15
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
16
|
Non-Targeted Effects of Synchrotron Radiation: Lessons from Experiments at the Australian and European Synchrotrons. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Studies have been conducted at synchrotron facilities in Europe and Australia to explore a variety of applications of synchrotron X-rays in medicine and biology. We discuss the major technical aspects of the synchrotron irradiation setups, paying specific attention to the Australian Synchrotron (AS) and the European Synchrotron Radiation Facility (ESRF) as those best configured for a wide range of biomedical research involving animals and future cancer patients. Due to ultra-high dose rates, treatment doses can be delivered within milliseconds, abiding by FLASH radiotherapy principles. In addition, a homogeneous radiation field can be spatially fractionated into a geometric pattern called microbeam radiotherapy (MRT); a coplanar array of thin beams of microscopic dimensions. Both are clinically promising radiotherapy modalities because they trigger a cascade of biological effects that improve tumor control, while increasing normal tissue tolerance compared to conventional radiation. Synchrotrons can deliver high doses to a very small volume with low beam divergence, thus facilitating the study of non-targeted effects of these novel radiation modalities in both in-vitro and in-vivo models. Non-targeted radiation effects studied at the AS and ESRF include monitoring cell–cell communication after partial irradiation of a cell population (radiation-induced bystander effect, RIBE), the response of tissues outside the irradiated field (radiation-induced abscopal effect, RIAE), and the influence of irradiated animals on non-irradiated ones in close proximity (inter-animal RIBE). Here we provide a summary of these experiments and perspectives on their implications for non-targeted effects in biomedical fields.
Collapse
|
17
|
Wang Y, Yang H, Su X, Cao A, Chen F, Chen P, Yan F, Hu H. SREBP2 promotes the viability, proliferation, and migration and inhibits apoptosis in TGF-β1-induced airway smooth muscle cells by regulating TLR2/NF-κB/NFATc1/ABCA1 regulatory network. Bioengineered 2022; 13:3137-3147. [PMID: 35037821 PMCID: PMC8973716 DOI: 10.1080/21655979.2022.2026550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Asthma is a respiratory disease with complex pathogenesis. Sterol-responsive element-binding proteins 2 (SREBP2) was found to bind to promoter sequences of ABCA1 to suppress ABCA1 promoter activity. This study aimed to explore the expression level of SREBP2 and ATP-binding cassette transporter A1 (ABCA1), and their effects on the development of airway smooth muscle cells (ASMCs) in asthma. ASMCs were treated with different concentrations of TGF-β1 (0, 0.5, 1, 5 and 10 ng/mL). Short hairpin SREBP2 (shSREBP2), SREBP2, shABCA1 or ABCA1 were transfected into ASMCs. Cell viability, proliferation, apoptosis, migration, and the expression of SREBP2, ABCA1 and related pathway proteins were detected by MTT assay, Brdu staining, flow cytometer, Transwell assay, qRT-PCR, and Western blotting, respectively. The results showed that TGF-β1 increased the viability, proliferation, migration and inhibited apoptosis in ASMCs. Moreover, TGF-β1 also decreased the expression of ABCA1, cleaved caspase-3, cleaved PARP, E-cadherin, and increased the expression of vimentin, TLR2, p-p65 and NFATc1. SREBP2 knockdown alleviated these TGF-β1-induced changes. SREBP2 overexpression inhibited ABCA1 expression and apoptosis, and promoted cell migration and the expression of TLR2, p-p65, NFATc1 in ASMCs. ABCA1 overexpression alleviated these SREBP2-induced promoting and inhibition effects. In conclusion, SREBP2 activates TLR2/NF-κB/NFATc1 regulatory network and promotes TGF-β1-induced cell movement through inhibiting ABCA1 expression.
Collapse
Affiliation(s)
- Yuebin Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China
| | - Xian Su
- Department of Respiratory and Critical Care Medicine, Chengdu Third People's Hospital, Chengdu, China
| | - Anqiang Cao
- Department of Cardiothoracic Surgery, Meishan People's Hospital, Meishan, China
| | - Feng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Peng Chen
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Fangtao Yan
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| | - Huirong Hu
- Department of Cardiothoracic Surgery, Chengdu Third People's Hospital, Chengdu, China
| |
Collapse
|
18
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
19
|
You YK, Wu WF, Huang XR, Li HD, Ren YP, Zeng JC, Chen H, Lan HY. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. Int J Biol Sci 2021; 17:3911-3922. [PMID: 34671208 PMCID: PMC8495386 DOI: 10.7150/ijbs.62929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China.,Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Di Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Cheng Zeng
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Adult Human Multipotent Neural Cells Could Be Distinguished from Other Cell Types by Proangiogenic Paracrine Effects via MCP-1 and GRO. Stem Cells Int 2021; 2021:6737288. [PMID: 34434240 PMCID: PMC8380502 DOI: 10.1155/2021/6737288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Adult human multipotent neural cells (ahMNCs) are unique cells derived from adult human temporal lobes. They show multipotent differentiation potentials into neurons and astrocytes. In addition, they possess proangiogenic capacities. The objective of this study was to characterize ahMNCs in terms of expression of cell type-specific markers, in vitro differentiation potentials, and paracrine factors compared with several other cell types including fetal neural stem cells (fNSCs) to provide detailed molecular and functional features of ahMNCs. Interestingly, the expression of cell type-specific markers of ahMNCs could not be differentiated from those of pericytes, mesenchymal stem cells (MSCs), or fNSCs. In contrast, differentiation potentials of ahMNCs and fNSCs into neural cells were higher than those of other cell types. Compared with MSCs, ahMNCs showed lower differentiation capacities into osteogenic and adipogenic cells. Moreover, ahMNCs uniquely expressed higher levels of MCP-1 and GRO family paracrine factors than fNSCs and MSCs. These high levels of MCP-1 and GRO family mediated in vivo proangiogenic effects of ahMNCs. These results indicate that ahMNCs have their own distinct characteristics that could distinguish ahMNCs from other cell types. Characteristics of ahMNCs could be utilized further in the preclinical and clinical development of ahMNCs for regenerative medicine. They could also be used as experimental references for other cell types including fNSCs.
