1
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Bhosle VK, Sun C, Patel S, Ho TWW, Westman J, Ammendolia DA, Langari FM, Fine N, Toepfner N, Li Z, Sharma M, Glogauer J, Capurro MI, Jones NL, Maynes JT, Lee WL, Glogauer M, Grinstein S, Robinson LA. The chemorepellent, SLIT2, bolsters innate immunity against Staphylococcus aureus. eLife 2023; 12:e87392. [PMID: 37773612 PMCID: PMC10541174 DOI: 10.7554/elife.87392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023] Open
Abstract
Neutrophils are essential for host defense against Staphylococcus aureus (S. aureus). The neuro-repellent, SLIT2, potently inhibits neutrophil chemotaxis, and might, therefore, be expected to impair antibacterial responses. We report here that, unexpectedly, neutrophils exposed to the N-terminal SLIT2 (N-SLIT2) fragment kill extracellular S. aureus more efficiently. N-SLIT2 amplifies reactive oxygen species production in response to the bacteria by activating p38 mitogen-activated protein kinase that in turn phosphorylates NCF1, an essential subunit of the NADPH oxidase complex. N-SLIT2 also enhances the exocytosis of neutrophil secondary granules. In a murine model of S. aureus skin and soft tissue infection (SSTI), local SLIT2 levels fall initially but increase subsequently, peaking at 3 days after infection. Of note, the neutralization of endogenous SLIT2 worsens SSTI. Temporal fluctuations in local SLIT2 levels may promote neutrophil recruitment and retention at the infection site and hasten bacterial clearance by augmenting neutrophil oxidative burst and degranulation. Collectively, these actions of SLIT2 coordinate innate immune responses to limit susceptibility to S. aureus.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Chunxiang Sun
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Tse Wing Winnie Ho
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
| | - Johannes Westman
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Dustin A Ammendolia
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Molecular Genetics, Medical Sciences Building, University of TorontoTorontoCanada
| | - Fatemeh Mirshafiei Langari
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Noah Fine
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Manraj Sharma
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Judah Glogauer
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Faculty of Dentistry, University of TorontoTorontoCanada
| | - Mariana I Capurro
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Nicola L Jones
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick ChildrenTorontoCanada
- Department of Physiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Jason T Maynes
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick ChildrenTorontoCanada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Warren L Lee
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Laboratory Medicine & Pathobiology, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
- Department of Medicine and Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of TorontoTorontoCanada
| | - Michael Glogauer
- Faculty of Dentistry, University of TorontoTorontoCanada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer CentreTorontoCanada
- Centre for Advanced Dental Research and Care, Mount Sinai HospitalTorontoCanada
| | - Sergio Grinstein
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- The Keenan Research Centre for Biomedical Science, Unity Health TorontoTorontoCanada
- Department of Biochemistry, Medical Sciences Building, University of TorontoTorontoCanada
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Paediatrics, Temerty Faculty of Medicine, University of TorontoTorontoCanada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, University of TorontoTorontoCanada
- Division of Nephrology, The Hospital for Sick ChildrenTorontoCanada
| |
Collapse
|
3
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
4
|
Azcutia V, Kelm M, Fink D, Cummings RD, Nusrat A, Parkos CA, Brazil JC. Sialylation regulates neutrophil transepithelial migration, CD11b/CD18 activation, and intestinal mucosal inflammatory function. JCI Insight 2023; 8:e167151. [PMID: 36719745 PMCID: PMC10077474 DOI: 10.1172/jci.insight.167151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in clearing invading microbes and promoting tissue repair following infection/injury. However, dysregulated PMN trafficking and associated tissue damage is pathognomonic of numerous inflammatory mucosal diseases. The final step in PMN influx into mucosal lined organs (including the lungs, kidneys, skin, and gut) involves transepithelial migration (TEpM). The β2-integrin CD11b/CD18 plays an important role in mediating PMN intestinal trafficking, with recent studies highlighting that terminal fucose and GlcNAc glycans on CD11b/CD18 can be targeted to reduce TEpM. However, the role of the most abundant terminal glycan, sialic acid (Sia), in regulating PMN epithelial influx and mucosal inflammatory function is not well understood. Here we demonstrate that inhibiting sialidase-mediated removal of α2-3-linked Sia from CD11b/CD18 inhibits PMN migration across intestinal epithelium in vitro and in vivo. Sialylation was also found to regulate critical PMN inflammatory effector functions, including degranulation and superoxide release. Finally, we demonstrate that sialidase inhibition reduces bacterial peptide-mediated CD11b/CD18 activation in PMN and blocks downstream intracellular signaling mediated by spleen tyrosine kinase (Syk) and p38 MAPK. These findings suggest that sialylated glycans on CD11b/CD18 represent potentially novel targets for ameliorating PMN-mediated tissue destruction in inflammatory mucosal diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kelm
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dylan Fink
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Pereverzeva L, Otto NA, Peters-Sengers H, Roelofs JJTH, de Vos AF, van der Poll T. Role of Hypoxia-inducible factor 1α in host defense during pneumococcal pneumonia. Pathog Dis 2023; 81:6939823. [PMID: 36535641 DOI: 10.1093/femspd/ftac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α is a transcription factor involved in cellular metabolism and regulation of immune cell effector functions. Here, we studied the role of HIF1α in myeloid cells during pneumonia caused by the major causative pathogen, Streptococcus pneumoniae (Spneu). Mice deficient for HIF1α in myeloid cells (LysMcreHif1αfl/fl) were generated to study the in vitro responsiveness of bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) to the Gram-positive bacterial wall component lipoteichoic acid (LTA) and heat-killed Spneu, and the in vivo host response after infection with Spneu via the airways. Both BMDMs and AMs released more lactate upon stimulation with LTA or Spneu, indicative of enhanced glycolysis; HIF1α-deficiency in these cells was associated with diminished lactate release. In BMDMs, HIF1α-deficiency resulted in reduced secretion of tumor necrosis factor (TNF)α and interleukin (IL)-6 upon activation with Spneu but not LTA, while HIF1α-deficient AMs secreted less TNFα and IL-6 in response to LTA, and TNFα after Spneu stimulation. However, no difference was found in the host response of LysMcreHif1αfl/fl mice after Spneu infection as compared to controls. Similar in vivo findings were obtained in neutrophil (Mrp8creHif1αfl/fl) HIF1α-deficient mice. These data suggest that myeloid HIF1α is dispensable for the host defense during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Liza Pereverzeva
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Natasja A Otto
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Hessel Peters-Sengers
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Joris J T H Roelofs
- Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Pathology, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Location Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
6
|
Klaus T, Wilson AS, Vicari E, Hadaschik E, Klein M, Helbich SSC, Kamenjarin N, Hodapp K, Schunke J, Haist M, Butsch F, Probst HC, Enk AH, Mahnke K, Waisman A, Bednarczyk M, Bros M, Bopp T, Grabbe S. Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1. JCI Insight 2022; 7:162580. [PMID: 36346673 PMCID: PMC9869970 DOI: 10.1172/jci.insight.162580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell-DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Tanja Klaus
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Alicia S. Wilson
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Elisabeth Vicari
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Eva Hadaschik
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany.,Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Matthias Klein
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | | | - Nadine Kamenjarin
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Katrin Hodapp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Maximilian Haist
- Department of Dermatology,,Research Center for Immunotherapy, and
| | | | - Hans Christian Probst
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Alexander H. Enk
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
| | - Ari Waisman
- Research Center for Immunotherapy, and,Institute for Molecular Medicine, University of Mainz Medical Center, Mainz, Germany
| | | | - Matthias Bros
- Department of Dermatology,,Research Center for Immunotherapy, and
| | - Tobias Bopp
- Research Center for Immunotherapy, and,Institute of Immunology, University of Mainz Medical Center, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology,,Research Center for Immunotherapy, and
| |
Collapse
|
7
|
Costa S, Bevilacqua D, Caveggion E, Gasperini S, Zenaro E, Pettinella F, Donini M, Dusi S, Constantin G, Lonardi S, Vermi W, De Sanctis F, Ugel S, Cestari T, Abram CL, Lowell CA, Rodegher P, Tagliaro F, Girolomoni G, Cassatella MA, Scapini P. Neutrophils inhibit γδ T cell functions in the imiquimod-induced mouse model of psoriasis. Front Immunol 2022; 13:1049079. [DOI: 10.3389/fimmu.2022.1049079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundPsoriasis is a chronic skin disease associated with deregulated interplays between immune cells and keratinocytes. Neutrophil accumulation in the skin is a histological feature that characterizes psoriasis. However, the role of neutrophils in psoriasis onset and development remains poorly understood.MethodsIn this study, we utilized the model of psoriasiform dermatitis, caused by the repeated topical application of an imiquimod containing cream, in neutrophil-depleted mice or in mice carrying impairment in neutrophil functions, including p47phox -/- mice (lacking a cytosolic subunit of the phagocyte nicotinamide adenine dinucleotide phosphate - NADPH - oxidase) and Sykfl/fl MRP8-cre+ mice (carrying the specific deletion of the Syk kinase in neutrophils only), to elucidate the specific contribution of neutrophils to psoriasis development.ResultsBy analyzing disease development/progression in neutrophil-depleted mice, we now report that neutrophils act as negative modulators of disease propagation and exacerbation by inhibiting gammadelta T cell effector functions via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated reactive oxygen species (ROS) production. We also report that Syk functions as a crucial molecule in determining the outcome of neutrophil and γδ T cell interactions. Accordingly, we uncover that a selective impairment of Syk-dependent signaling in neutrophils is sufficient to reproduce the enhancement of skin inflammation and γδ T cell infiltration observed in neutrophil-depleted mice.ConclusionsOverall, our findings add new insights into the specific contribution of neutrophils to disease progression in the IMQ-induced mouse model of psoriasis, namely as negative regulatory cells.
