1
|
Xu Z, Yu J, Chen Y. Hub genes and associated drugs for multiple myeloma with 1q21+: identified by bioinformatic analysis. Hematology 2024; 29:2323890. [PMID: 38433435 DOI: 10.1080/16078454.2024.2323890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
While 1q21+ was common genetic alteration and found to have adverse effect on prognosis, the underlying genes remain unclear. Identification of related genes may provide additional help for rational intervention. The microarray dataset GSE2658 associated with MM was downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were obtained, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to annotate their functions. The hub genes were derived from the combined results of up-regulated DEGs and weighted gene coexpression network analysis (WGCNA). The receiver operating characteristic (ROC) curves of hub genes were plotted to evaluate correlation with 1q21+. Survival analysis and drug-gene interaction of hub genes were performed separately to find the prognostic value and potential targeted drugs. A total of 55 DEGs were identified. GO and KEGG pathway analyses suggested that the DEGs were related to several pathways of cell proliferation. NVL, IL6R, DUSP23 were proven to be highly correlated with 1q21+ and have adverse effects on prognosis. IL6R, DUSP23 were matched to known interaction-drug. This study revealed potential roles of hub genes in the pathogenesis and progression of MM with 1q21+, further investigations are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Zhiqiang Xu
- Department of Hematology, ZhongShan Hospital Xiamen University, Xiamen, People's Republic of China
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, People's Republic of China
| | - Yamei Chen
- Department of Hematology, ZhongShan Hospital Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
2
|
Nakahara Y, Kouro T, Motoyama S, Miura M, Fujita K, Igarashi Y, Higashijima N, Matsuo N, Himuro H, Wei F, Horaguchi S, Tsuji K, Mano Y, Komahashi M, Saito H, Azuma K, Sasada T. Circulating IL-6 and not its circulating signaling components sIL-6R and sgp130 demonstrate clinical significance in NSCLC patients treated with immune checkpoint inhibitors. Front Cell Dev Biol 2024; 11:1324898. [PMID: 38469154 PMCID: PMC10926441 DOI: 10.3389/fcell.2023.1324898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024] Open
Abstract
Introduction: Clinical roles of plasma IL-6 levels have been reported in patients with various cancers, including non-small cell lung cancer (NSCLC), treated with immune checkpoint inhibitors (ICIs). However, the roles of other IL-6 signaling components, soluble IL-6 receptor (sIL-6R) and soluble gp130 (sgp130), in the plasma have not been elucidated. Methods: Blood was collected from 106 patients with NSCLC before initiation of ICI treatment (anti-PD-1 or anti-PD-L1 antibody). Plasma levels of IL-6, sIL-6R, sgp130, and their complexes were assessed by Cox regression hazard model to evaluate their clinical significance. The clinical role of IL-6 or IL-6R genetic polymorphisms was also analyzed. Results: Cox regression analysis showed that higher plasma IL-6 levels significantly predicted unfavorable overall survival (OS; hazard ratio [HR] 1.34, 95% confidence interval [CI] 1.05-1.68, p = 0.012) in NSCLC patients treated with ICIs. However, plasma sIL-6R and sgp130 levels showed no prognostic significance (p = 0.882 and p = 0.934, respectively). In addition, the estimated concentrations of binary IL-6:sIL-6R and ternary IL-6:sIL-6R:sgp130 complexes and their ratios (binary/ternary complex) were not significantly associated with OS (p = 0.647, p = 0.727, and p = 0.273, respectively). Furthermore, the genetic polymorphisms of IL-6 (-634G>C) and IL-6R (48892A>C) showed no clinical role by Kaplan-Meier survival analysis (p = 0.908 and p = 0.639, respectively). Discussion: These findings demonstrated the clinical significance of plasma levels of IL-6, but not of other IL-6 signaling components, sIL-6R and sgp130, suggesting that classical IL-6 signaling, but not trans-signaling, may be related to anti-tumor immune responses in cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Yoshiro Nakahara
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Taku Kouro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita University Graduate School of Medicine, Akita, Japan
- Division of Esophageal Surgery, Akita University Hospital, Akita, Japan
- Department of Gastroenterological Surgery, Japanese Red Cross Akita Hospital, Akita, Japan
| | - Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Kazuma Fujita
- Department of Pharmacy, Akita University Hospital, Akita, Japan
| | - Yuka Igarashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Naoko Higashijima
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Norikazu Matsuo
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hidetomo Himuro
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Feifei Wei
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Shun Horaguchi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kayoko Tsuji
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Yasunobu Mano
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| | - Mitsuru Komahashi
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Haruhiro Saito
- Department of Respiratory Medicine, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuro Sasada
- Cancer Vaccine and Immunotherapy Center, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Wong H, Sugimura R. Immune-epigenetic crosstalk in haematological malignancies. Front Cell Dev Biol 2023; 11:1233383. [PMID: 37808081 PMCID: PMC10551137 DOI: 10.3389/fcell.2023.1233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Haematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms which can arise during any stage of haematopoiesis in the bone marrow. Accumulating evidence suggests that chronic inflammation generated by inflammatory cytokines secreted by tumour and the tumour-associated cells within the bone marrow microenvironment initiates signalling pathways in malignant cells, resulting in activation of master transcription factors including Smads, STAT3, and NF-κB which confer cancer stem cell phenotypes and drive disease progression. Deciphering the molecular mechanisms for how immune cells interact with malignant cells to induce such epigenetic modifications, specifically DNA methylation, histone modification, expression of miRNAs and lnRNAs to perturbate haematopoiesis could provide new avenues for developing novel targeted therapies for haematological malignancies. Here, the complex positive and negative feedback loops involved in inflammatory cytokine-induced cancer stem cell generation and drug resistance are reviewed to highlight the clinical importance of immune-epigenetic crosstalk in haematological malignancies.