Collapse
|
21
|
Wang R, Xu Y, Niu C, Gao X, Xu X. A Novel Small Peptide H-KI20 Inhibits Retinal Neovascularization Through the JNK/ATF2 Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33439229 PMCID: PMC7814360 DOI: 10.1167/iovs.62.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Abundant evidence has shown benefits of antivascular endothelial growth factor (anti-VEGF) therapies in neovascular eye diseases. However, the high cost, side effects, and inconvenience of frequent injections demand alternative novel drug candidates. This study aimed to analyze antiangiogenic effects of peptide H-KI20 and illustrated signaling mechanisms. Methods Live cell culture and tracing, wound healing assay, and tube formation were performed in human retinal microvascular endothelial cells (HRECs). The chick embryo chorioallantoic membrane and mouse oxygen-induced ischemic retinopathy model were applied to examine the effects of H-KI20 in vivo. The intracellular signaling pathways were examined. Molecular docking and surface plasmon resonance assay were used to validate the direct interaction of H-KI20 and c-Jun N-terminal kinase 2 (JNK2). Results H-KI20 had high penetration ability in vitro and in vivo. It inhibited motility, migration, and tube formation of HRECs, without cytotoxicity, and inhibited angiogenesis in vivo. Furthermore, H-KI20 treatment reduced the phosphorylation level of activating transcription factor 2 (ATF2) stimulated by VEGF via downregulating p-JNK. H-KI20 bound to JNK2 directly with a dissociation constant value of 83.68 µM. The knockdown of ATF2 attenuated VEGF-induced tube formation and decreased the movement speed of HRECs. Conclusions H-KI20 inhibited angiogenesis both in vitro and in vivo. The ratios of p-ATF2/ATF2 and p-JNK/JNK stimulated by VEGF were decreased by H-KI20, and H-KI20 targeted JNK2 directly. In addition, the pivotal role of ATF2 in VEGF-induced retinal neovascularization was elucidated for the first time. Taken together, H-KI20 displays potential for pathological retinal angiogenesis as a sustained and low-toxic peptide.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yi Xu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xihui Gao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
22
|
Zhang LL, Xiong YY, Yang YJ. The Vital Roles of Mesenchymal Stem Cells and the Derived Extracellular Vesicles in Promoting Angiogenesis After Acute Myocardial Infarction. Stem Cells Dev 2021; 30:561-577. [PMID: 33752473 DOI: 10.1089/scd.2021.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is an event of ischemic myocardial necrosis caused by acute coronary artery occlusion, which ultimately leads to a large loss of cardiomyocytes. The prerequisite of salvaging ischemic myocardium and improving cardiac function of patients is to provide adequate blood perfusion in the infarcted area. Apart from reperfusion therapy, it is also urgent and imperative to promote angiogenesis. Recently, growing evidence based on promising preclinical data indicates that mesenchymal stem cells (MSCs) can provide therapeutic effects on AMI by promoting angiogenesis. Extracellular vesicles (EVs), membrane-encapsulated vesicles with complex cargoes, including proteins, nucleic acids, and lipids, can be derived from MSCs and represent part of their functions, so EVs also possess the ability to promote angiogenesis. However, poor control of the survival and localization of MSCs hindered clinical transformation and made scientists start looking for new approaches based on MSCs. Identifying the role of MSCs and their derived EVs in promoting angiogenesis can provide a theoretical basis for improved MSC-based methods, and ultimately promote the clinical treatment of AMI. This review highlights potential proangiogenic mechanisms of transplanted MSCs and the derived EVs after AMI and summarizes the latest literature concerning the novel methods based on MSCs to maximize the angiogenesis capability.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Zhou Y, Little PJ, Xu S, Kamato D. Curcumin Inhibits Lysophosphatidic Acid Mediated MCP-1 Expression via Blocking ROCK Signalling. Molecules 2021; 26:2320. [PMID: 33923651 PMCID: PMC8073974 DOI: 10.3390/molecules26082320] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Curcumin is a natural compound that has been widely used as a food additive and medicine in Asian countries. Over several decades, diverse biological effects of curcumin have been elucidated, such as anti-inflammatory and anti-oxidative activities. Monocyte chemoattractant protein-1 (MCP-1) is a key inflammatory marker during the development of atherosclerosis, and curcumin blocks MCP-1 expression stimulated by various ligands. Hence, we studied the action of curcumin on lysophosphatidic acid (LPA) mediated MCP-1 expression and explored the specific underlying mechanisms. In human vascular smooth muscle cells, LPA induces Rho-associated protein kinase (ROCK) dependent transforming growth factor receptor (TGFBR1) transactivation, leading to glycosaminoglycan chain elongation. We found that LPA also signals via the TGFBR1 transactivation pathway to regulate MCP-1 expression. Curcumin blocks LPA mediated TGFBR1 transactivation and subsequent MCP-1 expression by blocking the ROCK signalling. In the vasculature, ROCK signalling regulates smooth muscle cell contraction, inflammatory cell recruitment, endothelial dysfunction and vascular remodelling. Therefore, curcumin as a ROCK signalling inhibitor has the potential to prevent atherogenesis via multiple ways.
Collapse
Affiliation(s)
- Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
| | - Peter J. Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230037, China;
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Y.Z.); (D.K.)
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
24
|
Identification of Angiogenic Cargo in Extracellular Vesicles Secreted from Human Adipose Tissue-Derived Stem Cells and Induction of Angiogenesis In Vitro and In Vivo. Pharmaceutics 2021; 13:pharmaceutics13040495. [PMID: 33916460 PMCID: PMC8066163 DOI: 10.3390/pharmaceutics13040495] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is defined as the generation of new blood vessels or the sprouting of endothelial cells from a pre-existing vascular network. Angiogenesis occurs during the growth and development of an organism, the response of organs or tissues to injury, and during cancer development and progression. The majority of studies on stem-cell-derived extracellular vesicles (EVs) have used cell lines, and have primarily focused on well-known solitary proteins. Here, we isolated stem cells from human adipose tissue (ADSCs), and we isolated EVs from them (ADSC-EVs). The ADSC-EVs were characterised and 20 angiogenic proteins were analysed using an angiogenic antibody array. Furthermore, we analysed the ability of ADSC-EVs to induce angiogenesis in vitro and in vivo. ADSC-EVs were positive for CD81 and negative for GM130, calnexin, and cytochrome-C. ADSC-EVs showed typical EV spherical morphology and were ~200 nm in size. ADSC-EVs were found to contain angiogenic proteins as cargo, among which interleukin 8 (IL-8) was the most abundant, followed by chemokine (C-C motif) ligand 2 (CCL2), a tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2, and vascular endothelial growth factor-D (VEGF-D). ADSC-EVs treatment increased the proliferation, migration, total vessel length, total number of junctions, and junction density of endothelial cells in vitro. The results of an in vivo Matrigel plug assay revealed that ADSC-EVs induced more blood vessels in the Matrigel compared with the control. These results demonstrate that ADSC-EVs contain angiogenic proteins as cargo and promote angiogenesis in vitro and in vivo. Therefore, ADSC-EVs have potential for therapeutic use in ischaemia.