Collapse
|
8
|
Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, Futran N, Houlton J, Sather C, Sicinska E, Taylor A, Minot SS, Johnston CD, Bullman S. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022; 611:810-817. [PMID: 36385528 PMCID: PMC9684076 DOI: 10.1038/s41586-022-05435-0] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immuno‑suppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.
Collapse
Affiliation(s)
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | | | | | - Neal Futran
- University of Washington Medical Center, Seattle, WA, USA
| | - Jeffrey Houlton
- University of Washington Medical Center, Seattle, WA, USA
- Head and Neck Specialists, Sarah Cannon Cancer Institute, Charleston, SC, USA
| | - Cassie Sather
- Genomics Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alison Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Samuel S Minot
- Data Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
9
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Liu Z, De Porto AP, De Beer R, Roelofs JJ, De Boer OJ, Florquin S, Van't Veer C, Hendriks RW, Van der Poll T, De Vos AF. Bruton's Tyrosine Kinase in Neutrophils Is Crucial for Host Defense against Klebsiella pneumoniae. J Innate Immun 2022; 15:1-15. [PMID: 35537415 PMCID: PMC10643901 DOI: 10.1159/000524583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Humans with dysfunctional Bruton's tyrosine kinase (Btk) are highly susceptible to bacterial infections. Compelling evidence indicates that Btk is essential for B cell-mediated immunity, whereas its role in myeloid cell-mediated immunity against infections is controversial. In this study, we determined the contribution of Btk in B cells and neutrophils to host defense against the extracellular bacterial pathogen Klebsiella pneumoniae, a common cause of pulmonary infections and sepsis. Btk-/- mice were highly susceptible to Klebsiella infection, which was not reversed by Btk re-expression in B cells and restoration of natural antibody levels. Neutrophil-specific Btk deficiency impaired host defense against Klebsiella to a similar extent as complete Btk deficiency. Neutrophil-specific Btk deficiency abolished extracellular reactive oxygen species production in response to Klebsiella. These data indicate that expression of Btk in neutrophils is crucial, while in B cells, it is dispensable for in vivo host defense against K. pneumoniae.
Collapse
Affiliation(s)
- Zhe Liu
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander P.N.A. De Porto
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina De Beer
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
| | - Joris J.T.H. Roelofs
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J. De Boer
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis Van't Veer
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Tom Van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F. De Vos
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute (AI&II), Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Bachmaier K, Stuart A, Singh A, Mukhopadhyay A, Chakraborty S, Hong Z, Wang L, Tsukasaki Y, Maienschein-Cline M, Ganesh BB, Kanteti P, Rehman J, Malik AB. Albumin Nanoparticle Endocytosing Subset of Neutrophils for Precision Therapeutic Targeting of Inflammatory Tissue Injury. ACS NANO 2022; 16:4084-4101. [PMID: 35230826 PMCID: PMC8945372 DOI: 10.1021/acsnano.1c09762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 05/30/2023]
Abstract
The complex involvement of neutrophils in inflammatory diseases makes them intriguing but challenging targets for therapeutic intervention. Here, we tested the hypothesis that varying endocytosis capacities would delineate functionally distinct neutrophil subpopulations that could be specifically targeted for therapeutic purposes. By using uniformly sized (∼120 nm in diameter) albumin nanoparticles (ANP) to characterize mouse neutrophils in vivo, we found two subsets of neutrophils, one that readily endocytosed ANP (ANPhigh neutrophils) and another that failed to endocytose ANP (ANPlow population). These ANPhigh and ANPlow subsets existed side by side simultaneously in bone marrow, peripheral blood, spleen, and lungs, both under basal conditions and after inflammatory challenge. Human peripheral blood neutrophils showed a similar duality. ANPhigh and ANPlow neutrophils had distinct cell surface marker expression and transcriptomic profiles, both in naive mice and in mice after endotoxemic challenge. ANPhigh and ANPlow neutrophils were functionally distinct in their capacities to kill bacteria and to produce inflammatory mediators. ANPhigh neutrophils produced inordinate amounts of reactive oxygen species and inflammatory chemokines and cytokines. Targeting this subset with ANP loaded with the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, mitigated the effects of polymicrobial sepsis by reducing tissue inflammation while fully preserving neutrophilic host-defense function.
Collapse
Affiliation(s)
- Kurt Bachmaier
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Andrew Stuart
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Abhalaxmi Singh
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Amitabha Mukhopadhyay
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Sreeparna Chakraborty
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Zhigang Hong
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Li Wang
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Division
of Cardiology, Department of Medicine, The
University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Yoshikazu Tsukasaki
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
| | - Mark Maienschein-Cline
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Balaji B. Ganesh
- Research
Resources Center, University of Illinois
at Chicago, Chicago, Illinois 60612, United States
| | - Prasad Kanteti
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| | - Jalees Rehman
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Division
of Cardiology, Department of Medicine, The
University of Illinois College of Medicine, Chicago, Illinois 60612, United States
| | - Asrar B. Malik
- Department
of Pharmacology and Regenerative Medicine and the Center for Lung
and Vascular Biology, The University of
Illinois College of Medicine, E403, 835 South Wolcott Avenue, Chicago, Illinois 60612, United States
- Nano
Biotherapeutics, Inc., 2201 West Campbell Park Drive, Chicago, Illinois 60612, United States
| |
Collapse
|
12
|
Ellson CD, Goretti Riça I, Kim JS, Huang YMM, Lim D, Mitra T, Hsu A, Wei EX, Barrett CD, Wahl M, Delbrück H, Heinemann U, Oschkinat H, Chang CEA, Yaffe MB. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434:167533. [DOI: 10.1016/j.jmb.2022.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
|
13
|
McCreedy DA, Abram CL, Hu Y, Min SW, Platt ME, Kirchhoff MA, Reid SK, Jalufka FL, Lowell CA. Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury. J Neuroinflammation 2021; 18:302. [PMID: 34952603 PMCID: PMC8705173 DOI: 10.1186/s12974-021-02353-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA. .,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA. .,Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA.
| | - Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Yongmei Hu
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| | - Sun Won Min
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Madison E Platt
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Megan A Kirchhoff
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Shelby K Reid
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Frank L Jalufka
- Department of Biology, Texas A&M University, 301 Old Main Dr, ILSB 3128, College Station, TX, 77843, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
14
|
Carroll DJ, Cao Y, Bochner BS, O’Sullivan JA. Siglec-8 Signals Through a Non-Canonical Pathway to Cause Human Eosinophil Death In Vitro. Front Immunol 2021; 12:737988. [PMID: 34721399 PMCID: PMC8549629 DOI: 10.3389/fimmu.2021.737988] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a glycan-binding receptor bearing immunoreceptor tyrosine-based inhibitory and switch motifs (ITIM and ITSM, respectively) that is selectively expressed on eosinophils, mast cells, and, to a lesser extent, basophils. Previous work has shown that engagement of Siglec-8 on IL-5-primed eosinophils causes cell death via CD11b/CD18 integrin-mediated adhesion and NADPH oxidase activity and identified signaling molecules linking adhesion, reactive oxygen species (ROS) production, and cell death. However, the proximal signaling cascade activated directly by Siglec-8 engagement has remained elusive. Most members of the Siglec family possess similar cytoplasmic signaling motifs and recruit the protein tyrosine phosphatases SHP-1/2, consistent with ITIM-mediated signaling, to dampen cellular activation. However, the dependence of Siglec-8 function in eosinophils on these phosphatases has not been studied. Using Siglec-8 antibody engagement and pharmacological inhibition in conjunction with assays to measure cell-surface upregulation and conformational activation of CD11b integrin, ROS production, and cell death, we sought to identify molecules involved in Siglec-8 signaling and determine the stage of the process in which each molecule plays a role. We demonstrate here that the enzymatic activities of Src family kinases (SFKs), Syk, SHIP1, PAK1, MEK1, ERK1/2, PLC, PKC, acid sphingomyelinase/ceramidase, and Btk are all necessary for Siglec-8-induced eosinophil cell death, with no apparent role for SHP-1/2, SHIP2, or c-Raf. While most of these signaling molecules are necessary for Siglec-8-induced upregulation of CD11b integrin at the eosinophil cell surface, Btk is phosphorylated and activated later in the signaling cascade and is instead necessary for CD11b activation. In contrast, SFKs and ERK1/2 are phosphorylated far earlier in the process, consistent with their role in augmenting cell-surface levels of CD11b. In addition, pretreatment of eosinophils with latrunculin B or jasplakinolide revealed that actin filament disassembly is necessary and sufficient for surface CD11b integrin upregulation and that actin polymerization is necessary for downstream ROS production. These results show that Siglec-8 signals through an unanticipated set of signaling molecules in IL-5-primed eosinophils to induce cell death and challenges the expectation that ITIM-bearing Siglecs signal through inhibitory pathways involving protein tyrosine phosphatases to achieve their downstream functions.
Collapse
Affiliation(s)
| | | | | | - Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
15
|
de Porto AP, Liu Z, de Beer R, Florquin S, Roelofs JJTH, de Boer OJ, den Haan JMM, Hendriks RW, van 't Veer C, van der Poll T, de Vos AF. Bruton's Tyrosine Kinase-Mediated Signaling in Myeloid Cells Is Required for Protective Innate Immunity During Pneumococcal Pneumonia. Front Immunol 2021; 12:723967. [PMID: 34552589 PMCID: PMC8450579 DOI: 10.3389/fimmu.2021.723967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a cytoplasmic kinase expressed in B cells and myeloid cells. It is essential for B cell development and natural antibody-mediated host defense against bacteria in humans and mice, but little is known about the role of Btk in innate host defense in vivo. Previous studies have indicated that lack of (natural) antibodies is paramount for impaired host defense against Streptococcus (S.) pneumoniae in patients and mice with a deficiency in functional Btk. In the present study, we re-examined the role of Btk in B cells and myeloid cells during pneumococcal pneumonia and sepsis in mice. The antibacterial defense of Btk-/- mice was severely impaired during pneumococcal pneumosepsis and restoration of natural antibody production in Btk-/- mice by transgenic expression of Btk specifically in B cells did not suffice to protect against infection. Btk-/- mice with reinforced Btk expression in MhcII+ cells, including B cells, dendritic cells and macrophages, showed improved antibacterial defense as compared to Btk-/- mice. Bacterial outgrowth in Lysmcre-Btkfl/Y mice was unaltered despite a reduced capacity of Btk-deficient alveolar macrophages to respond to pneumococci. Mrp8cre-Btkfl/Y mice with a neutrophil specific paucity in Btk expression, however, demonstrated impaired antibacterial defense. Neutrophils of Mrp8cre-Btkfl/Y mice displayed reduced release of granule content after pulmonary installation of lipoteichoic acid, a gram-positive bacterial cell wall component relevant for pneumococci. Moreover, Btk deficient neutrophils showed impaired degranulation and phagocytosis upon incubation with pneumococci ex vivo. Taken together, the results of our study indicate that besides regulating B cell-mediated immunity, Btk is critical for regulation of myeloid cell-mediated, and particularly neutrophil-mediated, innate host defense against S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Alexander P de Porto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Regina de Beer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, University Medical Center, Rotterdam, Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| |
Collapse
|
16
|
Diverse innate stimuli activate basophils through pathways involving Syk and IκB kinases. Proc Natl Acad Sci U S A 2021; 118:2019524118. [PMID: 33727419 DOI: 10.1073/pnas.2019524118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mature basophils play critical inflammatory roles during helminthic, autoimmune, and allergic diseases through their secretion of histamine and the type 2 cytokines interleukin 4 (IL-4) and IL-13. Basophils are activated typically by allergen-mediated IgE cross-linking but also by endogenous "innate" factors. The aim of this study was to identify the innate stimuli (cytokines, chemokines, growth factors, hormones, neuropeptides, metabolites, and bacterial products) and signaling pathways inducing primary basophil activation. Basophils from naïve mice or helminth-infected mice were cultured with up to 96 distinct stimuli and their influence on basophil survival, activation, degranulation, and IL-4 or IL-13 expression were investigated. Activated basophils show a heterogeneous phenotype and segregate into distinct subsets expressing IL-4, IL-13, activation, or degranulation markers. We find that several innate stimuli including epithelial derived inflammatory cytokines (IL-33, IL-18, TSLP, and GM-CSF), growth factors (IL-3, IL-7, TGFβ, and VEGF), eicosanoids, metabolites, TLR ligands, and type I IFN exert significant direct effects on basophils. Basophil activation mediated by distinct upstream signaling pathways is always sensitive to Syk and IκB kinases-specific inhibitors but not necessarily to NFAT, STAT5, adenylate cyclase, or c-fos/AP-1 inhibitors. Thus, basophils are activated by very diverse mediators, but their activation seem controlled by a core checkpoint involving Syk and IκB kinases.
Collapse
|
17
|
Trivedi A, Tercovich KG, Casbon AJ, Raber J, Lowell C, Noble-Haeusslein LJ. Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiol Dis 2021; 157:105430. [PMID: 34153467 PMCID: PMC11302380 DOI: 10.1016/j.nbd.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
While traumatic brain injury (TBI) is the leading cause of death and disability in children, we have yet to identify those pathogenic events that determine the extent of recovery. Neutrophils are best known as "first responders" to sites of infection and trauma where they become fully activated, killing pathogens via proteases that are released during degranulation. However, this activational state may generate substantial toxicity in the young brain after TBI that is partially due to developmentally regulated inadequate antioxidant reserves. Neutrophil degranulation is triggered via a downstream signaling pathway that is dependent on spleen tyrosine kinase (Syk). To test the hypothesis that the activational state of neutrophils is a determinant of early pathogenesis and long-term recovery, we compared young, brain-injured conditional knockouts of Syk (sykf/fMRP8-cre+) to congenic littermates (sykf/f). Based upon flow cytometry, there was an extended recruitment of distinct leukocyte subsets, including Ly6G+/Ly6C- and Ly6G+/Ly6Cint, over the first several weeks post-injury which was similar between genotypes. Subsequent assessment of the acutely injured brain revealed a reduction in blood-brain barrier disruption to both high and low molecular weight dextrans and reactive oxygen species in sykf/fMRP8-cre+ mice compared to congenic littermates, and this was associated with greater preservation of claudin 5 and neuronal integrity, as determined by Western blot analyses. At adulthood, motor learning was less affected in brain-injured sykf/fMRP8-cre+ mice as compared to sykf/f mice. Performance in the Morris Water Maze revealed a robust improvement in hippocampal-dependent acquisition and short and long-term spatial memory retention in sykf/fMRP8-cre+ mice. Subsequent analyses of swim path lengths during hidden platform training and probe trials showed greater thigmotaxis in brain-injured sykf/f mice than sham sykf/f mice and injured sykf/fMRP8-cre+ mice. Our results establish the first mechanistic link between the activation state of neutrophils and long-term functional recovery after traumatic injury to the developing brain. These results also highlight Syk kinase as a novel therapeutic target that could be further developed for the brain-injured child.
Collapse
Affiliation(s)
- Alpa Trivedi
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen G Tercovich
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Amy Jo Casbon
- Departments of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Clifford Lowell
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Psychology, The Dell Medical School and the College of Liberal Arts, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
18
|
Chen B, Han J, Chen S, Xie R, Yang J, Zhou T, Zhang Q, Xia R. MicroLet-7b Regulates Neutrophil Function and Dampens Neutrophilic Inflammation by Suppressing the Canonical TLR4/NF-κB Pathway. Front Immunol 2021; 12:653344. [PMID: 33868293 PMCID: PMC8044834 DOI: 10.3389/fimmu.2021.653344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a heterogeneous syndrome caused by a dysregulated host response during the process of infection. Neutrophils are involved in the development of sepsis due to their essential role in host defense. COVID-19 is a viral sepsis. Disfunction of neutrophils in sepsis has been described in previous studies, however, little is known about the role of microRNA-let-7b (miR-let-7b), toll-like receptor 4 (TLR4), and nuclear factor kappa B (NF-κB) activity in neutrophils and how they participate in the development of sepsis. In this study, we investigated the regulatory pathway of miR-let-7b/TLR4/NF-κB in neutrophils. We also explored the downstream cytokines released by neutrophils following miR-let-7b treatment and its therapeutic effects in cecal ligation and puncture (CLP)-induced septic mice. Six-to-eight-week-old male C57BL/6 mice underwent CLP following treatment with miR-let-7b agomir. Survival (n=10), changes in liver and lungs histopathology (n=4), circulating neutrophil counts (n=4), the liver-body weight ratio (n=4–7), and the lung wet-to-dry ratio (n=5–6) were recorded. We found that overexpression of miR-let-7b could significantly down-regulate the expression of human-derived neutrophilic TLR4 at a post-transcriptional level, a decreased level of proinflammatory factors including interleukin-6 (IL-6), IL-8, tumor necrosis factor α (TNF-α), and an upregulation of anti-inflammatory factor IL-10 in vitro. After miR-let-7b agomir treatment in vivo, neutrophil recruitment was inhibited and thus the injuries of liver and lungs in CLP-induced septic mice were alleviated (p=0.01 and p=0.04, respectively), less weight loss was reduced, and survival in septic mice was also significantly improved (p=0.013). Our study suggested that miR-let-7b could be a potential target of sepsis.
Collapse
Affiliation(s)
- Binzhen Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Han
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaoheng Chen
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rufeng Xie
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Jie Yang
- Blood Engineering Laboratory, Shanghai Blood Center, Shanghai, China
| | - Tongming Zhou
- Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Silva JDC, Thompson-Souza GDA, Barroso MV, Neves JS, Figueiredo RT. Neutrophil and Eosinophil DNA Extracellular Trap Formation: Lessons From Pathogenic Fungi. Front Microbiol 2021; 12:634043. [PMID: 33679665 PMCID: PMC7929991 DOI: 10.3389/fmicb.2021.634043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal infections represent a worldwide health problem. Fungal pathogens are responsible for a variety of conditions, including superficial diseases, allergic pathologies and potentially lethal invasive infections. Neutrophils and eosinophils have been implicated as effector cells in several pathologies. Neutrophils are major effector cells involved in the control of fungal infections and exhibit a plethora of antifungal mechanisms, such as phagocytosis, reactive oxygen species production, degranulation, extracellular vesicle formation, and DNA extracellular trap (ET) release. Eosinophils are polymorphonuclear cells classically implicated as effector cells in the pathogenesis of allergic diseases and helminthic infections, although their roles as immunomodulatory players in both innate and adaptive immunity are currently recognized. Eosinophils are also endowed with antifungal activities and are abundantly found in allergic conditions associated with fungal colonization and sensitization. Neutrophils and eosinophils have been demonstrated to release their nuclear and mitochondrial DNA in response to many pathogens and pro-inflammatory stimuli. ETs have been implicated in the killing and control of many pathogens, as well as in promoting inflammation and tissue damage. The formation of ETs by neutrophils and eosinophils has been described in response to pathogenic fungi. Here, we provide an overview of the mechanisms involved in the release of neutrophil and eosinophil ETs in response to fungal pathogens. General implications for understanding the formation of ETs and the roles of ETs in fungal infections are discussed.
Collapse
Affiliation(s)
- Juliana da Costa Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marina Valente Barroso
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane Sabbadini Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
20
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Coates MS, Alton EWFW, Rapeport GW, Davies JC, Ito K. Pseudomonas aeruginosa induces p38MAP kinase-dependent IL-6 and CXCL8 release from bronchial epithelial cells via a Syk kinase pathway. PLoS One 2021; 16:e0246050. [PMID: 33524056 PMCID: PMC7850485 DOI: 10.1371/journal.pone.0246050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (Pa) infection is a major cause of airway inflammation in immunocompromised and cystic fibrosis (CF) patients. Mitogen-activated protein (MAP) and tyrosine kinases are integral to inflammatory responses and are therefore potential targets for novel anti-inflammatory therapies. We have determined the involvement of specific kinases in Pa-induced inflammation. The effects of kinase inhibitors against p38MAPK, MEK 1/2, JNK 1/2, Syk or c-Src, a combination of a p38MAPK with Syk inhibitor, or a novel narrow spectrum kinase inhibitor (NSKI), were evaluated against the release of the proinflammatory cytokine/chemokine, IL-6 and CXCL8 from BEAS-2B and CFBE41o- epithelial cells by Pa. Effects of a Syk inhibitor against phosphorylation of the MAPKs were also evaluated. IL-6 and CXCL8 release by Pa were significantly inhibited by p38MAPK and Syk inhibitors (p<0.05). Phosphorylation of HSP27, but not ERK or JNK, was significantly inhibited by Syk kinase inhibition. A combination of p38MAPK and Syk inhibitors showed synergy against IL-6 and CXCL8 induction and an NSKI completely inhibited IL-6 and CXCL8 at low concentrations. Pa-induced inflammation is dependent on p38MAPK primarily, and Syk partially, which is upstream of p38MAPK. The NSKI suggests that inhibiting specific combinations of kinases is a potent potential therapy for Pa-induced inflammation.
Collapse
Affiliation(s)
- Matthew S. Coates
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail:
| | - Eric W. F. W. Alton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Garth W. Rapeport
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| | - Jane C. Davies
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Kazuhiro Ito
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Pulmocide Ltd, London, United Kingdom
| |
Collapse
|
22
|
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory bone disease mediated by the inflammatory cytokine, IL-1β. Although IL-1β is known as the key driver of bone lesions in CRMO, the signaling events leading to pathogenic levels of the cytokine are not fully understood. Using a genetic mouse model of CRMO, Dasari et al. find a role for the nonreceptor spleen tyrosine kinase (SYK) in upstream signaling leading to IL-1β up-regulation. Their findings suggest that SYK may constitute a new therapeutic target for CRMO.
Collapse
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
23
|
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int J Mol Sci 2020; 21:ijms21165799. [PMID: 32823483 PMCID: PMC7460855 DOI: 10.3390/ijms21165799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Samina Arshid
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Mariana S. Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Correspondence:
| |
Collapse
|
24
|
Negoro PE, Xu S, Dagher Z, Hopke A, Reedy JL, Feldman MB, Khan NS, Viens AL, Alexander NJ, Atallah NJ, Scherer AK, Dutko RA, Jeffery J, Kernien JF, Fites JS, Nett JE, Klein BS, Vyas JM, Irimia D, Sykes DB, Mansour MK. Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to Candida Species. mBio 2020; 11:e02043-19. [PMID: 32398316 PMCID: PMC7218286 DOI: 10.1128/mbio.02043-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.
Collapse
Affiliation(s)
- Paige E Negoro
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shuying Xu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zeina Dagher
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex Hopke
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer L Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Feldman
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nida S Khan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Adam L Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Allison K Scherer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A Dutko
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jane Jeffery
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John F Kernien
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - J Scott Fites
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Bruce S Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medicine, University of Wisconsin-Madison, Madison Wisconsin, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Irimia
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael K Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, Mecsas J. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 2020; 9:56656. [PMID: 32352382 PMCID: PMC7250567 DOI: 10.7554/elife.56656] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
Klebsiella pneumoniae is a respiratory, blood, liver, and bladder pathogen of significant clinical concern. We show that the adaptor protein, SKAP2, is required for protection against K. pneumoniae (ATCC 43816) pulmonary infections. Skap2-/- mice had 100-fold higher bacterial burden when compared to wild-type and burden was controlled by SKAP2 expression in innate immune cells. Skap2-/- neutrophils and monocytes were present in infected lungs, and the neutrophils degranulated normally in response to K. pneumoniae infection in mice; however, K. pneumoniae-stimulated reactive oxygen species (ROS) production in vitro was abolished. K. pneumoniae-induced neutrophil ROS response required the activity of SFKs, Syk, Btk, PLCγ2, and PKC. The loss of SKAP2 significantly hindered the K. pneumoniae-induced phosphorylation of SFKs, Syk, and Pyk2 implicating SKAP2 as proximal to their activation in pathogen-signaling pathways. In conclusion, SKAP2-dependent signaling in neutrophils is essential for K. pneumoniae-activated ROS production and for promoting bacterial clearance during infection. Klebsiella pneumoniae is a type of bacteria that can cause life-threatening infections – including pneumonia, blood stream infections, and urinary tract infections – in hospitalized patients. These infections can be difficult to treat because some K. pneumoniae are resistant to antibiotics. The bacteria are normally found in the human intestine, and they do not usually cause infections in healthy people. This implies that healthy people’s immune systems are better able to fend off K. pneumoniae infections; learning how could help scientists develop new ways to treat or prevent infections in hospitalized patients. In healthy people, a type of immune cell called neutrophils are the first line of defense against bacterial infections. Several different proteins are needed to activate neutrophils, including a protein called SKAP2. But the role of this protein in fighting K. pneumoniae infections is not clear. To find out what role SKAP2 plays in the defense against pneumonia caused by K. pneumoniae, Nguyen et al. compared infections in mice with and without the protein. Mice lacking SKAP2 in their white blood cells had more bacteria in their lungs than normal mice. The experiments showed that neutrophils from mice with SKAP2 produce a burst of chemicals called “reactive oxygen species”, which can kill bacteria. But neutrophils without the protein do not. Without SKAP2, several proteins that help produce reactive oxygen species do not work. Understanding the role of SKAP2 in fighting infections may help scientists better understand the immune system. This could help clinicians to treat conditions that cause it to be hyperactive or ineffective. More studies are needed to determine if SKAP2 works the same way in human neutrophils and if it works against all types of K. pneumoniae. If it does, then scientists might be able use this information to develop therapies that help the immune system fight infections.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Lamyaa Shaban
- Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth D Swanson
- Brain Tumor Center and Neuro-Oncology Unit, Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, United States
| | - Stephen C Bunnell
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Immunology, School of Medicine, Tufts University, Boston, United States
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Graduate Program in Molecular Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, United States.,Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, United States
| |
Collapse
|
26
|
Distinct Contributions of CD18 Integrins for Binding and Phagocytic Internalization of Pseudomonas aeruginosa. Infect Immun 2020; 88:IAI.00011-20. [PMID: 32041787 DOI: 10.1128/iai.00011-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/06/2020] [Indexed: 01/20/2023] Open
Abstract
Phagocytosis is the key mechanism for host control of Pseudomonas aeruginosa, a motile Gram-negative, opportunistic bacterial pathogen which frequently undergoes adaptation and selection for traits that are advantageous for survival. One such clinically relevant adaptation is the loss of bacterial motility, observed within chronic infections, that is associated with increased antibiotic tolerance and phagocytic resistance. Previous studies using phagocytes from a leukocyte adhesion deficiency type 1 (LAD-I) patient identified CD18 as a putative cell surface receptor for uptake of live P. aeruginosa However, how bacterial motility alters direct engagement with CD18-containing integrins remains unknown. Here we demonstrate, with the use of motile and isogenic nonmotile deletion mutants of two independent strains of P. aeruginosa and with CRISPR-generated CD18-deficient cell lines in human monocytes and murine neutrophils, that CD18 expression facilitates the uptake of both motile and nonmotile P. aeruginosa However, unexpectedly, mechanistic studies revealed that CD18 expression was dispensable for the initial attachment of the bacteria to the host cells, which was validated with ectopic expression of complement receptor 3 (CR3) by CHO cells. Our data support that surface N-linked glycan chains (N-glycans) likely facilitate the initial interaction of bacteria with monocytes and cooperate with CD18 integrins in trans to promote internalization of bacteria. Moreover, talin-1 and kindlin-3 proteins promote uptake, but not binding, of P. aeruginosa by murine neutrophils, which supports a role for CD18 integrin signaling in this process. These findings provide novel insights into the cellular determinants for phagocytic recognition and uptake of P. aeruginosa.
Collapse
|
27
|
Lu X, Kugadas A, Smith-Page K, Lamb J, Lin T, Ru Y, Morley SC, Fichorova R, Mittal SK, Chauhan SK, Littleton S, Saban D, Gadjeva M. Neutrophil L-Plastin Controls Ocular Paucibacteriality and Susceptibility to Keratitis. Front Immunol 2020; 11:547. [PMID: 32318063 PMCID: PMC7147296 DOI: 10.3389/fimmu.2020.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Why ocular mucosa is paucibacterial is unknown. Many different mechanisms have been suggested but the comprehensive experimental studies are sparse. We found that a deficiency in L-plastin (LCP1), an actin bundling protein, resulted in an ocular commensal overgrowth, characterized with increased presence of conjunctival Streptococcal spp. The commensal overgrowth correlated with susceptibility to P. aeruginosa-induced keratitis. L-plastin knock-out (KO) mice displayed elevated bacterial burden in the P. aeruginosa-infected corneas, altered inflammatory responses, and compromised bactericidal activity. Mice with ablation of LPL under the LysM Cre (LysM. CreposLPLfl/fl ) and S100A8 Cre (S100A8.CreposLPLfl/fl ) promoters had a similar phenotype to the LPL KOs mice. In contrast, infected CD11c.CreposLPLfl/fl mice did not display elevated susceptibility to infection, implicating the myeloid L-plastin-sufficient cells (e.g., macrophages and neutrophils) in maintaining ocular homeostasis. Mechanistically, the elevated commensal burden and the susceptibility to infection were linked to defects in neutrophil frequencies at steady state and during infection and compromised bactericidal activities upon priming. Macrophage exposure to commensal organisms primed neutrophil responses to P. aeruginosa, augmenting PMN bactericidal capacity in an L-plastin dependent manner. Cumulatively, our data highlight the importance of neutrophils in controlling ocular paucibacteriality, reveal molecular and cellular events involved in the process, and suggest a link between commensal exposure and resistance to infection.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Abirami Kugadas
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kirsten Smith-Page
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lamb
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tiffany Lin
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Yusha Ru
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Raina Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, MA, United States
| | - Sharad K. Mittal
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA, United States
| | - Sunil K. Chauhan
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA, United States
| | - Sejiro Littleton
- Duke Department of Ophthalmology, Duke Eye Center, Durham, NC, United States
| | - Daniel Saban
- Duke Department of Ophthalmology, Duke Eye Center, Durham, NC, United States
| | - Mihaela Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Ortiz-Muñoz G, Yu MA, Lefrançais E, Mallavia B, Valet C, Tian JJ, Ranucci S, Wang KM, Liu Z, Kwaan N, Dawson D, Kleinhenz ME, Khasawneh FT, Haggie PM, Verkman AS, Looney MR. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation. J Clin Invest 2020; 130:2041-2053. [PMID: 31961827 PMCID: PMC7108932 DOI: 10.1172/jci129635] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.
Collapse
Affiliation(s)
| | - Michelle A. Yu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Emma Lefrançais
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Beñat Mallavia
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Serena Ranucci
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Zhe Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Nicholas Kwaan
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Diana Dawson
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Fadi T. Khasawneh
- School of Pharmacy, University of Texas, El Paso, El Paso, Texas, USA
| | - Peter M. Haggie
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Alan S. Verkman
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
29
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 429] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
30
|
Dasari TK, Geiger R, Karki R, Banoth B, Sharma BR, Gurung P, Burton A, Kanneganti TD. The nonreceptor tyrosine kinase SYK drives caspase-8/NLRP3 inflammasome-mediated autoinflammatory osteomyelitis. J Biol Chem 2019; 295:3394-3400. [PMID: 31719149 DOI: 10.1074/jbc.ra119.010623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic recurrent multifocal osteomyelitis (CRMO) in humans can be modeled in Pstpip2cmo mice, which carry a missense mutation in the proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2) gene. As cmo disease in mice, the experimental model analogous to human CRMO, is mediated specifically by IL-1β and not by IL-1α, delineating the molecular pathways contributing to pathogenic IL-1β production is crucial to developing targeted therapies. In particular, our earlier findings support redundant roles of NLR family pyrin domain-containing 3 (NLRP3) and caspase-1 with caspase-8 in instigating cmo However, the signaling components upstream of caspase-8 and pro-IL-1β cleavage in Pstpip2cmo mice are not well-understood. Therefore, here we investigated the signaling pathways in these mice and discovered a central role of a nonreceptor tyrosine kinase, spleen tyrosine kinase (SYK), in mediating osteomyelitis. Using several mutant mouse strains, immunoblotting, and microcomputed tomography, we demonstrate that absent in melanoma 2 (AIM2), receptor-interacting serine/ threonine protein kinase 3 (RIPK3), and caspase recruitment domain-containing protein 9 (CARD9) are each dispensable for osteomyelitis induction in Pstpip2cmo mice, whereas genetic deletion of Syk completely abrogates the disease phenotype. We further show that SYK centrally mediates signaling upstream of caspase-1 and caspase-8 activation and principally up-regulates NF-κB and IL-1β signaling in Pstpip2cmo mice, thereby inducing cmo These results provide a rationale for directly targeting SYK and its downstream signaling components in CRMO.