Collapse
Affiliation(s)
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Lee Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
4
|
Quillen D, Hughes TM, Craft S, Howard T, Register T, Suerken C, Hawkins GA, Milligan C. Levels of Soluble Interleukin 6 Receptor and Asp358Ala Are Associated With Cognitive Performance and Alzheimer Disease Biomarkers. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:10/3/e200095. [PMID: 36810164 PMCID: PMC9944616 DOI: 10.1212/nxi.0000000000200095] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) is a neurodegenerative disease process manifesting clinically with cognitive impairment and dementia. AD pathology is complex, and in addition to plaques and tangles, neuroinflammation is a consistent feature. Interleukin (IL) 6 is a multifaceted cytokine involved in a plethora of cellular mechanisms including both anti-inflammatory and inflammatory processes. IL6 can signal classically through the membrane-bound receptor or by IL6 trans-signaling forming a complex with the soluble IL6 receptor (sIL6R) and activating membrane-bound glycoprotein 130 on cells not expressing IL6R. IL6 trans-signaling has been demonstrated as the primary mechanism of IL6-mediated events in neurodegenerative processes. In this study, we performed a cross-sectional analysis to investigate whether inheritance of a genetic variation in the IL6R gene and associated elevated sIL6R levels in plasma and CSF were associated with cognitive performance. METHODS We genotyped the IL6R rs2228145 nonsynonymous variant (Asp358Ala) and assayed IL6 and sIL6R concentrations in paired samples of plasma and CSF obtained from 120 participants with normal cognition, mild cognitive impairment, or probable AD enrolled in the Wake Forest Alzheimer's Disease Research Center's Clinical Core. IL6 rs2228145 genotype and measures of plasma IL6 and sIL6R were assessed for relationships with cognitive status and clinical data, including the Montreal Cognitive Assessment (MoCA), modified Preclinical Alzheimer's Cognitive Composite (mPACC), cognitive domain scores obtained from the Uniform Data Set, and CSF concentrations of phosphoTauT181 (pTau181), β-amyloid (Aβ) Aβ40 and Aβ42 concentrations. RESULTS We found that inheritance of the IL6R Ala358 variant and elevated sIL6R levels in plasma and CSF were correlated with lower mPACC, MoCA and memory domain scores, increases in CSF pTau181, and decreases in the CSF Aβ42/40 ratio in both unadjusted and covariate-adjusted statistical models. DISCUSSION These data suggest that IL6 trans-signaling and the inheritance of the IL6R Ala358 variant are related to reduced cognition and greater levels of biomarkers for AD disease pathology. Follow-up prospective studies are necessary, as patients who inherit IL6R Ala358 may be identified as ideally responsive to IL6 receptor-blocking therapies.
Collapse
Affiliation(s)
- Daniel Quillen
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Timothy M Hughes
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Suzanne Craft
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Timothy Howard
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Thomas Register
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Cynthia Suerken
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Gregory A Hawkins
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine
| | - Carol Milligan
- From the The Neuroscience Program (D.Q., T.M.H., G.A.H., C.M.); Department of Neurobiology and Anatomy (D.Q., C.M.); Department of Internal Medicine, Gerontology and Geriatric Medicine (T.M.H., S.C.); Alzheimer's Disease Research Center (T.M.H., S.C., T.R., C.M.); Department of Biochemistry (T.H., T.R., G.A.H.); and Department of Biostatics and Data Science (C.S.), Wake Forest School of Medicine.
| |
Collapse
|
5
|
Tabikhanova LE, Osipova LP, Churkina TV, Kovalev SS, Filipenko ML, Voronina EN. Increased Frequencies of the ‒174G and ‒572C IL6 Alleles in Populations of Indigenous Peoples of Siberia Compared to Russians. Mol Biol 2023; 57:329-337. [PMID: 37128211 PMCID: PMC10131552 DOI: 10.1134/s002689332302019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 05/03/2023]
Abstract
Abstract-The study of immune response and inflammation gene polymorphisms in a genogeographic context is relevant in the study of human populations. Here, in the indigenous populations of Siberia the frequencies of polymorphic variants ‒174G/C (rs1800795) and ‒572C/G (rs1800796) of the IL6 gene encoding the proinflammatory cytokine IL-6 were determined. For the first time, it was shown that the frequencies of the ‒174G and ‒572C alleles, which determine increased inflammatory response and are also associated with several diseases were statistically significantly higher in ethnic groups of Buryats, Teleuts, Yakuts, Dolgans and Tuvinians than in Russians living in Siberia. These values were in the intermediate position between those in the European and East-Asian groups. We hypothesize an adaptive role of these IL6 genetic variants in human settlement from Africa to the Eurasian continent. However, due to the departure from the traditional way of life and the increasing anthropogenic environmental pollution, the risk of diseases whose pathogenesis is based on inflammation in indigenous Siberian populations is likely increased.
Collapse
Affiliation(s)
- L. E. Tabikhanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - L. P. Osipova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - T. V. