1
|
Tiemessen CT. Human models that inform antiretroviral therapy-free remission with perinatally acquired HIV infection. Curr Opin HIV AIDS 2025:01222929-990000000-00139. [PMID: 39946194 DOI: 10.1097/coh.0000000000000918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
PURPOSE OF REVIEW Rare persons who achieve disease-control despite high viral loads (viraemic nonprogressors) or maintain virologic control in the absence of antiretroviral therapy (ART) (elite controllers) or following ART interruption (posttreatment controllers) possess protective factors that can be harnessed for interventions to achieve ART-free remission. This review broadly summarizes these phenotypes in adults and children, and updates on findings important in informing strategies for ART-free remission in children with HIV. RECENT FINDINGS To date, only a few individual cases of posttreatment control have been described in children. Smaller HIV reservoir size with very early ART initiation in neonates with in-utero acquired HIV associates with improved virological and immunological outcomes. Nine new cases of ART-free remission in children were recently described - 4 from the P1115 trial, and 5 males from the Ucwaningo Lwabantwana study in South Africa. A striking reduction in the decay of intact proviruses was observed over three decades on suppressive ART in two early-treated twins with HIV. SUMMARY The unique environment of perinatal HIV infection favours effective restriction and decay of the HIV-1 reservoir with suppressive ART initiated very early. Sex and population differences require consideration in ongoing studies to inform ART-free remission.
Collapse
Affiliation(s)
- Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Al-Talib M, Dimonte S, Humphreys IR. Mucosal T-cell responses to chronic viral infections: Implications for vaccine design. Cell Mol Immunol 2024; 21:982-998. [PMID: 38459243 PMCID: PMC11364786 DOI: 10.1038/s41423-024-01140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024] Open
Abstract
Mucosal surfaces that line the respiratory, gastrointestinal and genitourinary tracts are the major interfaces between the immune system and the environment. Their unique immunological landscape is characterized by the necessity of balancing tolerance to commensal microorganisms and other innocuous exposures against protection from pathogenic threats such as viruses. Numerous pathogenic viruses, including herpesviruses and retroviruses, exploit this environment to establish chronic infection. Effector and regulatory T-cell populations, including effector and resident memory T cells, play instrumental roles in mediating the transition from acute to chronic infection, where a degree of viral replication is tolerated to minimize immunopathology. Persistent antigen exposure during chronic viral infection leads to the evolution and divergence of these responses. In this review, we discuss advances in the understanding of mucosal T-cell immunity during chronic viral infections and how features of T-cell responses develop in different chronic viral infections of the mucosa. We consider how insights into T-cell immunity at mucosal surfaces could inform vaccine strategies: not only to protect hosts from chronic viral infections but also to exploit viruses that can persist within mucosal surfaces as vaccine vectors.
Collapse
Affiliation(s)
- Mohammed Al-Talib
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Bristol Medical School, University of Bristol, 5 Tyndall Avenue, Bristol, BS8 1UD, UK
| | - Sandra Dimonte
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Ian R Humphreys
- Systems Immunity University Research Institute/Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
3
|
Simpson J, Dulek B, Schaughency P, Brenchley JM. Multi-omics analysis of SIV-specific CD8+ T cells in multiple anatomical sites. PLoS Pathog 2024; 20:e1012545. [PMID: 39250524 PMCID: PMC11412524 DOI: 10.1371/journal.ppat.1012545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/19/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
CD8+ T cells exert immunological pressure against immunodeficiency lentiviruses. In previous studies, we examined the TCR repertoire of CD8+ T cells specific for a single SIV immunodominant epitope, Gag-CM9, throughout SIV infection or after vaccination, and across multiple anatomic sites. We identified both tissue specific TCR sequences and TCRs shared by multiple anatomical sites. Here we use single cell RNA sequencing to evaluate if the tissue localization or TCR sequence of a CM9-specific CD8+ T cell corresponds with unique transcriptomics. CM9-specific CD8+ T cells were sorted from blood, lymph nodes, spleen, and liver from SIV infected rhesus macaques with progressive SIV infection and in animals who spontaneously control SIV replication after cessation of antiretroviral therapy. The cells were processed through a single cell sequencing protocol, creating a TCR amplified library and an RNA gene expression library corresponding to individual cells. Gene set enrichment analysis revealed no distinct transcriptional profiles for CM9 specific CD8+ T cells between different anatomical sites and between cells with shared or tissue specific TCRs. Similarly, no clear transcriptional profiles were associated with clonotypes which were shared across individual animals. However, CM9 specific CD8+ T cells from posttreatment controllers did exhibit enrichment of pathways associated with cellular activation compared to progressively infected animals, suggesting that altered transcription in distinct cellular pathways in antigen specific CD8+ T cells may associate with viral control. Together, these studies represent a thorough analysis of the relationship between anatomical and clonal origin, and the transcriptional profile of antigen specific CD8+ T cells and unravel pathways that may be important for CD8+ T cell mediated control of SIV replication.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brittany Dulek
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Schaughency
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, Sen F, Cohen SH, Schmiedehausen K, Badawi RD, Shacklett BL, Wilson I, Cherry SR. First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody. SCIENCE ADVANCES 2023; 9:eadh7968. [PMID: 37824612 PMCID: PMC10569706 DOI: 10.1126/sciadv.adh7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
With most of the T cells residing in the tissue, not the blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics is important for studying their role in immune response and memory. This study presents the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell biodistribution in humans. A 89Zr-labeled CD8-targeted minibody (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy individuals (N = 3) and coronavirus disease 2019 (COVID-19) convalescent patients (N = 5). Kinetic modeling results aligned with T cell-trafficking effects expected in lymphoid organs. Tissue-to-blood ratios from the first 7 hours of imaging were higher in bone marrow of COVID-19 convalescent patients compared to controls, with an increasing trend between 2 and 6 months after infection, consistent with modeled net influx rates and peripheral blood flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory.
Collapse
Affiliation(s)
- Negar Omidvari
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Pat M. Price
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - April L. Ferre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Jacqueline Lu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Yasser G. Abdelhafez
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
- Radiotherapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Fatma Sen
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Stuart H. Cohen
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Ramsey D. Badawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | | | - Simon R. Cherry
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
5
|
Omidvari N, Jones T, Price PM, Ferre AL, Lu J, Abdelhafez YG, Sen F, Cohen SH, Schmiedehausen K, Badawi RD, Shacklett BL, Wilson I, Cherry SR. First-in-human immunoPET imaging of COVID-19 convalescent patients using dynamic total-body PET and a CD8-targeted minibody. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.14.23287121. [PMID: 36993568 PMCID: PMC10055575 DOI: 10.1101/2023.03.14.23287121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
With the majority of CD8+ T cells residing and functioning in tissue, not blood, developing noninvasive methods for in vivo quantification of their biodistribution and kinetics in humans offers the means for studying their key role in adaptive immune response and memory. This study is the first report on using positron emission tomography (PET) dynamic imaging and compartmental kinetic modeling for in vivo measurement of whole-body biodistribution of CD8+ T cells in human subjects. For this, a 89Zr-labeled minibody with high affinity for human CD8 (89Zr-Df-Crefmirlimab) was used with total-body PET in healthy subjects (N=3) and in COVID-19 convalescent patients (N=5). The high detection sensitivity, total-body coverage, and the use of dynamic scans enabled the study of kinetics simultaneously in spleen, bone marrow, liver, lungs, thymus, lymph nodes, and tonsils, at reduced radiation doses compared to prior studies. Analysis and modeling of the kinetics was consistent with T cell trafficking effects expected from immunobiology of lymphoid organs, suggesting early uptake in spleen and bone marrow followed by redistribution and delayed increasing uptake in lymph nodes, tonsils, and thymus. Tissue-to-blood ratios from the first 7 h of CD8-targeted imaging showed significantly higher values in the bone marrow of COVID-19 patients compared to controls, with an increasing trend between 2 and 6 months post-infection, consistent with net influx rates obtained by kinetic modeling and flow cytometry analysis of peripheral blood samples. These results provide the platform for using dynamic PET scans and kinetic modelling to study total-body immunological response and memory.
Collapse
Affiliation(s)
- Negar Omidvari
- Department of Biomedical Engineering, University of California Davis; Davis, CA, USA
| | - Terry Jones
- Department of Radiology, University of California Davis Medical Center; Sacramento, CA, USA
| | - Pat M Price
- Department of Surgery and Cancer, Imperial College London; London, United Kingdom
| | - April L Ferre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis; Davis, CA, USA
| | - Jacqueline Lu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis; Davis, CA, USA
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis Medical Center; Sacramento, CA, USA
- Radiotherapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Egypt
| | - Fatma Sen
- Department of Radiology, University of California Davis Medical Center; Sacramento, CA, USA
| | - Stuart H Cohen
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center; Sacramento, CA, USA
| | | | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California Davis; Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center; Sacramento, CA, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis; Davis, CA, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center; Sacramento, CA, USA
| | | | - Simon R Cherry
- Department of Biomedical Engineering, University of California Davis; Davis, CA, USA
- Department of Radiology, University of California Davis Medical Center; Sacramento, CA, USA
| |
Collapse
|
6
|
Mohamed H, Berman R, Connors J, Haddad EK, Miller V, Nonnemacher MR, Dampier W, Wigdahl B, Krebs FC. Immunomodulatory Effects of Non-Thermal Plasma in a Model for Latent HIV-1 Infection: Implications for an HIV-1-Specific Immunotherapy. Biomedicines 2023; 11:122. [PMID: 36672628 PMCID: PMC9856147 DOI: 10.3390/biomedicines11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Vandana Miller
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
7
|
A role for CD4 + helper cells in HIV control and progression. AIDS 2022; 36:1501-1510. [PMID: 35730394 DOI: 10.1097/qad.0000000000003296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE It remains unclear why HIV persists in most untreated individuals, and why a small minority of individuals can control the virus, either spontaneously or after an early treatment. Striking differences have been discovered between patient cohorts in CD4 + T-cell avidity but not in CD8 + T-cell avidity. The present work has the aim to explain the diverse outcome of infection and identify the key virological and immunological parameters predicting the outcome. DESIGN AND METHOD A mathematical model informed by these experiments and taking into account the details of HIV virology is developed. RESULTS The model predicts an arms race between viral dissemination and the proliferation of HIV-specific CD4 + helper cells leading to one of two states: a low-viremia state (controller) or a high-viremia state (progressor). Helper CD4 + cells with a higher avidity favor virus control. The parameter segregating spontaneous and posttreatment controllers is the infectivity difference between activated and resting CD4 + T cells. The model is shown to have a better connection to experiment than a previous model based on T-cell 'exhaustion'. CONCLUSION Using the model informed by patient data, the timing of antiretroviral therapy can be optimized.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Immunological studies of spontaneous HIV and simian virus (SIV) controllers have identified virus-specific CD8 + T cells as a key immune mechanism of viral control. The purpose of this review is to consider how knowledge about the mechanisms that are associated with CD8 + T cell control of HIV/SIV in natural infection can be harnessed in HIV remission strategies. RECENT FINDINGS We discuss characteristics of CD8 + T-cell responses that may be critical for suppressing HIV replication in spontaneous controllers comprising HIV antigen recognition including specific human leukocyte antigen types, broadly cross-reactive T cell receptors and epitope targeting, enhanced expansion and antiviral functions, and localization of virus-specific T cells near sites of reservoir persistence. We also discuss the need to better understand the timing of CD8 + T-cell responses associated with viral control of HIV/SIV during acute infection and after treatment interruption as well as the mechanisms by which HIV/SIV-specific CD8 + T cells coordinate with other immune responses to achieve control. SUMMARY We propose implications as to how this knowledge from natural infection can be applied in the design and evaluation of CD8 + T-cell-based remission strategies and offer questions to consider as these strategies target distinct CD8 + T-cell-dependent mechanisms of viral control.