Collapse
Affiliation(s)
- Tejasvi K Dasari
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; School of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Rechel Geiger
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Balaji Banoth
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; Inflammation Program, University of Iowa, Iowa City, Iowa 52241
| | - Amanda Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | |
Collapse
|
31
|
Kim VY, Batty A, Li J, Kirk SG, Crowell SA, Jin Y, Tang J, Zhang J, Rogers LK, Deng HX, Nelin LD, Liu Y. Glutathione Reductase Promotes Fungal Clearance and Suppresses Inflammation during Systemic Candida albicans Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2019; 203:2239-2251. [PMID: 31501257 DOI: 10.4049/jimmunol.1701686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/07/2019] [Indexed: 01/16/2023]
Abstract
Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Collapse
Affiliation(s)
- Victoria Y Kim
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Abel Batty
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Jinhui Li
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Sara A Crowell
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Yi Jin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215
| | - Juan Tang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Lynette K Rogers
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205; and
| |
Collapse
|
32
|
Silva JC, Rodrigues NC, Thompson‐Souza GA, Muniz VDS, Neves JS, Figueiredo RT. Mac‐1 triggers neutrophil DNA extracellular trap formation to
Aspergillus fumigatus
independently of PAD4 histone citrullination. J Leukoc Biol 2019; 107:69-83. [DOI: 10.1002/jlb.4a0119-009rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Juliana C. Silva
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Najara C. Rodrigues
- Instituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdirene de S. Muniz
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Josiane S. Neves
- Instituto de Ciências BiomédicasUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Rodrigo T. Figueiredo
- Campus de Duque de CaxiasUniversidade Federal do Rio de Janeiro Duque de Caxias Brazil
| |
Collapse
|
33
|
Al-Harbi NO, Nadeem A, Ahmad SF, Alanazi MM, Aldossari AA, Alasmari F. Amelioration of sepsis-induced acute kidney injury through inhibition of inflammatory cytokines and oxidative stress in dendritic cells and neutrophils respectively in mice: Role of spleen tyrosine kinase signaling. Biochimie 2019; 158:102-110. [DOI: 10.1016/j.biochi.2018.12.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
|
34
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Harbi MM, Ibrahim KE, Kundu S, Attia SM, Alanazi WA, AlSharari SD. Inhibition of spleen tyrosine kinase signaling protects against acute lung injury through blockade of NADPH oxidase and IL-17A in neutrophils and γδ T cells respectively in mice. Int Immunopharmacol 2019; 68:39-47. [PMID: 30611000 DOI: 10.1016/j.intimp.2018.12.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
Acute lung injury (ALI) is one of the most serious complications in critically ill patients which often leads to morbidity and mortality. ALI characterized by severe inflammation of lungs occurs due to uncontrolled inflammatory immune response. However, the immunological mechanism(s) are far from being understood. The spleen tyrosine kinase (SYK), a key component of immune receptor signaling, plays a critical role in the modulation of inflammatory signaling in different immune cells. However, its role in ALI remains to be explored. Therefore, in this study, we investigated the effect of R406, a SYK inhibitor in lipopolysaccharide (LPS)-induced ALI mouse model. LPS led to increased SYK expression in neutrophils and gamma delta (γδ) T cells. This was associated with increased neutrophilic airway inflammation, vascular permeability, myeloperoxidase activity in the lung with upregulated expression of NADPH oxidase (NOX2)/MCP-1/TNF-α in neutrophils and IL-17A in γδ T cells/lung. Pulmonary inflammation was associated with higher mortality in mice with ALI. Inhibition of SYK signaling using R406 in the lung led to blockade of neutrophilic airway inflammation, vascular permeability, pro-inflammatory cytokine release and oxidative stress in innate immune cells, i.e. γδ T cells and neutrophils and the lung. R406 administered LPS group had better survival rate than LPS group. This suggests that SYK upregulation in γδ T cells and neutrophils plays an important role in inflammatory process during ALI. In conclusion, R406 exhibited a great potential to block the LPS-induced airway inflammation and mortality which could be developed as a potential future therapy in ALI.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid E Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Swati Kundu
- Department of Biochemistry, South Campus, University of Delhi, New Delhi, India
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways. Front Immunol 2018; 9:2036. [PMID: 30279690 PMCID: PMC6153332 DOI: 10.3389/fimmu.2018.02036] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are known to extrude decondensed chromatin, thus forming NETs (neutrophil extracellular traps). These structures immobilize pathogens, thereby preventing their spreading, and are also adorned with antimicrobial molecules. NETs can also influence pathogenesis in chronic inflammation, autoimmunity, and cancer. Despite the importance of NETs, the molecular mechanisms underlying their formation, as well as the upstream signaling pathways involved, are only partially understood. Likewise, current methodological approaches to quantify NETs suffer from significant drawbacks, not the least being the inclusion of a significant non-specific signal. In this study, we used novel, fluorescent polymers that only bind extruded chromatin, allowing a specific and standardized quantification of NETosis. This allowed us to reliably rank the relative potency of various physiologic NET inducers. In neutrophils activated with such stimuli, inhibition of the Syk or PI3K pathways blocked NETosis by acting upon late events in NET formation. Inhibition of the TAK1, p38 MAPK, or MEK pathways also hindered NETosis, but by acting on early events. By contrast, inhibiting PKC, Src family kinases, or JNK failed to prevent NETosis; cycloheximide or actinomycin D were also ineffective. Expectedly, NET formation was deeply compromised following inhibition of the NADPH oxidase in PMA-activated neutrophils, but was found to be ROS-independent in response to physiological agonists. Conversely, we show for the first time in human neutrophils that selective inhibition of PAD4 potently prevents NETosis by all stimuli tested. Our data substantially extends current knowledge of the signaling pathways controlling NETosis, and reveals how they affect early or late stages of the phenomenon. In view of the involvement of NETs in several pathologies, our findings also identify molecular targets that could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Olga Tatsiy
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
37
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
38
|
Espinosa V, Dutta O, McElrath C, Du P, Chang YJ, Cicciarelli B, Pitler A, Whitehead I, Obar JJ, Durbin JE, Kotenko SV, Rivera A. Type III interferon is a critical regulator of innate antifungal immunity. Sci Immunol 2018; 2:2/16/eaan5357. [PMID: 28986419 DOI: 10.1126/sciimmunol.aan5357] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
Type III interferons (IFN-λs) are the most recently found members of the IFN cytokine family and engage IFNLR1 and IL10R2 receptor subunits to activate innate responses against viruses. We have identified IFN-λs as critical instructors of antifungal neutrophil responses. Using Aspergillus fumigatus (Af) as a model to study antifungal immune responses, we found that depletion of CCR2+ monocytes compromised the ability of neutrophils to control invasive fungal growth. Using an unbiased approach, we identified type I and III IFNs as critical regulators of the interplay between monocytes and neutrophils responding to Af We found that CCR2+ monocytes are an important early source of type I IFNs that prime optimal expression of IFN-λ. Type III IFNs act directly on neutrophils to activate their antifungal response, and mice with neutrophil-specific deletion of IFNLR1 succumb to invasive aspergillosis. Dysfunctional neutrophil responses in CCR2-depleted mice were rescued by adoptive transfer of pulmonary CCR2+ monocytes or by exogenous administration of IFN-α and IFN-λ. Thus, CCR2+ monocytes promote optimal activation of antifungal neutrophils by initiating a coordinated IFN response. We have identified type III IFNs as critical regulators of neutrophil activation and type I IFNs as early stimulators of IFN-λ expression.
Collapse
Affiliation(s)
- Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA
| | - Orchi Dutta
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA.,Graduate School of Biomedical Sciences, RBHS, Newark, NJ 07103, USA
| | - Constance McElrath
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA.,Graduate School of Biomedical Sciences, RBHS, Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, RBHS, Newark, NJ 07103, USA
| | - Peicheng Du
- Genomics Research Program, RBHS, Newark, NJ 07103, USA.,High Performance and Research Computing, Office of Information Technology, RBHS, Newark, NJ 07103, USA
| | - Yun-Juan Chang
- Genomics Research Program, RBHS, Newark, NJ 07103, USA.,High Performance and Research Computing, Office of Information Technology, RBHS, Newark, NJ 07103, USA
| | - Bryan Cicciarelli
- Department of Microbiology, Biochemistry and Molecular Genetics, RBHS, Newark, NJ 07103, USA
| | - Amy Pitler
- Department of Microbiology, Biochemistry and Molecular Genetics, RBHS, Newark, NJ 07103, USA
| | - Ian Whitehead
- Department of Microbiology, Biochemistry and Molecular Genetics, RBHS, Newark, NJ 07103, USA
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Joan E Durbin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA.,Department of Pathology, New Jersey Medical School, RBHS, Newark, NJ 07103, USA
| | - Sergei V Kotenko
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, RBHS, Newark, NJ 07103, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Newark, NJ 07103, USA. .,Department of Pediatrics, New Jersey Medical School, RBHS, Newark, NJ 07103, USA
| |
Collapse
|
39
|
Kamikawa Y, Sakai N, Miyake T, Sagara A, Shinozaki Y, Kitajima S, Toyama T, Hara A, Iwata Y, Shimizu M, Furuichi K, Imamura R, Suda T, Kaneko S, Wada T. Involvement of p38MAPK in Impaired Neutrophil Bactericidal Activity of Hemodialysis Patients. Ther Apher Dial 2018; 22:345-354. [PMID: 29318737 DOI: 10.1111/1744-9987.12651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023]
Abstract
Mortality from infections has been reported to be higher in hemodialysis (HD) patients. Although dysfunction of neutrophils against bacterial infection was reported in HD patients, the precise mechanism remains to be clarified. We therefore examined the impacts of neutrophil inflammatory signaling on bactericidal activity in HD patients. Comprehensive analyses of intracellular signalings were performed in whole blood of HD patients and control using a microarray system. To confirm the contribution of the signaling to bactericidal activity in neutrophils, we examined the phosphorylation, bacterial killing function, reactive oxygen species (ROS) production, and myeloperoxidase (MPO) release in neutrophils against Staphylococcus aureus. RNA microarray analysis showed the suppression of p38 mitogen activated protein kinase (MAPK) signaling in HD patients. Neutrophils in HD patients showed the impairment of bactericidal activity against S. aureus compared to healthy subjects. Phosphorylation rate of p38MAPK of neutrophils in response to S. aureus was lower in HD patients than healthy subjects. The levels of ROS produced by neutrophils after co-culture with S. aureus were lower in HD patients, on the other hand, there was no difference of MPO release between HD patients and healthy subjects. A selective pharmacological inhibitor of p38MAPK suppressed bacterial killing function as well as ROS production in neutrophils of healthy subjects. Impairment of p38MAPK signaling pathway might contribute to the suppression of neutrophil bactericidal activity in HD patients through less production of ROS.
