1
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
2
|
Wu YJ, Xiong JF, Zhan CN, Xu H. Gut microbiota alterations in colorectal adenoma-carcinoma sequence based on 16S rRNA gene sequencing: A systematic review and meta-analysis. Microb Pathog 2024; 195:106889. [PMID: 39197689 DOI: 10.1016/j.micpath.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Most sporadic colorectal cancers (CRC) develop through the adenoma-carcinoma sequence. While dysbiosis of the intestinal flora contributes to CRC's pathogenesis, precise microbial taxa closely associated with the colorectal adenoma-carcinoma sequence remain elusive. This meta-analysis aimed to summarize the features of intestinal flora in patients with AD and CRC. METHODS PubMed, Embase, Cochrane Library, and Web of Science were searched for case-control studies comparing the relative abundance of gut microbiota in the feces of patients with AD, CRC, and healthy controls (HC) from inception to January 2024. The weighted mean difference (WMD) with a 95 % confidence interval (CI) was used to display the results. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the entailed literature. Publication bias was evaluated with the Egger's and Begg's tests. RESULTS Eleven studies were included, involving 477 CRC patients, 628 AD patients, and 864 healthy controls. Compared with HC, the patients with AD had a significantly lower Chao 1 index (WMD = -30.17, 95 % CI [-41.10, -19.23], P < 0.001) and Shannon index (WMD = -0.11 95 % CI [-0.18, -0.04], P = 0.002). Compared with AD, the CRC patients had a significantly higher Chao1 index (WMD = 22.09, 95 % CI [7.59, 36.00], P = 0.003) and Shannon index (WMD = 0.08, 95 % CI [0.00, 0.15], P = 0.037). Enterobacteriaceae (WMD = 0.03 95 % CI [0.00,0.05], P = 0.047; WMD = 0.02 95 % CI [0.00,0.04], P = 0.027) significantly increased in the order of Control-AD-CRC, while that of Blautia (WMD = -0.00 95 % CI [-0.01, -0.00], P = 0.001; WMD = -0.00 95 % CI [-0.00, -0.00], P = 0.002) was reduced. Compared with HC, the relative abundance of Proteobacteria (WMD = 0.05 95 % CI [0.03,0.07], P < 0.001), Fusobacteria (WMD = 0.02 95 % CI [0.00,0.03], P = 0.042), Streptococcaceae (WMD = 0.03 95 % CI [0.01,0.05], P = 0.017), Prevotellaceae (WMD = 0.02 95 % CI [0.00,0.04], P = 0.040), and Escherichia-Shigella (WMD = 0.06 95 % CI [0.01, 0.11], P = 0.021) was enriched in the CRC group. The relative abundance of Alistipes (WMD = 0.00 95 % CI [0.00,0.01], P = 0.032) and Streptococcus (WMD = 0.00 95 % CI [0.00,0.00], P = 0.001) was increased in the AD vs HC. The relative abundance of Firmicutes (WMD = -0.07 95 % CI [-0.12, -0.03], P = 0.003), Bifidobacteria (WMD = -0.03 95 % CI [-0.05, -0.01], P = 0.016), and Klebsiella (WMD = -0.01 95 % CI [-0.01, -0.00], P = 0.001) was decreased in the CRC vs HC. Compared with AD, the relative abundance of Firmicutes (WMD = -0.04 95 % CI [-0.07, -0.02], P = 0.002), Peptostreptococcaceae (WMD = -0.03 95 % CI [-0.05, -0.00], P = 0.021), Lachnospiraceae (WMD = -0.04 95 % CI [-0.08,-0.00], P = 0.037), Ruminococcaceae (WMD = -0.06 95 % CI [-0.09,-0.03], P < 0.001), Faecalibacterium (WMD = -0.01 95 % CI [-0.02, -0.01], P = 0.001), and Lachnoclostridium (WMD = -0.02 95 % CI [-0.03, -0.00], P = 0.040) was decreased in the CRC group, while Proteobacteria (WMD = 0.04 95 % CI [0.02,0.05], P < 0.001) was increased. CONCLUSIONS The dysbiosis characterized by reduced levels of short-chain fatty acid (SCFA)-producing bacteria, decreased anti-inflammatory bacteria, increased pro-inflammatory bacteria, and an elevation of bacteria with cytotoxic effects damaging to DNA may represent the specific microbial signature of colorectal adenoma/carcinoma. Further research is required to elucidate the mechanisms by which gut dysbiosis leads to the progression from AD to CRC and to explore the potential of specific microbiota markers in clinical treatment and non-invasive screening.
Collapse
Affiliation(s)
- Yi-Jun Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Fang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Cheng-Nan Zhan
- Medical Service Community, Hangzhou Xiaoshan Hospital of TCM, Hangzhou, China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
3
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
4
|
Jeelani I, Moon JS, da Cunha FF, Nasamran CA, Jeon S, Zhang X, Bandyopadhyay GK, Dobaczewska K, Mikulski Z, Hosseini M, Liu X, Kisseleva T, Brenner DA, Singh S, Loomba R, Kim M, Lee YS. HIF-2α drives hepatic Kupffer cell death and proinflammatory recruited macrophage activation in nonalcoholic steatohepatitis. Sci Transl Med 2024; 16:eadi0284. [PMID: 39259813 DOI: 10.1126/scitranslmed.adi0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Proinflammatory hepatic macrophage activation plays a key role in the development of nonalcoholic steatohepatitis (NASH). This involves increased embryonic hepatic Kupffer cell (KC) death, facilitating the replacement of KCs with bone marrow-derived recruited hepatic macrophages (RHMs) that highly express proinflammatory genes. Moreover, phago/efferocytic activity of KCs is diminished in NASH, enhancing liver inflammation. However, the molecular mechanisms underlying these changes in KCs are not known. Here, we show that hypoxia-inducible factor 2α (HIF-2α) mediates NASH-associated decreased KC growth and efferocytosis by enhancing lysosomal stress. At the molecular level, HIF-2α stimulated mammalian target of rapamycin (mTOR)- and extracellular signal-regulated kinase-dependent inhibitory transcription factor EB (TFEB) phosphorylation, leading to decreased lysosomal and phagocytic gene expression. With increased metabolic stress and phago/efferocytic burden in NASH, these changes were sufficient to increase lysosomal stress, causing decreased efferocytosis and lysosomal cell death. Of interest, HIF-2α-dependent TFEB regulation only occurred in KCs but not RHMs. Instead, in RHMs, HIF-2α promoted mitochondrial reactive oxygen species production and proinflammatory activation by increasing ANT2 expression and mitochondrial permeability transition. Consequently, myeloid lineage-specific or KC-specific HIF-2α depletion or the inhibition of mTOR-dependent TFEB inhibition using antisense oligonucleotide treatment protected against the development of NASH in mice. Moreover, treatment with an HIF-2α-specific inhibitor reduced inflammatory and fibrogenic gene expression in human liver spheroids cultured under a NASH-like condition. Together, our results suggest that macrophage subtype-specific effects of HIF-2α collectively contribute to the proinflammatory activation of liver macrophages, leading to the development of NASH.
Collapse
Affiliation(s)
- Ishtiaq Jeelani
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jae-Su Moon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Flavia Franco da Cunha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seokhyun Jeon
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinhang Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gautam K Bandyopadhyay
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Seema Singh
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
- NAFLD Research Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Minkyu Kim
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
6
|
Zhang Y, Wang X, Gao Z, Li X, Meng R, Wu X, Ding J, Shen W, Zhu J. Hypoxia-inducible factor-1α promotes macrophage functional activities in protecting hypoxia-tolerant large yellow croaker ( Larimichthys crocea) against Aeromonas hydrophila infection. Front Immunol 2024; 15:1410082. [PMID: 39156889 PMCID: PMC11327042 DOI: 10.3389/fimmu.2024.1410082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1β, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1β were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xuelei Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Zhenyu Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - XuJie Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Ran Meng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Li Y, Liu Y, Chang M, Mu R, Zhu J. Effect of RNAi-Mediated Survivin and Hypoxia-Inducible Factor 1α Gene Silencing on Proliferation, Invasion, Migration and Apoptosis of Gastric Cancer BGC-823 Cells. Mol Biotechnol 2024; 66:1872-1882. [PMID: 37440157 DOI: 10.1007/s12033-023-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
In order to investigate the effects of RNAi-mediated survivin and hypoxia-inducible factor 1α (HIF-1α) gene silencing on the proliferation and apoptosis of gastric cancer BGC-823 cells, small interfering RNAs (siRNAs) targeting survivin and HIF-1α mRNAs, respectively, as well as scrambled siRNAs (SCRs) were designed and synthesized, namely siRNA-survivin group, siRNA-HIF-1α group, and SCR group. The hypoxia-sensitive gastric cancer BGC-823 cells were identified and transfected in vitro with Hifectin II under hypoxic conditions, and the expression of survivin and HIF-1α was assessed by RT-PCR and Western blotting assays, respectively. The ability of apoptosis, proliferation, invasion, and migration was measured, and the results showed that HIF-1α expression was significantly increased in BGC-823 cells under hypoxic conditions, and survival-targeted siRNA transfection decreased the expression of survivin under hypoxic conditions, while co-transfection of survivin-targeted siRNA and HIF-1α-targeted siRNA down-regulated both survivin and HIF-1α expression. Compared with the blank control group, the co-transfected siRNA group exhibited distinct characteristics, with decreased invasion and migration ability, increased apoptosis, and significantly decreased cell proliferation under hypoxic conditions. It was confirmed that the downregulation of survivin and HIF-1α in BGC-823 cells may induce anticancer effects by enhancing apoptosis and decreasing proliferation, migration, and invasion ability. The novelty lies in the application of RNAi technology to silence the expression of both survivin and HIF-1α genes in gastric cancer BGC-823 cells by single and combined interference in an established gastric cancer cell model and observed the mechanism of its effect on the proliferation and apoptosis of gastric cancer cells. Concerning the success of this highly active antiretroviral therapy of gene disruption therapies, which is the first of its kind in the world, we wonder whether we can find other better gene targets for more kinds of tumor therapy.