Collapse
|
25
|
Li L, Ren S, Hao X, Zhen Z, Ji L, Ji H. MicroRNA-29b inhibits human vascular smooth muscle cell proliferation via targeting the TGF-β/Smad3 signaling pathway. Exp Ther Med 2021; 21:492. [PMID: 33791001 PMCID: PMC8005700 DOI: 10.3892/etm.2021.9923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Intracranial aneurysms (IAs) are bulges of blood vessels in the cerebral area. The development and progression of IAs are associated with the proliferation of vascular smooth muscle cells (VSMCs) during phenotypic modulation under environmental cues. MicroRNA-29b (miR-29b) has been studied extensively and demonstrated to reduce cell proliferation in various diseases by binding to the 3'-untranslated region (3'-UTR) of a variety of target messenger RNAs (mRNAs), thereby inhibiting their translation. The present study aimed to investigate the role of miR-29b on the proliferation of VSMCs and human umbilical artery smooth muscle cells. The results indicated that the overexpression of miR-29b reduced cell migration and proliferation. Western blotting results indicated that this effect may be attributed to the attenuation of a signaling pathway involving transforming growth factor β (TGF-β) and Smad3 proteins. Luciferase assay confirmed the binding of miR-29b to TGF-β1 and the knockdown of TGF-β1 reduced miR-29b inhibitor-induced cell migration. The present study indicates that miR-29b downregulates the expression of TGF-β1 by targeting the 3'-UTR of its mRNA and modulates cell migration and proliferation via the TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Lirong Li
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Shaohua Ren
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Xudong Hao
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Zigang Zhen
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Lei Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | - Hongming Ji
- Department of Neurosurgery of Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
26
|
Dong L, Li JC, Hu ZJ, Huang XR, Wang L, Wang HL, Ma RCW, Lan HY, Yang SJ. Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. J Cell Mol Med 2021; 25:4860-4869. [PMID: 33733577 PMCID: PMC8107104 DOI: 10.1111/jcmm.16464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF‐β/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT‐db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO‐db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2‐mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF‐kB‐driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3‐dependent miRNAs by up‐regulating cardiac miR‐29b while suppressing miR‐21 to exhibit the cardioprotective effect on Smad3KO‐db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.
Collapse
Affiliation(s)
- Li Dong
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Chun Li
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Jing Hu
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-Jin Yang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Yamanaka Y, Gingery A, Oki G, Yang TH, Zhao C, Amadio PC. Effect of a monocyte chemoattractant protein-1 synthesis inhibitor on fibroblasts from patients with carpal tunnel syndrome. J Orthop Sci 2021; 26:295-299. [PMID: 32317146 PMCID: PMC7572818 DOI: 10.1016/j.jos.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Carpal Tunnel Syndrome (CTS) is an idiopathic fibrotic disorder. Fibrosis in the subsynovial connective tissues (SSCT) of CTS and many other fibrotic diseases is mediated by Transforming growth factor β (TGF-β). Recently monocyte chemoattractant protein-1 (MCP-1) a cytokine involved in cellular recruitment has been suggested to regulate TGF-β activity. It is related to the onset of diseases which are caused by fibrosis, such as idiopathic pulmonary fibrosis, renal fibrosis, and systemic scleroderma. In this study, we evaluated the effect of the MCP-1 synthesis inhibitor, Bindarit, on primary cultures of fibroblasts from the SSCT of five CTS patients. METHODS Fibroblasts were treated with Bindarit (10 μM, 50 μM, 100 μM, or 300 μM). Responses to inhibitors were evaluated by regulation of CTS fibrosis-associated genes, fibrosis gene array and Smad luciferase reporter assay. We also assessed the combination effect of Bindarit and SD208, a TGF-β receptor type 1 inhibitor on TGF-β signaling. RESULTS Collagen type III A1 (Col3), connective tissue growth factor (CTGF), and SERPINE1 expression were significantly down-regulated by Bindarit (300 μM) compared to vehicle control. In the fibrosis array, expression of inhibin beta E chain precursor (INHBE), beta actin (ACTB), endothelin 1 (EDN1) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) were significantly down-regulated, and integrin beta-3 (ITGB3) was significantly up-regulated by Bindarit (300 μM). Smad signal transduction activation was significantly down-regulated by Bindarit (300 μM) and/or SD208 (1 μM) with TGF-β1 compared to vehicle control with TGF-β1. CONCLUSIONS These results suggest that Bindarit in combination with SD208 may be beneficial as medical therapy for the SSCT fibrosis associated with CTS.
Collapse
Affiliation(s)
- Yoshiaki Yamanaka
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Gosuke Oki
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Tai-Hua Yang
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Peter C Amadio
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA,Corresponding Author: Peter C. Amadio, MD, Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA, Phone: 507-538-1717; Fax: 507-284-5392,
| |
Collapse
|
28
|
Twaroski K, Chen W, Pickett-Leonard M, Tolar J. Role of transforming growth factor-β1 in recessive dystrophic epidermolysis bullosa squamous cell carcinoma. Exp Dermatol 2021; 30:664-675. [PMID: 33595864 DOI: 10.1111/exd.14304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/28/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Squamous cell carcinoma (SCC) develops in more than 80% of individuals with the skin blistering disorder recessive dystrophic epidermolysis bullosa (RDEB). In contrast with UV-induced SCC, RDEB-SCC results from skin damage and has a high proliferative and metastatic rate with 5-year survival near zero. Our objective is to determine the mechanisms underlying the increased metastatic tendencies of RDEB-SCC. RDEB-SCC cultured cell lines were treated with RDEB and non-RDEB fibroblast conditioned media and assayed for migration and invasion with and without small molecule inhibitors for TGFβ and other downstream signal transduction pathways. TGFβ1 secreted by RDEB dermal fibroblasts has been found to induce migration and invasion and to increase expression of epithelial-to-mesenchymal transition markers in an RDEB-SCC line. These effects were reversed upon inhibition of TGFβ signalling and its downstream pathways MEK/ERK, P38 kinase and SMAD3. A number of small molecule inhibitors for these pathways are in different phases of various clinical trials and may be applicable to RDEB-SCC patients. Studying the mechanisms of the extreme form RDEB-SCC may inform studies of other types of SCC, as well as lead to better therapies for RDEB patients.