Collapse
Affiliation(s)
- Yasutaka Kamikawa
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Norihiko Sakai
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan.,Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Taito Miyake
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Akihiro Sagara
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | | | - Shinji Kitajima
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Akinori Hara
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Yasunori Iwata
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Miho Shimizu
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan.,Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Kanazawa University, Kanazawa, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Division of Nephrology, Kanazawa University Hospital, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
40
|
Uotila LM, Guenther C, Savinko T, Lehti TA, Fagerholm SC. Filamin A Regulates Neutrophil Adhesion, Production of Reactive Oxygen Species, and Neutrophil Extracellular Trap Release. THE JOURNAL OF IMMUNOLOGY 2017; 199:3644-3653. [PMID: 28986439 DOI: 10.4049/jimmunol.1700087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/11/2017] [Indexed: 12/26/2022]
Abstract
Neutrophils are of fundamental importance in the early immune response and use various mechanisms to neutralize invading pathogens. They kill endocytosed pathogens by releasing reactive oxygen species in the phagosome and release neutrophil extracellular traps (NETs) into their surroundings to immobilize and kill invading micro-organisms. Filamin A (FlnA) is an important actin cross-linking protein that is required for cellular processes involving actin rearrangements, such cell migration. It has also been shown to negatively regulate integrin activation and adhesion. However, its role in the regulation of β2 integrin-dependent adhesion, as well as in other cellular functions in neutrophils, is poorly understood. Using a transgenic mouse model in which FlnA is selectively depleted in myeloid cells, such as neutrophils, we show that FlnA negatively regulates β2 integrin adhesion to complement component iC3b and ICAM-1 in shear-free, but not shear-flow, conditions. FlnA deletion does not affect phagocytosis of Escherichia coli or Staphylococcus aureus or their intracellular killing. However, FlnA negatively regulates production of reactive oxygen species upon cell activation. Conversely, neutrophil activation through TLR4, as well as through activation by the Gram-negative bacteria E. coli, results in reduced NET production in FlnA-depleted neutrophils. Thus, FlnA is a negative regulator of β2 integrin-dependent cell adhesion and reactive oxygen species production but is required for NET production in primary murine neutrophils.
Collapse
Affiliation(s)
- Liisa M Uotila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; and
| | - Carla Guenther
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; and
| | - Terhi Savinko
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; and
| | - Timo A Lehti
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; and
| | - Susanna C Fagerholm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; and .,Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins (Basel) 2017; 9:toxins9100300. [PMID: 28946636 PMCID: PMC5666347 DOI: 10.3390/toxins9100300] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 01/18/2023] Open
Abstract
Bordetellae, pathogenic to mammals, produce an immunomodulatory adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) that enables them to overcome the innate immune defense of the host. CyaA subverts host phagocytic cells by an orchestrated action of its functional domains, where an extremely catalytically active adenylyl cyclase enzyme is delivered into phagocyte cytosol by a pore-forming repeat-in-toxin (RTX) cytolysin moiety. By targeting sentinel cells expressing the complement receptor 3, known as the CD11b/CD18 (αMβ₂) integrin, CyaA compromises the bactericidal functions of host phagocytes and supports infection of host airways by Bordetellae. Here, we review the state of knowledge on structural and functional aspects of CyaA toxin action, placing particular emphasis on signaling mechanisms by which the toxin-produced 3',5'-cyclic adenosine monophosphate (cAMP) subverts the physiology of phagocytic cells.
Collapse
|
42
|
Zhu Y, Fan S, Wang N, Chen X, Yang Y, Lu Y, Chen Q, Zheng J, Liu X. NADPH oxidase 2 inhibitor diphenyleneiodonium enhances ROS-independent bacterial phagocytosis in murine macrophages via activation of the calcium-mediated p38 MAPK signaling pathway. Am J Transl Res 2017; 9:3422-3432. [PMID: 28804558 PMCID: PMC5527256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Activation of NADPH oxidase 2 (NOX2) triggers reactive oxygen species (ROS) generation, both of which are essential for robust microbial clearance by phagocytes. However, it is unknown whether inhibition of NOX2 activation or ROS generation affects cellular phagocytosis. Here, we found that the classic NOX2 inhibitor diphenyleneiodonium (DPI) induced uptake of E. coli by murine peritoneal macrophages through enhancing phagocytosis, and this effect was temperature-sensitive and attenuated by cytochalasin D as well as chemical inhibition of Syk and PLCγ, two downstream kinases involved in actin polymerization during phagocytosis. DPI also decreased the production of TNF-α and IL-6 resulting from E. coli stimulation. The DPI-induced enhancement of phagocytosis was independent of NOX2 inhibition or ROS generation but depended on increased intracellular calcium and activation of the p38 MAPK signaling pathway. Furthermore, DPI enhanced bacterial elimination and ameliorated inflammation in E. coli-infected mice, leading to improved survival. Our results demonstrate that DPI facilitates ROS-independent bacterial phagocytosis by macrophages through activation of calcium and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical UniversityChongqing, China
| |
Collapse
|
43
|
Sinha M, Lowell CA. Immune Defense Protein Expression in Highly Purified Mouse Lung Epithelial Cells. Am J Respir Cell Mol Biol 2017; 54:802-13. [PMID: 26574781 DOI: 10.1165/rcmb.2015-0171oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung epithelial cells play critical roles in initiating and modulating immune responses during pulmonary infection or injury. To better understand the spectrum of immune response-related proteins present in lung epithelial cells, we developed an improved method of isolating highly pure primary murine alveolar type (AT) II cells and murine tracheal epithelial cells (mTECs) using negative selection for a variety of lineage markers and positive selection for epithelial cell adhesion molecule (EpCAM), a pan-epithelial cell marker. This method yielded 2-3 × 10(6) ATII cells/mouse lung and 1-2 × 10(4) mTECs/trachea that were highly pure (>98%) and viable (>98%). Using these preparations, we found that both ATII cells and mTECs expressed the Lyn tyrosine kinase, which is best studied as an inhibitory kinase in hematopoietic cells. However, we found little or no expression of Syk in either ATII cells or mTECs, which is in contrast to earlier published reports. Both cell types expressed C-type lectin receptors, anaphylatoxin receptors, and various Toll-like receptors (TLRs). In addition, stimulation of ATII cells with TLR ligands led to secretion of various cytokines and chemokines. Interestingly, lyn(-/-) ATII cells were hyperresponsive to TLR3 stimulation, suggesting that, as in hematopoietic cells, Lyn might be playing an inhibitory role in ATII cells. In conclusion, the improved isolation method reported here, along with expression profiles of various immune defense proteins, will help refocus investigations of immune-related signaling events in pulmonary epithelium.