Collapse
Affiliation(s)
- Yupeng Li
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Yongchao Liu
- Basic Medical College, Beihua University, Jilin, Jilin, China
- Medical Laboratory Technology College, Beihua University, Jilin, Jilin, China
| | - Mingzhu Chang
- Basic Medical College, Beihua University, Jilin, Jilin, China
| | - Runhong Mu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| | - Jianyu Zhu
- Basic Medical College, Beihua University, Jilin, Jilin, China.
| |
Collapse
|
9
|
Courvan EMC, Parker RR. Hypoxia and inflammation induce synergistic transcriptome turnover in macrophages. Cell Rep 2024; 43:114452. [PMID: 38968068 DOI: 10.1016/j.celrep.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
Macrophages are effector immune cells that experience substantial changes to oxygenation when transiting through tissues, especially when entering tumors or infected wounds. How hypoxia alters gene expression and macrophage effector function at the post-transcriptional level remains poorly understood. Here, we use TimeLapse-seq to measure how inflammatory activation modifies the hypoxic response in primary macrophages. Nucleoside recoding sequencing allows the derivation of steady-state transcript levels, degradation rates, and transcriptional synthesis rates from the same dataset. We find that hypoxia produces distinct responses from resting and inflammatory macrophages. Hypoxia induces destabilization of mRNA transcripts, though inflammatory macrophages substantially increase mRNA degradation compared to resting macrophages. Increased RNA turnover results in the upregulation of ribosomal protein genes and downregulation of extracellular matrix components in inflammatory macrophages. Pathways regulated by mRNA decay in vitro are differentially regulated in tumor-associated macrophages implying that mixed stimuli could induce post-transcriptional regulation of macrophage function in solid tumors.
Collapse
Affiliation(s)
- Edward M C Courvan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA.
| | - Roy R Parker
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80303, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
10
|
Villareal LB, Falcon DM, Xie L, Xue X. Hypoxia-inducible factor 3α1 increases epithelial-to-mesenchymal transition and iron uptake to drive colorectal cancer liver metastasis. Br J Cancer 2024; 130:1904-1915. [PMID: 38693428 PMCID: PMC11183190 DOI: 10.1038/s41416-024-02699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND/OBJECTIVES Hypoxia-inducible factor (HIF)-3α1's role in colorectal cancer (CRC) cells, especially its effects on epithelial-mesenchymal transition (EMT), zinc finger E-box binding homeobox 2 (ZEB2) gene expression, and iron metabolism, remains largely unstudied. This research sought to elucidate these relationships. METHODS RNA-seq was conducted to investigate the impact of HIF-3α1 overexpression in CRC cells. Dual-luciferase reporter assays assessed the direct targeting of ZEB2 by HIF-3α1. Scratch assays measured changes in cell migration following HIF-3α1 overexpression and ZEB2 knockdown. The effects of HIF-3α1 overexpression on colon tumour growth and liver metastasis were examined in vivo. Iron chelation was used to explore the role of iron metabolism in HIF-3α1-mediated EMT and tumour growth. RESULTS HIF-3α1 overexpression induced EMT and upregulated ZEB2 expression, enhancing cancer cell migration. ZEB2 knockdown reduced mesenchymal markers and cell migration. HIF-3α1 promoted colon tumour growth and liver metastasis, increased transferrin receptor (TFRC) expression and cellular iron levels, and downregulated HIF-1α, HIF-2α, and NDRG1. Iron chelation mitigated HIF-3α1-mediated EMT, tumour growth, and survival. CONCLUSIONS HIF-3α1 plays a critical role in colon cancer progression by promoting EMT, iron accumulation, and metastasis through ZEB2 and TFRC regulation, suggesting potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA
| | - Daniel M Falcon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Li S, Sheng J, Zhang D, Qin H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024; 16:10165-10196. [PMID: 38787372 PMCID: PMC11210230 DOI: 10.18632/aging.205858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
Collapse
Affiliation(s)
- Sheng Li
- The Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Ruan Q, Geng Y, Zhao M, Zhang H, Cheng X, Zhao T, Yue X, Jiang X, Jiang X, Hou XY, Zhu LL. Prolyl hydroxylase inhibitor FG-4592 alleviates neuroinflammation via HIF-1/BNIP3 signaling in microglia. Biomed Pharmacother 2024; 173:116342. [PMID: 38430635 DOI: 10.1016/j.biopha.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neuroinflammation is responsible for neuropsychiatric dysfunction following acute brain injury and neurodegenerative diseases. This study describes how a hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor FG-4592 prevents the lipopolysaccharide (LPS)-induced acute neuroinflammation in microglia. METHODS The distribution of FG-4592 in mouse brain tissues was determined by collision-induced dissociation tandem mass spectrometry. Microglial activation in the hippocampus was analyzed by immunofluorescence. Moreover, we determined the activation of HIF-1 and nuclear factor-κB (NF-κB) signaling pathways, proinflammatory responses using molecular biological techniques. Transcriptome sequencing and BNIP3 silencing were conducted to explore signaling pathway and molecular mechanisms underlying FG-4592 anti-inflammatory activity. RESULTS FG-4592 was transported into the brain tissues and LPS increased its transportation. FG-4592 promoted the expression of HIF-1α and induced the downstream gene transcription in the hippocampus. Administration with FG-4592 significantly inhibited microglial hyperactivation and decreased proinflammatory cytokine levels following LPS treatment in the hippocampus. The LPS-induced inflammatory responses and the NF-κB signaling pathway were also downregulated by FG-4592 pretreatment in microglial cells. Mechanistically, Venn diagram analysis of transcriptomic changes of BV2 cells identified that BNIP3 was a shared and common differentially expressed gene among different treatment groups. FG-4592 markedly upregulated the protein levels of BNIP3 in microglia. Importantly, BNIP3 knockdown aggravated the LPS-stimulated inflammatory responses and partially reversed the protection of FG-4592 against microglial inflammatory signaling and microglial activation in the mouse hippocampus. CONCLUSIONS FG-4592 alleviates neuroinflammation through facilitating microglial HIF-1/BNIP3 signaling pathway in mice. Targeting HIF-PHD/HIF-1/BNIP3 axis is a promising strategy for the development of anti-neuroinflammation drugs.
Collapse
Affiliation(s)
- Qianqian Ruan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanan Geng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ming Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiang Cheng
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tong Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangpei Yue
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiufang Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Ling-Ling Zhu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
13
|
Zhang F, Huang B, Utturkar SM, Luo W, Cresswell G, Herr SA, Zheng S, Napoleon JV, Jiang R, Zhang B, Liu M, Lanman N, Srinivasarao M, Ratliff TL, Low PS. Tumor-specific activation of folate receptor beta enables reprogramming of immune cells in the tumor microenvironment. Front Immunol 2024; 15:1354735. [PMID: 38384467 PMCID: PMC10879311 DOI: 10.3389/fimmu.2024.1354735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Folate receptors can perform folate transport, cell adhesion, and/or transcription factor functions. The beta isoform of the folate receptor (FRβ) has attracted considerable attention as a biomarker for immunosuppressive macrophages and myeloid-derived suppressor cells, however, its role in immunosuppression remains uncharacterized. We demonstrate here that FRβ cannot bind folate on healthy tissue macrophages, but does bind folate after macrophage incubation in anti-inflammatory cytokines or cancer cell-conditioned media. We further show that FRβ becomes functionally active following macrophage infiltration into solid tumors, and we exploit this tumor-induced activation to target a toll-like receptor 7 agonist specifically to immunosuppressive myeloid cells in solid tumors without altering myeloid cells in healthy tissues. We then use single-cell RNA-seq to characterize the changes in gene expression induced by the targeted repolarization of tumor-associated macrophages and finally show that their repolarization not only changes their own phenotype, but also induces a proinflammatory shift in all other immune cells of the same tumor mass, leading to potent suppression of tumor growth. Because this selective reprogramming of tumor myeloid cells is accompanied by no systemic toxicity, we propose that it should constitute a safe method to reprogram the tumor microenvironment.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Bo Huang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Weichuan Luo
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Gregory Cresswell
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Seth A. Herr
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Suilan Zheng
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - John V. Napoleon
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Rina Jiang
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Muyi Liu
- University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, United States
- Department of Computer Sciences, Purdue University, West Lafayette, IN, United States
| | - Nadia Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| | - Timothy L. Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Philip S. Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
14
|
Li M, Liu Y, Huang B, Zhou G, Pan M, Jin J, Wang F, Wang Y, Ren X, Xu B, Hu B, Gu N. A Self-Homing and Traceable Cardiac Patch Leveraging Ferumoxytol for Spatiotemporal Therapeutic Delivery. ACS NANO 2024; 18:3073-3086. [PMID: 38227475 DOI: 10.1021/acsnano.3c08346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Mesenchymal stem cell (MSC)-based cardiac patches are envisioned to be a promising treatment option for patients with myocardial infarction. However, their therapeutic efficacy and duration are hampered due to their limited retention on the epicardium. We engineered a scaffold-free MSC sheet with an inherent ability to migrate into the infarcted myocardium, a strategy enabled by actively establishing a sustained intracellular hypoxic environment through the endocytosis of our FDA-approved ferumoxytol. This iron oxide nanoparticle stabilized hypoxia-induced factor-1α, triggering upregulation of the CXC chemokine receptor and subsequent MSC chemotaxis. Thus, MSCs integrated into 2/3 depth of the left ventricular anterior wall in a rat model of acute myocardial infarction and persisted for at least 28 days. This led to spatiotemporal delivery of paracrine factors by MSCs, enhancing cardiac regeneration and function. Ferumoxytol also facilitated the noninvasive MRI tracking of implanted MSCs. Our approach introduces a strategy for mobilizing MSC migration, holding promise for rapid clinical translation in myocardial infarction treatment.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, Nanjing 211166, China
| | - Yiyi Liu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Bin Huang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Gaoxin Zhou
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingfei Pan
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Juan Jin
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Feng Wang
- Department of Analytical & Testing Center, Nanjing Medical University, Nanjing 211166, China
| | - Yipin Wang
- National Demonstration Center for Experimental Basic Medical Education, Nanjing Medical University, Nanjing 211166, China
| | - Xueyang Ren
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Benhui Hu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Ning Gu
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
- Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
16
|
Abou Khouzam R, Janji B, Thiery J, Zaarour RF, Chamseddine AN, Mayr H, Savagner P, Kieda C, Gad S, Buart S, Lehn JM, Limani P, Chouaib S. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy. Semin Cancer Biol 2023; 97:104-123. [PMID: 38029865 DOI: 10.1016/j.semcancer.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
In cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells. We and others have provided evidence indicating that hypoxia also drives genomic instability in cancer cells and interferes with DNA damage response and repair suggesting that hypoxia could be a potential driver of tumor mutational burden. Here, we reviewed the current knowledge on how hypoxic stress in the TME impacts tumor angiogenesis, heterogeneity, plasticity, and immune resistance, with a special interest in tumor immunogenicity and hypoxia targeting. An integrated understanding of the complexity of the effect of hypoxia on the immune and microenvironmental components could lead to the identification of better adapted and more effective combinational strategies in cancer immunotherapy. Clearly, the discovery and validation of therapeutic targets derived from the hypoxic tumor microenvironment is of major importance and the identification of critical hypoxia-associated pathways could generate targets that are undeniably attractive for combined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Bassam Janji
- Department of Cancer Research, Luxembourg Institute of Health, Tumor Immunotherapy and Microenvironment (TIME) Group, 6A, rue Nicolas-Ernest Barblé, L-1210 Luxembourg city, Luxembourg.
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Ali N Chamseddine
- Gastroenterology Department, Cochin University Hospital, Université de Paris, APHP, Paris, France; Ambroise Paré - Hartmann Private Hospital Group, Oncology Unit, Neuilly-sur-Seine, France.
| | - Hemma Mayr
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Pierre Savagner
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland; Centre for Molecular Biophysics, UPR 4301 CNRS, 45071 Orleans, France; Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland.
| | - Sophie Gad
- Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres University (PSL), 75014 Paris, France; UMR CNRS 9019, Genome Integrity and Cancers, Gustave Roussy, Paris-Saclay University, 94800 Villejuif, France.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
| | - Perparim Limani
- Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland; Department of Surgery & Transplantation, University and University Hospital Zurich, Raemistrasse 100, Zurich, Switzerland.
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates; INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, 94805 Villejuif, France.
| |
Collapse
|
17
|
Zhang J, Yuan Z, Li X, Wang F, Wei X, Kang Y, Mo C, Jiang J, Liang H, Ye L. Activation of the JNK/COX-2/HIF-1α axis promotes M1 macrophage via glycolytic shift in HIV-1 infection. Life Sci Alliance 2023; 6:e202302148. [PMID: 37798121 PMCID: PMC10556724 DOI: 10.26508/lsa.202302148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Chronic inflammation is recognized as a major risk factor for the severity of HIV infection. Whether metabolism reprogramming of macrophages caused by HIV-1 is related to chronic inflammatory activation, especially M1 polarization of macrophages, is inconclusive. Here, we show that HIV-1 infection induces M1 polarization and enhanced glycolysis in macrophages. Blockade of glycolysis inhibits M1 polarization of macrophages, indicating that HIV-1-induced M1 polarization is supported by enhanced glycolysis. Moreover, we find that this immunometabolic adaptation is dependent on hypoxia-inducible factor 1α (HIF-1α), a strong inducer of glycolysis. HIF-1α-target genes, including HK2, PDK1, and LDHA, are also involved in this process. Further research discovers that COX-2 regulates HIF-1α-dependent glycolysis. However, the elevated expression of COX-2, enhanced glycolysis, and M1 polarization of macrophages could be reversed by inactivation of JNK in the context of HIV-1 infection. Our study mechanistically elucidates that the JNK/COX-2/HIF-1α axis is activated to strengthen glycolysis, thereby promoting M1 polarization in macrophages in HIV-1 infection, providing a new idea for resolving chronic inflammation in clinical AIDS patients.
Collapse
Affiliation(s)
- Junhan Zhang
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuanrong Li
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Fengyi Wang
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xueqin Wei
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yiwen Kang
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Chuye Mo
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Ye
- https://ror.org/03dveyr97 Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
19
|
Zheng J, Zhang C, Wu Y, Zhang C, Che Y, Zhang W, Yang Y, Zhu J, Yang L, Wang Y. Controlled Decompression Alleviates Motor Dysfunction by Regulating Microglial Polarization via the HIF-1α Signaling Pathway in Intracranial Hypertension. Mol Neurobiol 2023; 60:5607-5623. [PMID: 37328678 DOI: 10.1007/s12035-023-03416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
Decompressive craniectomy (DC) is a major form of surgery that is used to reduce intracranial hypertension (IH), the most frequent cause of death and disability following severe traumatic brain injury (sTBI) and stroke. Our previous research showed that controlled decompression (CDC) was more effective than rapid decompression (RDC) with regard to reducing the incidence of complications and improving outcomes after sTBI; however, the specific mechanisms involved have yet to be elucidated. In the present study, we investigated the effects of CDC in regulating inflammation after IH and attempted to identify the mechanisms involved. Analysis showed that CDC was more effective than RDC in alleviating motor dysfunction and neuronal death in a rat model of traumatic intracranial hypertension (TIH) created by epidural balloon pressurization. Moreover, RDC induced M1 microglia polarization and the release of pro-inflammatory cytokines. However, CDC treatment resulted in microglia primarily polarizing into the M2 phenotype and induced the significant release of anti-inflammatory cytokines. Mechanistically, the establishment of the TIH model led to the increased expression of hypoxia-inducible factor-1α (HIF-1α); CDC ameliorated cerebral hypoxia and reduced the expression of HIF-1α. In addition, 2-methoxyestradiol (2-ME2), a specific inhibitor of HIF-1α, significantly attenuated RDC-induced inflammation and improved motor function by promoting M1 to M2 phenotype transformation in microglial and enhancing the release of anti-inflammatory cytokines. However, dimethyloxaloylglycine (DMOG), an agonist of HIF-1α, abrogated the protective effects of CDC treatment by suppressing M2 microglia polarization and the release of anti-inflammatory cytokines. Collectively, our results indicated that CDC effectively alleviated IH-induced inflammation, neuronal death, and motor dysfunction by regulating HIF-1α-mediated microglial phenotype polarization. Our findings provide a better understanding of the mechanisms that underlie the protective effects of CDC and promote clinical translational research for HIF-1α in IH.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chenxu Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yonghui Wu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Chonghui Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yuanyuan Che
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Wang Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Yang Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China
| | - Jie Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Likun Yang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, 214044, Jiangsu, China.
