1
|
Niibo P, Nikopensius T, Jagomägi T, Voog Ü, Haller T, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Genetic susceptibility to temporomandibular joint involvement in juvenile idiopathic arthritis. J Oral Rehabil 2024; 51:2445-2451. [PMID: 39192486 DOI: 10.1111/joor.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Temporomandibular joint (TMJ) is among the most commonly affected joints in JIA patients. When JIA involves the TMJ, it may affect condylar growth in the joint; therefore, JIA patients are at risk of unfavourable long-term outcomes from associated joint damage. If undetected, TMJ involvement can lead to various functional disabilities such as reduced mandibular mobility and disorders of the mastication muscles. Limitations in sagittal and vertical mandibular growth can result in micrognathia and anterior open bite with aesthetic and functional restrictions. OBJECTIVE Genetic factors may play a role in determining which individuals are more prone to develop TMJ disorders or in predicting the severity of the disease process. Therefore, we applied a GWAS approach to identify loci associated with TMJ involvement in a sample of Estonian patients with JIA. Our aim was to address the potential role of genetic susceptibility factors in TMJ-JIA, a condition not previously studied in this context. METHODS The case group consisted of 55 JIA patients with TMJ involvement and 208 patients without TMJ involvement comprised the control group. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. Imputation was performed using a nationwide reference panel obtained of 2240 individuals whose data were obtained from the Estonian Biobank. RESULTS We identified six loci as being associated with the risk of TMJ-JIA in Estonian JIA patients. The strongest associations were identified at CD6 rs3019551 (P = 3.80 × 10-6), SLC26A8/MAPK14 rs9470191 (P = 6.15 × 10-6), NLRP3 rs2056795 (P = 8.91 × 10-6) and MAP2K4 rs7225328 (P = 1.64 × 10-5). CONCLUSION This study provides first insights into the risk-associated loci between JIA and its manifestation in the TMJ. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that render the TMJ susceptible to involvement by JIA in Estonian patients.
Collapse
Affiliation(s)
- P Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - T Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - T Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ü Voog
- Institute of Dentistry, University of Tartu, Tartu, Estonia
- Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - T Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - N Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - A Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - M Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - C Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Androsavich JR. Frameworks for transformational breakthroughs in RNA-based medicines. Nat Rev Drug Discov 2024; 23:421-444. [PMID: 38740953 DOI: 10.1038/s41573-024-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA has sparked a revolution in modern medicine, with the potential to transform the way we treat diseases. Recent regulatory approvals, hundreds of new clinical trials, the emergence of CRISPR gene editing, and the effectiveness of mRNA vaccines in dramatic response to the COVID-19 pandemic have converged to create tremendous momentum and expectation. However, challenges with this relatively new class of drugs persist and require specialized knowledge and expertise to overcome. This Review explores shared strategies for developing RNA drug platforms, including layering technologies, addressing common biases and identifying gaps in understanding. It discusses the potential of RNA-based therapeutics to transform medicine, as well as the challenges associated with improving applicability, efficacy and safety profiles. Insights gained from RNA modalities such as antisense oligonucleotides (ASOs) and small interfering RNAs are used to identify important next steps for mRNA and gene editing technologies.
Collapse
Affiliation(s)
- John R Androsavich
- RNA Accelerator, Pfizer Inc, Cambridge, MA, USA.
- Ginkgo Bioworks, Boston, MA, USA.
| |
Collapse
|
3
|
Márton RA, Sebők C, Mackei M, Tráj P, Vörösházi J, Kemény Á, Neogrády Z, Mátis G. Pap12-6: A host defense peptide with potent immunomodulatory activity in a chicken hepatic cell culture. PLoS One 2024; 19:e0302913. [PMID: 38728358 PMCID: PMC11086923 DOI: 10.1371/journal.pone.0302913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.
Collapse
Affiliation(s)
- Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
5
|
Mistry JJ, Bowles K, Rushworth SA. HSC-derived fatty acid oxidation in steady-state and stressed hematopoiesis. Exp Hematol 2023; 117:1-8. [PMID: 36223830 DOI: 10.1016/j.exphem.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 01/10/2023]
Abstract
Metabolism impacts all cellular functions and plays a fundamental role in physiology. Metabolic regulation of hematopoiesis is dynamically regulated under steady-state and stress conditions. It is clear that hematopoietic stem cells (HSCs) impose different energy demands and flexibility during maintenance compared with stressed conditions. However, the cellular and molecular mechanisms underlying metabolic regulation in HSCs remain poorly understood. In this review, we focus on defining the role of fatty acid oxidation (FAO) in HSCs. We first review the existing literature describing FAO in HSCs under steady-state hematopoiesis. Next, we describe the models used to examine HSCs under stress conditions, and, finally, we describe how infection causes a shift toward FAO in HSCs and the impact of using this pathway on emergency hematopoiesis.
Collapse
Affiliation(s)
| | - Kristian Bowles
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom; Department of Haematology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Stuart A Rushworth
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
6
|
Muresan XM, Slabáková E, Procházková J, Drápela S, Fedr R, Pícková M, Vacek O, Víchová R, Suchánková T, Bouchal J, Kürfürstová D, Král M, Hulínová T, Sýkora RP, Študent V, Hejret V, van Weerden WM, Puhr M, Pustka V, Potěšil D, Zdráhal Z, Culig Z, Souček K. Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1321-1335. [PMID: 35750257 DOI: 10.1016/j.ajpath.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and described its role mainly in the proinflammatory response and induction of apoptosis. It has been found up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. We have experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to the significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. We conclude that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ximena M Muresan
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ráchel Víchová
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | - Milan Král
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Tereza Hulínová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, University Hospital, Ostrava, Czech Republic
| | - Radek P Sýkora
- Department of Urology, University Hospital, Ostrava, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Puhr
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Pustka
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - David Potěšil
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zbyněk Zdráhal
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoran Culig
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
7
|
Mayfosh AJ, Goodall KJ, Nguyen T, Baschuk N, Hulett MD. Heparanase is a regulator of natural killer cell activation and cytotoxicity. J Leukoc Biol 2021; 111:1211-1224. [PMID: 34693552 DOI: 10.1002/jlb.3a0420-259rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heparanase is the only mammalian enzyme capable of cleaving heparan sulfate, a glycosaminoglycan of the extracellular matrix and cell surfaces. Most immune cells express heparanase that contributes to a range of functions including cell migration and cytokine expression. Heparanase also promotes natural killer (NK) cell migration; however, its role in other NK cell functions remains to be defined. In this study, heparanase-deficient (Hpse-/- ) mice were used to assess the role of heparanase in NK cell cytotoxicity, activation, and cytokine production. Upon challenge with the immunostimulant polyinosinic:polycytidylic acid (poly(I:C)), NK cells isolated from Hpse-/- mice displayed impaired cytotoxicity against EO771.LMB cells and reduced levels of activation markers CD69 and NKG2D. However, in vitro cytokine stimulation of wild-type and Hpse-/- NK cells resulted in similar CD69 and NKG2D expression, suggesting the impaired NK cell activation in Hpse-/- mice results from elements within the in vivo niche. NK cells are activated in vivo by dendritic cells (DCs) in response to poly(I:C). Poly(I:C)-stimulated Hpse-/- bone marrow DCs (BMDCs) expressed less IL-12, and when cultured with Hpse-/- NK cells, less MCP-1 mRNA and protein was detected. Although cell-cell contact is important for DC-mediated NK cell activation, co-cultures of Hpse-/- BMDCs and NK cells showed similar levels of contact to wild-type cells, suggesting heparanase contributes to NK cell activation independently of cell-cell contact with DCs. These observations define a role for heparanase in NK cell cytotoxicity and activation and have important implications for how heparanase inhibitors currently in clinical trials for metastatic cancer may impact NK cell immunosurveillance.
Collapse
Affiliation(s)
- Alyce J Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Katharine J Goodall
- oNKo-innate Pty. Ltd. Monash Biomedicine Discovery Institute, Clayton, Australia
| | - Tien Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Nikola Baschuk
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
- Heart Regeneration Group, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
8
|
Subramaniam S, Ogoti Y, Hernandez I, Zogg M, Botros F, Burns R, DeRousse JT, Dockendorff C, Mackman N, Antoniak S, Fletcher C, Weiler H. A thrombin-PAR1/2 feedback loop amplifies thromboinflammatory endothelial responses to the viral RNA analogue poly(I:C). Blood Adv 2021; 5:2760-2774. [PMID: 34242391 PMCID: PMC8288670 DOI: 10.1182/bloodadvances.2021004360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of blood coagulation and endothelial inflammation are hallmarks of respiratory infections with RNA viruses that contribute significantly to the morbidity and mortality of patients with severe disease. We investigated how signaling by coagulation proteases affects the quality and extent of the response to the TLR3-ligand poly(I:C) in human endothelial cells. Genome-wide RNA profiling documented additive and synergistic effects of thrombin and poly(I:C) on the expression level of many genes. The most significantly active genes exhibiting synergistic induction by costimulation with thrombin and poly(I:C) included the key mediators of 2 critical biological mechanisms known to promote endothelial thromboinflammatory functions: the initiation of blood coagulation by tissue factor and the control of leukocyte trafficking by the endothelial-leukocyte adhesion receptors E-selectin (gene symbol, SELE) and VCAM1, and the cytokines and chemokines CXCL8, IL-6, CXCL2, and CCL20. Mechanistic studies have indicated that synergistic costimulation with thrombin and poly(I:C) requires proteolytic activation of protease-activated receptor 1 (PAR1) by thrombin and transactivation of PAR2 by the PAR1-tethered ligand. Accordingly, a small-molecule PAR2 inhibitor suppressed poly(I:C)/thrombin-induced leukocyte-endothelial adhesion, cytokine production, and endothelial tissue factor expression. In summary, this study describes a positive feedback mechanism by which thrombin sustains and amplifies the prothrombotic and proinflammatory function of endothelial cells exposed to the viral RNA analogue, poly(I:C) via activation of PAR1/2.