Collapse
Affiliation(s)
- Kirk Twaroski
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Michael Pickett-Leonard
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.,Department of Pediatrics, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Raina N, Rani R, Gupta M. Angiogenesis: Aspects in wound healing. ENDOTHELIAL SIGNALING IN VASCULAR DYSFUNCTION AND DISEASE 2021:77-90. [DOI: 10.1016/b978-0-12-816196-8.00010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Zhao C, Zuckerman ST, Cai C, Kilari S, Singh A, Simeon M, von Recum HA, Korley JN, Misra S. Periadventitial Delivery of Simvastatin-Loaded Microparticles Attenuate Venous Neointimal Hyperplasia Associated With Arteriovenous Fistula. J Am Heart Assoc 2020; 9:e018418. [PMID: 33283594 PMCID: PMC7955373 DOI: 10.1161/jaha.120.018418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Venous neointimal hyperplasia and venous stenosis (VS) formation can result in a decrease in arteriovenous fistula (AVF) patency in patients with end‐stage renal disease. There are limited therapies that prevent VNH/VS. Systemic delivery of simvastatin has been shown to reduce VNH/VS but local delivery may help decrease the side effects associated with statin use. We determined if microparticles (MP) composed of cyclodextrins loaded with simvastatin (MP‐SV) could reduce VS/VNH using a murine arteriovenous fistula model with chronic kidney disease. Methods and Results Male C57BL/6J mice underwent nephrectomy to induce chronic kidney disease. Four weeks later, an arteriovenous fistula was placed and animals were randomized to 3 groups: 20 μL of PBS or 20 μL of PBS with 16.6 mg/mL of either MP or MP‐SV. Animals were euthanized 3 days later and the outflow veins were harvested for quantitative reverse transcriptase–polymerase chain reaction analysis and 28 days later for immunohistochemistical staining with morphometric analysis. Doppler ultrasound was performed weekly. Gene expression of vascular endothelial growth factor‐A (Vegf‐A), matrix metalloproteinase‐9 (Mmp‐9), transforming growth factor beta 1 (Tgf‐β1), and monocyte chemoattractant protein‐1 (Mcp‐1) were significantly decreased in MP‐SV treated vessels compared with controls. There was a significant decrease in the neointimal area, cell proliferation, inflammation, and fibrosis, with an increase in apoptosis and peak velocity in MP‐SV treated outflow veins. MP‐SV treated fibroblasts when exposed to hypoxic injury had decreased gene expression of Vegf‐A and Mmp‐9. Conclusions In experimental arteriovenous fistulas, periadventitial delivery of MP‐SV decreased gene expression of Vegf‐A, Mmp‐9, Tgf‐β1 and Mcp‐1, VNH/VS, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery The Second Xiangya HospitalCentral South University Changsha Hunan China
| | | | - Chuanqi Cai
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Avishek Singh
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Michael Simeon
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Horst A von Recum
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH
| | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN
| |
Collapse
|
31
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
32
|
Meng J, Qin Y, Chen J, Wei L, Huang XR, Yu X, Lan HY. Treatment of Hypertensive Heart Disease by Targeting Smad3 Signaling in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:791-802. [PMID: 32953930 PMCID: PMC7475647 DOI: 10.1016/j.omtm.2020.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor β (TGF-β)/Smad3 signaling plays a central role in chronic heart disease. Here, we report that targeting Smad3 with a Smad3 inhibitor SIS3 in an established mouse model of hypertension significantly improved cardiac dysfunctions by preserving the left ventricle (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS), while reducing the LV mass. In addition, SIS3 treatment also halted the progression of myocardial fibrosis by blocking α-smooth muscle actin-positive (α-SMA+) myofibroblasts and collagen matrix accumulation, and inhibited cardiac inflammation by suppressing interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP1), intercellular cell adhesion molecule-1 (ICAM1) expression, and infiltration of CD3+ T cells and F4/80+ macrophages. Interestingly, treatment with SIS3 did not alter levels of high blood pressure, revealing a blood pressure-independent cardioprotective effect of SIS3. Mechanistically, treatment with SIS3 not only directly inactivated TGF-β/Smad3 signaling but also protected cardiac Smad7 from Smurf2-mediated proteasomal ubiquitin degradation. Because Smad7 functions as an inhibitor for both TGF-β/Smad and nuclear factor κB (NF-κB) signaling, increased cardiac Smad7 could be another mechanism through which SIS3 treatment blocked Smad3-mediated myocardial fibrosis and NF-κB-driven cardiac inflammation. In conclusion, SIS3 is a therapeutic agent for hypertensive heart disease. Results from this study demonstrate that targeting Smad3 signaling with SIS3 may be a novel and effective therapy for chronic heart disease.
Collapse
Affiliation(s)
- Jinxiu Meng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyan Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzhe Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihua Wei
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020; 8:605. [PMID: 32733895 PMCID: PMC7360684 DOI: 10.3389/fcell.2020.00605] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) – particularly by cancer-associated fibroblasts – on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
34
|
Robbins CB, Feng HL, Fekrat S. Quiescent Neovascular Age-Related Macular Degeneration After Endophthalmitis. JOURNAL OF VITREORETINAL DISEASES 2020; 4:300-305. [PMID: 37009179 PMCID: PMC9976098 DOI: 10.1177/2474126420914282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose:This article describes eyes that achieved extended remission of neovascular age-related macular degeneration (NVAMD) following acute endophthalmitis.Methods:Adults who presented to the Duke Eye Center with acute endophthalmitis over a 9-year period and had at least 3 months of follow-up were identified. A retrospective review of medical records was performed to collect clinical data including demographic information, examination findings, etiology, treatment, and outcomes.Results:A total of 133 eyes of 130 patients with endophthalmitis were identified. Of these, 15 eyes of 14 patients (11.3%) were receiving intravitreal antivascular endothelial growth factor (anti-VEGF) injections for NVAMD. Six of these 15 eyes (40%) did not require an anti-VEGF injection after endophthalmitis for a mean of 36.2 months. Endophthalmitis was injection-related in 5 of 6 eyes (83%) and Baerveldt glaucoma drainage device–related in 1 of 6 eyes (17%). Two of the 6 (33%) had culture-proven infectious endophthalmitis, whereas 4 of 6 (67%) had culture-negative endophthalmitis. Five of 6 eyes have required no anti-VEGF therapy to date; the remaining eye restarted intravitreal aflibercept therapy 9.3 months after endophthalmitis.Conclusions:Acute endophthalmitis may be associated with reduced activity of choroidal neovascularization in a subset of eyes with NVAMD.