| |
Collapse
|
20
|
Shi J, Miao D, Lv Q, Tan D, Xiong Z, Zhang X. ENO2 as a Biomarker Regulating Energy Metabolism to Promote Tumor Progression in Clear Cell Renal Cell Carcinoma. Biomedicines 2023; 11:2499. [PMID: 37760940 PMCID: PMC10525605 DOI: 10.3390/biomedicines11092499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common and metastatic type of renal cell carcinoma. Despite significant advancements, the current diagnostic biomarkers for ccRCC lack the desired specificity and sensitivity, necessitating the identification of novel biomarkers and elucidation of their underlying mechanisms. METHODS Three gene expression profile datasets were obtained from the GEO database, and differentially expressed genes (DEGs) were screened. Gene Ontology and KEGG pathway analysis were conducted in ccRCC. To clarify the diagnosis and prognostic role of ENO2, Kaplan-Meier analysis and Cox proportional hazards regression analysis were performed. Functional experiments were also carried out to verify the significant role of ENO2 in ccRCC. Finally, tumor mutational burden analysis was utilized to investigate the potential role of ENO2 in gene mutations in ccRCC. RESULTS The study showed that ENO2 is a potential biomarker for the diagnosis of ccRCC and can independently predict the clinical prognosis of ccRCC. Furthermore, we found that ENO2 can promote the occurrence and progression of ccRCC by affecting the glycolysis level of cells through the "Warburg effect". CONCLUSIONS These findings provide new theories for the occurrence and development of ccRCC and can help formulate new strategies for its diagnosis and treatment.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Diaoyi Tan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China (D.M.); (D.T.)
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
21
|
Zhang H, Cao K, Xiang J, Zhang M, Zhu M, Xi Q. Hypoxia induces immunosuppression, metastasis and drug resistance in pancreatic cancers. Cancer Lett 2023; 571:216345. [PMID: 37558084 DOI: 10.1016/j.canlet.2023.216345] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Pancreatic cancer is one of the common malignant tumors of the digestive system and is known as the "king of cancers". It is extremely difficult to diagnose at an early stage, the disease progresses rapidly, and the effect of chemotherapy and radiotherapy is poor, so the prognosis of pancreatic cancer patients is very poor. Numerous studies have suggested that hypoxia is closely related to the development and progression of pancreatic cancer. Inadequate blood supply and desmoplasia in the microenvironment of pancreatic cancer can result in its extreme hypoxia. This hypoxic microenvironment can further contribute to angiogenesis and desmoplasia. Hypoxia is mediated by the complex hypoxia inducible factor (HIF) signaling pathway and plays an important role in the formation of a highly immunosuppressive microenvironment and the metastasis of pancreatic cancer. Further work on the hypoxic microenvironment will help clarify the specific mechanisms of the role of hypoxia in pancreatic cancer and provide a basis for the realization of hypoxia-targeted therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Kailei Cao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jingrong Xiang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mengxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qinhua Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
22
|
Pan Y, van der Watt PJ, Kay SA. E-box binding transcription factors in cancer. Front Oncol 2023; 13:1223208. [PMID: 37601651 PMCID: PMC10437117 DOI: 10.3389/fonc.2023.1223208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
E-boxes are important regulatory elements in the eukaryotic genome. Transcription factors can bind to E-boxes through their basic helix-loop-helix or zinc finger domain to regulate gene transcription. E-box-binding transcription factors (EBTFs) are important regulators of development and essential for physiological activities of the cell. The fundamental role of EBTFs in cancer has been highlighted by studies on the canonical oncogene MYC, yet many EBTFs exhibit common features, implying the existence of shared molecular principles of how they are involved in tumorigenesis. A comprehensive analysis of TFs that share the basic function of binding to E-boxes has been lacking. Here, we review the structure of EBTFs, their common features in regulating transcription, their physiological functions, and their mutual regulation. We also discuss their converging functions in cancer biology, their potential to be targeted as a regulatory network, and recent progress in drug development targeting these factors in cancer therapy.
Collapse
Affiliation(s)
- Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Whittington AM, Turner FS, Baark F, Templeman S, Kirwan DE, Roufosse C, Krishnan N, Robertson BD, Chong DLW, Porter JC, Gilman RH, Friedland JS. An acidic microenvironment in Tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses. PLoS Pathog 2023; 19:e1011495. [PMID: 37418488 PMCID: PMC10355421 DOI: 10.1371/journal.ppat.1011495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/19/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection causes marked tissue inflammation leading to lung destruction and morbidity. The inflammatory extracellular microenvironment is acidic, however the effect of this acidosis on the immune response to M.tb is unknown. Using RNA-seq we show that acidosis produces system level transcriptional change in M.tb infected human macrophages regulating almost 4000 genes. Acidosis specifically upregulated extracellular matrix (ECM) degradation pathways with increased expression of Matrix metalloproteinases (MMPs) which mediate lung destruction in Tuberculosis. Macrophage MMP-1 and -3 secretion was increased by acidosis in a cellular model. Acidosis markedly suppresses several cytokines central to control of M.tb infection including TNF-α and IFN-γ. Murine studies demonstrated expression of known acidosis signaling G-protein coupled receptors OGR-1 and TDAG-8 in Tuberculosis which are shown to mediate the immune effects of decreased pH. Receptors were then demonstrated to be expressed in patients with TB lymphadenitis. Collectively, our findings show that an acidic microenvironment modulates immune function to reduce protective inflammatory responses and increase extracellular matrix degradation in Tuberculosis. Acidosis receptors are therefore potential targets for host directed therapy in patients.
Collapse
Affiliation(s)
| | - Frances S. Turner
- Edinburgh Genomics, University of Edinburgh, Edinburgh, United Kingdom
| | - Friedrich Baark
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sam Templeman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Daniela E. Kirwan
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Candice Roufosse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nitya Krishnan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Brian D. Robertson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Deborah L. W. Chong
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation & Tissue Repair, Respiratory Medicine, University College London, London, United Kingdom
| | - Robert H. Gilman
- Department of International Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jon S. Friedland
- Institute of Infection and Immunity, St. George’s, University of London, London, United Kingdom
| |
Collapse
|
24
|
Lazarov T, Juarez-Carreño S, Cox N, Geissmann F. Physiology and diseases of tissue-resident macrophages. Nature 2023; 618:698-707. [PMID: 37344646 PMCID: PMC10649266 DOI: 10.1038/s41586-023-06002-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/23/2023] [Indexed: 06/23/2023]
Abstract
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis-establishing stable spatial and functional relationships with specialized tissue cells-and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies.
Collapse
Affiliation(s)
- Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sergio Juarez-Carreño
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nehemiah Cox
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
25
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|
26
|
Nanjireddy PM, Olejniczak SH, Buxbaum NP. Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Front Immunol 2023; 14:1121565. [PMID: 36999013 PMCID: PMC10043186 DOI: 10.3389/fimmu.2023.1121565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Genetically engineered chimeric antigen receptor (CAR) T cells can cure patients with cancers that are refractory to standard therapeutic approaches. To date, adoptive cell therapies have been less effective against solid tumors, largely due to impaired homing and function of immune cells within the immunosuppressive tumor microenvironment (TME). Cellular metabolism plays a key role in T cell function and survival and is amenable to manipulation. This manuscript provides an overview of known aspects of CAR T metabolism and describes potential approaches to manipulate metabolic features of CAR T to yield better anti-tumor responses. Distinct T cell phenotypes that are linked to cellular metabolism profiles are associated with improved anti-tumor responses. Several steps within the CAR T manufacture process are amenable to interventions that can generate and maintain favorable intracellular metabolism phenotypes. For example, co-stimulatory signaling is executed through metabolic rewiring. Use of metabolic regulators during CAR T expansion or systemically in the patient following adoptive transfer are described as potential approaches to generate and maintain metabolic states that can confer improved in vivo T cell function and persistence. Cytokine and nutrient selection during the expansion process can be tailored to yield CAR T products with more favorable metabolic features. In summary, improved understanding of CAR T cellular metabolism and its manipulations have the potential to guide the development of more effective adoptive cell therapies.