Collapse
Affiliation(s)
| | - Yamini Ogoti
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Irene Hernandez
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Mark Zogg
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Fady Botros
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | - Robert Burns
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| | | | - Chris Dockendorff
- Department of Chemistry, Marquette University, Milwaukee, WI
- Function Therapeutics LLC, Milwaukee, WI; and
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, and
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Craig Fletcher
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, NC
| | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Versiti, Milwaukee, WI
| |
Collapse
|
9
|
TLR3 agonists: RGC100, ARNAX, and poly-IC: a comparative review. Immunol Res 2021; 69:312-322. [PMID: 34145551 PMCID: PMC8213534 DOI: 10.1007/s12026-021-09203-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Toll-like receptors 3 (TLR3) have been broadly studied among all TLRs over the last few decades together with its agonists due to their contribution to cancer regression. These agonists undeniably have some shared characteristics such as mimicking dsRNA but pathways through which they exhibit antitumor properties are relatively diverse. In this review, three widely studied agonists RGC100, ARNAX, and poly-IC are discussed along with their structural and physiochemical differences including the signaling cascades through which they exert their actions. Comparison has been made to identify the finest agonist with maximum effectivity and the least side effect profile.
Collapse
|
10
|
Parra-Izquierdo I, Sánchez-Bayuela T, Castaños-Mollor I, López J, Gómez C, San Román JA, Sánchez Crespo M, García-Rodríguez C. Clinically used JAK inhibitor blunts dsRNA-induced inflammation and calcification in aortic valve interstitial cells. FEBS J 2021; 288:6528-6542. [PMID: 34009721 DOI: 10.1111/febs.16026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 01/25/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most prevalent valvulopathy worldwide. Growing evidence supports a role for viral and cell-derived double-stranded (ds)-RNA in cardiovascular pathophysiology. Poly(I:C), a dsRNA surrogate, has been shown to induce inflammation, type I interferon (IFN) responses, and osteogenesis through Toll-like receptor 3 in aortic valve interstitial cells (VIC). Here, we aimed to determine whether IFN signaling via Janus kinase (JAK)/Signal transducers and activators of transcription (STAT) mediates dsRNA-induced responses in primary human VIC. Western blot, ELISA, qPCR, calcification, flow cytometry, and enzymatic assays were performed to evaluate the mechanisms of dsRNA-induced inflammation and calcification. Poly(I:C) triggered a type I IFN response characterized by IFN-regulatory factors gene upregulation, IFN-β secretion, and STAT1 activation. Additionally, Poly(I:C) promoted VIC inflammation via NF-κB and subsequent adhesion molecule expression, and cytokine secretion. Pretreatment with ruxolitinib, a clinically used JAK inhibitor, abrogated these responses. Moreover, Poly(I:C) promoted a pro-osteogenic phenotype and increased VIC calcification to a higher extent in cells from males. Inhibition of JAK with ruxolitinib or a type I IFN receptor blocking antibody blunted Poly(I:C)-induced calcification. Mechanistically, Poly(I:C) promoted VIC apoptosis in calcification medium, which was inhibited by ruxolitinib. Moreover, Poly(I:C) co-operated with IFN-γ to increase VIC calcification by synergistically activating extracellular signal-regulated kinases and hypoxia-inducible factor-1α pathways. In conclusion, JAK/STAT signaling mediates dsRNA-triggered inflammation, apoptosis, and calcification and may contribute to a positive autocrine loop in human VIC in the presence of IFN-γ. Blockade of dsRNA responses with JAK inhibitors may be a promising therapeutic avenue for CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Tania Sánchez-Bayuela
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Irene Castaños-Mollor
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Javier López
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Cristina Gómez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - J Alberto San Román
- ICICOR, Hospital Clínico Universitario, Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain
| | - Carmen García-Rodríguez
- Unidad de Excelencia Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
11
|
Khodabandehloo F, Aflatoonian R, Zandieh Z, Rajaei F, Sayahpour FA, Nassiri-Asl M, Baghaban Eslaminejad M. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J Cell Mol Med 2021; 25:5138-5149. [PMID: 33939261 PMCID: PMC8178267 DOI: 10.1111/jcmm.16506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Forugh-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Stolzer I, Ruder B, Neurath MF, Günther C. Interferons at the crossroad of cell death pathways during gastrointestinal inflammation and infection. Int J Med Microbiol 2021; 311:151491. [PMID: 33662871 DOI: 10.1016/j.ijmm.2021.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are pleiotropic immune-modulatory cytokines that are well known for their essential role in host defense against viruses, bacteria, and other pathogenic microorganisms. They can exert both, protective or destructive functions depending on the microorganism, the targeted tissue and the cellular context. Interferon signaling results in the induction of IFN-stimulated genes (ISGs) influencing different cellular pathways including direct anti-viral/anti-bacterial response, immune-modulation or cell death. Multiple pathways leading to host cell death have been described, and it is becoming clear that depending on the cellular context, IFN-induced cell death can be beneficial for both: host and pathogen. Accordingly, activation or repression of corresponding signaling mechanisms occurs during various types of infection but is also an important pathway for gastrointestinal inflammation and tissue damage. In this review, we summarize the role of interferons at the crossroad of various cell death pathways in the gut during inflammation and infection.
Collapse
Affiliation(s)
- Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Barbara Ruder
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany; Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität (FAU), Erlangen, Nürnberg, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU), Erlangen, Germany.
| |
Collapse
|
13
|
Huang YL, Huang MT, Sung PS, Chou TY, Yang RB, Yang AS, Yu CM, Hsu YW, Chang WC, Hsieh SL. Endosomal TLR3 co-receptor CLEC18A enhances host immune response to viral infection. Commun Biol 2021; 4:229. [PMID: 33603190 PMCID: PMC7893028 DOI: 10.1038/s42003-021-01745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Human C-type lectin member 18A (CLEC18A) is ubiquitously expressed in human, and highest expression levels are found in human myeloid cells and liver. In contrast, mouse CLEC18A (mCLEC18A) is only expressed in brain, kidney and heart. However, the biological functions of CLEC18A are still unclear. We have shown that a single amino acid change (S339 →R339) in CTLD domain has profound effect in their binding to polysaccharides and house dust mite allergens. In this study, we further demonstrate that CLEC18A and its mutant CLEC18A(S339R) associate with TLR3 in endosome and bind poly (I:C) specifically. Compared to TLR3 alone, binding affinity to poly (I:C) is further increased in TLR3-CLEC18A and TLR3-CLEC18A(S339R) complexes. Moreover, CLEC18A and CLEC18A(S339R) enhance the production of type I and type III interferons (IFNs), but not proinflammatory cytokines, in response to poly (I:C) or H5N1 influenza A virus (IAV) infection. Compared to wild type (WT) mice, ROSA-CLEC18A and ROSA-CLEC18A(S339R) mice generate higher amounts of interferons and are more resistant to H5N1 IAV infection. Thus, CLEC18A is a TLR3 co-receptor, and may contribute to the differential immune responses to poly (I:C) and IAV infection between human and mouse.
Collapse
Affiliation(s)
- Ya-Lang Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Hsu
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Sandbrink JB, Shattock RJ. RNA Vaccines: A Suitable Platform for Tackling Emerging Pandemics? Front Immunol 2020; 11:608460. [PMID: 33414790 PMCID: PMC7783390 DOI: 10.3389/fimmu.2020.608460] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic demonstrates the ongoing threat of pandemics caused by novel, previously unrecognized, or mutated pathogens with high transmissibility. Currently, vaccine development is too slow for vaccines to be used in the control of emerging pandemics. RNA-based vaccines might be suitable to meet this challenge. The use of an RNA-based delivery mechanism promises fast vaccine development, clinical approval, and production. The simplicity of in vitro transcription of mRNA suggests potential for fast, scalable, and low-cost manufacture. RNA vaccines are safe in theory and have shown acceptable tolerability in first clinical trials. Immunogenicity of SARS-CoV-2 mRNA vaccines in phase 1 trials looks promising, however induction of cellular immunity needs to be confirmed and optimized. Further optimization of RNA vaccine modification and formulation to this end is needed, which may also enable single injection regimens to be achievable. Self-amplifying RNA vaccines, which show high immunogenicity at low doses, might help to improve potency while keeping manufacturing costs low and speed high. With theoretical properties of RNA vaccines looking promising, their clinical efficacy is the key remaining question with regard to their suitability for tackling emerging pandemics. This question might be answered by ongoing efficacy trials of SARS-CoV-2 mRNA vaccines.
Collapse
Affiliation(s)
- Jonas B Sandbrink
- Medical School, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020; 7:352. [PMID: 32850883 PMCID: PMC7410919 DOI: 10.3389/fmed.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors serve a central role in innate immunity, but they can also modulate cell function in various non-immune cell types including endothelial cells. Endothelial cells are necessary for the organized function of the vascular system, and part of their fundamental role is also the regulation of immune function and inflammation. In this review, we summarize the current knowledge of how Toll-like receptors contribute to the immune and non-immune functions of the endothelial cells.
Collapse
Affiliation(s)
- Aneel Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Li XX, Clark RJ, Woodruff TM. C5aR2 Activation Broadly Modulates the Signaling and Function of Primary Human Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:1102-1112. [PMID: 32611725 DOI: 10.4049/jimmunol.2000407] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
The complement activation fragment C5a is a potent proinflammatory mediator that is increasingly recognized as an immune modulator. C5a acts through two C5a receptors, C5aR1 (C5aR, CD88) and C5aR2 (C5L2, GPR77), to powerfully modify multiple aspects of immune cell function. Although C5aR1 is generally acknowledged to be proinflammatory and immune-activating, the potential roles played by C5aR2 remain poorly defined. Despite studies demonstrating C5aR2 can modulate C5aR1 in human cells, it is not yet known whether C5aR2 functionality is limited to, or requires, C5aR1 activation or influences immune cells more broadly. The present study, therefore, aimed to characterize the roles of C5aR2 on the signaling and function of primary human monocyte-derived macrophages, using a C5aR2 agonist (Ac-RHYPYWR-OH; P32) to selectively activate the receptor. We found that although C5aR2 activation with P32 by itself was devoid of any detectable MAPK signaling activities, C5aR2 agonism significantly dampened C5aR1-, C3aR-, and chemokine-like receptor 1 (CMKLR1)-mediated ERK signaling and altered intracellular calcium mobilization mediated by these receptors. Functionally, selective C5aR2 activation also downregulated cytokine production triggered by various TLRs (TLR2, TLR3, TLR4, and TLR7), C-type lectin receptors (Dectin-1, Dectin-2, and Mincle), and the cytosolic DNA sensor stimulator of IFN genes (STING). Surprisingly, activity at the C-type lectin receptors was particularly powerful, with C5aR2 activation reducing Mincle-mediated IL-6 and TNF-α generation by 80-90%. In sum, this study demonstrates that C5aR2 possesses pleiotropic functions in primary human macrophages, highlighting the role of C5aR2 as a powerful regulator of innate immune function.
Collapse
Affiliation(s)
- Xaria X Li
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Richard J Clark
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
18
|
Long-term stimulation of toll-like receptor-2 and -4 upregulates 5-LO and 15-LO-2 expression thereby inducing a lipid mediator shift in human monocyte-derived macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158702. [PMID: 32222425 DOI: 10.1016/j.bbalip.2020.158702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
Macrophage polarization switches during the course of inflammation along with the lipid mediators released. We investigated the lipid mediator formation in human monocyte-derived macrophages during in vitro differentiation and pathogen stimulation. For this, peripheral blood monocytes were differentiated into M1 (CSF-2/IFNγ) or M2 (CSF-1/IL-4) macrophages followed by stimulation with the toll-like receptor (TLR) ligands zymosan (TLR-2), Poly(I:C) (TLR-3) or bacterial lipopolysaccharides (TLR-4) mimicking fungal, viral and bacterial infection, respectively. Expression of enzymes involved in lipid mediator formation such as 5- and 15-lipoxygenases (LO), the 5-LO activating protein and cyclooxygenase-2 (COX-2) was monitored on mRNA and protein level and lipid mediator formation was assessed. In addition, cytokine release was measured. In vitro differentiation of human peripheral blood monocytes to M1 and M2 macrophages considerably attenuated 5-LO activity. Furthermore, while TLR-2 and -4 stimulation of M1 macrophages primarily triggered pro-inflammatory cytokines and lipid mediators, persistent stimulation (16 h) of human M2 macrophages induced a coordinated upregulation of 5- and 15-LO-2 expression. This was accompanied by a marked increase in IL-10 and monohydroxylated 15-LO products in the conditioned media of the cells. After additional stimulation with Ca2+ ionophore combined with supplementation of arachidonic, eicosapentaenoic and docosahexaenoic acid these cells also released small amounts of SPM such as lipoxins and resolvins. From this we conclude that activation of TLR-2 or -4 triggers the biosynthesis of pro-inflammatory 5-LO and COX-2 derived lipid mediators in human monocyte-derived M1 macrophages while persistent stimulation of M2 macrophages induces a shift towards pro-resolving 15-LO derived oxylipins.
Collapse
|
19
|
Chaikeawkaew D, Everts V, Pavasant P. TLR3 activation modulates immunomodulatory properties of human periodontal ligament cells. J Periodontol 2020; 91:1225-1236. [PMID: 31981371 DOI: 10.1002/jper.19-0551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Toll-like receptors (TLR) are a group of receptors that play roles in the innate immune system. Human periodontal ligament cells (hPDL cells) express several TLRs, including TLR3, a nucleotide sensing receptor that recognizes double-stranded RNA from viral infection. However, its role in hPDL cells is unclear. The aim of this study was to investigate the responses of hPDL cells in terms of immunomodulation after TLR3 engagement. METHODS HPDL cells were treated with various doses of poly I:C, a TLR3 activator. The expression of interferon-gamma (IFNγ), indoleamine 2,3 dioxygenase (IDO), and human leukocyte antigen G (HLA-G) was determined. Chemical inhibitors and small interfering RNA (siRNA) were used to confirm the role of TLR3. Coculture with human peripheral blood mononuclear cells (PBMCs) with poly I:C-activated hPDL cells was performed. RESULTS Endosomal TLR3 in hPDL cells was observed by immunocytochemistry. Addition of poly I:C significantly enhanced the expression and secretion of IFNγ, IDO, and HLA-G. Knockdown of TLR3 using siRNA decreased the poly I:C-induced expression of these three molecules. Bafilomycin-A, an inhibitor of auto-phagosome and lysosome fusion, inhibited poly I:C-induced IDO and HLA-G expression, whereas cycloheximide and a TLR3-neutralizing antibody had no effect. In co-culture experiments, poly I:C-activated hPDL cells inhibited PBMCs proliferation and increased mRNA expression of forkhead box P3 (FOXP3), a transcription factor which is a marker of regulatory T cells. CONCLUSION Our findings indicated that TLR3 engagement of hPDL cells induced immunosuppressive properties of these cells. Because immunosuppressive properties play an important role in tissue healing and regeneration, activation of TLR3 may help to attenuate tissue destruction by limiting the inflammatory process and perhaps initiate the healing and regeneration process of the periodontium.
Collapse
Affiliation(s)
- Daneeya Chaikeawkaew
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Baines KJ, Rampersaud AM, Hillier DM, Jeyarajah MJ, Grafham GK, Eastabrook G, Lacefield JC, Renaud SJ. Antiviral Inflammation during Early Pregnancy Reduces Placental and Fetal Growth Trajectories. THE JOURNAL OF IMMUNOLOGY 2019; 204:694-706. [PMID: 31882516 DOI: 10.4049/jimmunol.1900888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Many viruses are detrimental to pregnancy and negatively affect fetal growth and development. What is not well understood is how virus-induced inflammation impacts fetal-placental growth and developmental trajectories, particularly when inflammation occurs in early pregnancy during nascent placental and embryo development. To address this issue, we simulated a systemic virus exposure in early pregnant rats (gestational day 8.5) by administering the viral dsRNA mimic polyinosinic:polycytidylic acid (PolyI:C). Maternal exposure to PolyI:C induced a potent antiviral response and hypoxia in the early pregnant uterus, containing the primordial placenta and embryo. Maternal PolyI:C exposure was associated with decreased expression of the maternally imprinted genes Mest, Sfrp2, and Dlk1, which encode proteins critical for placental growth. Exposure of pregnant dams to PolyI:C during early pregnancy reduced fetal growth trajectories throughout gestation, concomitant with smaller placentas, and altered placental structure at midgestation. No detectable changes in placental hemodynamics were observed, as determined by ultrasound biomicroscopy. An antiviral response was not evident in rat trophoblast stem (TS) cells following exposure to PolyI:C, or to certain PolyI:C-induced cytokines including IL-6. However, TS cells expressed high levels of type I IFNR subunits (Ifnar1 and Ifnar2) and responded to IFN-⍺ by increasing expression of IFN-stimulated genes and decreasing expression of genes associated with the TS stem state, including Mest IFN-⍺ also impaired the differentiation capacity of TS cells. These results suggest that an antiviral inflammatory response in the conceptus during early pregnancy impacts TS cell developmental potential and causes latent placental development and reduced fetal growth.
Collapse
Affiliation(s)
- Kelly J Baines
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Amanda M Rampersaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Dendra M Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Grace K Grafham
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada N6H 5W9.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada N6C 2V5
| | - James C Lacefield
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada N6A 3K7.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 3K7; and.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1; .,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada N6C 2V5
| |
Collapse
|
21
|
Simmonds RE. Transient up-regulation of miR-155-3p by lipopolysaccharide in primary human monocyte-derived macrophages results in RISC incorporation but does not alter TNF expression. Wellcome Open Res 2019; 4:43. [PMID: 31641696 PMCID: PMC6790912 DOI: 10.12688/wellcomeopenres.15065.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the MIR155HG/BIC gene (pri-miR-155). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring pri-miR-155. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition reduced these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation revealed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF secretion after 2hrs in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p. Further work is required to establish whether its low abundance, even at the transient peak, is sufficient for biological activity and to determine whether there are specific mechanisms determining its biogenesis from miR-155 precursors
Collapse
Affiliation(s)
- Rachel E Simmonds
- Department of Microbial Sciences, University of Surrey, Guildford, GU2 7XH, UK.,Cytokine and Signal Transduction Laboratory, Kennedy Institute of Rheumatology, London, W6 8LH, UK
| |
Collapse
|
22
|
Progatzky F, Jha A, Wane M, Thwaites RS, Makris S, Shattock RJ, Johansson C, Openshaw PJ, Bugeon L, Hansel TT, Dallman MJ. Induction of innate cytokine responses by respiratory mucosal challenge with R848 in zebrafish, mice, and humans. J Allergy Clin Immunol 2019; 144:342-345.e7. [PMID: 31002833 PMCID: PMC6602583 DOI: 10.1016/j.jaci.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Fränze Progatzky
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Akhilesh Jha
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Madina Wane
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Spyridon Makris
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Robin J Shattock
- Department of Infectious Diseases, Division of Medicine, Imperial College London, London, United Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom
| | - Laurence Bugeon
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial Clinical Respiratory Research Unit (ICRRU) and Respiratory Infection, St Mary's Hospital, Imperial College London, London, United Kingdom.
| | - Margaret J Dallman
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
23
|
Koch SR, Choi H, Mace EH, Stark RJ. Toll-like receptor 3-mediated inflammation by p38 is enhanced by endothelial nitric oxide synthase knockdown. Cell Commun Signal 2019; 17:33. [PMID: 30987646 PMCID: PMC6466662 DOI: 10.1186/s12964-019-0345-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vascular dysfunction is commonly seen during severe viral infections. Endothelial nitric oxide synthase (eNOS), has been postulated to play an important role in regulating vascular homeostasis as well as propagation of the inflammatory reaction. We hypothesized that the loss of eNOS would negatively impact toll-like receptor 3 (TLR3) signaling and worsen vascular function to viral challenge. METHODS Human microvascular endothelial cells (HMVECs) were exposed to either control or eNOS siRNA and then treated with Poly I:C, a TLR3 agonist and mimicker of dsRNA viruses. Cells were assessed for protein-protein associations, cytokine and chemokine analysis as well as transendothelial electrical resistance (TEER) as a surrogate of permeability. RESULTS HMVECs that had reduced eNOS expression had a significantly elevated increase in IL-6, IL-8 and IP-10 production after Poly I:C. In addition, the knockdown of eNOS enhanced the change in TEER after Poly I:C stimulation. Western blot analysis showed enhanced phosphorylation of p38 in sieNOS treated cells with Poly I:C compared to siControl cells. Proximity ligation assays further demonstrated direct eNOS-p38 protein-protein interactions. The addition of the p38 inhibitor, SB203580, in eNOS knockdown cells reduced both cytokine production after Poly I:C, and as well as mitigated the reduction in TEER, suggesting a direct link between eNOS and p38 in TLR3 signaling. CONCLUSIONS These results suggest that reduction of eNOS increases TLR3-mediated inflammation in human endothelial cells in a p38-dependent manner. This finding has important implications for understanding the pathogenesis of severe viral infections and the associated vascular dysfunction.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA.
| |
Collapse
|
24
|
Teixeira H, Zhao J, Kinane DF, Benakanakere MR. IFN-β secretion is through TLR3 but not TLR4 in human gingival epithelial cells. Mol Immunol 2019; 111:27-31. [PMID: 30954023 DOI: 10.1016/j.molimm.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/29/2022]
Abstract
The oral cavity is home for a plethora of bacteria and viruses. Epithelial barriers encounter these micro-organisms and recognize them via pathogen recognition receptors (PRRs) that instigate antibacterial and antiviral responses. We and others have shown that human gingival epithelial cells (HGECs) express PRRs to defend invading pathogens. Among these PRRs, TLR2, TLR3 and TLR4 are highly expressed in HGECs and appear to be important based on our previous findings. IFN-β is one of the major type 1 interferons induced to defend viral attack. In this report, we sought to dissect TLR3 and TLR4 mediated secretion of IFN-β in HGECs. We stimulated HGECs with ultrapure LPS (TLR4 ligand) and Poly I:C (TLR3 ligand) for 24 h and supernatant was used to determine IFN-β secretion. We show that cells treated with Poly I:C induced IFN-β secretion but not cells treated with LPS. In addition, silencing of TLR3 prior to Poly I:C stimulation significantly downregulated IFN-β secretion. On the contrary, overexpression of MD2 and TLR4 in HGECs restored IFN-β secretion. Upon further evaluation, we found that TLR3 stimulation but not TLR4 induced the phosphorylation of interferon regulatory factor 3 (IRF3), which is critical for IFN-β secretion. We conclude that IFN-β secretion is through TLR3 and not via TLR4 in HGECs.
Collapse
Affiliation(s)
- Hellen Teixeira
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19004, USA
| | - Jiawei Zhao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19004, USA
| | - Denis F Kinane
- Division of Periodontology, School of Dental Medicine, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manjunatha R Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19004, USA.
| |
Collapse
|
25
|
Simmonds RE. Transient up-regulation of miR-155-3p by lipopolysaccharide in primary human monocyte-derived macrophages results in RISC incorporation but does not alter TNF expression. Wellcome Open Res 2019; 4:43. [DOI: 10.12688/wellcomeopenres.15065.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the BIC gene (B cell integration cluster, MIR155HG). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring the BIC mRNA. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition suppressed these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation showed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF expression in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p, which transiently achieves levels that might have a biological effect. Further work on this candidate would need to overcome the technical challenges of the broad-ranging effects of liposomes on 1°MDMs.
Collapse
|
26
|
Jeffrey MP, Strap JL, Jones Taggart H, Green-Johnson JM. Suppression of Intestinal Epithelial Cell Chemokine Production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 Is Mediated by Secreted Bioactive Molecules. Front Immunol 2018; 9:2639. [PMID: 30524427 PMCID: PMC6262363 DOI: 10.3389/fimmu.2018.02639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Host intestinal epithelial cells (IEC) present at the gastrointestinal interface are exposed to pathogenic and non-pathogenic bacteria and their products. Certain probiotic lactic acid bacteria (LAB) have been associated with a range of host-immune modulatory activities including down-regulation of pro-inflammatory gene expression and cytokine production by IEC, with growing evidence suggesting that these bacteria secrete bioactive molecules with immunomodulatory activity. The aim of this study was to determine whether two lactobacilli with immunomodulatory activity [Lactobacillus rhamnosus R0011 (Lr) and Lactobacillus helveticus R0389 (Lh)], produce soluble mediators able to influence IEC responses to Pattern Recognition Receptor (PRR) ligands and pro-inflammatory cytokines [Tumor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β)], signals inducing IEC chemokine production during infection. To this end, the effects of cell-free supernatants (CFS) from Lr and Lh on IEC production of the pro-inflammatory chemokines interleukin (IL)-8 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by a range of host- or pathogen-derived pro-inflammatory stimuli were determined, and the impact on human HT-29 IEC and a primary IEC line (rat IEC-6) was compared. The Lr-CFS and Lh-CFS did not significantly modulate basal IL-8 production from HT-29 IECs or CINC-1 production from IEC-6 cells. However, both Lr-CFS and Lh-CFS significantly down-regulated IL-8 production from HT-29 IECs challenged with varied PRR ligands. Lr-CFS and Lh-CFS had differential effects on PRR-induced CINC-1 production by rat IEC-6 IECs, with no significant down-regulation of CINC-1 observed from IEC-6 IECs cultured with Lh-CFS. Further analysis of the Lr-CFS revealed down-regulation of IL-8 production induced by the pro-inflammatory cytokines IL-1β and TNFα Preliminary characterization of the bioactive constituent(s) of the Lr-CFS indicates that it is resistant to treatment with DNase, RNase, and an acidic protease, but is sensitive to alterations in pH. Taken together, these results indicate that these lactobacilli secrete bioactive molecules of low molecular weight that may modulate host innate immune activity through interactions with IEC.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Janice L Strap
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
27
|
Lin SF, Jiang PL, Tsai JS, Huang YY, Lin SY, Lin JH, Liu DZ. Surface assembly of poly(I:C) on polyethyleneimine-modified gelatin nanoparticles as immunostimulatory carriers for mucosal antigen delivery. J Biomed Mater Res B Appl Biomater 2018; 107:1228-1237. [PMID: 30339742 DOI: 10.1002/jbm.b.34215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022]
Abstract
The mucosal immune system is the host's first line of defense against invasion by foreign pathogens. Gelatin nanoparticles (GNPs) are suitable carriers for the delivery of antigens via various routes of administration. In the present study, GNPs were modified with polyethyleneimine (PEI), a positively charged polymer. Then, ovalbumin (OVA) and polyinosinic:polycytidylic acid (poly(I:C)), an immunostimulant, were adsorbed onto the surface of the positively charged GNPs. We assessed whether GNPs could act as an effective mucosal vaccine that is capable of inducing both mucosal and systemic immune responses. The results showed that GNPs effectively adsorbed OVA/poly(I:C), facilitated cellular uptake by RAW 264.7 macrophage cells and murine bone marrow-derived dendritic cells (BMDCs) in vitro, and led to increased expression of the maturation markers CD80 and CD86 on BMDCs. Furthermore, GNPs induced increased secretion of proinflammatory cytokines in both RAW 264.7 and BMDCs. C57BL/6 mice that were intranasally twice-immunized with OVA/poly(I:C)-loaded GNPs produced high levels of serum OVA-specific IgG antibodies and secretory IgA in nasal and lung lavage. Spleen cells from immunized mice were collected and re-stimulated with OVA, and results showed significantly augmented production of IFN-γ, IL-4, IL-5, and IL-6 in mice that received OVA/poly(I:C)-loaded GNPs. Moreover, intranasal immunization with OVA/poly(I:C)-loaded GNPs resulted in the inhibition of EG7 tumor growth in C57BL/6 mice. Taken together, these results indicate that nasal administration of OVA/poly(I:C)-loaded GNPs elicited effective mucosal and systemic immune responses, which might be useful for further applications of antigen delivery. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1228-1237, 2019.
Collapse
Affiliation(s)
- Shen-Fu Lin
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing Street, Taipei, 110, Taiwan, ROC
| | - Ping-Lun Jiang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing Street, Taipei, 110, Taiwan, ROC.,Office of Research and Development, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung City, 433, Taiwan, ROC
| | - Jeng-Shiang Tsai
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC
| | - Yi-You Huang
- Institute of Biomedical Engineering, College of Engineering and College of Medicine, National Taiwan University, 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC
| | - Shyr-Yi Lin
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Jiunn-Horng Lin
- Animal Technology Laboratories, Agricultural Technology Research Institute, No. 1, Ln. 51, Dahu Rd., Hsinchu City, Taiwan, ROC
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250, Wu-Hsing Street, Taipei, 110, Taiwan, ROC
| |
Collapse
|
28
|
Zhao R, Zhang J, Wang Y, Jin J, Zhou H, Chen J, Su SB. Activation of Toll-like receptor 3 promotes pathological corneal neovascularization by enhancement of SDF-1-mediated endothelial progenitor cell recruitment. Exp Eye Res 2018; 178:177-185. [PMID: 30321512 DOI: 10.1016/j.exer.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/15/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023]
Abstract
Toll-like receptors (TLRs) play an important role in inflammatory and immunological responses, which are intimately related to neovascularization. However, the precise mode of action of TLR3 in neovascularization still remains ambiguous. In this study, we sought to investigate the role of TLR3 in pathological corneal neovascularization (CNV) using a mouse model of alkali-induced CNV. CNV was attenuated in TLR3-deficient mice, and the absence of TLR3 led to decreased production of stromal cell-derived factor 1 (SDF-1), a well-characterized cytokine that regulates the recruitment of endothelial progenitor cells (EPCs) to the sites of neo-angiogenic niches in the injured tissues. Topical administration of polyinosinic-polycytidylic acid [poly (I:C)], a synthetic ligand for TLR3, to the injured cornea promoted CNV in wild type (WT) mice but not in TLR3-deficient mice. In addition, the effect of poly (I:C) on WT mice was abolished by addition of SDF-1 receptor antagonist AMD 3100. Furthermore, poly (I:C) treatment in vitro enhanced the migration of EPCs, whereas the enhanced migration was abolished by AMD 3100. These results indicate an essential role of TLR3 signalling in CNV that involves upregulating SDF-1 production and recruiting EPCs to the sites of injury for neovascularization. Thus, targeting the TLR3 signalling cascade may constitute a novel therapeutic approach for treating neovascularization-related diseases.
Collapse
Affiliation(s)
- Ruijuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yan Wang
- Guangdong Science and Technology Library (Guangdong Institute of Scientific and Technical Information and Development Strategy), China
| | - Jiayi Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hongyan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jianping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Shao Bo Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
29
|
Theodoraki MN, Yerneni S, Sarkar SN, Orr B, Muthuswamy R, Voyten J, Modugno F, Jiang W, Grimm M, Basse PH, Bartlett DL, Edwards RP, Kalinski P. Helicase-Driven Activation of NFκB-COX2 Pathway Mediates the Immunosuppressive Component of dsRNA-Driven Inflammation in the Human Tumor Microenvironment. Cancer Res 2018; 78:4292-4302. [PMID: 29853604 DOI: 10.1158/0008-5472.can-17-3985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/01/2018] [Accepted: 05/24/2018] [Indexed: 01/01/2023]
Abstract
Presence of cytotoxic CD8+ T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to ex vivo-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.Significance: This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. Cancer Res; 78(15); 4292-302. ©2018 AACR.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Medical Center, Ulm, Germany
| | - Saigopalakrishna Yerneni
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA
| | - Saumendra N Sarkar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Orr
- Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jamie Voyten
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Francesmary Modugno
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weijian Jiang
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Melissa Grimm
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - Per H Basse
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert P Edwards
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Magee-Women's Research Institute, Ovarian Cancer Center of Excellence, Peritoneal/Ovarian Cancer Specialty Care Center, UPMC Hillman Cancer Center, and Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, New York.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 444] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
31
|
Heger L, Balk S, Lühr JJ, Heidkamp GF, Lehmann CHK, Hatscher L, Purbojo A, Hartmann A, Garcia-Martin F, Nishimura SI, Cesnjevar R, Nimmerjahn F, Dudziak D. CLEC10A Is a Specific Marker for Human CD1c + Dendritic Cells and Enhances Their Toll-Like Receptor 7/8-Induced Cytokine Secretion. Front Immunol 2018; 9:744. [PMID: 29755453 PMCID: PMC5934495 DOI: 10.3389/fimmu.2018.00744] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are major players for the induction of immune responses. Apart from plasmacytoid DCs (pDCs), human DCs can be categorized into two types of conventional DCs: CD141+ DCs (cDC1) and CD1c+ DCs (cDC2). Defining uniquely expressed surface markers on human immune cells is not only important for the identification of DC subpopulations but also a prerequisite for harnessing the DC subset-specific potential in immunomodulatory approaches, such as antibody-mediated antigen targeting. Although others identified CLEC9A as a specific endocytic receptor for CD141+ DCs, such a receptor for CD1c+ DCs has not been discovered, yet. By performing transcriptomic and flow cytometric analyses on human DC subpopulations from different lymphohematopoietic tissues, we identified CLEC10A (CD301, macrophage galactose-type C-type lectin) as a specific marker for human CD1c+ DCs. We further demonstrate that CLEC10A rapidly internalizes into human CD1c+ DCs upon binding of a monoclonal antibody directed against CLEC10A. The binding of a CLEC10A-specific bivalent ligand (the MUC-1 peptide glycosylated with N-acetylgalactosamine) is limited to CD1c+ DCs and enhances the cytokine secretion (namely TNFα, IL-8, and IL-10) induced by TLR 7/8 stimulation. Thus, CLEC10A represents not only a candidate to better define CD1c+ DCs—due to its high endocytic potential—CLEC10A also exhibits an interesting candidate receptor for future antigen-targeting approaches.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Silke Balk
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jennifer J Lühr
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F Heidkamp
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian H K Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Fayna Garcia-Martin
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Chair of Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Wang X, Li X, Ito A, Sogo Y, Watanabe Y, Hashimoto K, Yamazaki A, Ohno T, Tsuji NM. Synergistic effects of stellated fibrous mesoporous silica and synthetic dsRNA analogues for cancer immunotherapy. Chem Commun (Camb) 2018; 54:1057-1060. [PMID: 29323387 DOI: 10.1039/c7cc08222c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stellated fibrous mesoporous silica nanospheres significantly improve the cellular uptake of cancer antigen and the maturation of bone marrow derived dendritic cells in vitro. Moreover, the combination of poly(I:C) with stellated fibrous MS nanospheres markedly decreases the necessary dose of poly(I:C) for anti-tumor immunity, and thus opens new opportunities for the future clinical application of poly(I:C) in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiupeng Wang
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Quero L, Hanser E, Manigold T, Tiaden AN, Kyburz D. TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype. Arthritis Res Ther 2017; 19:245. [PMID: 29096690 PMCID: PMC5667453 DOI: 10.1186/s13075-017-1447-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Toll-like receptors (TLRs) and macrophages play an important role in rheumatoid arthritis (RA). Currently, it is not clear whether inflammatory M1 or anti-inflammatory M2 predominate among the resident macrophages in the synovium. In the present study, we set out to investigate the impact of TLR stimulation on monocyte-derived M1 and M2 macrophage function and phenotype by mimicking the exposure to abundant TLR agonists as occurs in the context of RA. The response of macrophage subsets to TLR2 and TLR4 activation was evaluated on cluster of differentiation (CD) marker profile; cytokine secretion; gene expression; and NF-κB, interferon regulatory factors 3 and 7 (IRF3/7), and mitogen-activated protein kinase (MAPK) activation. Methods Human monocytes were isolated from peripheral blood of healthy individuals and patients with RA and differentiated into M1-like and M2-like macrophages by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Cells were either (1) stimulated with TLR ligands Pam3 or lipopolysaccharide (LPS) or (2) classically activated via interferon (IFN)-γ/LPS. Cytokine production was measured by enzyme-linked immunosorbent assay, and gene expression was measured by qPCR. Cells were stained for CD markers and analyzed by fluorescence-activated cell sorting. NF-κB, IRF3/7, and MAPKs were detected by Western blotting. Results Monocyte-derived macrophages of healthy donors (HD) or patients with RA displayed comparable subset-specific phenotypes upon exposure to TLR agonists. CD14 and CD163 marker expression on M2 macrophages did not change upon TLR2 and TLR4 engagement. By contrast, M2 gene markers HMOX1, FOLR2, and SLC40A1 were decreased. Importantly, M2 macrophages derived from HD or patients with RA showed both a decreased ratio of interleukin (IL)-10/IL-6 and IL-10/IL-8 upon stimulation with TLR2 ligand Pam3 compared with TLR4 ligand LPS. Gene expression of TLR2 was increased, whereas TLR4 expression was decreased, by TLR ligand stimulation. MAPKs p38, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase were activated more strongly in M2 than in M1 macrophages by Pam3 or LPS. Conclusions We show that the anti-inflammatory activity of M2 macrophages is reduced in the presence of abundant TLR2 ligands without significant changes in cell surface markers. Thus, the classical M1/M2 paradigm based on cellular markers does not apply to macrophage functions in inflammatory conditions such as RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1447-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lilian Quero
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Petersplatz 10, 4051, Basel, Switzerland.
| | - Edveena Hanser
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Petersplatz 10, 4051, Basel, Switzerland
| | - Tobias Manigold
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Petersplatz 10, 4051, Basel, Switzerland
| | - André N Tiaden
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Petersplatz 10, 4051, Basel, Switzerland
| | - Diego Kyburz
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Petersplatz 10, 4051, Basel, Switzerland
| |
Collapse
|
34
|
Dahal LN, Dou L, Hussain K, Liu R, Earley A, Cox KL, Murinello S, Tracy I, Forconi F, Steele AJ, Duriez PJ, Gomez-Nicola D, Teeling JL, Glennie MJ, Cragg MS, Beers SA. STING Activation Reverses Lymphoma-Mediated Resistance to Antibody Immunotherapy. Cancer Res 2017; 77:3619-3631. [PMID: 28512240 PMCID: PMC5500176 DOI: 10.1158/0008-5472.can-16-2784] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/24/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
Tumors routinely attract and co-opt macrophages to promote their growth, angiogenesis, and metastasis. Macrophages are also the key effector cell for mAb therapies. Here we report that the tumor microenvironment creates an immunosuppressive signature on tumor-associated macrophages (TAM), which favors expression of inhibitory rather than activating Fcγ receptors (FcγR), thereby limiting the efficacy of mAb immunotherapy. We assessed a panel of TLR and STING agonists (a) for their ability to reprogram macrophages to a state optimal for mAb immunotherapy. Both STINGa and TLRa induced cytokine release, modulated FcγR expression, and augmented mAb-mediated tumor cell phagocytosis in vitro However, only STINGa reversed the suppressive FcγR profile in vivo, providing strong adjuvant effects to anti-CD20 mAb in murine models of lymphoma. Potent adjuvants like STINGa, which can improve FcγR activatory:inhibitory (A:I) ratios on TAM, are appealing candidates to reprogram TAM and curb tumor-mediated immunosuppression, thereby empowering mAb efficacy. Cancer Res; 77(13); 3619-31. ©2017 AACR.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Lang Dou
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Khiyam Hussain
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Rena Liu
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Alexander Earley
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Kerry L Cox
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Salome Murinello
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Ian Tracy
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Francesco Forconi
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Andrew J Steele
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Patrick J Duriez
- Cancer Sciences Unit, Cancer Research UK and NIHR Experimental Cancer Medicine Centres, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Jessica L Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Martin J Glennie
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| | - Stephen A Beers
- Antibody & Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
35
|
Snyder DT, Hedges JF, Jutila MA. Getting "Inside" Type I IFNs: Type I IFNs in Intracellular Bacterial Infections. J Immunol Res 2017; 2017:9361802. [PMID: 28529959 PMCID: PMC5424489 DOI: 10.1155/2017/9361802] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/23/2022] Open
Abstract
Type I interferons represent a unique and complex group of cytokines, serving many purposes during innate and adaptive immunity. Discovered in the context of viral infections, type I IFNs are now known to have myriad effects in infectious and autoimmune disease settings. Type I IFN signaling during bacterial infections is dependent on many factors including whether the infecting bacterium is intracellular or extracellular, as different signaling pathways are activated. As such, the repercussions of type I IFN induction can positively or negatively impact the disease outcome. This review focuses on type I IFN induction and downstream consequences during infection with the following intracellular bacteria: Chlamydia trachomatis, Listeria monocytogenes, Mycobacterium tuberculosis, Salmonella enterica serovar Typhimurium, Francisella tularensis, Brucella abortus, Legionella pneumophila, and Coxiella burnetii. Intracellular bacterial infections are unique because the bacteria must avoid, circumvent, and even co-opt microbial "sensing" mechanisms in order to reside and replicate within a host cell. Furthermore, life inside a host cell makes intracellular bacteria more difficult to target with antibiotics. Because type I IFNs are important immune effectors, modulating this pathway may improve disease outcomes. But first, it is critical to understand the context-dependent effects of the type I IFN pathway in intracellular bacterial infections.
Collapse
Affiliation(s)
- Deann T. Snyder
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Jodi F. Hedges
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Mark A. Jutila
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
36
|
Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants. Pathogens 2017; 6:pathogens6010013. [PMID: 28327531 PMCID: PMC5371901 DOI: 10.3390/pathogens6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Accepted: 03/18/2017] [Indexed: 01/03/2023] Open
Abstract
An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science.
Collapse
|
37
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
38
|
Potentiation and tolerance of toll-like receptor priming in human endothelial cells. Transl Res 2017; 180:53-67.e4. [PMID: 27567430 PMCID: PMC5253081 DOI: 10.1016/j.trsl.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022]
Abstract
Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.
Collapse
|
39
|
TLR Signalling Pathways Diverge in Their Ability to Induce PGE2. Mediators Inflamm 2016; 2016:5678046. [PMID: 27630451 PMCID: PMC5007370 DOI: 10.1155/2016/5678046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/17/2016] [Indexed: 12/25/2022] Open
Abstract
PGE2 is a lipid mediator abundantly produced in inflamed tissues that exerts relevant immunoregulatory functions. Dendritic cells (DCs) are key players in the onset and shaping of the inflammatory and immune responses and, as such, are well known PGE2 targets. By contrast, the precise role of human DCs in the production of PGE2 is poorly characterized. Here, we asked whether different ligands of Toll-like receptors (TLRs), a relevant family of pathogen-sensing receptors, could induce PGE2 in human DCs. The only active ligands were LPS (TLR4 ligand) and R848 (TLR7-8 ligand) although all TLRs, but TLR9, were expressed and functional. While investigating the molecular mechanisms hindering the release of PGE2, our experiments highlighted so far oversight differences in TLR signalling pathways in terms of MAPK and NF-κB activation. In addition, we identified that the PGE2-limiting checkpoint downstream TLR3, TLR5, and TLR7 was a defect in COX2 induction, while TLR1/2 and TLR2/6 failed to mobilize arachidonic acid, the substrate for the COX2 enzyme. Finally, we demonstrated the in vivo expression of PGE2 by myeloid CD11c+ cells, documenting a role for DCs in the production of PGE2 in human inflamed tissues.