Collapse
|
9
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
10
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
12
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|
13
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
14
|
The importance of advanced cytometry in defining new immune cell types and functions relevant for the immunopathogenesis of HIV infection. AIDS 2020; 34:2169-2185. [PMID: 32910071 DOI: 10.1097/qad.0000000000002675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: In the last years, novel, exciting immunological findings of interest for HIV research and treatment were identified thanks to different cytometric approaches. The analysis of the phenotypes and functionality of cells belonging to the immune system could clarify their role in the immunopathogenesis of HIV infection, and to elaborate key concepts, relevant in the treatment of this disease. Important discoveries have been made concerning cells that are important for protective immunity like lymphocytes that display polyfunctionality, resident memory T cells, innate lymphoid cells, to mention a few. The complex phenotype of myeloid-derived suppressor cells has been investigated, and relevant changes have been reported during chronic and primary HIV infection, in correlation with changes in CD4 T-cell number, T-cell activation, and with advanced disease stage. The search for markers of HIV persistence present in latently infected cells, namely those molecules that are important for a functional or sterilizing cure, evidenced the role of follicular helper T cells, and opened a discussion on the meaning and use of different surface molecules not only in identifying such cells, but also in designing new strategies. Finally, advanced technologies based upon the simultaneous detection of HIV-RNA and proteins at the single cell level, as well as those based upon spectral cytometry or mass cytometry are now finding new actors and depicting a new scenario in the immunopathogenesis of the infection, that will allow to better design innovative therapies based upon novel drugs and vaccines.
Collapse
|
15
|
D'haese S, Lacroix C, Garcia F, Plana M, Ruta S, Vanham G, Verrier B, Aerts JL. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J Control Release 2020; 330:1016-1033. [PMID: 33181204 DOI: 10.1016/j.jconrel.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Over the last few years, immunotherapy for HIV in general and therapeutic vaccination in particular, has received a tremendous boost, both in preclinical research and in clinical applications. This interest is based on the evidence that the immune system plays a crucial role in controlling HIV infection, as shown for long-term non-progressors and elite controllers, and that immune responses can be manipulated towards targeting conserved epitopes. So far, the most successful approach has been vaccination with autologous dendritic cells (DCs) loaded ex vivo with antigens and activation signals. Although this approach offers much promise, it also comes with significant drawbacks such as the requirement of a specialized infrastructure and expertise, as well as major challenges for logistics and storage, making it extremely time consuming and costly. Therefore, methods are being developed to avoid the use of ex vivo generated, autologous DCs. One of these methods is based on mRNA for therapeutic vaccination. mRNA has proven to be a very promising vaccine platform, as the coding information for any desired protein, including antigens and activation signals, can be generated in a very short period of time, showing promise both as an off-the-shelf therapy and as a personalized approach. However, an important drawback of this approach is the short half-life of native mRNA, due to the presence of ambient RNases. In addition, proper immunization requires that the antigens are expressed, processed and presented at the right immunological site (e.g. the lymphoid tissues). An ambivalent aspect of mRNA as a vaccine is its capacity to induce type I interferons, which can have beneficial adjuvant effects, but also deleterious effects on mRNA stability and translation. Thus, proper formulation of the mRNA is crucially important. Many approaches for RNA formulation have already been tested, with mixed success. In this review we discuss the state-of-the-art and future trends for mRNA-nanoparticle formulations for HIV vaccination, both in the prophylactic and in the therapeutic setting.
Collapse
Affiliation(s)
- Sigrid D'haese
- Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Céline Lacroix
- Institute for the Biology and Chemistry of Proteins (IBCP), Lyon, France
| | | | | | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Guido Vanham
- Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium
| | - Bernard Verrier
- Institute for the Biology and Chemistry of Proteins (IBCP), Lyon, France
| | - Joeri L Aerts
- Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
16
|
Nguyen S, Sada-Japp A, Petrovas C, Betts MR. Jigsaw falling into place: A review and perspective of lymphoid tissue CD8+ T cells and control of HIV. Mol Immunol 2020; 124:42-50. [PMID: 32526556 PMCID: PMC7279761 DOI: 10.1016/j.molimm.2020.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
CD8+ T cells are crucial for immunity against viral infections, including HIV. Several characteristics of CD8+ T cells, such as polyfunctionality and cytotoxicity, have been correlated with effective control of HIV. However, most of these correlates have been established in the peripheral blood. Meanwhile, HIV primarily replicates in lymphoid tissues. Therefore, it is unclear which aspects of CD8+ T cell biology are shared and which are different between blood and lymphoid tissues in the context of HIV infection. In this review, we will recapitulate the latest advancements of our knowledge on lymphoid tissue CD8+ T cells during HIV infection and discuss the insights these advancements might provide for the development of a HIV cure.
Collapse
Affiliation(s)
- Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alberto Sada-Japp
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Petrovas
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Ruiz-Mateos E, Poveda E, Lederman MM. Antiretroviral Treatment for HIV Elite Controllers? Pathog Immun 2020; 5:121-133. [PMID: 32582872 PMCID: PMC7307444 DOI: 10.20411/pai.v5i1.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
In most HIV-infected persons, the natural history of untreated infection is one of sustained viremia, progressive CD4 T cell depletion with resultant morbidity and mortality. The advent of effective combination antiretroviral therapy (ART) that controls HIV replication has altered this landscape dramatically. Yet a rare population of HIV-infected persons-elite controllers (EC)-can control HIV replication such that plasma levels of virus are "undetectable" without ART. The EC phenotype is heterogeneous, with some subjects durably controlling the virus-persistent elite controllers-and some eventually losing viral control-transient elite controllers. Overall, EC tend to have robust HIV-specific T cell responses and in some cases, mainly in transient elite controllers, elevated activation and inflammation indices that diminish with ART suggesting that endogenous defenses against this persistent pathogen come at the cost of heightened activation/inflammation. A limited data set suggests that cardiovascular disease risk as well as the occur-rence of other morbid events may be greater in the overall EC population than in treated HIV infection. ART in EC decreases activation indices but does not appear to increase circulating CD4 T cell numbers nor do we know if it alters clinical outcomes. Thus, it is difficult to recommend or discourage a decision to start ART in the EC population but the authors lean toward treatment particularly in those EC whose activation indices are high and those who are progressively losing circulating CD4 T cell numbers. Biomarkers that can reliably predict loss of virologic control and immune failure are needed.
Collapse
Affiliation(s)
- Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases; Microbiology and Preventive Medicine; Institute of Biomedicine of Seville; Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Eva Poveda
- Group of Virology and Pathogenesis; Galicia Sur Health Research Institute (IIS Galicia Sur)-Complexo Hospitalario Universitario de Vigo; SERGAS-UVigo; Vigo, Spain
| | - Michael M. Lederman
- Division of Infectious Diseases; Center for AIDS Research; Case Western Reserve University and University Hospitals; Cleveland Medical Center; Cleveland, Ohio
| |
Collapse
|
18
|
Shanmugasundaram U, Critchfield JW, Giudice LC, Smith-McCune K, Greenblatt RM, Shacklett BL. Parallel studies of mucosal immunity in the reproductive and gastrointestinal mucosa of HIV-infected women. Am J Reprod Immunol 2020; 84:e13246. [PMID: 32301548 DOI: 10.1111/aji.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM The effects of HIV on the gastrointestinal tract (GIT), including CD4 depletion, epithelial disruption, and collagen deposition, are well documented and only partially reversed by combination antiretroviral therapy (cART). However, the effects of HIV on the female reproductive tract (FRT) are poorly understood, and most studies have focused on ectocervix and vagina without assessing the upper tract. Here, we investigated CD4+ T-cell frequency, phenotype, and HIV-specific T-cell responses in the endocervix and endometrium of HIV-infected women, comparing these tissues to the GIT. METHOD OF STUDY Mucosal samples and blood were obtained from 18 women: four who were HIV-positive and not on cART for at least 3 years prior to sampling, including two natural controllers (viral load [VL] undetectable and CD4 >350); nine women on cART with low to undetectable VL; and five HIV-uninfected women. Mucosal samples included terminal ileum, sigmoid colon, endocervical cytobrush, endocervical curettage, and endometrial biopsy. T-cell frequency, phenotypes, and HIV-specific T-cell responses were analyzed by multiparameter flow cytometry. RESULTS T-cell activation, measured by CD38/HLA-DR co-expression, remained significantly elevated in endometrium following cART, but was lower in gastrointestinal tissues. HIV-specific CD8+ T-cell responses were detected in ileum, colon, and endometrial tissues of women both on and off cART, and were of higher magnitude on those not on cART. CONCLUSION Our findings reveal differences in CD4+ T-cell frequencies, immune activation, and HIV-specific T-cell responses between the gastrointestinal and reproductive tracts, and highlight differences between HIV controllers and women on cART.