Collapse
Affiliation(s)
- Priyanka Maridhi Nanjireddy
- Department of Pediatric Oncology, Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Scott H. Olejniczak
- Immunology Department, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nataliya Prokopenko Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- *Correspondence: Nataliya Prokopenko Buxbaum,
| |
Collapse
|
27
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
28
|
Jimenez DG, Altunbulakli C, Swoboda S, Sobti A, Askmyr D, Ali A, Greiff L, Lindstedt M. Single-cell analysis of myeloid cells in HPV + tonsillar cancer. Front Immunol 2023; 13:1087843. [PMID: 36741389 PMCID: PMC9893928 DOI: 10.3389/fimmu.2022.1087843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
The incidence of human papillomavirus-positive (HPV+) tonsillar cancer has been sharply rising during the last decades. Myeloid cells represent an appropriate therapeutic target due to their proximity to virus-infected tumor cells, and their ability to orchestrate antigen-specific immunity, within the tonsil. However, the interrelationship of steady-state and inflammatory myeloid cell subsets, and their impact on patient survival remains unexplored. Here, we used single-cell RNA-sequencing to map the myeloid compartment in HPV+ tonsillar cancer. We observed an expansion of the myeloid compartment in HPV+ tonsillar cancer, accompanied by interferon-induced cellular responses both in dendritic cells (DCs) and monocyte-macrophages. Our analysis unveiled the existence of four DC lineages, two macrophage polarization processes, and their sequential maturation profiles. Within the DC lineages, we described a balance shift in the frequency of progenitor and mature cDC favoring the cDC1 lineage in detriment of cDC2s. Furthermore, we observed that all DC lineages apart from DC5s matured into a common activated DC transcriptional program involving upregulation of interferon-inducible genes. In turn, the monocyte-macrophage lineage was subjected to early monocyte polarization events, which give rise to either interferon-activated or CXCL-producing macrophages, the latter enriched in advanced tumor stages. We validated the existence of most of the single-cell RNA-seq clusters using 26-plex flow cytometry, and described a positive impact of cDC1 and interferon-activated DCs and macrophages on patient survival using gene signature scoring. The current study contributes to the understanding of myeloid ontogeny and dynamics in HPV-driven tonsillar cancer, and highlights myeloid biomarkers that can be used to assess patient prognosis.
Collapse
Affiliation(s)
| | | | - Sabine Swoboda
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Aastha Sobti
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - David Askmyr
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ashfaq Ali
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Lun J, Zhang H, Guo J, Yu M, Fang J. Hypoxia inducible factor prolyl hydroxylases in inflammatory bowel disease. Front Pharmacol 2023; 14:1045997. [PMID: 37201028 PMCID: PMC10187758 DOI: 10.3389/fphar.2023.1045997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease that is characterized by intestinal inflammation. Epithelial damage and loss of intestinal barrier function are believed to be the hallmark pathologies of the disease. In IBD, the resident and infiltrating immune cells consume much oxygen, rendering the inflamed intestinal mucosa hypoxic. In hypoxia, the hypoxia-inducible factor (HIF) is induced to cope with the lack of oxygen and protect intestinal barrier. Protein stability of HIF is tightly controlled by prolyl hydroxylases (PHDs). Stabilization of HIF through inhibition of PHDs is appearing as a new strategy of IBD treatment. Studies have shown that PHD-targeting is beneficial to the treatment of IBD. In this Review, we summarize the current understanding of the role of HIF and PHDs in IBD and discuss the therapeutic potential of targeting PHD-HIF pathway for IBD treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Jing Guo
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Yu
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Fang
- Department of Oncology, Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang,
| |
Collapse
|
30
|
Padoan E, Ferraresso S, Pegolo S, Barnini C, Castagnaro M, Bargelloni L. Gene Expression Profiles of the Immuno-Transcriptome in Equine Asthma. Animals (Basel) 2022; 13:ani13010004. [PMID: 36611613 PMCID: PMC9817691 DOI: 10.3390/ani13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mild equine asthma (MEA) and severe equine asthma (SEA) are two of the most frequent equine airway inflammatory diseases, but knowledge about their pathogenesis is limited. The goal of this study was to investigate gene expression differences in the respiratory tract of MEA- and SEA-affected horses and their relationship with clinical signs. METHODS Clinical examination and endoscopy were performed in 8 SEA- and 10 MEA-affected horses and 7 healthy controls. Cytological and microbiological analyses of bronchoalveolar lavage (BAL) fluid were performed. Gene expression profiling of BAL fluid was performed by means of a custom oligo-DNA microarray. RESULTS In both MEA and SEA, genes involved in the genesis, length, and motility of respiratory epithelium cilia were downregulated. In MEA, a significant overexpression for genes encoding inflammatory mediators was observed. In SEA, transcripts involved in bronchoconstriction, apoptosis, and hypoxia pathways were significantly upregulated, while genes involved in the formation of the protective muco-protein film were underexpressed. The SEA group also showed enrichment of gene networks activated during human asthma. CONCLUSIONS The present study provides new insight into equine asthma pathogenesis, representing the first step in transcriptomic analysis to improve diagnostic and therapeutic approaches for this respiratory disease.
Collapse
Affiliation(s)
- Elisa Padoan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
- Correspondence: ; Tel.: +39-049-8272506
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy
| | | | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| |
Collapse
|
31
|
Winning S, Fandrey J. Oxygen Sensing in Innate Immune Cells: How Inflammation Broadens Classical Hypoxia-Inducible Factor Regulation in Myeloid Cells. Antioxid Redox Signal 2022; 37:956-971. [PMID: 35088604 DOI: 10.1089/ars.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: Oxygen deprivation (hypoxia) is a common feature at sites of inflammation. Immune cells and all other cells present at the inflamed site have to adapt to these conditions. They do so by stabilization and activation of hypoxia-inducible factor subunit α (HIF-1α and HIF-2α, respectively), enabling constant generation of adenosine triphosphate (ATP) under these austere conditions by the induction of, for example, glycolytic pathways. Recent Advances: During recent years, it has become evident that HIFs play a far more important role than initially believed because they shape the inflammatory phenotype of immune cells. They are indispensable for migration, phagocytosis, and the induction of inflammatory cytokines by innate immune cells and thereby enable a crosstalk between innate and adaptive immunity. In short, they ensure the survival and function of immune cells under critical conditions. Critical Issues: Up to now, there are still open questions regarding the individual roles of HIF-1 and HIF-2 for the different cell types. In particular, the loss of both HIF-1 and HIF-2 in myeloid cells led to unexpected and contradictory results in the mouse models analyzed so far. Similarly, the role of HIF-1 in dendritic cell maturation is unclear due to inconsistent results from in vitro experiments. Future Directions: The HIFs are indispensable for immune cell survival and action under inflammatory conditions, but they might also trigger over-activation of immune cells. Therefore, they might be excellent setscrews to adjust the inflammatory response by pharmaceuticals. China and Japan and very recently (August 2021) Europe have approved prolyl hydroxylase inhibitors (PHIs) to stabilize HIF such as roxadustat for clinical use to treat anemia by increasing the production of erythropoietin, the classical HIF target gene. Nonetheless, we need further work regarding the use of PHIs under inflammatory conditions, because HIFs show specific activation and distinct expression patterns in innate immune cells. The extent to which HIF-1 or HIF-2 as a transcription factor regulates the adaptation of immune cells to inflammatory hypoxia differs not only by the cell type but also with the inflammatory challenge and the surrounding tissue. Therefore, we urgently need isoform- and cell type-specific modulators of the HIF pathway. Antioxid. Redox Signal. 37, 956-971.
Collapse
Affiliation(s)
- Sandra Winning
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|
33
|
Wang Y, Wang D, Yang L, Zhang Y. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl) 2022; 135:2405-2416. [PMID: 36385099 PMCID: PMC9945195 DOI: 10.1097/cm9.0000000000002426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
ABSTRACT Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
Collapse
Affiliation(s)
- Ying Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
34
|
Ju H, Park KW, Kim ID, Cave JW, Cho S. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. J Neuroinflammation 2022; 19:190. [PMID: 35850727 PMCID: PMC9295522 DOI: 10.1186/s12974-022-02552-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Monocyte-derived macrophages (MDMs) and microglia elicit neural inflammation and clear debris for subsequent tissue repair and remodeling. The role of infiltrating MDMs in the injured brain, however, has been controversial due to overlapping antigen expression with microglia. In this study, we define the origin and function of MDMs in cerebral ischemia. METHODS Using adoptive transfer of GFP+ splenocytes into adult asplenic mice subjected to transient middle cerebral artery occlusion, we compared the role of CD11b+/CD45+/NK1.1-/Ly6G- MDMs and microglia in the ischemic brain. The phagocytic activities of MDMs and microglia were measured by the uptake of fluorescent beads both in vivo with mice infused with GFP+ splenocytes and ex vivo with cultures of isolated brain immune cells. RESULTS Stroke induced an infiltration of MDMs [GFP+] into the ipsilateral hemisphere at acute (3 days) and sub-acute phases (7 days) of post-stroke. At 7 days, the infiltrating MDMs contained both CD45High and CD45Low subsets. The CD45High MDMs in the injured hemisphere exhibited a significantly higher proliferation capacity (Ki-67 expression levels) as well as higher expression levels of CD11c when compared to CD45Low MDMs. The CD45High and CD45Low MDM subsets in the injured hemisphere were approximately equal populations, indicating that CD45High MDMs infiltrating the ischemic brain changes their phenotype to CD45Low microglia-like phenotype. Studies with fluorescent beads reveal high levels of MDM phagocytic activity in the post-stroke brain, but this phagocytic activity was exclusive to post-ischemic brain tissue and was not detected in circulating monocytes. By contrast, CD45Low microglia-like cells had low levels of phagocytic activity when compared to CD45High cells. Both in vivo and ex vivo studies also show that the phagocytic activity in CD45High MDMs is associated with an increase in the CD45Low/CD45High ratio, indicating that phagocytosis promotes MDM phenotype conversion. CONCLUSIONS This study demonstrates that MDMs are the predominant phagocytes in the post-ischemic brain, with the CD45High subset having the highest phagocytic activity levels. Upon phagocytosis, CD45High MDMs in the post-ischemic brain adopt a CD45Low phenotype that is microglia-like. Together, these studies reveal key roles for MDMs and their phagocytic function in tissue repair and remodeling following cerebral ischemia.