Collapse
Affiliation(s)
- Cason B. Robbins
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - Henry L. Feng
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - Sharon Fekrat
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
35
|
Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, Li YK, Xiao J, Han Q, Wu Q. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep 2020; 40:BSR20200265. [PMID: 32149326 PMCID: PMC7087324 DOI: 10.1042/bsr20200265] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and one of the leading causes of cancer-related death among men worldwide. CRC is a multifactor digestive pathology, which is a huge problem faced not only by clinicians but also by researchers. Importantly, a unique feature of CRC is the dysregulation of molecular signaling pathways. To date, a series of reviews have indicated that different signaling pathways are disordered and have potential as therapeutic targets in CRC. Nevertheless, an overview of the function and interaction of multiple signaling pathways in CRC is needed. Therefore, we summarized the pathways, biological functions and important interactions involved in CRC. First, we investigated the involvement of signaling pathways, including Wnt, PI3K/Akt, Hedgehog, ErbB, RHOA, Notch, BMP, Hippo, AMPK, NF-κB, MAPK and JNK. Subsequently, we discussed the biological function of these pathways in pathophysiological aspects of CRC, such as proliferation, apoptosis and metastasis. Finally, we summarized important interactions among these pathways in CRC. We believe that the interaction of these pathways could provide new strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Mao-lin Wan
- Department of Hepatobiliary and Pancreatic Surgery, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bo Deng
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bi-sheng Zhu
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| |
Collapse
|
36
|
Wang J, Chen X, Yang X, Guo B, Li D, Zhu X, Zhang X. Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2020; 108:1305-1320. [PMID: 32064734 DOI: 10.1002/jbm.a.36903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Recently, researches have confirmed the crucial role of inflammatory response in Ca-P ceramic-induced osteogenesis, however, the underlying mechanism has not yet been fully understood. In this study, BCP and β-TCP ceramics were used as material models to investigate the effect of physicochemical properties on inflammatory response in vitro. The results showed that BCP and β-TCP could support macrophages attachment, proliferation, and spreading favorably, as well as promote gene expressions of inflammatory related cytokines (IL-1, IL-6, MCP-1, and TNF-α) and growth factors (TGF-β, FGF, PDGF, VEGF, IGF, and EGF). BCP showed a facilitating function on the gene expressions earlier than β-TCP. Further coculture experiments performed in vitro demonstrated that the CMs containing various increased cytokines for macrophages pre-culture could significantly promote MSCs osteogenic differentiation, which was confirmed by the gene expressions of osteogenic specific markers and the intracellular OCN product accumulation under the stimulation of BCP and β-TCP ceramics. Further evidence was found from the formation of mineralized nodules in BCM and TCM. In addition, this study showed a concise relationship between Ca-P ceramic induced inflammation and its osteoinductivity that the increased cytokines and growth factors from macrophages could promote MSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Danyang Li
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Xu BH, Sheng J, You YK, Huang XR, Ma RCW, Wang Q, Lan HY. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism 2020; 103:154013. [PMID: 31734275 DOI: 10.1016/j.metabol.2019.154013] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β/Smad3 signaling is highly activated in kidneys of patients with type 2 diabetic nephropathy (T2DN), however, the precise role of Smad3 in the pathogenesis of diabetic nephropathy remains unclear. METHODS Smad3 knockout (KO)-db/db mice were generated by intercrossing of male and female double-heterozygous Smad3+/- db/m mice. Renal functions including urinary albumin excretion and serum creatinine were determined. Renal histological injury including renal fibrosis and inflammation were examined by periodic acid Schiff (PAS), periodic acid-silver methenamine (PASM), and immunohistochemistry (IHC) staining. RESULTS Smad3 knockout (KO)-db/db mice were protected from the development of diabetic kidney injury, characterized by the normal levels of urinary albumin excretion and serum creatinine without any evidence for renal fibrosis and inflammation. In contrast, Smad3 wild-type (WT) db/db and Smad3+/- db/db mice developed progressively decline in renal function over the 12 to 32-week time course, including increased microalbuminuria and elevated levels of serum creatinine. Pathologically, Smad3 WT db/db and Smad3+/- db/db mice exhibited a marked deposition of collagen-I (colI), collagen-IV(col-IV), and an increased infiltration of F4/80+ macrophages in kidney. Mechanistically, Smad3 deficiency decreased the lncRNA Erbb4-IR transcription, while increased miR-29b transcription and therefore protected the kidney from progressive renal injury in db/db mice. CONCLUSION Results from this study imply that Smad3 may represent as a novel and effective therapeutic target for T2DN.
Collapse
Affiliation(s)
- Bi-Hua Xu
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China; Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingyi Sheng
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Ke You
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ronald C W Ma
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingwen Wang
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Chi Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China..
| | - Hui-Yao Lan
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
38
|
Lee SJ, Lee CR, Kim KJ, Ryu YH, Kim E, Han YN, Moon SH, Rhie JW. Optimal Condition of Isolation from an Adipose Tissue-Derived Stromal Vascular Fraction for the Development of Automated Systems. Tissue Eng Regen Med 2020; 17:203-208. [PMID: 31997256 DOI: 10.1007/s13770-019-00238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The stromal vascular fraction (SVF) isolated from adipose tissue, which contains stem cells as well as other cell types, has been applied in various research fields. Although different enzymatic concentrations and treatment durations have been applied to isolate the SVF, optimal conditions have not been established. Thus, we aimed to establish the optimal conditions for isolation of the SVF from adipose tissue by automated systems. METHODS The SVF was collected from removed adipose tissues of five donors during surgery. The SVF was treated with 0.1% or 0.2% collagenase type I for 20, 40, or 60 min. Then, colony forming unit (CFU) assays and flow cytometry were performed to characterize the adipose stem cells (ASCs). A cytokine array was used to investigate the correlation between colony-formation ability and the secretion of isolated ASCs. RESULTS Treatment with 0.1% collagenase type I for 60 min resulted in a higher SVF yield, whereas treatment with 0.1% collagenase for 40 min resulted in higher CFU values. In addition, expression of interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 in the SVF was higher in the high-CFU group than in the low-CFU group. CONCLUSION The optimal conditions for isolation of the SVF from adipose tissue were treatment with 0.1% collagenase type I for 40 min. We identified the conditions required for efficient SVF isolation based on high CFU values, and our results will facilitate the development of automated systems.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Chae Rim Lee
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ki Joo Kim
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeon Hee Ryu
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Eunjin Kim
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yu Na Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Suk-Ho Moon
- Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jong-Won Rhie
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Plastic and Reconstructive Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
39
|
Teixeira AF, Ten Dijke P, Zhu HJ. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front Cell Dev Biol 2020. [PMID: 32733895 DOI: 10.3389/fcell.2020.00605.pmid:32733895;pmcid:pmc7360684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Metastasis is the leading cause of death for cancer patients. During cancer progression, the initial detachment of cells from the primary tumor and the later colonization of a secondary organ are characterized as limiting steps for metastasis. Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are opposite dynamic multistep processes that enable these critical events in metastasis by altering the phenotype of cancer cells and improving their ability to migrate, invade and seed at distant organs. Among the molecular pathways that promote tumorigenesis in late-stage cancers, transforming growth factor-β (TGF-β) is described as an EMT master inducer by controlling different genes and proteins related to cytoskeleton assembly, cell-cell attachment and extracellular matrix remodeling. Still, despite the successful outcomes of different TGF-β pharmacological inhibitors in cell culture (in vitro) and animal models (in vivo), results in cancer clinical trials are poor or inconsistent at least, highlighting the existence of crucial components in human cancers that have not been properly explored. Here we review most recent findings to provide perspectives bridging the gap between on-target anti-TGF-β therapies in vitro and in pre-clinical models and the poor clinical outcomes in treating cancer patients. Specifically, we focus on (i) the dual roles of TGF-β signaling in cancer metastasis; (ii) dynamic signaling; (iii) functional differences of TGF-β free in solution vs. in exosomes; (iv) the regulatory effects of tumor microenvironment (TME) - particularly by cancer-associated fibroblasts - on TGF-β signaling pathway. Clearly identifying and establishing those missing links may provide strategies to revitalize and clinically improve the efficacy of TGF-β targeted therapies.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Hong-Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
40
|
Quade M, Münch P, Lode A, Duin S, Vater C, Gabrielyan A, Rösen‐Wolff A, Gelinsky M. The Secretome of Hypoxia Conditioned hMSC Loaded in a Central Depot Induces Chemotaxis and Angiogenesis in a Biomimetic Mineralized Collagen Bone Replacement Material. Adv Healthc Mater 2020; 9:e1901426. [PMID: 31830380 DOI: 10.1002/adhm.201901426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Indexed: 12/18/2022]
Abstract
The development of biomaterials with intrinsic potential to stimulate endogenous tissue regeneration at the site of injury is a main demand on future implants in regenerative medicine. For critical-sized bone defects, an in situ tissue engineering concept is devised based on biomimetic mineralized collagen scaffolds. These scaffolds are functionalized with a central depot loaded with a signaling factor cocktail, obtained from secretome of hypoxia-conditioned human mesenchymal stem cells (MSC). Therefore, hypoxia-conditioned medium (HCM)-production is standardized and adapted to achieve high signaling factor-yields; a concentration protocol based on dialysis and freeze-drying is established to enable the integration of sufficient and defined amounts into the depot. In humid milieu-as after implantation-signaling factors are released by forming a chemotactic gradient, inducing a directed migration of human bone marrow stroma cells (hBMSC) into the scaffold. Angiogenic potential, determined by coculturing human umbilical vein endothelial cells (HUVEC) with osteogenically induced hBMSC shows prevascular structures, which sprout throughout the interconnected pores in a HCM-concentration-dependent manner. Retarded release by alginate-based (1 vol%) depots, significantly improves sprouting-depth and morphology of tubular structures. With the intrinsic potential to supply attracted cells with oxygen and nutrients, this bioactive material system has great potential for clinical translation.
Collapse
Affiliation(s)
- Mandy Quade
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Pina Münch
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Corina Vater
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
- University Centre of Orthopaedica and TraumatologyFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anastasia Gabrielyan
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Angela Rösen‐Wolff
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
41
|
Examining multiple cellular pathways at once using multiplex hextuple luciferase assaying. Nat Commun 2019; 10:5710. [PMID: 31836712 PMCID: PMC6911020 DOI: 10.1038/s41467-019-13651-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023] Open
Abstract
Sensitive simultaneous assessment of multiple signaling pathways within the same cells requires orthogonal reporters that can assay over large dynamic ranges. Luciferases are such genetically encoded candidates due to their sensitivity, versatility, and cost-effectiveness. We expand luciferase multiplexing in post-lysis endpoint luciferase assays from two to six. Light emissions are distinguished by a combination of distinct substrates and emission spectra deconvolution. All six luciferase reporter units are stitched together into one plasmid facilitating delivery of all reporter units through a process we termed solotransfection, minimizing experimental errors. We engineer a multiplex hextuple luciferase assay to probe pathway fluxes through five transcriptional response elements against a control constitutive promoter. We can monitor effects of siRNA, ligand, and chemical compound treatments on their target pathways along with the four other probed cellular pathways. We demonstrate the effectiveness and adaptiveness of multiplex luciferase assaying, and its broad application across different research fields. Multiplexed detection of luciferase-based sensors in the same sample is challenging and limited by the substrates’ emission spectra. Here the authors establish a system based on three different luciferases and sequential detection to achieve measurements of up to six parameters within the same experiment.
Collapse
|
42
|
Chompre G, Martinez-Orengo N, Cruz M, Porter JT, Noel RJ. TGFβRI antagonist inhibits HIV-1 Nef-induced CC chemokine family ligand 2 (CCL2) in the brain and prevents spatial learning impairment. J Neuroinflammation 2019; 16:262. [PMID: 31829243 PMCID: PMC6905066 DOI: 10.1186/s12974-019-1664-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive disorders (HAND) progression is related to continued inflammation despite undetectable viral loads and may be caused by early viral proteins expressed by latently infected cells. Astrocytes represent an HIV reservoir in the brain where the early viral neurotoxin negative factor (Nef) is produced. We previously demonstrated that astrocytic expression of Nef in the hippocampus of rats causes inflammation, macrophage infiltration, and memory impairment. Since these processes are affected by TGFβ signaling pathways, and TGFβ-1 is found at higher levels in the central nervous system of HIV-1+ individuals and is released by astrocytes, we hypothesized a role for TGFβ-1 in our model of Nef neurotoxicity. METHODS To test this hypothesis, we compared cytokine gene expression by cultured astrocytes expressing Nef or green fluorescent protein. To determine the role of Nef and a TGFβRI inhibitor on memory and learning, we infused astrocytes expressing Nef into the hippocampus of rats and then treated them daily with an oral dose of SD208 (10 mg/kg) or placebo for 7 days. During this time, locomotor activity was recorded in an open field and spatial learning tested in the novel location recognition paradigm. Postmortem tissue analyses of inflammatory and signaling molecules were conducted using immunohistochemistry and immunofluorescence. RESULTS TGFβ-1 was induced in cultures expressing Nef at 24 h followed by CCL2 induction which was prevented by blocking TGFβRI with SD208 (competitive inhibitor). Interestingly, Nef seems to change the TGFβRI localization as suggested by the distribution of the immunoreactivity. Nef caused a deficit in spatial learning that was recovered upon co-administration of SD208. Brain tissue from Nef-treated rats given SD208 showed reduced CCL2, phospho-SMAD2, cluster of differentiation 163 (CD163), and GFAP immunoreactivity compared to the placebo group. CONCLUSIONS Consistent with our previous findings, rats treated with Nef showed deficits in spatial learning and memory in the novel location recognition task. In contrast, rats treated with Nef + SD208 showed better spatial learning suggesting that Nef disrupts memory formation in a TGFβ-1-dependent manner. The TGFβRI inhibitor further reduced the induction of inflammation by Nef which was concomitant with decreased TGFβ signaling. Our findings suggest that TGFβ-1 signaling is an intriguing target to reduce neuroHIV.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Neysha Martinez-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Myrella Cruz
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - James T Porter
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Richard J Noel
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA.