Collapse
Affiliation(s)
- Uma Shanmugasundaram
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - J William Critchfield
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Karen Smith-McCune
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Department of Clinical Pharmacy, University of California, San Francisco, CA, USA.,Department of Internal Medicine, University of California, San Francisco, CA, USA.,Department of Biostatistics and Epidemiology, University of California, San Francisco, CA, USA
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
20
|
Li SY, Zhang ZN, Jiang YJ, Fu YJ, Shang H. Transcriptional insights into the CD8 + T cell response in mono-HIV and HCV infection. J Transl Med 2020; 18:96. [PMID: 32093694 PMCID: PMC7038596 DOI: 10.1186/s12967-020-02252-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/31/2020] [Indexed: 12/04/2022] Open
Abstract
Background Disease progression in the absence of therapy varies significantly in mono-HIV and HCV infected individuals. Virus-specific CD8+ T cells play an important role in restricting lentiviral replication and determining the rate of disease progression during HIV and HCV mono- and co-infection. Thus, understanding the similarities in the characteristics of CD8+ T cells in mono-HIV and HCV infection at the transcriptomic level contributes to the development of antiviral therapy. In this study, a meta-analysis of CD8+ T cell gene expression profiles derived from mono-HIV and HCV infected individuals at different stages of disease progression, was conducted to understand the common changes experienced by CD8+ T cells. Methods Five microarray datasets, reporting CD8+ T cell mRNA expression of the mono-HIV and HCV infected patients, were retrieved from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified via integrative meta-analysis of expression data (INMEX) program. Network analysis methods were used to assess protein–protein interaction (PPI) networks, Gene Ontology (GO) terms and pathway enrichment for DEGs. MirDIP and miRDB online prediction tools were used to predict potential microRNAs (miRNAs) targeting hub genes. Results First, we identified 625 and 154 DEGs in the CD8+ T cells originating from mono-HIV and HCV chronic progressor patients, respectively, compared to healthy individuals. Among them, interferon-stimulated genes (ISGs) including ISG15, IFIT3, ILI44L, CXCL8, FPR1 and TLR2, were upregulated after mono-HIV and HCV infection. Pathway enrichment analysis of DEGs showed that the “cytokine–cytokine receptor interaction” and “NF-kappa B” signaling pathways were upregulated after mono-HIV and HCV infection. In addition, we identified 92 and 50 DEGs in the CD8+ T cells of HIV non-progressor and HCV resolver patients, respectively, compared with corresponding chronic progressors. We observed attenuated mitosis and reduced ISG expression in HIV non-progressors and HCV resolvers compared with the corresponding chronic progressors. Finally, we identified miRNA-143-3p, predicted to target both IFIT3 in HIV and STAT5A in HCV infection. Conclusions We identified DEGs and transcriptional patterns in mono-HIV and HCV infected individuals at different stages of disease progression and identified miRNA-143-3p with potential to intervene disease progression, which provides a new strategy for developing targeted therapies.
Collapse
Affiliation(s)
- Si-Yao Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zi-Ning Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yong-Jun Jiang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ya-Jing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, No 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
21
|
Abstract
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies. Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Collapse
|
22
|
Mazahery C, Benson BL, Cruz-Lebrón A, Levine AD. Chronic Methadone Use Alters the CD8 + T Cell Phenotype In Vivo and Modulates Its Responsiveness Ex Vivo to Opioid Receptor and TCR Stimuli. THE JOURNAL OF IMMUNOLOGY 2020; 204:1188-1200. [PMID: 31969385 DOI: 10.4049/jimmunol.1900862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022]
Abstract
Endogenous opioid peptides are released at sites of injury, and their cognate G protein-coupled opioid receptors (ORs) are expressed on immune cells. Although drugs of misuse appropriate ORs, conflicting reports indicate immunostimulatory and immunosuppressive activity, in that opioid users have elevated infection risk, opioids activate innate immune cells, and opioids attenuate inflammation in murine T cell-mediated autoimmunity models. The i.v. use of drugs transmits bloodborne pathogens, particularly viruses, making the study of CD8+ T cells timely. From a cohort of nonuser controls and methadone users, we demonstrate, via t-Stochastic Neighbor Embedding and k-means cluster analysis of surface marker expression, that chronic opioid use alters human CD8+ T cell subset balance, with notable decreases in T effector memory RA+ cells. Studying global CD8+ T cell populations, there were no differences in expression of OR and several markers of functionality, demonstrating the need for finer analysis. Purified CD8+ T cells from controls respond to opioids ex vivo by increasing cytoplasmic calcium, a novel finding for OR signal transduction, likely because of cell lineage. CD8+ T cells from controls exposed to μ-OR agonists ex vivo decrease expression of activation markers CD69 and CD25, although the same markers are elevated in μ-OR-treated cells from methadone users. In contrast to control cells, T cell subsets from methadone users show decreased expression of CD69 and CD25 in response to TCR stimulus. Overall, these results indicate a direct, selective role for opioids in CD8+ T cell immune regulation via their ability to modulate cell responses through the opioid receptors and TCRs.
Collapse
Affiliation(s)
- Claire Mazahery
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - Angélica Cruz-Lebrón
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - Alan D Levine
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106; .,Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106.,Department of Medicine, Case Western Reserve University, Cleveland, OH 44106.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106; and.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
23
|
Varnaitė R, Blom K, Lampen MH, Vene S, Thunberg S, Lindquist L, Ljunggren HG, Rombo L, Askling HH, Gredmark-Russ S. Magnitude and Functional Profile of the Human CD4 + T Cell Response throughout Primary Immunization with Tick-Borne Encephalitis Virus Vaccine. THE JOURNAL OF IMMUNOLOGY 2020; 204:914-922. [PMID: 31924650 DOI: 10.4049/jimmunol.1901115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is a viral infection of the CNS caused by TBE virus. With no specific treatment available, the only protection is a formalin-inactivated whole virus vaccine. Primary immunization with European TBE vaccines, as recommended by the manufacturers, consists of three vaccine doses administered within a 1-y period. Protection from vaccination is believed to be mediated by Abs, yet T cells may also have a protective role. We set out to characterize the human CD4+ T cell response throughout primary TBE immunization. The responses were evaluated before vaccination and 1 mo after each vaccine dose. A heterogeneous magnitude of CD4+ T cell-mediated memory responses was observed in regard to lymphoblast expansion and cytokine production (IFN-γ, IL-2, and TNF), with the highest median magnitude detected after the second dose of vaccine. Stimulation with an overlapping peptide library based on structural TBE virus proteins E and C revealed that CD4+ T cells concomitantly producing IL-2 and TNF dominated the responses from vaccinees after each vaccine dose, whereas a control cohort of TBE patients responded mainly with all three cytokines. CD107a expression was not upregulated upon peptide stimulation in the vaccinees. However, CD154 (CD40L) expression on cytokine-positive memory CD4+ T cells significantly increased after the second vaccine dose. Taken together, TBE vaccination induced CD4+ T cell responses dominated by IL-2 and TNF production together with CD154 upregulation and a lower IFN-γ response compared with TBE patients. This response pattern was consistent after all three doses of TBE vaccine.
Collapse
Affiliation(s)
- Renata Varnaitė
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Kim Blom
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Margit H Lampen
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Sirkka Vene
- The Public Health Agency of Sweden, 171 65 Stockholm, Sweden
| | - Sarah Thunberg
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Lindquist
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Lars Rombo
- Centre for Clinical Research, Sörmland Region, Uppsala University, 631 88 Eskilstuna, Sweden
| | - Helena H Askling
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; and.,Department of Communicable Disease Control and Prevention, Sörmland County, 631 88 Eskilstuna, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, ANA Futura, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Stockholm, Sweden; .,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, 141 86 Stockholm, Sweden
| |
Collapse
|
24
|
Migueles SA, Chairez C, Lin S, Gavil NV, Rosenthal DM, Pooran M, Natarajan V, Rupert A, Dewar R, Rehman T, Sherman BT, Adelsberger J, Leitman SF, Stroncek D, Morse CG, Connors M, Lane HC, Kovacs JA. Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller. JCI Insight 2019; 4:130664. [PMID: 31415245 PMCID: PMC6795294 DOI: 10.1172/jci.insight.130664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDHIV-infected patients with poor virologic control and multidrug-resistant virus have limited therapeutic options. The current study was undertaken to evaluate the safety, immunologic effects, and antiviral activity of peripheral lymphocytes transferred from an elite controller, whose immune system is able to control viral replication without antiretroviral medications, to an HLA-B*2705-matched progressor.METHODSApproximately 22 billion cells were collected from an elite controller by lymphapheresis and infused within 6 hours into a recipient with a preinfusion CD4+ T cell count of 10 cells/μL (1%) and HIV plasma viral load of 114,993 copies/mL.RESULTSDonor cells were cleared from the recipient's peripheral blood by day 8. A transient decrease in viral load to 58,421 (day 3) was followed by a rebound to 702,972 (day 6) before returning to baseline values by day 8. The decreased viral load was temporally associated with peak levels of donor T cells, including CD8+ T cells that had high levels of expression of Ki67, perforin, and granzyme B. Notably, recipient CD8+ T cells also showed increased expression of these markers, especially in HIV-specific tetramer-positive cells.CONCLUSIONThese results suggest that the adoptive transfer of lymphocytes from an HIV-infected elite controller to an HIV-infected patient with progressive disease may be able to perturb the immune system of the recipient in both positive and negative ways.TRIAL REGISTRATIONClinicalTrials.gov NCT00559416.FUNDINGIntramural Research Programs of the US NIH Clinical Center and the National Institute of Allergy and Infectious Diseases (NIAID); the National Cancer Institute.