Collapse
Affiliation(s)
- Hyunwoo Ju
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | - Keun Woo Park
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Il-Doo Kim
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | | | - Sunghee Cho
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA.
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Wang S, Liu G, Li Y, Pan Y. Metabolic Reprogramming Induces Macrophage Polarization in the Tumor Microenvironment. Front Immunol 2022; 13:840029. [PMID: 35874739 PMCID: PMC9302576 DOI: 10.3389/fimmu.2022.840029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Macrophages are one of the most important cells in the innate immune system, they are converted into two distinct subtypes with completely different molecular phenotypes and functional features under different stimuli of the microenvironment: M1 macrophages induced by IFN-γ/lipopolysaccharides(LPS) and M2 macrophages induced by IL-4/IL-10/IL-13. Tumor-associated macrophages (TAMs) differentiate from macrophages through various factors in the tumor microenvironment (TME). TAMs have the phenotype and function of M2 macrophages and are capable of secreting multiple cytokines to promote tumor progression. Both tumor cells and macrophages can meet the energy needs for rapid cell growth and proliferation through metabolic reprogramming, so a comprehensive understanding of pro-tumor and antitumor metabolic switches in TAM is essential to understanding immune escape mechanisms. This paper focuses on the functions of relevant signaling pathways and cytokines during macrophage polarization and metabolic reprogramming, and briefly discusses the effects of different microenvironments and macrophage pathogenicity, in addition to describing the research progress of inhibitory drugs for certain metabolic and polarized signaling pathways.
Collapse
Affiliation(s)
- Shilin Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Yang XF, Wang H, Huang Y, Huang JH, Ren HL, Xu Q, Su XM, Wang AM, Ren F, Zhou MS. Myeloid Angiotensin II Type 1 Receptor Mediates Macrophage Polarization and Promotes Vascular Injury in DOCA/Salt Hypertensive Mice. Front Pharmacol 2022; 13:879693. [PMID: 35721173 PMCID: PMC9204513 DOI: 10.3389/fphar.2022.879693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the renin–angiotensin system has been implicated in hypertension. Angiotensin (Ang) II is a potent proinflammatory mediator. The present study investigated the role of myeloid angiotensin type 1 receptor (AT1R) in control of macrophage phenotype in vitro and vascular injury in deoxycorticosterone acetate (DOCA)/salt hypertension. In human THP-1/macrophages, Ang II increased mRNA expressions of M1 cytokines and decreased M2 cytokine expressions. Overexpression of AT1R further increased Ang II-induced expressions of M1 cytokines and decreased M2 cytokines. Silenced AT1R reversed Ang II-induced changes in M1 and M2 cytokines. Ang II upregulated hypoxia-inducible factor (HIF)1α, toll-like receptor (TLR)4, and the ratio of pIκB/IκB, which were prevented by silenced AT1R. Silenced HIF1α prevented Ang II activation of the TLR4/NFκB pathway. Furthermore, Ang II increased HIF1α via reactive oxygen species-dependent reduction in prolyl hydroxylase domain protein 2 (PHD2) expression. The expressions of AT1R and HIF1α and the ratio of pIκB/IκB were upregulated in the peritoneal macrophages of DOCA hypertensive mice, and the specific deletion of myeloid AT1R attenuated cardiac and vascular injury and vascular oxidative stress, reduced the recruitment of macrophages and M1 cytokine expressions, and improved endothelial function without significant reduction in blood pressure. Our results demonstrate that Ang II/AT1R controls the macrophage phenotype via stimulating the HIF1α/NFκB pathway, and specific myeloid AT1R KO improves endothelial function, vascular inflammation, and injury in salt-sensitive hypertension. The results support the notion that myeloid AT1R plays an important role in the regulation of the macrophage phenotype, and dysfunction of this receptor may promote vascular dysfunction and injury in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Huan Wang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yue Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Jian-Hua Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Hao-Lin Ren
- Radiology Department of the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Xu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiao-Min Su
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| |
Collapse
|
37
|
Li G, Manning AC, Bagi A, Yang X, Gokulnath P, Spanos M, Howard J, Chan PP, Sweeney T, Kitchen R, Li H, Laurent BD, Aranki SF, Kontaridis MI, Laurent LC, Van Keuren‐Jensen K, Muehlschlegel J, Lowe TM, Das S. Distinct Stress-Dependent Signatures of Cellular and Extracellular tRNA-Derived Small RNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200829. [PMID: 35373532 PMCID: PMC9189662 DOI: 10.1002/advs.202200829] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 05/11/2023]
Abstract
The cellular response to stress is an important determinant of disease pathogenesis. Uncovering the molecular fingerprints of distinct stress responses may identify novel biomarkers and key signaling pathways for different diseases. Emerging evidence shows that transfer RNA-derived small RNAs (tDRs) play pivotal roles in stress responses. However, RNA modifications present on tDRs are barriers to accurately quantifying tDRs using traditional small RNA sequencing. Here, AlkB-facilitated methylation sequencing is used to generate a comprehensive landscape of cellular and extracellular tDR abundances in various cell types during different stress responses. Extracellular tDRs are found to have distinct fragmentation signatures from intracellular tDRs and these tDR signatures are better indicators of different stress responses than miRNAs. These distinct extracellular tDR fragmentation patterns and signatures are also observed in plasma from patients on cardiopulmonary bypass. It is additionally demonstrated that angiogenin and RNASE1 are themselves regulated by stressors and contribute to the stress-modulated abundance of sub-populations of cellular and extracellular tDRs. Finally, a sub-population of extracellular tDRs is identified for which AGO2 appears to be required for their expression. Together, these findings provide a detailed profile of stress-responsive tDRs and provide insight about tDR biogenesis and stability in response to cellular stressors.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Aidan C. Manning
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Alex Bagi
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Xinyu Yang
- Fangshan Hospital of BeijingUniversity of Traditional Chinese MedicineBeijing102499China
| | - Priyanka Gokulnath
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Michail Spanos
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jonathan Howard
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Patricia P. Chan
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Thadryan Sweeney
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Robert Kitchen
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haobo Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Brice D. Laurent
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sary F. Aranki
- Division of Cardiac SurgeryDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research InstituteUticaNY13501USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
- Department of MedicineDivision of CardiologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | | | - Jochen Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Todd M. Lowe
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
38
|
Angiogenesis, Lymphangiogenesis, and Inflammation in Chronic Obstructive Pulmonary Disease (COPD): Few Certainties and Many Outstanding Questions. Cells 2022; 11:cells11101720. [PMID: 35626756 PMCID: PMC9139415 DOI: 10.3390/cells11101720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, predominantly affecting the lung parenchyma and peripheral airways, that results in progressive and irreversible airflow obstruction. COPD development is promoted by persistent pulmonary inflammation in response to several stimuli (e.g., cigarette smoke, bacterial and viral infections, air pollution, etc.). Angiogenesis, the formation of new blood vessels, and lymphangiogenesis, the formation of new lymphatic vessels, are features of airway inflammation in COPD. There is compelling evidence that effector cells of inflammation (lung-resident macrophages and mast cells and infiltrating neutrophils, eosinophils, basophils, lymphocytes, etc.) are major sources of a vast array of angiogenic (e.g., vascular endothelial growth factor-A (VEGF-A), angiopoietins) and/or lymphangiogenic factors (VEGF-C, -D). Further, structural cells, including bronchial and alveolar epithelial cells, endothelial cells, fibroblasts/myofibroblasts, and airway smooth muscle cells, can contribute to inflammation and angiogenesis in COPD. Although there is evidence that alterations of angiogenesis and, to a lesser extent, lymphangiogenesis, are associated with COPD, there are still many unanswered questions.