Collapse
Affiliation(s)
- Meenal Sinha
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, California
| | - Clifford A Lowell
- Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
44
|
Costa S, Marini O, Bevilacqua D, DeFranco AL, Hou B, Lonardi S, Vermi W, Rodegher P, Panato A, Tagliaro F, Lowell CA, Cassatella MA, Girolomoni G, Scapini P. Role of MyD88 signaling in the imiquimod-induced mouse model of psoriasis: focus on innate myeloid cells. J Leukoc Biol 2017. [PMID: 28642279 DOI: 10.1189/jlb.3ma0217-054rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Psoriasis is a chronic skin disease associated with deregulated activation of immune cells and keratinocytes. In this study, we used the imiquimod (IMQ)-induced mouse model of psoriasis to dissect better the contribution of hematopoietic and skin-resident stromal cells to psoriasis development. The comparison of disease development in mice carrying the hematopoietic cell-specific deletion of MyD88 (Myd88fl/flVav-cre+ mice) with mice carrying the total MyD88 deficiency (Myd88-/- mice), we show that the progression of skin and systemic inflammation, as well as of epidermal thickening, was completely dependent on MyD88 expression in hematopoietic cells. However, both Myd88-/- mouse strains developed some degree of epidermal thickening during the initial stages of IMQ-induced psoriasis, even in the absence of hematopoietic cell activation and infiltration into the skin, suggesting a contribution of MyD88-independent mechanisms in skin-resident stromal cells. With the use of conditional knockout mouse strains lacking MyD88 in distinct lineages of myeloid cells (Myd88fl/flLysM-cre+ and Myd88fl/flMRP8-cre+ mice), we report that MyD88 signaling in monocytes and Mϕ, but not in neutrophils, plays an important role in disease propagation and exacerbation by modulating their ability to sustain γδ T cell effector functions via IL-1β and IL-23 production. Overall, these findings add new insights into the specific contribution of skin-resident stromal vs. hematopoietic cells to disease initiation and progression in the IMQ-induced mouse model of psoriasis and uncover a potential novel pathogenic role for monocytes/Mϕ to psoriasis development.
Collapse
Affiliation(s)
- Sara Costa
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Olivia Marini
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Dalila Bevilacqua
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pamela Rodegher
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Anna Panato
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Franco Tagliaro
- Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California, USA; and
| | - Marco A Cassatella
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Giampiero Girolomoni
- Division of Dermatology and Venereology, and University of Verona, Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy;
| |
Collapse
|
45
|
Czepielewski RS, Jaeger N, Marques PE, Antunes MM, Rigo MM, Alvarenga DM, Pereira RV, da Silva RD, Lopes TG, da Silva VD, Porto BN, Menezes GB, Bonorino C. GRPR antagonist protects from drug-induced liver injury by impairing neutrophil chemotaxis and motility. Eur J Immunol 2017; 47:646-657. [DOI: 10.1002/eji.201646394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 01/03/2017] [Accepted: 03/08/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Rafael S. Czepielewski
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Natália Jaeger
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Pedro E. Marques
- Departamento de Bioquímica e Imunologia; Laboratório de Imunofarmacologia, UFMG; Belo Horizonte MG Brazil
| | - Maísa M. Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Maurício M. Rigo
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Débora M. Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Rafaela V. Pereira
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Rodrigo D. da Silva
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
| | - Tiago G. Lopes
- Laboratório de Anatomia Patológica do Hospital São Lucas da PUCRS; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Vinícius D. da Silva
- Laboratório de Anatomia Patológica do Hospital São Lucas da PUCRS; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Bárbara N. Porto
- Laboratório de Imunologia Clínica e Experimental; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre RS Brazil
| | - Gustavo B. Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; MG Brazil
| | - Cristina Bonorino
- Laboratório de Imunologia Celular e Molecular; Instituto de Pesquisas Biomédicas (IPB); Porto Alegre RS Brazil
- Department of Surgery, School of Medicine; University of California at San Diego; La Jolla California
| |
Collapse
|
46
|
Plubell DL, Wilmarth PA, Zhao Y, Fenton AM, Minnier J, Reddy AP, Klimek J, Yang X, David LL, Pamir N. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue. Mol Cell Proteomics 2017; 16:873-890. [PMID: 28325852 DOI: 10.1074/mcp.m116.065524] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/28/2017] [Indexed: 01/17/2023] Open
Abstract
The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age, and branched chain amino acid metabolism in early response to high fat feeding. Data are available via ProteomeXchange with identifier PXD005953.
Collapse
Affiliation(s)
- Deanna L Plubell
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Phillip A Wilmarth
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Yuqi Zhao
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Alexandra M Fenton
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Jessica Minnier
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon
| | - Ashok P Reddy
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - John Klimek
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Xia Yang
- ¶Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Larry L David
- §Proteomics Shared Resources, Oregon Health & Sciences University, Portland, Oregon
| | - Nathalie Pamir
- From the ‡Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, Oregon;
| |
Collapse
|
47
|
Bukong TN, Iracheta-Vellve A, Saha B, Ambade A, Satishchandran A, Gyongyosi B, Lowe P, Catalano D, Kodys K, Szabo G. Inhibition of spleen tyrosine kinase activation ameliorates inflammation, cell death, and steatosis in alcoholic liver disease. Hepatology 2016; 64:1057-71. [PMID: 27302565 PMCID: PMC5033691 DOI: 10.1002/hep.28680] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/22/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED The spectrum of alcoholic liver disease (ALD) is a major cause of mortality with limited therapies available. Because alcohol targets numerous signaling pathways in hepatocytes and in immune cells, the identification of a master regulatory target that modulates multiple signaling processes is attractive. In this report, we assessed the role of spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, which has a central modulatory role in multiple proinflammatory signaling pathways involved in the pathomechanism of ALD. Using mouse disease models that represent various phases in the progression of human ALD, we found that alcohol, in all of these models, induced SYK activation in the liver, both in hepatocytes and liver mononuclear cells. Furthermore, significant SYK activation also occurred in liver samples and peripheral blood mononuclear cells of patients with ALD/alcoholic hepatitis compared to controls. Functional inhibition of SYK activation in vivo abrogated alcohol-induced hepatic neutrophil infiltration, resident immune cell activation, as well as inflammasome and extracellular signal-regulated kinase 1 and 2-mediated nuclear factor kappa B activation in mice. Strikingly, inhibition of SYK activation diminished alcohol-induced hepatic steatosis and interferon regulatory factor 3-mediated apoptosis. CONCLUSION Our data demonstrate a novel, functional, and multicellular role for SYK phosphorylation in modulating immune cell-driven liver inflammation, hepatocyte cell death, and steatosis at different stages of ALD. These novel findings highlight SYK as a potential multifunctional target in the treatment of alcoholic steatohepatitis. (Hepatology 2016;64:1057-1071).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA.
| |
Collapse
|
48
|
Abstract
NADPH oxidase (NOX) isoforms together have multiple functions that are important for normal physiology and have been implicated in the pathogenesis of a broad range of diseases, including atherosclerosis, cancer and neurodegenerative diseases. The phagocyte NADPH oxidase (NOX2) is critical for antimicrobial host defence. Chronic granulomatous disease (CGD) is an inherited disorder of NOX2 characterized by severe life-threatening bacterial and fungal infections and by excessive inflammation, including Crohn's-like inflammatory bowel disease (IBD). NOX2 defends against microbes through the direct antimicrobial activity of reactive oxidants and through activation of granular proteases and generation of neutrophil extracellular traps (NETs). NETosis involves the breakdown of cell membranes and extracellular release of chromatin and neutrophil granular constituents that target extracellular pathogens. Although the immediate effects of oxidant generation and NETosis are predicted to be injurious, NOX2, in several contexts, limits inflammation and injury by modulation of key signalling pathways that affect neutrophil accumulation and clearance. NOX2 also plays a role in antigen presentation and regulation of adaptive immunity. Specific NOX2-activated pathways such as nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that induces antioxidative and cytoprotective responses, may be important therapeutic targets for CGD and, more broadly, diseases associated with excessive inflammation and injury.
Collapse
|
49
|
Balce DR, Rybicka JM, Greene CJ, Ewanchuk BW, Yates RM. Ligation of FcγR Alters Phagosomal Processing of Protein via Augmentation of NADPH Oxidase Activity. Traffic 2016; 17:786-802. [PMID: 27020146 DOI: 10.1111/tra.12396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
Abstract
Proteolysis and the reduction of disulfides, both major components of protein degradation, are profoundly influenced by phagosomal redox conditions in macrophages. We evaluated the activation of phagocytic receptors that are known to influence activation of the phagocyte NADPH oxidase (NOX2), and its effect on phagosomal protein degradation. Population-based and single phagosome analyses of phagosomal chemistries in murine macrophages revealed that activation of NOX2 via the Fcγ receptor (FcγR) during phagocytosis decreased rates of proteolysis and disulfide reduction. Immunoglobulin G (IgG)-stimulated reactive oxygen species (ROS) production and the inhibition of phagosomal proteolysis and disulfide reduction were dependent on NOX2, FcγR and protein kinase C (PKC)/spleen tyrosine kinase (Syk) signaling. In contrast, low levels of ROS production were observed following the phagocytosis of unopsonized beads, which resulted in higher rates of phagosomal proteolysis and disulfide reduction. Phagosomes displayed autonomy with respect to FcγR-mediated differences in NOX2 activation and proteolysis, as phagosomes containing unopsonized cargo retained low NOX2 activation and high proteolysis even in the presence of phagosomes containing IgG-opsonized cargo in the same macrophage. These results show that opsonization of phagocytic cargo results in vastly different phagosomal processing of proteins through the FcγR-triggered, PKC/Syk-dependent local assembly and activation of NOX2.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Joanna M Rybicka
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Calgary, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
50
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|