Collapse
Affiliation(s)
- Stephen A. Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Cheryl Chairez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Siying Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Noah V. Gavil
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Danielle M. Rosenthal
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Milad Pooran
- Critical Care Medicine Department, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Ven Natarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Rupert
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Robin Dewar
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tauseef Rehman
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brad T. Sherman
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph Adelsberger
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Susan F. Leitman
- Department of Transfusion Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - David Stroncek
- Department of Transfusion Medicine, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Caryn G. Morse
- Critical Care Medicine Department, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, NIH Clinical Center, NIH, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
26
|
Abstract
As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology.,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
27
|
Khanna M, Jackson RJ, Alcantara S, Amarasena TH, Li Z, Kelleher AD, Kent SJ, Ranasinghe C. Mucosal and systemic SIV-specific cytotoxic CD4 + T cell hierarchy in protection following intranasal/intramuscular recombinant pox-viral vaccination of pigtail macaques. Sci Rep 2019; 9:5661. [PMID: 30952887 PMCID: PMC6450945 DOI: 10.1038/s41598-019-41506-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
A HIV vaccine that provides mucosal immunity is urgently needed. We evaluated an intranasal recombinant Fowlpox virus (rFPV) priming vaccine followed by intramuscular Modified Vaccinia Ankara (rMVA) booster vaccine, both expressing SIV antigens. The vaccination generated mucosal and systemic SIV-specific CD4+ T cell mediated immunity and was associated with partial protection against high-dose intrarectal SIVmac251 challenge in outbred pigtail macaques. Three of 12 vaccinees were completely protected and these animals elicited sustained Gag-specific poly-functional, cytotoxic mucosal CD4+ T cells, complemented by systemic poly-functional CD4+ and CD8+ T cell immunity. Humoral immune responses, albeit absent in completely protected macaques, were associated with partial control of viremia in animals with relatively weaker mucosal/systemic T cell responses. Co-expression of an IL-4R antagonist by the rFPV vaccine further enhanced the breadth and cytotoxicity/poly-functionality of mucosal vaccine-specific CD4+ T cells. Moreover, a single FPV-gag/pol/env prime was able to induce rapid anamnestic gp140 antibody response upon SIV encounter. Collectively, our data indicated that nasal vaccination was effective at inducing robust cervico-vaginal and rectal immunity, although cytotoxic CD4+ T cell mediated mucosal and systemic immunity correlated strongly with 'complete protection', the different degrees of protection observed was multi-factorial.
Collapse
Affiliation(s)
- Mayank Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Sheilajen Alcantara
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Thakshila H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Zheyi Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, 2601, Australia.
| |
Collapse
|
28
|
Identification of NK Cell Subpopulations That Differentiate HIV-Infected Subject Cohorts with Diverse Levels of Virus Control. J Virol 2019; 93:JVI.01790-18. [PMID: 30700608 DOI: 10.1128/jvi.01790-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
HIV infection is controlled immunologically in a small subset of infected individuals without antiretroviral therapy (ART), though the mechanism of control is unclear. CD8+ T cells are a critical component of HIV control in many immunological controllers. NK cells are also believed to have a role in controlling HIV infection, though their role is less well characterized. We used mass cytometry to simultaneously measure the levels of expression of 24 surface markers on peripheral NK cells from HIV-infected subjects with various degrees of HIV natural control; we then used machine learning to identify NK cell subpopulations that differentiate HIV controllers from noncontrollers. Using CITRUS (cluster identification, characterization, and regression), we identified 3 NK cell subpopulations that differentiated subjects with chronic HIV viremia (viremic noncontrollers [VNC]) from individuals with undetectable HIV viremia without ART (elite controllers [EC]). In a parallel approach, we identified 11 NK cell subpopulations that differentiated HIV-infected subject groups using k-means clustering after dimensionality reduction by t-neighbor stochastic neighbor embedding (tSNE) or linear discriminant analysis (LDA). Among these additional 11 subpopulations, the frequencies of 5 correlated with HIV DNA levels; importantly, significance was retained in 2 subpopulations in analyses that included only cohorts without detectable viremia. By comparing the surface marker expression patterns of all identified subpopulations, we revealed that the CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells are more abundant in EC and HIV-negative controls than in VNC and that the frequency of these cells correlated with HIV DNA levels. We hypothesize that this population may have a role in immunological control of HIV infection.IMPORTANCE HIV infection results in the establishment of a stable reservoir of latently infected cells; ART is usually required to keep viral replication under control and disease progression at bay, though a small subset of HIV-infected subjects can control HIV infection without ART through immunological mechanisms. In this study, we sought to identify subpopulations of NK cells that may be involved in the natural immunological control of HIV infection. We used mass cytometry to measure surface marker expression on peripheral NK cells. Using two distinct semisupervised machine learning approaches, we identified a CD11b+ CD57- CD161+ Siglec-7+ subpopulation of CD56dim CD16+ NK cells that differentiates HIV controllers from noncontrollers. These cells can be sorted out for future functional studies to assess their potential role in the immunological control of HIV infection.
Collapse
|
29
|
Warren JA, Clutton G, Goonetilleke N. Harnessing CD8 + T Cells Under HIV Antiretroviral Therapy. Front Immunol 2019; 10:291. [PMID: 30863403 PMCID: PMC6400228 DOI: 10.3389/fimmu.2019.00291] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Antiretroviral therapy (ART) has transformed HIV from a fatal disease to a chronic condition. In recent years there has been considerable interest in strategies to enable HIV-infected individuals to cease ART without viral rebound, either by purging all cells infected harboring replication-competent virus (HIV eradication), or by boosting immune responses to allow durable suppression of virus without rebound (HIV remission). Both of these approaches may need to harness HIV-specific CD8+ T cells to eliminate infected cells and/or prevent viral spread. In untreated infection, both HIV-specific and total CD8+ T cells are dysfunctional. Here, we review our current understanding of both global and HIV-specific CD8+ T cell immunity in HIV-infected individuals with durably suppressed viral load under ART, and its implications for HIV cure, eradication or remission. Overall, the literature indicates significant normalization of global T cell parameters, including CD4/8 ratio, activation status, and telomere length. Global characteristics of CD8+ T cells from HIV+ART+ individuals align more closely with those of HIV-seronegative individuals than of viremic HIV-infected individuals. However, markers of senescence remain elevated, leading to the hypothesis that immune aging is accelerated in HIV-infected individuals on ART. This phenomenon could have implications for attempts to prime de novo, or boost existing HIV-specific CD8+ T cell responses. A major challenge for both HIV cure and remission strategies is to elicit HIV-specific CD8+ T cell responses superior to that elicited by natural infection in terms of response kinetics, magnitude, breadth, viral suppressive capacity, and tissue localization. Addressing these issues will be critical to the success of HIV cure and remission attempts.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Genevieve Clutton
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
30
|
A child with perinatal HIV infection and long-term sustained virological control following antiretroviral treatment cessation. Nat Commun 2019; 10:412. [PMID: 30679439 PMCID: PMC6345921 DOI: 10.1038/s41467-019-08311-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/03/2019] [Indexed: 11/27/2022] Open
Abstract
Understanding HIV remission in rare individuals who initiated antiretroviral therapy (ART) soon after infection and then discontinued, may inform HIV cure interventions. Here we describe features of virus and host of a perinatally HIV-1 infected child with long-term sustained virological control. The child received early limited ART in the Children with HIV Early antiRetroviral therapy (CHER) trial. At age 9.5 years, diagnostic tests for HIV are negative and the child has characteristics similar to uninfected children that include a high CD4:CD8 ratio, low T cell activation and low CCR5 expression. Virus persistence (HIV-1 DNA and plasma RNA) is confirmed with sensitive methods, but replication-competent virus is not detected. The child has weak HIV-specific antibody and T cell responses. Furthermore, we determine his HLA and KIR genotypes. This case aids in understanding post-treatment control and may help design of future intervention strategies. Some perinatally HIV infected children who have received early antiretroviral therapy (ART) show long-term sustained virological control after ART cessation. Here the authors describe a case who, at age 9.5 years, shows normal CD4:CD8 T cell ratios and has no detectable levels of replication-competent virus.
Collapse
|
31
|
Ding J, Ma L, Zhao J, Xie Y, Zhou J, Li X, Cen S. An integrative genomic analysis of transcriptional profiles identifies characteristic genes and patterns in HIV-infected long-term non-progressors and elite controllers. J Transl Med 2019; 17:35. [PMID: 30665429 PMCID: PMC6341564 DOI: 10.1186/s12967-019-1777-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Background Despite that most HIV-infected individuals experience progressive CD4+ T cell loss and develop AIDS, a minority of HIV-infected individuals remain asymptomatic and maintain high level CD4+ T cell counts several years after seroconversion. Efforts have been made to understand the determinants of the nonprogressive status, exemplified by the clinical course of elite controllers (ECs) who maintain an undetectable viremia and viremic nonprogressors (VNPs) who have a normal CD4+ count in spite of circulating viral load. However, the intrinsic mechanism underlying nonprogression remained elusive. In this study, we performed an integrative analysis of transcriptional profiles to pinpoint the underlying mechanism for a naturally occurring viral control. Methods Three microarray datasets, reporting mRNA expression of the LTNPs or ECs in HIV-infected patients, were retrieved from Gene Expression Ominbus (GEO) or Arrayexpress databases. These datasets, profiled on the same type of microarray chip, were selected and merged by a bioinformatic approach to build a meta-analysis derived transcriptome (MADNT). In addition, we investigated the different transcriptional pathways and potential biomarkers in CD4+ and CD8+ cells in ECs and whole blood in VNPs compared to HIV progressors. The combined transcriptome and each subgroup was subject to gene set enrichment analysis and weighted co-expression network analysis to search potential transcription patterns related to the non-progressive status. Results 30 up-regulated genes and 83 down-regulated genes were identified in lymphocytes from integrative meta-analysis of expression data. The interferon response and innate immune activation was reduced in both CD4+ and CD8+ T cells from ECs. Several characteristic genes including CMPK1, CBX7, EIF3L, EIF4A and ZNF395 were indicated to be highly correlated with viremic control. Besides that, we indicated that the reduction of ribosome components and blockade of translation facilitated AIDS disease progression. Most interestingly, among VNPs who have a relatively high viral load, we detected a two gene-interaction networks which showed a strong correlation to immune control even with a rigorous statistical threshold (p value = 2−e4 and p value = 0.004, respectively) by WGCNA. Conclusions We have identified differentially expressed genes and transcriptional patterns in ECs and VNPs compared to normal chronic HIV-infected individuals. Our study provides new insights into the pathogenesis of HIV and AIDS and clues for the therapeutic strategies for anti-retroviral administration. Electronic supplementary material The online version of this article (10.1186/s12967-019-1777-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiwei Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
32
|
Chowdhury FZ, Ouyang Z, Buzon M, Walker BD, Lichterfeld M, Yu XG. Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers. AIDS 2018; 32:2669-2677. [PMID: 30289807 DOI: 10.1097/qad.0000000000002007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Elite controllers, defined as persons maintaining undetectable levels of HIV-1 replication in the absence of antiretroviral therapy, represent living evidence that sustained, natural control of HIV-1 is possible, at least in relatively rare instances. Understanding the complex immunologic and virologic characteristics of these specific patients holds promise for inducing drug-free control of HIV-1 in broader populations of HIV-1 infected patients. DESIGN We used an unbiased transcriptional profiling approach to characterize CD8+ T cells, the strongest correlate of HIV-1 immune control identified thus far, in a large cohort of elite controllers (n = 51); highly active antiretrovial therapy (HAART)-treated patients (n = 32) and HIV-1 negative (n = 10) served as reference cohorts. METHODS We isolated mRNA from total CD8+ T cells isolated from peripheral blood mononuclear cell (PBMC) of each individual followed by microarray analysis of the transcriptional signatures. RESULTS We observed profound transcriptional differences [590 transcripts, false discovery rate (FDR)-adjusted P < 0.05] between elite controller and HAART-treated patients. Interestingly, metabolic and signalling pathways governed by mammalian target of rapamycin (mTOR) and eIF2, known for their key roles in regulating cellular growth, proliferation and metabolism, were among the top functions enriched in the differentially expressed genes, suggesting a therapeutically actionable target as a distinguishing feature of spontaneous HIV-1 immune control. A subsequent bootstrapping approach distinguished five different subgroups of elite controller, each characterized by distinct transcriptional signatures. However, despite this marked heterogeneity, differential regulation of mTOR and eIF2 signalling remained the dominant functional pathway in three of these elite controller subgroups. CONCLUSION These studies suggest that mTOR and eIF2 signalling may play a remarkably universal role for regulating CD8 T-cell function from elite controllers.
Collapse
|
33
|
Cheru LT, Park EA, Saylor CF, Burdo TH, Fitch KV, Looby S, Weiner J, Robinson JA, Hubbard J, Torriani M, Lo J. I-FABP Is Higher in People With Chronic HIV Than Elite Controllers, Related to Sugar and Fatty Acid Intake and Inversely Related to Body Fat in People With HIV. Open Forum Infect Dis 2018; 5:ofy288. [PMID: 30515430 PMCID: PMC6262112 DOI: 10.1093/ofid/ofy288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Intestinal fatty acid binding protein (I-FABP) has been shown to be a marker of intestinal damage among people living with HIV. We hypothesized that I-FABP would be increased in chronically HIV-infected patents more than elite controllers and would relate to specific nutrient intake and body composition. Methods In an observational study, serum I-FABP was measured by enzyme-linked immunosorbent assay. Anthropometric measurements, dual-energy x-ray absorptiometry, and single-slice abdominal computed tomography were obtained to assess body composition, as well as visceral and subcutaneous adipose tissue areas (VAT and SAT). Dietary intake was assessed using 4-day food records. Results One hundred forty-nine people with chronic HIV (65% male, 47 ± 7 years of age, 54.7% white, and 14 ± 6 years of known HIV), 10 elite controllers (60% male, 53 ± 8 years, 60% white, and 20 ± 7 years of known HIV), and 69 HIV-negative controls (59.4% male, 46 ± 7 years, and 52.2% white) were included in the analysis. I-FABP was significantly higher in HIV progressors relative to HIV-negative controls and elite controllers. In the chronic HIV group, I-FABP was positively associated with dietary intake of added sugar and with saturated fatty acids. I-FABP was inversely associated with body mass index, VAT, and SAT. I-FABP also correlated with MCP-1, CXCL10, sCD163, and lipopolysaccharide (LPS) among all participants. Conclusions I-FABP was increased among chronically HIV-infected patients to a greater degree than in elite controllers and was related to nutrient intake and body composition in HIV progressors. Future studies to investigate the role of intestinal damage on nutrient absorption are needed to elucidate the mechanisms of these relationships. Trial Registration Identifier NCT00455793.
Collapse
Affiliation(s)
- Lediya T Cheru
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elli A Park
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles F Saylor
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Philadelphia
| | - Kathleen V Fitch
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sara Looby
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey Weiner
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jake A Robinson
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Philadelphia
| | - Jane Hubbard
- Bionutrition, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin Torriani
- Musculoskeletal Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Janet Lo
- Program in Nutritional Metabolism, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Abstract
Background Cryopreservation of leukocytes isolated from the cervicovaginal and colorectal mucosa is useful for the study of cellular immunity (see Hughes SM et al. PLOS ONE 2016). However, some questions about mucosal biology and sexually transmitted infections are better addressed with intact mucosal tissue, for which there is no standard cryopreservation protocol. Methods and findings To find an optimal preservation protocol for mucosal tissues, we tested slow cooling (1°C/min) with 10% dimethylsulfoxide (designated “cryopreservation”) and fast cooling (plunge in liquid nitrogen) with 20% dimethylsulfoxide and 20% ethylene glycol (“vitrification”). We compared fresh and preserved human cervicovaginal and colorectal tissues in a range of assays, including metabolic activity, human immunodeficiency virus infection, cell phenotype, tissue structure by hematoxylin-and-eosin staining, cell number and viability, production of cytokines, and microbicide drug concentrations. Metabolic activity, HIV infectability, and tissue structure were similar in cryopreserved and vitrified vaginal tissues. However, vitrification led to poor cell recovery from the colorectal mucosa, with 90% fewer cells recovered after isolation from vitrified colorectal tissues than from cryopreserved. HIV infection rates were similar for fresh and cryopreserved ectocervical tissues, whereas cryopreserved colorectal tissues were less easily infected than fresh tissues (hazard ratio 0.7 [95% confidence interval 0.4, 1.2]). Finally, we compared isolation of cells before and after cryopreservation. Cell recoveries were higher when cells were isolated after freezing and thawing (71% [59–84%]) than before (50% [38–62%]). Cellular function was similar to fresh tissue in both cases. Microbicide drug concentrations were lower in cryopreserved explants compared to fresh ones. Conclusions Cryopreservation of intact cervicovaginal and colorectal tissues with dimethylsulfoxide works well in a range of assays, while the utility of vitrification is more limited. Cell yields are higher from cryopreserved intact tissue pieces than from thawed cryopreserved single cell suspensions isolated before freezing, but T cell functions are similar.
Collapse
|
35
|
Kiniry BE, Li S, Ganesh A, Hunt PW, Somsouk M, Skinner PJ, Deeks SG, Shacklett BL. Detection of HIV-1-specific gastrointestinal tissue resident CD8 + T-cells in chronic infection. Mucosal Immunol 2018; 11:909-920. [PMID: 29139476 PMCID: PMC5953759 DOI: 10.1038/mi.2017.96] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/06/2017] [Indexed: 02/04/2023]
Abstract
Tissue-resident memory (TRM) CD8+ T-cells are non-recirculating, long-lived cells housed in tissues that can confer protection against mucosal pathogens. Human immunodeficiency virus-1 (HIV-1) is a mucosal pathogen and the gastrointestinal tract is an important site of viral pathogenesis and transmission. Thus, CD8+ TRM cells may be an important effector subset for controlling HIV-1 in mucosal tissues. This study sought to determine the abundance, phenotype, and functionality of CD8+ TRM cells in the context of chronic HIV-1 infection. We found that the majority of rectosigmoid CD8+ T-cells were CD69+CD103+S1PR1- and T-betLowEomesoderminNeg, indicative of a tissue-residency phenotype similar to that described in murine models. HIV-1-specific CD8+ TRM responses appeared strongest in individuals naturally controlling HIV-1 infection. Two CD8+ TRM subsets, distinguished by CD103 expression intensity, were identified. CD103Low CD8+ TRM primarily displayed a transitional memory phenotype and contained HIV-1-specific cells and cells expressing high levels of Eomesodermin, whereas CD103High CD8+ TRM primarily displayed an effector memory phenotype and were EomesoderminNeg. These findings suggest a large fraction of CD8+ T-cells housed in the human rectosigmoid mucosa are tissue-resident and that TRM contribute to the anti-HIV-1 immune response. Further exploration of CD8+ TRM will inform development of anti-HIV-1 immune-based therapies and vaccines targeted to the mucosa.
Collapse
Affiliation(s)
- Brenna E. Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Shengbin Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Anupama Ganesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Ma Somsouk
- Division of Gastroenterology, Dept. of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA USA
- Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA USA
| |
Collapse
|
36
|
Promer K, Karris MY. Current Treatment Options for HIV Elite Controllers: a Review. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018; 10:302-309. [PMID: 30344450 DOI: 10.1007/s40506-018-0158-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Opinion statement Initiating antiretroviral therapy (ART) in human immunodeficiency virus (HIV) elite controllers remains controversial, because current evidence does not definitively demonstrate that the benefits of ART outweigh risk in this patient population. However, it is the opinion of the authors that in developed countries, where first-line ART regimens have minimal toxicities, treatment of elite controllers should be strongly considered. Treatment of elite controllers has the potential to minimize the size of the HIV reservoir, which benefits elite controllers who choose to pursue future cure, dampen immune activation, diminish risk of transmission, and encourage linkage and engagement in care allowing HIV providers the opportunity to address HIV-associated non-AIDS conditions and other co-morbidities. Purpose of review This review aims to summarize literature relevant to the management of elite controllers for clinicians caring for patients living with HIV. Key topics include timing of antiretroviral therapy (ART) and ART in the unique populations of elite controllers with concomitant cardiovascular disease and hepatitis C co-infection, and undergoing immunosuppressive therapy for other co-morbidities. Recent findings The persistent HIV reservoir in elite controllers has two main implications. First, increased immune activation appears to adversely impact clinical outcomes in elite controllers, but the role of ART in addressing this effect remains unclear. Second, elite control duration can be limited, but certain factors may help to predict disease progression with implications on timing of ART. Summary Initiation of ART during elite control remains controversial, although there are multiple theoretical benefits. Elite controllers comprise a heterogeneous population of patients living with HIV, and optimal management involves weighing the risk and benefit of ART as well as monitoring of clinical consequences of increased immune activation.