| |
Collapse
|
43
|
King Thomas J, Mir H, Kapur N, Singh S. Racial Differences in Immunological Landscape Modifiers Contributing to Disparity in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121857. [PMID: 31769418 PMCID: PMC6966521 DOI: 10.3390/cancers11121857] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer affects African Americans disproportionately by exhibiting greater incidence, rapid disease progression, and higher mortality when compared to their Caucasian counterparts. Additionally, standard treatment interventions do not achieve similar outcome in African Americans compared to Caucasian Americans, indicating differences in host factors contributing to racial disparity. African Americans have allelic variants and hyper-expression of genes that often lead to an immunosuppressive tumor microenvironment, possibly contributing to more aggressive tumors and poorer disease and therapeutic outcomes than Caucasians. In this review, we have discussed race-specific differences in external factors impacting internal milieu, which modify immunological topography as well as contribute to disparity in prostate cancer.
Collapse
Affiliation(s)
- Jeronay King Thomas
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (J.K.T.); (H.M.); (N.K.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Correspondence: ; Tel.: +1-404-756-5718; Fax: +1-404-752-1179
| |
Collapse
|
44
|
Synergy Between Low Dose Metronomic Chemotherapy and the pH-centered Approach Against Cancer. Int J Mol Sci 2019; 20:ijms20215438. [PMID: 31683667 PMCID: PMC6862380 DOI: 10.3390/ijms20215438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Low dose metronomic chemotherapy (MC) is becoming a mainstream treatment for cancer in veterinary medicine. Its mechanism of action is anti-angiogenesis by lowering vascular endothelial growth factor (VEGF) and increasing trombospondin-1 (TSP1). It has also been adopted as a compassionate treatment in very advanced human cancer. However, one of the main limitations of this therapy is its short-term effectiveness: 6 to 12 months, after which resistance develops. pH-centered cancer treatment (pHT) has been proposed as a complementary therapy in cancer, but it has not been adopted or tested as a mainstream protocol, in spite of existing evidence of its advantages and benefits. Many of the factors directly or indirectly involved in MC and anti-angiogenic treatment resistance are appropriately antagonized by pHT. This led to the testing of an association between these two treatments. Preliminary evidence indicates that the association of MC and pHT has the ability to reduce anti-angiogenic treatment limitations and develop synergistic anti-cancer effects. This review will describe each of these treatments and will analyze the fundamentals of their synergy.
Collapse
|
45
|
Hashimoto S, Yasuda M, Fujiwara K, Ueda E, Hata J, Hirakawa Y, Ninomiya T, Sonoda KH. Association between Axial Length and Myopic Maculopathy. ACTA ACUST UNITED AC 2019; 3:867-873. [DOI: 10.1016/j.oret.2019.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022]
|
46
|
Park GH, Shin HS, Choi ES, Yoon BS, Choi MH, Lee SJ, Lee KE, Lee JS, Hong JM. Cranial burr hole with erythropoietin administration induces reverse arteriogenesis from the enriched extracranium. Neurobiol Dis 2019; 132:104538. [PMID: 31344491 DOI: 10.1016/j.nbd.2019.104538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 01/21/2023] Open
Abstract
It is challenging to revitalize ischemic penumbra after an acute stroke with intracranial perfusion insufficiency. To evaluate whether cranial burr hole and erythropoietin (EPO) generate effective revascularization, we investigated the efficacy of the augmentation method for reverse arteriogenesis from the healthy extracranial milieu. An intracranial perfusion insufficiency was created through bilateral internal carotid artery ligation (bICAL) in Sprague-Dawley rats. We administered recombinant human EPO (5000 U/kg) or saline intraperitoneally for 3 days after bICAL. Mechanical barrier disruption (MBD) was performed through a cranial burr hole with small dural cracks in the right hemisphere. The ipsilateral hemisphere with MBD grossly showed vascular networks between the extra- and intra-cranial spaces 2 weeks after the MBD procedure. It also showed significantly increased vessels in the intracranial vasculature adjacent to the MBD region (p = 0.0006). The levels of pro-angiogenic and inflammatory factors with prominent markers of vessel permeability were also significantly increased (MBD-only vs. control; Tnf-α, p = 0.0007; Vegf, p = 0.0206). In the EPO-administered group, such elevations in inflammation were significantly mitigated (combined vs. MBD-only; Tnf-α, p = 0.0008). The ipsilateral hemisphere with MBD-EPO (vs. MBD-only) showed significantly increased vessels (RECA-1, p = 0.0182) and their maturation (RECA-1/α-SMA, p = 0.0046), with upregulation of tumor growth factor-β1 (Tgf-β1, p = 0.037) and matrix metalloproteinase-2 (Mmp-2, p = 0.0488). These findings were completely blocked by minocycline (MIC) administration during in vivo (Tgf-β1, p = 0.0009; Mmp-2, p < 0.0001) and in vitro experiments (tube formation, p < 0.0001). Our data suggest that the MBD procedure (for angiogenic routes) and EPO administration (for an arteriogenic booster) are complimentary and can facilitate successfully "reverse arteriogenesis" in subjects with intracranial perfusion insufficiency.
Collapse
Affiliation(s)
- Geun Hwa Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Eun Sil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bok Seon Yoon
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Kyung-Eon Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University School of Pharmacy, Seoul, South Korea
| | - Jin Soo Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - Ji Man Hong
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea; Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea.
| |
Collapse
|
47
|
Hormozi M, Gholami M, Babaniazi A, Gharravi AM. Calendula officinalis stimulate proliferation of mouse embryonic fibroblasts via expression of growth factors TGFβ1 and bFGF. Inflamm Regen 2019; 39:7. [PMID: 31019587 PMCID: PMC6475102 DOI: 10.1186/s41232-019-0097-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background TGF-β has an important role in the process of wound healing and scar formation. The aim of this study is to determine the effects of ethanolic and methanolic extracts of Calendula officinalis on the expression of TGFβ1 and bFGF in the mouse embryonic fibroblast cells (MEFs). Methods Calendula officinalis extract was purchased and different substances defined with gas chromatography and mass spectrometry. MEFs were prepared and after incubating for 15 min, cell viability analyzed. TGF β 1 and bFGF gene expression was evaluated by real-time PCR. TGFβ1 and bFGF protein expression analyzed by ELISA. The statistical analysis of data was done by using SPSS software. Differences were considered significant at (P < 0.05). Results The results of the MTT test showed that the concentrations of 5 μg/ml and10 μg/ml were more suitable for cell proliferation. There was an increase in TGF β 1 gene expression in the MEFs. Expression of TGF β 1 gene remains the same after 24 h. Gene expression of bFGF showed a similar pattern with TGF β 1 expression for both solvents. Analysis of TGFβ1 protein expression showed an increase in TGFβ1 gene expression in the MEFs. Protein expression of bFGF in the MEFs increased at different concentrations at 12 and 24 h after treatment (P < 0.05 and P < 0.01 respectively). Conclusion Calendula officinalis stimulates proliferation of MEFs. Calendula via increased expression of growth factors (TGFβ1 and bFGF) at the first 12 h and a decrease of these factors at 24 h after treatment may ameliorate function of the MEFs in the during wound healing.