Collapse
|
39
|
Bu C, Wang Z, Ren Y, Chen D, Jiang SW. Syncytin-1 nonfusogenic activities modulate inflammation and contribute to preeclampsia pathogenesis. Cell Mol Life Sci 2022; 79:290. [PMID: 35536515 PMCID: PMC11073204 DOI: 10.1007/s00018-022-04294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
Maternal cellular and humoral immune responses to the allogeneic fetoplacental unit are a normal part of pregnancy adaptation. Overactive or dysregulated immune responses that often manifest as inflammation are considered a key element for the development of preeclampsia. Infiltration and activation of macrophages, nature killer cells, and T lymphocytes are frequently observed in the decidua and placenta associated with preeclampsia. In addition to local inflammation, systemic inflammatory changes including increased levels of TNF-α and interleukins (ILs) are detected in the maternal circulation. Syncytin-1 is an endogenous retroviral envelope protein that mediates the fusion of trophoblasts to form syncytiotrophoblasts, a cellular component carrying out most of placental barrier, exchange, and endocrine functions. In addition to these well-defined fusogenic functions that are known for their close association with preeclampsia, multiple studies indicated that syncytin-1 possesses nonfusogenic activities such as those for cell cycle and apoptosis regulation. Moreover, syncytin-1 expressed by trophoblasts and various types of immune cells may participate in regulation of inflammation in preeclamptic placenta and decidua. This review concentrates on the triangular relationship among inflammation, syncytin-1 nonfusogenic functions, and preeclampsia pathogenesis. Data regarding the reciprocal modulations of inflammation and poor vascularization/hypoxia are summarized. The impacts of syncytin-A (the mouse counterpart of human syncytin-1) gene knockout on placental vascularization and their implications for preeclampsia are discussed. Syncytin-1 expression in immune cells and its significance for inflammation are analyzed in the context of preeclampsia development. Finally, the involvements of syncytin-1 nonfusogenic activities in neuroinflammation and multiple sclerosis are compared to findings from preeclampsia.
Collapse
Affiliation(s)
- Chaozhi Bu
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Zhiwei Wang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
- Center of Prenatal Diagnosis, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yongwei Ren
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| |
Collapse
|
40
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
41
|
Hadadi E, Deschoemaeker S, Vicente Venegas G, Laoui D. Heterogeneity and function of macrophages in the breast during homeostasis and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:149-182. [PMID: 35461657 DOI: 10.1016/bs.ircmb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are diverse immune cells populating all tissues and adopting a unique tissue-specific identity. Breast macrophages play an essential role in the development and function of the mammary gland over one's lifetime. In the recent years, with the development of fate-mapping, imaging and scRNA-seq technologies we grew a better understanding of the origin, heterogeneity and function of mammary macrophages in homeostasis but also during breast cancer development. Here, we aim to provide a comprehensive review of the latest improvements in studying the macrophage heterogeneity in healthy mammary tissues and breast cancer.
Collapse
Affiliation(s)
- Eva Hadadi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sofie Deschoemaeker
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gerard Vicente Venegas
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium; Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
42
|
Poto R, Cristinziano L, Modestino L, de Paulis A, Marone G, Loffredo S, Galdiero MR, Varricchi G. Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines 2022; 10:biomedicines10020431. [PMID: 35203640 PMCID: PMC8962440 DOI: 10.3390/biomedicines10020431] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/07/2022] Open
Abstract
Human neutrophils, the most abundant circulating leukocytes, are fundamental components of the host response against different pathogens. Until a few years ago, neutrophils received limited attention in cancer immunology. Recently, it was discovered that both circulating, and tumor-associated, neutrophils possess functional plasticity when exposed to various inflammatory stimuli and in the tumor microenvironment. Neutrophils and their mediators can exert several pro-tumor activities in cancer and promote metastasis through different mechanisms. Angiogenesis plays a pivotal role in inflammation and tumor growth. Activated human neutrophils release several angiogenic factors [vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (ANGPT1), CXCL8, hepatocyte growth factor (HGF), and metalloproteinase 9 (MMP-9)] and form neutrophil extracellular traps (NETs). NETs promote tumor growth and metastasis formation through several mechanisms: they can awake dormant cancer cells, capture circulating tumor cells, coat and shield cancer cells, thus preventing CD8+- and natural killer (NK) cell-mediated cytotoxicity. ANGPTs released by endothelial and periendothelial mural cells induce platelet-activating factor (PAF) synthesis and neutrophil adhesion to endothelial cells. NETs can directly exert several proangiogenic activities in human endothelial cells and NETs induced by ANGPTs and PAF increase several aspects of angiogenesis in vitro and in vivo. A better understanding of the pathophysiological functions of NETs in cancer and angiogenesis could be of importance in the early diagnosis, prevention and treatment of tumors.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (R.P.); (L.C.); (L.M.); (A.d.P.); (G.M.); (S.L.); (M.R.G.)
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
43
|
Kim YJ, Lee S, Jin J, Woo H, Choi YK, Park KG. Cassiaside C Inhibits M1 Polarization of Macrophages by Downregulating Glycolysis. Int J Mol Sci 2022; 23:1696. [PMID: 35163619 PMCID: PMC8835843 DOI: 10.3390/ijms23031696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Classically activated M1 macrophages reprogram their metabolism towards enhanced glycolysis to obtain energy and produce pro-inflammatory cytokines after activation by mammalian target of rapamycin complex 1 (mTORC1) and hypoxia-inducible factor (HIF)-1α. Thus, a strategy that constrains M1 polarization of macrophages via downregulation of glycolysis is essential for treating chronic inflammatory diseases. Cassiae semen has pharmacological activity against various inflammatory diseases. However, it is unclear whether specific compounds within Cassia seeds affect M1 polarization of macrophages. Here, we investigated whether Cassiaside C napthopyrone from Cassiae semen inhibits M1 polarization by downregulating glycolysis. We found that Cassiaside C reduced expression of inducible nitric oxide synthase and cyclooxygenase-2 and the phosphorylation of nuclear factor kappa B, all of which are upregulated in lipopolysaccharide (LPS)/interferon (IFN)-γ-treated Raw264.7 cells and peritoneal macrophages. Moreover, Cassiaside C-treated macrophages showed marked suppression of LPS/IFN-γ-induced HIF-1α, pyruvate dehydrogenase kinase 1, and lactate dehydrogenase A expression, along with downregulation of the phosphoinositide 3-kinases (PI3K)/AKT/mTORC1 signaling pathway. Consequently, Cassiaside C attenuated enhanced glycolysis and lactate production, but rescued diminished oxidative phosphorylation, in M1 polarized macrophages. Thus, Cassiaside C dampens M1 polarization of macrophages by downregulating glycolysis, which could be exploited as a therapeutic strategy for chronic inflammatory conditions.
Collapse
Affiliation(s)
- Ye Jin Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.J.K.); (J.J.); (H.W.)
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| | - Sungwoo Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.J.K.); (J.J.); (H.W.)
| | - Hyein Woo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.J.K.); (J.J.); (H.W.)
| | - Yeon-Kyung Choi
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.J.K.); (J.J.); (H.W.)
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
44
|
Huang X, Cao J, Zu X. Tumor-associated macrophages: An important player in breast cancer progression. Thorac Cancer 2022; 13:269-276. [PMID: 34914196 PMCID: PMC8807249 DOI: 10.1111/1759-7714.14268] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most common form of malignant tumor in females, accounting for the second highest mortality among cancer patients. In the breast tumor microenvironment, tumor-associated macrophages (TAMs) are the most abundant immune cells, which regulate the progression of breast cancer. During breast cancer tumorigenesis and progression, TAMs support breast tumor growth by promoting angiogenesis and cancer cell metastasis, inducing cancer stemness, regulating energy metabolism, and supporting immune system suppression. TAMs exhibit a high degree of cellular plasticity. Repolarizing tumor-related macrophages into M1 macrophages can promote tumor regression. This study reviews the role and mechanism of action of TAMs in the development of breast cancer and establishes TAMs as effective targets for breast cancer treatment.
Collapse
Affiliation(s)
- Xinqun Huang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South ChinaHengyangChina
| | - Jingsong Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South ChinaHengyangChina
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South ChinaHengyangChina
| |
Collapse
|
45
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
McConnell MJ, Kondo R, Kawaguchi N, Iwakiri Y. Covid-19 and Liver Injury: Role of Inflammatory Endotheliopathy, Platelet Dysfunction, and Thrombosis. Hepatol Commun 2022; 6:255-269. [PMID: 34658172 PMCID: PMC8652692 DOI: 10.1002/hep4.1843] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023] Open
Abstract
Liver injury, characterized predominantly by elevated aspartate aminotransferase and alanine aminotransferase, is a common feature of coronavirus disease 2019 (COVID-19) symptoms caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Additionally, SARS-CoV-2 infection is associated with acute-on-chronic liver failure in patients with cirrhosis and has a notably elevated mortality in patients with alcohol-related liver disease compared to other etiologies. Direct viral infection of the liver with SARS-CoV-2 remains controversial, and alternative pathophysiologic explanations for its hepatic effects are an area of active investigation. In this review, we discuss the effects of SARS-CoV-2 and the inflammatory environment it creates on endothelial cells and platelets more generally and then with a hepatic focus. In doing this, we present vascular inflammation and thrombosis as a potential mechanism of liver injury and liver-related complications in COVID-19.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Reiichiro Kondo
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Department of PathologyKurume University School of MedicineKurumeJapan
| | - Nao Kawaguchi
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Department of General and Gastroenterological SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yasuko Iwakiri
- Section of Digestive DiseasesDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
47
|
Chen YL, Chen YC, Wang HT, Chang YT, Fang YN, Hsueh S, Liu WH, Lin PT, Hsu PY, Su MC, Huang KT, Lin MC. The Impact of Intermittent Hypoxemia on Left Atrial Remodeling in Patients with Obstructive Sleep Apnea Syndrome. Life (Basel) 2022; 12:life12020148. [PMID: 35207436 PMCID: PMC8874769 DOI: 10.3390/life12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a significant risk factor for left atrial (LA) remodeling. Intermittent hypoxemia occurs during the sleep cycle in patients with OSAS and plays a crucial role in cardiovascular pathologies such as stroke, arrhythmia, and coronary artery disease. However, there is very little information about the role of intermittent hypoxemia in LA remodeling in patients with OSAS. In total, 154 patients with sleep-related breathing disorders (SRBD) were prospectively recruited for this study. All enrolled SRBD patients underwent polysomnography and echocardiography. Significant OSAS was defined as an oxygen desaturation index (ODI) of ≥10 per hour. Intermittent hypoxia/reoxygenation (IHR) stimulation was used to test the effect of hypoxia on the viability, reactive oxygen species, apoptosis, and inflammation-associated cytokine expression in the HL-1 cell line. To investigate the effect of patients’ exosomes on HIF-1 and inflammation-associated cytokine expression, as well as the relationship between ODI and their expression, exosomes were purified from the plasma of 95 patients with SRBD and incubated in HL-1 cells. The LA size was larger in patients with significant OSAS than in those without. There was a significant association between ODI, lowest SpO2, mean SpO2, and LA size (all p < 0.05) but not between the apnea–hypopnea index and LA size. IHR condition caused increased LDH activity, reactive oxygen species (ROS) levels, and apoptosis in HL-1 cells and decreased cellular viability (all p < 0.05). The expression of HIF-1α, TNF-α, IL-6, and TGF-β increased in the IHR condition compared with the control (all p < 0.05). The expression of HIF-1α, IL-1β, and IL-6 increased in the HL-1 cells incubated with exosomes from those patients with significant OSAS than those without (all p < 0.05). There was a significantly positive correlation between ODI and the expression of HIF-1α, TNF-α, IL-1β, IL-6, and TGF-β; a significantly negative correlation between mean SpO2 and IL-6 and TGF-β; and a significantly negative correlation between the lowest SpO2 and HIF-1α (all p < 0.05). In conclusion, intermittent hypoxemia was strongly associated with LA remodeling, which might be through increased ROS levels, LDH activity, apoptosis, and the expression of HIF-1α and inflammation-associated cytokines.
Collapse
Affiliation(s)
- Yung-Lung Chen
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-L.C.); (Y.-N.F.); (S.H.); (W.-H.L.); (P.-T.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (H.-T.W.); (Y.-T.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Che Chen
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (H.-T.W.); (Y.-T.C.)
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-Y.H.); (M.-C.S.); (K.-T.H.)
| | - Hui-Ting Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (H.-T.W.); (Y.-T.C.)
- Emergency Department, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ya-Ting Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (H.-T.W.); (Y.-T.C.)
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yen-Nan Fang
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-L.C.); (Y.-N.F.); (S.H.); (W.-H.L.); (P.-T.L.)
| | - Shukai Hsueh
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-L.C.); (Y.-N.F.); (S.H.); (W.-H.L.); (P.-T.L.)
| | - Wen-Hao Liu
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-L.C.); (Y.-N.F.); (S.H.); (W.-H.L.); (P.-T.L.)
| | - Pei-Ting Lin
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (Y.-L.C.); (Y.-N.F.); (S.H.); (W.-H.L.); (P.-T.L.)
| | - Po-Yuan Hsu
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-Y.H.); (M.-C.S.); (K.-T.H.)
| | - Mao-Chang Su
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-Y.H.); (M.-C.S.); (K.-T.H.)
| | - Kuo-Tung Huang
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-Y.H.); (M.-C.S.); (K.-T.H.)
| | - Meng-Chih Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (Y.-C.C.); (H.-T.W.); (Y.-T.C.)
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-Y.H.); (M.-C.S.); (K.-T.H.)
- Correspondence: ; Tel.: +886-7-731-7123 (ext. 8300)
| |
Collapse
|
48
|
Distinct Hypoxia-Related Gene Profiling Characterizes Clinicopathological Features and Immune Status of Mismatch Repair-Deficient Colon Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2427427. [PMID: 34917146 PMCID: PMC8670907 DOI: 10.1155/2021/2427427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/09/2022]
Abstract
Despite dramatic responses to immune checkpoint inhibitors (ICIs) in patients with colon cancer (CC) harboring deficient mismatch repair (dMMR), more than half of these patients ultimately progress and experience primary or secondary drug resistance. There is no useful biomarker that is currently validated to accurately predict this resistance or stratify patients who may benefit from ICI-based immunotherapy. As hypoxic and acidic tumor microenvironment would greatly impair tumor-suppressing functions of tumor-infiltrating lymphocytes (TILs), we sought to explore distinct immunological phenotypes by analysis of the intratumoral hypoxia state using a well-established gene signature. Based on the Gene Expression Omnibus (GEO) (n = 88) and The Cancer Genome Atlas (TCGA) (n = 49) databases of patients with CC, we found that dMMR CC patients could be separated into normoxia subgroup (NS) and hypoxia subgroup (HS) with different levels of expression of hypoxia-related genes (lower in NS group and higher in HS group) using NMF package. Tumoral parenchyma in the HS group had a relatively lower level of immune cell infiltration, particularly CD8+ T cells and M1 macrophages than the NS group, and coincided with higher expression of immune checkpoint molecules and C-X-C motif chemokines, which might be associated with ICI resistance and prognosis. Furthermore, three genes, namely, MT1E, MT2A, and MAFF, were identified to be differentially expressed between NS and HS groups in both GEO and TCGA cohorts. Based on these genes, a prognostic model with stable and valuable predicting ability has been built for clinical application. In conclusion, the varying tumor-immune microenvironment (TIME) classified by hypoxia-related genes might be closely associated with different therapeutic responses of ICIs and prognosis of dMMR CC patients.
Collapse
|
49
|
Wang X, Du H, Li X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int Immunopharmacol 2021; 102:108413. [PMID: 34891003 DOI: 10.1016/j.intimp.2021.108413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
OBJECT Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
50
|
Su G, Luo Y, Chen D, Yu B, He J. NF-κB-dependent induction of porcine β-defensin 114 regulates intestinal epithelium homeostasis. Int J Biol Macromol 2021; 192:241-249. [PMID: 34619281 DOI: 10.1016/j.ijbiomac.2021.09.163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Intestinal epithelial cells (IECs) offer a primary physical barrier against commensal and pathogenic microorganisms in the gastrointestine. However, the influence of IECs on the development and regulation of mucosal immunity to infection is unknown. Here, we show that the porcine β-defensin 114 (PBD114) is an endotoxin-responsive gene expressed in IECs. Analysis on expression profiling of PBD114 gene using an infected porcine model and IPEC-J2 cells unveiled a pattern of induction in response to stimulation of various toll-like receptors (TLRs). By means of promoter analysis, PBD114 was found to be a NF-κB-dependent gene. Importantly, PBD114 suppresses endotoxin-induced inflammation and apoptosis in IECs through downregulation of two critical inflammation-associated signaling proteins, NF-kappa-B inhibitor alpha (IkB-α) and extracellular signal-regulated kinase1/2 (ERK1/2). PBD114 also suppresses inflammation and IEC apoptosis in mice exposed to bacterial endotoxins. Thus, we propose that TLR-activated NF-kB rapidly increases the expression of PBD114 that operates a feedback control of the NF-kB-dependent inflammation. The NF-kB-dependent induction of PBD114 may be a key event through which the mammalian host maintains intestinal epithelium homeostasis in response to various infections or diseases.
Collapse
Affiliation(s)
- Guoqi Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan Province, Chengdu 611130, PR China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, Chengdu 611130, PR China.
| |
Collapse
|