Collapse
Affiliation(s)
- Katherine Promer
- Department of Medicine, University of California San Diego, 200 West Arbor Drive #8681, San Diego, CA, 92103, USA
| | - Maile Y Karris
- Department of Medicine, University of California San Diego, 200 West Arbor Drive #8681, San Diego, CA, 92103, USA
| |
Collapse
|
37
|
Unique Phenotypic Characteristics of Recently Transmitted HIV-1 Subtype C Envelope Glycoprotein gp120: Use of CXCR6 Coreceptor by Transmitted Founder Viruses. J Virol 2018; 92:JVI.00063-18. [PMID: 29491151 DOI: 10.1128/jvi.00063-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Adequate information on the precise molecular and biological composition of the viral strains that establish HIV infection in the human host will provide effective means of immunization against HIV infection. In an attempt to identify the transmitted founder (TF) virus and differentiate the biological properties and infectious potential of the TF virus from those of the population of the early transmitted viruses, 250 patient-derived gp120 envelope glycoproteins were cloned in pMN-K7-Luc-IRESs-NefΔgp120 to obtain chimeric viruses. Samples were obtained from eight infants who had recently become infected with HIV through mother-to-child transmission (MTCT) and two adults who acquired infection through the heterosexual route and were in the chronic stage of infection. Among the 250 clones tested, 65 chimeric viruses were infectious, and all belonged to HIV-1 subtype C. The 65 clones were analyzed for molecular features of the envelope, per-infectious-particle infectivity, coreceptor tropism, drug sensitivity, and sensitivity to broadly neutralizing antibodies. Based on genotypic and phenotypic analysis of the viral clones, we identified 10 TF viruses from the eight infants. The TF viruses were characterized by shorter V1V2 regions, a reduced number of potential N-linked glycosylation sites, and a higher infectivity titer compared to the virus variants from the adults in the chronic stage of infection. CXCR6 coreceptor usage, in addition to that of the CCR5 coreceptor, which was used by all 65 chimeric viruses, was identified in 13 viruses. The sensitivity of the TF variants to maraviroc and a standard panel of neutralizing monoclonal antibodies (VRC01, PG09, PG16, and PGT121) was found to be much lower than that of the virus variants from the adults in the chronic stage of infection.IMPORTANCE Tremendous progress has been made during the last three and half decades of HIV research, but some significant gaps continue to exist. One of the frontier areas of HIV research which has not seen a breakthrough yet is vaccine research, which is because of the enormous genetic diversity of HIV-1 and the unique infectious fitness of the virus. Among the repertoire of viral variants, the virus that establishes successful infection (transmitted founder [TF] virus) has not been well characterized yet. An insight into the salient features of the TF virus would go a long way toward helping with the design of an effective vaccine against HIV. Here we studied the biological properties of recently transmitted viruses isolated from infants who acquired infection from the mother and have come up with unique characterizations for the TF virus that establishes infection in the human host.
Collapse
|
38
|
Teixeira D, Ishimura ME, Apostólico JDS, Viel JM, Passarelli VC, Cunha-Neto E, Rosa DS, Longo-Maugéri IM. Propionibacterium acnes Enhances the Immunogenicity of HIVBr18 Human Immunodeficiency Virus-1 Vaccine. Front Immunol 2018; 9:177. [PMID: 29467764 PMCID: PMC5808300 DOI: 10.3389/fimmu.2018.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023] Open
Abstract
Immunization of BALB/c mice with HIVBr18, a DNA vaccine containing 18 CD4+ T cell epitopes from human immunodeficiency virus (HIV), induced specific CD4+ and CD8+ T cell responses in a broad, polyfunctional and persistent manner. With the aim of increasing the immunogenicity of this vaccine, the effect of Propionibacterium acnes as an adjuvant was evaluated. The adjuvant effects of this bacterium have been extensively demonstrated in both experimental and clinical settings. Herein, administration of two doses of HIVBr18, in the presence of P. acnes, increased the proliferation of HIV-1-specific CD4+ and CD8+ T lymphocytes, the polyfunctional profile of CD4+ T cells, the production of IFN-γ, and the number of recognized vaccine-encoded peptides. One of the bacterial components responsible for most of the adjuvant effects observed was a soluble polysaccharide extracted from the P. acnes cell wall. Furthermore, within 10 weeks after immunization, the proliferation of specific T cells and production of IFN-γ were maintained when the whole bacterium was administered, demonstrating a greater effect on the longevity of the immune response by P. acnes. Even with fewer immunization doses, P. acnes was found to be a potent adjuvant capable of potentiating the effects of the HIVBr18 vaccine. Therefore, P. acnes may be a potential adjuvant to aid this vaccine in inducing immunity or for therapeutic use.
Collapse
Affiliation(s)
- Daniela Teixeira
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Mayari Eika Ishimura
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana de Souza Apostólico
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Jacqueline Miyuki Viel
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Victor Cabelho Passarelli
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Ieda Maria Longo-Maugéri
- Division of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Kiniry BE, Hunt PW, Hecht FM, Somsouk M, Deeks SG, Shacklett BL. Differential Expression of CD8 + T Cell Cytotoxic Effector Molecules in Blood and Gastrointestinal Mucosa in HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:1876-1888. [PMID: 29352005 DOI: 10.4049/jimmunol.1701532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/15/2017] [Indexed: 11/19/2022]
Abstract
We previously reported that CD8+ T cells in human gastrointestinal mucosa exhibit reduced perforin expression and weak or impaired cytotoxic capacity compared with their counterparts in blood. Nevertheless, these cells degranulate and express cytokines and chemokines in response to cognate Ag. In addition to weak expression of perforin, earlier studies suggested differential regulation of perforin and granzymes (Gzms), with GzmA and B expressed by significantly higher percentages of mucosal CD8+ T cells than perforin. However, this topic has not been fully explored. The goal of this study was to elucidate the expression and coexpression patterns of GzmA, B, and K in conjunction with perforin in rectosigmoid CD8+ T cells during HIV-1 infection. We found that expression of both perforin and GzmB, but not GzmA or GzmK, was reduced in mucosa compared with blood. A large fraction of rectosigmoid CD8+ T cells either did not express Gzms or were single-positive for GzmA. Rectosigmoid CD8+ T cells appeared skewed toward cytokine production rather than cytotoxic responses, with cells expressing multiple cytokines and chemokines generally lacking in perforin and Gzm expression. These data support the interpretation that perforin and Gzms are differentially regulated, and display distinct expression patterns in blood and rectosigmoid T cells. These studies may help inform the development of strategies to combat HIV-1 and other mucosal pathogens.
Collapse
Affiliation(s)
- Brenna E Kiniry
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616
| | - Peter W Hunt
- Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Frederick M Hecht
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Ma Somsouk
- Division of Gastroenterology, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110; and
| | - Steven G Deeks
- Positive Health Program, Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California San Francisco, San Francisco, CA 94110
| | - Barbara L Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616; .,Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California Davis, Davis, CA 95616
| |
Collapse
|
40
|
Ngu LN, Nji NN, Ambada G, Ngoh AA, Njambe Priso GD, Tchadji JC, Lissom A, Magagoum SH, Sake CN, Tchouangueu TF, Chukwuma GO, Okoli AS, Sagnia B, Chukwuanukwu R, Tebit DM, Esimone CO, Waffo AB, Park CG, Überla K, Nchinda GW. Dendritic cell targeted HIV-1 gag protein vaccine provides help to a recombinant Newcastle disease virus vectored vaccine including mobilization of protective CD8 + T cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:163-175. [PMID: 29205929 PMCID: PMC5818444 DOI: 10.1002/iid3.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
Introduction Recombinant Newcastle Disease virus (rNDV) vectored vaccines are safe mucosal applicable vaccines with intrinsic immune‐modulatory properties for the induction of efficient immunity. Like all viral vectored vaccines repeated inoculation via mucosal routes invariably results to immunity against viral vaccine vectors. To obviate immunity against viral vaccine vectors and improve the ability of rNDV vectored vaccines in inducing T cell immunity in murine air way we have directed dendritic cell targeted HIV‐1 gag protein (DEC‐Gag) vaccine; for the induction of helper CD4+ T cells to a Recombinant Newcastle disease virus expressing codon optimized HIV‐1 Gag P55 (rNDV‐L‐Gag) vaccine. Methods We do so through successive administration of anti‐DEC205‐gagP24 protein plus polyICLC (DEC‐Gag) vaccine and rNDV‐L‐Gag. First strong gag specific helper CD4+ T cells are induced in mice by selected targeting of anti‐DEC205‐gagP24 protein vaccine to dendritic cells (DC) in situ together with polyICLC as adjuvant. This targeting helped T cell immunity develop to a subsequent rNDV‐L‐Gag vaccine and improved both systemic and mucosal gag specific immunity. Results This sequential DEC‐Gag vaccine prime followed by an rNDV‐L‐gag boost results to improved viral vectored immunization in murine airway, including mobilization of protective CD8+ T cells to a pathogenic virus infection site. Conclusion Thus, complementary prime boost vaccination, in which prime and boost favor distinct types of T cell immunity, improves viral vectored immunization, including mobilization of protective CD8+T cells to a pathogenic virus infection site such as the murine airway.