Collapse
|
40
|
Huang LY, Stuart C, Takeda K, D’Agnillo F, Golding B. Poly(I:C) Induces Human Lung Endothelial Barrier Dysfunction by Disrupting Tight Junction Expression of Claudin-5. PLoS One 2016; 11:e0160875. [PMID: 27504984 PMCID: PMC4978501 DOI: 10.1371/journal.pone.0160875] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022] Open
Abstract
Viral infections are often accompanied by pulmonary microvascular leakage and vascular endothelial dysfunction via mechanisms that are not completely defined. Here, we investigated the effect of the Toll-like receptor 3 (TLR3) ligand polyinosinic-polycytidylic acid [Poly(I:C)], a synthetic analog of viral double-stranded RNA (dsRNA) commonly used to simulate viral infections, on the barrier function and tight junction integrity of primary human lung microvascular endothelial cells. Poly(I:C) stimulated IL-6, IL-8, TNFα, and IFNβ production in conjunction with the activation of NF-κB and IRF3 confirming the Poly(I:C)-responsiveness of these cells. Poly(I:C) increased endothelial monolayer permeability with a corresponding dose- and time-dependent decrease in the expression of claudin-5, a transmembrane tight junction protein and reduction of CLDN5 mRNA levels. Immunofluorescence experiments revealed disappearance of membrane-associated claudin-5 and co-localization of cytoplasmic claudin-5 with lysosomal-associated membrane protein 1. Chloroquine and Bay11-7082, inhibitors of TLR3 and NF-κB signaling, respectively, protected against the loss of claudin-5. Together, these findings provide new insight on how dsRNA-activated signaling pathways may disrupt vascular endothelial function and contribute to vascular leakage pathologies.
Collapse
Affiliation(s)
- Li-Yun Huang
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Christine Stuart
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| | - Basil Golding
- Laboratory of Plasma Derivatives, Division of Hematology Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (BG); (FD)
| |
Collapse
|
41
|
Das A, Kim SH, Arifuzzaman S, Yoon T, Chai JC, Lee YS, Park KS, Jung KH, Chai YG. Transcriptome sequencing reveals that LPS-triggered transcriptional responses in established microglia BV2 cell lines are poorly representative of primary microglia. J Neuroinflammation 2016; 13:182. [PMID: 27400875 PMCID: PMC4940985 DOI: 10.1186/s12974-016-0644-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
Background Microglia are resident myeloid cells in the CNS that are activated by infection, neuronal injury, and inflammation. Established BV2 microglial cell lines have been the primary in vitro models used to study neuroinflammation for more than a decade because they reduce the requirement of continuously maintaining cell preparations and animal experimentation models. However, doubt has recently been raised regarding the value of BV2 cell lines as a model system. Methods We used triplicate RNA sequencing (RNA-seq) to investigate the molecular signature of primary and BV2 microglial cell lines using two transcriptomic techniques: global transcriptomic biological triplicate RNA-seq and quantitative real-time PCR. We analyzed differentially expressed genes (DEGs) to identify transcription factor (TF) motifs (−950 to +50 bp of the 5′ upstream promoters) and epigenetic mechanisms. Results Sequencing assessment and quality evaluation revealed that primary microglia have a distinct transcriptomic signature and express a unique cluster of transcripts in response to lipopolysaccharide. This microglial signature was not observed in BV2 microglial cell lines. Importantly, we observed that previously unidentified TFs (i.e., IRF2, IRF5, IRF8, STAT1, STAT2, and STAT5A) and the epigenetic regulators KDM1A, NSD3, and SETDB2 were significantly and selectively expressed in primary microglia (PM). Although transcriptomic alterations known to occur in BV2 microglial cell lines were identified in PM, we also observed several novel transcriptomic alterations in PM that are not frequently observed in BV2 microglial cell lines. Conclusions Collectively, these unprecedented findings demonstrate that established BV2 microglial cell lines are probably a poor representation of PM, and we establish a resource for future studies of neuroinflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0644-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sun Hwa Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Taeho Yoon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young Seek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Sun Park
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea.
| |
Collapse
|
42
|
Nelson AM, Reddy SK, Ratliff TS, Hossain MZ, Katseff AS, Zhu AS, Chang E, Resnik SR, Page C, Kim D, Whittam AJ, Miller LS, Garza LA. dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin Regeneration. Cell Stem Cell 2016; 17:139-51. [PMID: 26253200 DOI: 10.1016/j.stem.2015.07.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022]
Abstract
Regeneration of skin and hair follicles after wounding--a process known as wound-induced hair neogenesis (WIHN)--is a rare example of adult organogenesis in mammals. As such, WIHN provides a unique model system for deciphering mechanisms underlying mammalian regeneration. Here, we show that dsRNA, which is released from damaged skin, activates Toll-Like Receptor 3 (TLR3) and its downstream effectors IL-6 and STAT3 to promote hair follicle regeneration. Conversely, TLR3-deficient animals fail to initiate WIHN. TLR3 activation promotes expression of hair follicle stem cell markers and induces elements of the core hair morphogenetic program, including ectodysplasin A receptor (EDAR) and the Wnt and Shh pathways. Our results therefore show that dsRNA and TLR3 link the earliest events of mammalian skin wounding to regeneration and suggest potential therapeutic approaches for promoting hair neogenesis.
Collapse
Affiliation(s)
- Amanda M Nelson
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sashank K Reddy
- Department of Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tabetha S Ratliff
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - M Zulfiquer Hossain
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adiya S Katseff
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amadeus S Zhu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Emily Chang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sydney R Resnik
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Carly Page
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alexander J Whittam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
43
|
Yue L, Xie Z, Li H, Pang Z, Junkins RD, Tremblay ML, Chen X, Lin TJ. Protein Tyrosine Phosphatase-1B Negatively Impacts Host Defense against Pseudomonas aeruginosa Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1234-44. [DOI: 10.1016/j.ajpath.2016.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 12/26/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
|
44
|
Zhou J, Jin JO, Du J, Yu Q. Innate Immune Signaling Induces IL-7 Production, Early Inflammatory Responses, and Sjögren's-Like Dacryoadenitis in C57BL/6 Mice. Invest Ophthalmol Vis Sci 2016; 56:7831-8. [PMID: 26658504 DOI: 10.1167/iovs.15-17368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Innate immune signaling elicited by polyinosinic-polycytidylic acid (poly I:C) induces IL-7 production and early inflammatory responses in the salivary gland and accelerates the development of Sjögren's syndrome (SS)-like sialadenitis. Whether poly I:C can induce similar responses in the lacrimal gland (LAC) has not been characterized. In this study, we examined the early responses and pathologic changes of the LAC tissue in response to poly I:C treatment. METHODS Poly I:C or recombinant human IL-7 was injected intraperitoneally into C57BL/6 mice, and the LAC was harvested at different time points. Expression of chemokines and cytokines in the LAC was measured by RT-PCR, immunofluorescence staining, and immunohistochemistry. Leukocytic infiltration and caspase-3 activation were analyzed by hematoxylin and eosin staining and immunohistochemistry. Serum antinuclear antibody levels were also determined. Tear secretion was measured by phenol red cotton threads. RESULTS Administration of poly I:C induced IL-7 gene expression and protein production in the LAC. Poly I:C also induced the expression of CXCR3 ligands, monocyte chemoattractant protein-1, IL-23p19, and TNF-α in the LAC in an IL-7-dependent fashion. Similarly to poly I:C, administration of exogenous IL-7 also up-regulated these proinflammatory mediators. Furthermore, repeated administration of poly I:C to C57BL/6 mice over an 8-day period caused leukocytic infiltration and caspase-3 activation in the LAC, antinuclear antibody production, and impaired tear secretion. CONCLUSIONS Poly I:C induces IL-7 production, early inflammatory responses, and characteristic pathologies of SS-like dacryoadenitis in non-autoimmune-prone C57BL/6 mice. These findings provide new evidence that viral infection-elicited innate immune signaling may be one of the early triggers of SS-like dacryoadenitis.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| | - Jun-O Jin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Juan Du
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States
| | - Qing Yu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, United States 2Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States
| |
Collapse
|
45
|
Low HZ, Ahrenstorf G, Pommerenke C, Habermann N, Schughart K, Ordóñez D, Stripecke R, Wilk E, Witte T. TLR8 regulation of LILRA3 in monocytes is abrogated in human immunodeficiency virus infection and correlates to CD4 counts and virus loads. Retrovirology 2016; 13:15. [PMID: 26969150 PMCID: PMC4788896 DOI: 10.1186/s12977-016-0248-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND LILRA3 is an immunostimulatory molecule which can conditionally induce the proliferation of cytotoxic cells. LILRA3 has a deletion genotype which is associated with multiple immune disorders. In this study, we wanted to analyze the regulation of LILRA3 and its significance in the context of HIV infection. RESULTS We analyzed a panel of TLR agonists and found that ssRNA40, a TLR8 agonist, is a potent inducer of LILRA3 in healthy individuals. However, this regulation is much diminished in HIV. Comparison of TLR8 to TLR4 induction of LILRA3 indicated that LPS induces less LILRA3 than ssRNA40 among healthy controls, but not HIV patients. Levels of LILRA3 induction correlated to virus load and CD4 counts in untreated patients. Recombinant LILRA3 can induce a host of proinflammatory genes which include IL-6 and IL-1α, as well as alter the expression of MHC and costimulatory molecules in monocytes and B-cells. CONCLUSION Our experiments point towards a beneficial role for LILRA3 in virus infections, especially in ssRNA viruses, like HIV, that engage TLR8. However, the potentially beneficial role of LILRA3 is abrogated during a HIV infection. We believe that more work has to be done to study the role of LILRA3 in infectious diseases and that there is a potential for exploring the use of LILRA3 in the treatment of virus infections.