Collapse
Affiliation(s)
- Maryam Hormozi
- 1Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,2Department of Biochemistry, Lorestan University of Medical Science, Khorramabad, Iran
| | - Mohammadreza Gholami
- 3Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ayda Babaniazi
- 4Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Anneh Mohammad Gharravi
- 5Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
48
|
Gunawardena TNA, Rahman MT, Abdullah BJJ, Abu Kasim NH. Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med 2019; 13:569-586. [PMID: 30644175 DOI: 10.1002/term.2806] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that the main driving force behind the therapeutic activity observed in mesenchymal stem cells (MSCs) are the paracrine factors secreted by these cells. These biomolecules also trigger antiapoptotic events to prevent further degeneration of the diseased organ through paracrine signalling mechanisms. In comparison with the normal physiological conditions, an increased paracrine gradient is observed within the peripheral system of diseased organs that enhances the migration of tissue-specific MSCs towards the site of infection or injury to promote healing. Thus, upon administration of conditioned media derived from mesenchymal stem cell cultures (MSC-CM) could contribute in maintaining the increased paracrine factor gradient between the diseased organ and the stem cell niche in order to speed up the process of recovery. Based on the principle of the paracrine signalling mechanism, MSC-CM, also referred as the secretome of the MSCs, is a rich source of the paracrine factors and are being studied extensively for a wide range of regenerative therapies such as myocardial infarction, stroke, bone regeneration, hair growth, and wound healing. This article highlights the current technological applications and advances of MSC-CM with the aim to appraise its future potential as a regenerative therapeutic agent.
Collapse
Affiliation(s)
| | - Mohammad Tariqur Rahman
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Regenerative Dentistry Research Group, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Lu Y, Li X, Zhou H, Shao S, He S, Hong M, Liu J, Xu Y, Wu Y, Zhu D, Wang J, Gao P. Transactivation domain of Krüppel‐like factor 15 negatively regulates angiotensin II–induced adventitial inflammation and fibrosis. FASEB J 2019; 33:6254-6268. [DOI: 10.1096/fj.201801809r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan‐Yuan Lu
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiao‐Dong Li
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| | - Han‐Dan Zhou
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuai Shao
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shun He
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Mo‐Na Hong
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jia‐Chen Liu
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Ying‐Le Xu
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| | - Yong‐Jie Wu
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| | - Ding‐Liang Zhu
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| | - Ji‐Guang Wang
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| | - Ping‐Jin Gao
- Department of HypertensionState Key Laboratory of Medical GenomicsShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiao Tong University School of Medicine Shanghai China
- Shanghai Institute of Hypertension Shanghai China
| |
Collapse
|
50
|
Mehrbani Azar Y, Green R, Niesler CU, van de Vyver M. Antioxidant Preconditioning Improves the Paracrine Responsiveness of Mouse Bone Marrow Mesenchymal Stem Cells to Diabetic Wound Fluid. Stem Cells Dev 2018; 27:1646-1657. [PMID: 30187827 DOI: 10.1089/scd.2018.0145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapeutic tool for the treatment of nonhealing diabetic wounds. The pathological nature of the niche microenvironment limits the use of autologous cell therapy in diabetic patients. Prolonged exposure of endogenous MSCs to a pathological microenvironment in vivo reduces their ability to respond to environmental cues. This study investigated the effectiveness of ex vivo antioxidant treatment [N-acetylcysteine (7.5 mM NAC) and Ascorbic acid 2-phosphate (0.6 mM AAP)] to restore the paracrine function of diabetic MSCs. Healthy control [bone marrow stem cells derived from wild-type mice (SCWT)] (source: wild-type C57BL/6J mice) (n = 12) and impaired/dysfunctional [bone marrow stem cells derived from ob/ob mice (SCob)] (source: obese diabetic, B6.Cg-Lepob/J mice) (n = 12) MSCs were isolated. Ex vivo treatment groups (SCWT vs. SCob) were as follows: (1) no treatment (baseline phenotype), (2) stimulated with diabetic wound fluid (DWF) (baseline response), (3) antioxidant preconditioning (preconditioned phenotype), and (4) antioxidant preconditioned with subsequent stimulation with DWF (preconditioned response). The paracrine responsiveness on both the molecular (mRNA expression of 80 cytokines and receptors, quantitative polymerase chain reaction microarray) and protein (23-plex bead-array Luminex assay) level was assessed. At baseline, 31 genes were overexpressed (> × 2-fold) and 39 genes were underexpressed (> × 2-fold) in SCob versus SCWT. In conditioned media, significant differences (P < 0.05) were detected at baseline for two proinflammatory cytokines [tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ)], four chemokines [keratinocyte chemoattractant (KC), granulocyte colony-stimulating factor (GCSF), Eotaxin, and macrophage chemoattractant protein (MCP1)], and one anti-inflammatory cytokine [interleukin 10 (IL10)]. Following stimulation with DWF, significant differences (P < 0.05) were detected in the secretion of two chemokines [granulocyte macrophage colony-stimulating factor (GMCSF) and Eotaxin], three proinflammatory cytokines (TNFα, IFNγ, and IL9), and four anti-inflammatory cytokines (IL10, IL4, IL13, and IL3). Antioxidant preconditioning significantly dampened the excessive TNFα response observed in SCob and improved the secretion of IL10. Taken together these data suggest that the combined ex vivo treatment of autologous stem cells with NAC and AAP could potentially be an effective strategy to restore the paracrine function of impaired diabetic MSCs before transplantation.
Collapse
Affiliation(s)
- Yashar Mehrbani Azar
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robyn Green
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carola Ulrike Niesler
- Discipline of Biochemistry, School of Life Sciences, University of Kwazulu-Natal, Scottsville, South Africa
| | - Mari van de Vyver
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|