Collapse
Affiliation(s)
- Loveline N Ngu
- Department of Biochemistry, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon.,Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon
| | - Nadesh N Nji
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Georgia Ambada
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Apeh A Ngoh
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biomedical sciences, University of Dschang, Dschang, Cameroon
| | - Ghislain D Njambe Priso
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Jules C Tchadji
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Abel Lissom
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Suzanne H Magagoum
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Animal Biology and Physiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Carol N Sake
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Microbiology, University of Yaounde One, P.O. Box 812, Yaounde, Cameroon
| | - Thibau F Tchouangueu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of biochemistry, University of Dschang, Dschang, Cameroon
| | - George O Chukwuma
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | | | - Bertrand Sagnia
- Microbiology and Immunology Laboratory, CIRCB, Yaounde, Cameroon
| | - Rebecca Chukwuanukwu
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Department of Medical Laboratory Science College of Medicine, Nnewi Campus, Nnamdi Azikiwe University, Awka, Anambra
| | - Denis M Tebit
- Myles Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology and Cancer Biology, Jordan Hall 7088, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22903, USA
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Alain B Waffo
- Department of Biological Sciences # 223, Alabama State University, 1627, Hall Street, Montgomery, Alabama 36104, USA
| | - Chae G Park
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Godwin W Nchinda
- Laboratory of Vaccinology/Biobanking of The Chantal Biya International Reference Center for research on the prevention and management of HIV/AIDS (CIRCB), BP 3077, Messa Yaounde, Cameroon.,Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
41
|
Wijesundara DK, Ranasinghe C, Grubor-Bauk B, Gowans EJ. Emerging Targets for Developing T Cell-Mediated Vaccines for Human Immunodeficiency Virus (HIV)-1. Front Microbiol 2017; 8:2091. [PMID: 29118747 PMCID: PMC5660999 DOI: 10.3389/fmicb.2017.02091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 has infected >75 million individuals globally, and, according to the UN, is responsible for ~2.1 million new infections and 1.1 million deaths each year. Currently, there are ~37 million individuals with HIV infection and the epidemic has already resulted in 35 million deaths. Despite the advances of anti-retroviral therapy (ART), a cost-effective vaccine remains the best long-term solution to end the HIV-1 epidemic especially given that the vast majority of infected individuals live in poor socio-economic regions of the world such as Sub-Saharan Africa which limits their accessibility to ART. The modest efficacy of the RV144 Thai trial provides hope that a vaccine for HIV-1 is possible, but as markers for sterilizing immunity are unknown, the design of an effective vaccine is empirical, although broadly cross-reactive neutralizing antibodies (bNAb) that can neutralize various quasispecies of HIV-1 are considered crucial. Since HIV-1 transmission often occurs at the genito-rectal mucosa and is cell-associated, there is a need to develop vaccines that can elicit CD8+ T cell immunity with the capacity to kill virus infected cells at the genito-rectal mucosa and the gut. Here we discuss the recent progress made in developing T cell-mediated vaccines for HIV-1 and emphasize the need to elicit mucosal tissue-resident memory CD8+ T (CD8+ Trm) cells. CD8+ Trm cells will likely form a robust front-line defense against HIV-1 and eliminate transmitter/founder virus-infected cells which are responsible for propagating HIV-1 infections following transmission in vast majority of cases.
Collapse
Affiliation(s)
- Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Medicine, Discipline of Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
42
|
Cockerham LR, Yukl SA, Harvill K, Somsouk M, Joshi SK, Sinclair E, Liegler T, Hoh R, Lyons S, Hunt PW, Rupert A, Sereti I, Morcock DR, Rhodes A, Emson C, Hellerstein MK, Estes JD, Lewin S, Deeks SG, Hatano H. A Randomized Controlled Trial of Lisinopril to Decrease Lymphoid Fibrosis in Antiretroviral-Treated, HIV-infected Individuals. Pathog Immun 2017; 2:310-334. [PMID: 28936485 PMCID: PMC5604865 DOI: 10.20411/pai.v2i3.207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In HIV infection, lymphoid tissue is disrupted by fibrosis. Angiotensin converting enzyme inhibitors have anti-fibrotic properties. We completed a pilot study to assess whether the addition of lisinopril to antiretroviral therapy (ART) reverses fibrosis of gut tissue, and whether this leads to reduction of HIV RNA and DNA levels. METHODS Thirty HIV-infected individuals on ART were randomized to lisinopril at 20mg daily or matching placebo for 24 weeks. All participants underwent rectal biopsies prior to starting the study drug and at 22 weeks, and there were regular blood draws. The primary end point was the change in HIV RNA and DNA levels in rectal tissue. Secondary outcomes included the change in 1) HIV levels in blood; 2) Gag-specific T-cell responses; 3) levels of T-cell activation; and 4) collagen deposition. RESULTS The addition of lisinopril did not have a significant effect on the levels of HIV RNA or DNA in gut tissue or blood, Gag-specific responses, or levels of T-cell activation. Lisinopril also did not have a significant impact on lymphoid fibrosis in the rectum, as assessed by quantitative histology or heavy water labeling. CONCLUSIONS Treatment with lisinopril for 24 weeks in HIV-infected adults did not have an effect on lymphoid fibrosis, immune activation, or gut tissue viral reservoirs. Further study is needed to see if other anti-fibrotic agents may be useful in reversing lymphoid fibrosis and reducing HIV levels.
Collapse
Affiliation(s)
- Leslie R Cockerham
- Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Steven A Yukl
- Department of Medicine, San Francisco VA Medical Center, and University of California, San Francisco (UCSF), San Francisco, California
| | - Kara Harvill
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Ma Somsouk
- Division of Gastroenterology, San Francisco General Hospital, University of California, San Francisco, California
| | - Sunil K Joshi
- Department of Medicine, San Francisco VA Medical Center, and University of California, San Francisco (UCSF), San Francisco, California
| | - Elizabeth Sinclair
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Teri Liegler
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Rebecca Hoh
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Sophie Lyons
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Peter W Hunt
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Adam Rupert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David R Morcock
- Frederick National Laboratory, Leidos Biomedical Research, Frederick, Maryland
| | - Ajantha Rhodes
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Marc K Hellerstein
- Kinemed, Inc., Emeryville, California.,Department of Nutritional Science and Toxicology, University of California, Berkeley, California
| | - Jacob D Estes
- Frederick National Laboratory, Leidos Biomedical Research, Frederick, Maryland
| | - Sharon Lewin
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia.,Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Steven G Deeks
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| | - Hiroyu Hatano
- HIV, Infectious Diseases, and Global Medicine Division, San Francisco General Hospital, University of California, San Francisco, California
| |
Collapse
|
43
|
Nabi R, Moldoveanu Z, Wei Q, Golub ET, Durkin HG, Greenblatt RM, Herold BC, Nowicki MJ, Kassaye S, Cho MW, Pinter A, Landay AL, Mestecky J, Kozlowski PA. Differences in serum IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active antiretroviral therapy. PLoS One 2017; 12:e0180245. [PMID: 28671952 PMCID: PMC5495342 DOI: 10.1371/journal.pone.0180245] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
Mechanisms responsible for natural control of human immunodeficiency type 1 (HIV) replication in elite controllers (EC) remain incompletely defined. To determine if EC generate high quality HIV-specific IgA responses, we used Western blotting to compare the specificities and frequencies of IgA to HIV antigens in serum of gender-, age- and race-matched EC and aviremic controllers (HC) and viremic noncontrollers (HN) on highly active antiretroviral therapy (HAART). Concentrations and avidity of IgA to HIV antigens were measured using ELISA or multiplex assays. Measurements for IgG were performed in parallel. EC were found to have stronger p24- and V1V2-specific IgG responses than HN, but there were no IgG differences for EC and HC. In contrast, IgA in EC serum bound more frequently to gp160 and gag proteins than IgA in HC or HN. The avidity of anti-gp41 IgA was also greater in EC, and these subjects had stronger IgA responses to the gp41 heptad repeat region 1 (HR1), a reported target of anti-bacterial RNA polymerase antibodies that cross react with gp41. However, EC did not demonstrate greater IgA responses to E. coli RNA polymerase or to peptides containing the shared LRAI sequence, suggesting that most of their HR1-specific IgA antibodies were not induced by intestinal microbiota. In both EC and HAART recipients, the concentrations of HIV-specific IgG were greater than HIV-specific IgA, but their avidities were comparable, implying that they could compete for antigen. Exceptions were C1 peptides and V1V2 loops. IgG and IgA responses to these antigens were discordant, with IgG reacting to V1V2, and IgA reacting to C1, especially in EC. Interestingly, EC with IgG hypergammaglobulinemia had greater HIV-specific IgA and IgG responses than EC with normal total IgG levels. Heterogeneity in EC antibody responses may therefore be due to a more focused HIV-specific B cell response in some of these individuals. Overall, these data suggest that development of HIV-specific IgA responses and affinity maturation of anti-gp41 IgA antibodies occurs to a greater extent in EC than in subjects on HAART. Future studies will be required to determine if IgA antibodies in EC may contribute in control of viral replication.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Qing Wei
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Elizabeth T. Golub
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| | - Helen G. Durkin
- Departments of Pathology and Medicine, SUNY Downstate, Brooklyn, NY, United States of America
| | - Ruth M. Greenblatt
- Departments of Medicine and Epidemiology/Biostastistics, University of California, San Francisco, CA, United States of America
| | - Betsy C. Herold
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Marek J. Nowicki
- Department of Pediatrics, University of Southern California, Los Angeles, CA, United States of America
| | - Seble Kassaye
- Department of Medicine, Georgetown University, Washington, D.C., United States of America
| | - Michael W. Cho
- Department of Biomedical Sciences, Iowa State University, Ames, IA, United States of America
| | - Abraham Pinter
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States of America
| | - Alan L. Landay
- Department of Immunity and Emerging Pathogens, Rush University Medical Center, Chicago, IL, United States of America
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Institute of immunology and Microbiology 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| |
Collapse
|
44
|
Kiniry BE, Ganesh A, Critchfield JW, Hunt PW, Hecht FM, Somsouk M, Deeks SG, Shacklett BL. Predominance of weakly cytotoxic, T-bet LowEomes Neg CD8 + T-cells in human gastrointestinal mucosa: implications for HIV infection. Mucosal Immunol 2017; 10:1008-1020. [PMID: 27827375 PMCID: PMC5423867 DOI: 10.1038/mi.2016.100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/01/2016] [Indexed: 02/04/2023]
Abstract
The gastrointestinal mucosa is an important site of HIV acquisition, viral replication, and pathogenesis. Immune cells in mucosal tissues frequently differ in phenotype and function from their non-mucosal counterparts. Although perforin-mediated cytotoxicity as measured in blood is a recognized correlate of HIV immune control, its role in gastrointestinal tissues is unknown. We sought to elucidate the cytotoxic features of rectal mucosal CD8+ T-cells in HIV infected and uninfected subjects. Perforin expression and lytic capacity were significantly reduced in rectal CD8+ T-cells compared with their blood counterparts, regardless of HIV clinical status; granzyme B (GrzB) was reduced to a lesser extent. Mucosal perforin and GrzB expression were higher in participants not on antiretroviral therapy compared with those on therapy and controls. Reduction in perforin and GrzB was not explained by differences in memory/effector subsets. Expression of T-bet and Eomesodermin was significantly lower in gut CD8+ T-cells compared with blood, and in vitro neutralization of TGF-β partially restored perforin expression in gut CD8+ T-cells. These findings suggest that rectal CD8+ T-cells are primarily non-cytotoxic, and phenotypically shaped by the tissue microenvironment. Further elucidation of rectal immune responses to HIV will inform the development of vaccines and immunotherapies targeted to mucosal tissues.