Collapse
Affiliation(s)
- Hui Zhi Low
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Gerrit Ahrenstorf
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudia Pommerenke
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nadine Habermann
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine, Hannover, Germany.,University of Tennessee Health Science Center, Memphis, TN, USA
| | - David Ordóñez
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Renata Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Esther Wilk
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten Witte
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
46
|
Poly(I:C) increases the expression of mPGES-1 and COX-2 in rat primary microglia. J Neuroinflammation 2016; 13:11. [PMID: 26780827 PMCID: PMC4717620 DOI: 10.1186/s12974-015-0473-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022] Open
Abstract
Background Microglia recognize pathogen-associated molecular patterns such as double-stranded RNA (dsRNA) present in some viruses. Polyinosinic-polycytidylic acid [poly(I:C)] is a synthetic analog of dsRNA that activates different molecules, such as retinoic acid-inducible gene I, melanoma differentiation-associated gene 5, and toll-like receptor-3 (TLR3). Poly(I:C) increases the expression of different cytokines in various cell types. However, its role in the regulation of the production of inflammatory mediators of the arachidonic acid pathway by microglia is poorly understood. Methods In the present study, we evaluated the effect of poly(I:C) on the production of prostaglandin E2 (PGE2) and the inducible enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) in primary rat microglia. Microglia were stimulated with different concentrations of poly(I:C) (0.1–10 μg/ml), and the protein levels of COX-2 and mPGES-1, as well as the release of PGE2, were determined by western blot and enzyme immunoassay (EIA), respectively. Values were compared using one-way ANOVA with post hoc Student-Newman-Keuls test. Results Poly(I:C) increased the production of PGE2, as well as mPGES-1 and COX-2 synthesis. To investigate the mechanisms involved in poly(I:C)-induced COX-2 and mPGES-1, we studied the effects of various signal transduction pathway inhibitors. Protein levels of COX-2 and mPGES-1 were reduced by SB203580, SP600125, and SC514 (p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and IκB kinase (IKK) inhibitors, respectively), as well as by PD98059 and PD0325901 (mitogen-activated protein kinase kinase (MEK) inhibitors). Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, enhanced the synthesis of COX-2. Inhibition of phosphatidylinositol 3-kinase (PI3K) by LY294002 or dual inhibition of PI3K/mTOR (with NVP-BEZ235) enhanced COX-2 and reduced mPGES-1 immunoreactivity. To confirm the data obtained with the inhibitors, we studied the phosphorylation of the blocked kinases by western blot. Poly(I:C) increased the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK), JNK, protein kinase B (Akt), and IκB. Conclusions Taken together, our data demonstrate that poly(I:C) increases the synthesis of enzymes involved in PGE2 synthesis via activation of different signaling pathways in microglia. Importantly, poly(I:C) activates similar pathways also involved in TLR4 signaling that are important for COX-2 and mPGES-1 synthesis. Thus, these two enzymes and their products might contribute to the neuropathological effects induced in response to dsRNA, whereby the engagement of TLR3 might be involved.
Collapse
|
47
|
Sacre S, Lo A, Gregory B, Stephens M, Chamberlain G, Stott P, Brennan F. Oligodeoxynucleotide inhibition of Toll-like receptors 3, 7, 8, and 9 suppresses cytokine production in a human rheumatoid arthritis model. Eur J Immunol 2015; 46:772-81. [PMID: 26593270 DOI: 10.1002/eji.201546123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/15/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023]
Abstract
Toll-like receptors (TLRs) are innate immune receptors that respond to both exogenous and endogenous stimuli and are suggested to contribute to the perpetuation of chronic inflammation associated with rheumatoid arthritis (RA). In particular, the endosomal TLRs 3, 7, 8, and 9 have more recently been postulated to be of importance in RA pathogenesis. In this study, pan inhibition of the endosomal TLRs by a phosphorothioate-modified inhibitory oligodeoxynucleotide (ODN) is demonstrated in primary human B cells, macrophages, and RA fibroblasts. Inhibition of TLR8 was of particular interest as TLR8 has been associated with RA pathogenesis in both human and murine arthritis models. ODN1411 competitively inhibited TLR8 signaling and was observed to directly bind to a purified TLR8 ectodomain, suggesting inhibition was through a direct interaction with the receptor. Addition of ODN1411 to human RA synovial membrane cultures significantly inhibited spontaneous cytokine production from these cultures, suggesting a potential role for one or more of the endosomal TLRs in inflammatory cytokine production in RA and the potential for inhibitory ODNs as novel therapies.
Collapse
Affiliation(s)
- Sandra Sacre
- Brighton and Sussex Medical School, Brighton, UK
| | - Alexandra Lo
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| | - Bernard Gregory
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| | | | | | - Philip Stott
- Department of Orthopaedics, Brighton and Sussex University Hospitals, Brighton, UK
| | - Fionula Brennan
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Oxford, UK
| |
Collapse
|
48
|
Endothelial cell tolerance to lipopolysaccharide challenge is induced by monophosphoryl lipid A. Clin Sci (Lond) 2015; 130:451-61. [PMID: 26669797 DOI: 10.1042/cs20150592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Prior exposure to lipopolysaccharide (LPS) produces a reduced or "tolerant" inflammatory response to subsequent challenges with LPS, however the potent pro-inflammatory effects of LPS limit its clinical benefit. The adjuvant monophosphoryl lipid A (MPLA) is a weak toll-like receptor 4 (TLR4) agonist that induces negligible inflammation but retains potent immunomodulatory properties. We postulated that pre-treatment with MPLA would inhibit the inflammatory response of endothelial cells to secondary LPS challenge. Human umbilical vein endothelial cells (HUVECs), were exposed to MPLA (10 μg/ml), LPS (100 ng/ml) or vehicle control. HUVECs were then washed and maintained in culture for 24 h before being challenged with LPS (100 ng/ml). Supernatants were collected and examined for cytokine production in the presence or absence of siRNA inhibitors of critical TLR4 signalling proteins. Pre-treatment with MPLA attenuated interleukin (IL)-6 production to secondary LPS challenge to a similar degree as LPS. The application of myeloid differentiation primary response gene 88 (MyD88) siRNA dramatically reduced MPLA-induced tolerance while TIR-domain-containing adapter-inducing interferon-β (TRIF) siRNA had no effect. The tolerant phenotype in endothelial cells was associated with reduced IκB kinase (IKK), p38 and c-Jun N-terminal kinase (JNK) phosphorylation and enhanced IL-1 receptor associated kinase-M (IRAK-M) expression for LPS-primed HUVECs, but less so in MPLA primed cells. Instead, MPLA-primed HUVECs demonstrated enhanced p-extracellular-signal-regulated kinase (ERK) phosphorylation. In contrast with leucocytes in which tolerance is largely TRIF-dependent, MyD88 signalling mediated endotoxin tolerance in endothelial cells. Most importantly, MPLA, a vaccine adjuvant with a wide therapeutic window, induced tolerance to LPS in endothelial cells.
Collapse
|
49
|
Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma. Mediators Inflamm 2015; 2015:219374. [PMID: 26663987 PMCID: PMC4667029 DOI: 10.1155/2015/219374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood) and suboptimal (ASubopt) asthma symptom control. METHODS Peripheral blood neutrophils from AGood (ACQ < 0.75, n = 11), ASubopt (ACQ > 0.75, n = 7), and healthy controls (HC) (n = 9) were stimulated with bacterial (LPS (1 μg/mL), fMLF (100 nM)), and viral (imiquimod (3 μg/mL), R848 (1.5 μg/mL), and poly I:C (10 μg/mL)) surrogates or live rhinovirus (RV) 16 (MOI1). Cell-free supernatant was collected after 1 h for neutrophil elastase (NE) and matrix metalloproteinase- (MMP-) 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. CONCLUSIONS Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.
Collapse
|
50
|
The Role of the Transcriptional Regulation of Stromal Cells in Chronic Inflammation. Biomolecules 2015; 5:2723-57. [PMID: 26501341 PMCID: PMC4693255 DOI: 10.3390/biom5042723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/09/2015] [Indexed: 01/02/2023] Open
Abstract
Chronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies. Signal transduction pathways remain the main focus of study to understand how stimuli contribute to perpetuating the inflammatory response, mainly due to their potential role as therapeutic targets. However, molecular events orchestrated in the nucleus by transcription factors add additional levels of complexity and may be equally important for understanding the phenotypic differences of activated stromal components during the chronic inflammatory process. In this review, we focus on the contribution of transcription factors to the selective regulation of inducible proinflammatory genes, with special attention given to the regulation of the stromal fibroblastic cell function and response.
Collapse
|