Collapse
Affiliation(s)
- Brenna E. Kiniry
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - Anupama Ganesh
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - J. William Critchfield
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA
| | - Peter W. Hunt
- Division of Experimental Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Frederick M. Hecht
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Ma Somsouk
- Division of Gastroenterology, Dept. of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, San Francisco General Hospital, San Francisco, CA USA
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, University of California, Davis, CA USA,Division of Infectious Diseases, Dept. of Medicine, School of Medicine, University of California, Davis, CA USA,Name and Address for Correspondence: Barbara L. Shacklett, PhD, Dept. of Medical Microbiology and Immunology, UC Davis School of Medicine, 3146 Tupper Hall, Davis CA 95616; Tel: 530 752 6785; Fax: 530 752 8692,
| |
Collapse
|
45
|
Gonzalo-Gil E, Ikediobi U, Sutton RE. Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic Controllers. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:245-259. [PMID: 28656011 PMCID: PMC5482301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) disease is pandemic, with approximately 36 million infected individuals world-wide. For the vast majority of these individuals, untreated HIV eventually causes CD4+ T cell depletion and profound immunodeficiency, resulting in morbidity and mortality. But for a remarkable few (0.2 to 0.5 percent), termed elite controllers (ECs), viral loads (VLs) remain suppressed to undetectable levels (< 50 copies/ml) and peripheral CD4+ T cell counts remain high (200 to 1000/μl), all in the absence of antiretroviral therapy (ART). Viremic controllers (VCs) are a similar but larger subset of HIV-1 infected individuals who have the ability to suppress their VLs to low levels. These patients have been intensively studied over the last 10 years in order to determine how they are able to naturally control HIV in the absence of medications, and a variety of mechanisms have been proposed. Defective HIV does not explain the clinical status of most ECs/VCs; rather these individuals appear to somehow control HIV infection, through immune or other unknown mechanisms. Over time, many ECs and VCs eventually lose the ability to control HIV, leading to CD4+ T cell depletion and immunologic dysfunction in the absence of ART. Elucidating novel mechanisms of HIV control in this group of patients will be an important step in understanding HIV infection. This will extend our knowledge of HIV-host interaction and may pave the way for the development of new therapeutic approaches and advance the cure agenda.
Collapse
Affiliation(s)
- Elena Gonzalo-Gil
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| | - Uchenna Ikediobi
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| | - Richard E. Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine
| |
Collapse
|
46
|
Polyfunctional natural killer cells with a low activation profile in response to Toll-like receptor 3 activation in HIV-1-exposed seronegative subjects. Sci Rep 2017; 7:524. [PMID: 28373665 PMCID: PMC5428831 DOI: 10.1038/s41598-017-00637-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells are the main mediator of the cytotoxic response in innate immunity and may be involved in resistance to HIV-1 infection in exposed seronegative (ESN) individuals. Toll-like receptor (TLR) signalling is crucial for NK cell activation. Here, we investigated the polyfunctional NK cell response to TLR3 activation in serodiscordant couples. ESN subjects showed increased IFN-γ and CD107a expression in both NK subsets, CD56bright and CD56dim cells, in response to stimulation with a TLR3 agonist, while expression was impaired in the HIV-1-infected partners. TLR3-induced expression of IFN-γ, TNF and CD107a by polyfunctional CD56bright NK cells was more pronounced in ESN individuals than that in healthy controls. Activated NK cells, as determined by CD38 expression, were increased only in the HIV-1-infected partners, with reduced IFN-γ and CD107a expression. Moreover, CD38+ NK cells of the HIV-1-infected partners were associated with increased expression of inhibitory molecules, such as NKG2A, PD-1 and Tim-3, while NK cells from ESN subjects showed decreased NKG2A expression. Altogether, these findings indicate that NK cells of ESN individuals were highly responsive to TLR3 activation and had a polyfunctional NK cell phenotype, while the impaired TLR3 response in HIV-1-infected partners was associated with an inhibitory/exhaustion NK cell phenotype.
Collapse
|
47
|
Apostólico JDS, Lunardelli VAS, Yamamoto MM, Souza HFS, Cunha-Neto E, Boscardin SB, Rosa DS. Dendritic Cell Targeting Effectively Boosts T Cell Responses Elicited by an HIV Multiepitope DNA Vaccine. Front Immunol 2017; 8:101. [PMID: 28223987 PMCID: PMC5295143 DOI: 10.3389/fimmu.2017.00101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Despite several efforts in the last decades, an efficacious HIV-1 vaccine is still not available. Different approaches have been evaluated, such as recombinant proteins, viral vectors, DNA vaccines, and, most recently, dendritic cell (DC) targeting. This strategy is based on DC features that place them as central for induction of immunity. Targeting is accomplished by the use of chimeric monoclonal antibodies directed to DC surface receptors fused to the antigen of interest. In this work, we targeted eight promiscuous HIV-derived CD4+ T cell epitopes (HIVBr8) to the DEC205+ DCs by fusing the multiepitope immunogen to the heavy chain of αDEC205 (αDECHIVBr8), in the presence of the TLR3 agonist poly (I:C). In addition, we tested a DNA vaccine encoding the same epitopes using homologous or heterologous prime-boost regimens. Our results showed that mice immunized with αDECHIVBr8 presented higher CD4+ and CD8+ T cell responses when compared to mice that received the DNA vaccine (pVAXHIVBr8). In addition, pVAXHIVBr8 priming followed by αDECHIVBr8 boosting induced higher polyfunctional proliferative and cytokine-producing T cell responses to HIV-1 peptides than homologous DNA immunization or heterologous αDEC prime/DNA boost. Based on these results, we conclude that homologous prime-boost and heterologous boosting immunization strategies targeting CD4+ epitopes to DCs are effective to improve HIV-specific cellular immune responses when compared to standalone DNA immunization. Moreover, our results indicate that antigen targeting to DC is an efficient strategy to boost immunity against a multiepitope immunogen, especially in the context of DNA vaccination.
Collapse
Affiliation(s)
- Juliana de Souza Apostólico
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| | | | - Marcio Massao Yamamoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Higo Fernando Santos Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - Edecio Cunha-Neto
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil; Laboratory of Clinical Immunology and Allergy-LIM60, University of São Paulo School of Medicine, São Paulo, Brazil; Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil; Institute for Investigation in Immunology (iii), INCT, São Paulo, Brazil
| |
Collapse
|
48
|
The Antiviral Immune Response and Its Impact on the HIV-1 Reservoir. Curr Top Microbiol Immunol 2017; 417:43-67. [PMID: 29071476 DOI: 10.1007/82_2017_72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Latently infected resting memory CD4+ T cells represent a major barrier to HIV-1 eradication. Studies have shown that it will not be possible to cure HIV-1 infection unless these cells are eliminated. Latently infected cells probably do not express viral antigens and thus may not be susceptible to the HIV-1 specific immune response, nevertheless the size and composition of the reservoir is influenced by the immune system. In this chapter, we review the different components of the HIV-1 specific immune response and discuss how the immune system can be harnessed to eradicate the virus.
Collapse
|
49
|
Briceño O, Pinto-Cardoso S, Rodríguez-Bernabe N, Murakami-Ogasawara A, Reyes-Terán G. Gut Homing CD4+ and CD8+ T-Cell Frequencies in HIV Infected Individuals on Antiretroviral Treatment. PLoS One 2016; 11:e0166496. [PMID: 27898686 PMCID: PMC5127512 DOI: 10.1371/journal.pone.0166496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
The depletion of mucosal CD4+ T-cells occurs early in HIV infection and despite years on antiretroviral treatment (ART), this population never reconstitutes to pre-HIV infection levels. In an effort to understand the effect of ART initiation and different ART regimens on the reconstitution of mucosal T cells within the gut associated lymphoid tissue (GALT), we quantified the frequency of CD4+ and CD8+ T cells expressing the gut homing receptors CCR9 and β7 in peripheral blood (PB) of HIV infected individuals naive to ART and treated individuals on both short-term (less than a year) and long-term ART (more than 2 years). We found that the gut homing CD4+ T cells were depleted in ART-naive individuals and increased after ART initiation but levels were not comparable to HIV uninfected individuals. Gut homing CD4+ T cell activation decreased after ART initiation whilst gut homing CD8+ T cell activation remained elevated in ART experienced individuals, especially in those individuals taking protease inhibitors. Our findings provide new insights into the effects of ART initiation and ART regimens on the frequency and immune status of gut homing CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Olivia Briceño
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
- * E-mail: (GRT); (SPC)
| | - Nataly Rodríguez-Bernabe
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Akio Murakami-Ogasawara
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, México
- * E-mail: (GRT); (SPC)
| |
Collapse
|
50
|
Tuero I, Venzon D, Robert-Guroff M. Mucosal and Systemic γδ+ T Cells Associated with Control of Simian Immunodeficiency Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4686-4695. [PMID: 27815422 DOI: 10.4049/jimmunol.1600579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
γδ T cells act as a first line of defense against invading pathogens. However, despite their abundance in mucosal tissue, little information is available about their functionality in this compartment in the context of HIV/SIV infection. In this study, we evaluated the frequency, phenotype, and functionality of Vδ1 and Vδ2 T cells from blood, rectum, and the female reproductive tract (FRT) of rhesus macaques to determine whether these cells contribute to control of SIV infection. No alteration in the peripheral Vδ1/Vδ2 ratio in SIV-infected macaques was observed. However, CD8+ and CD4+CD8+ Vδ1 T cells were expanded along with upregulation of NKG2D, CD107, and granzyme B, suggesting cytotoxic function. In contrast, Vδ2 T cells showed a reduced ability to produce the inflammatory cytokine IFN-γ. In the FRT of SIV+ macaques, Vδ1 and Vδ2 showed comparable levels across vaginal, ectocervical, and endocervical tissues; however, endocervical Vδ2 T cells showed higher inflammatory profiles than the two other regions. No sex difference was seen in the rectal Vδ1/Vδ2 ratio. Several peripheral Vδ1 and/or Vδ2 T cell subpopulations expressing IFN-γ and/or NKG2D were positively correlated with decreased plasma viremia. Notably, Vδ2 CD8+ T cells of the endocervix were negatively correlated with chronic viremia. Overall, our results suggest that a robust Vδ1 and Vδ2 T cell response in blood and the FRT of SIV-infected macaques contribute to control of viremia.
Collapse
Affiliation(s)
- Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|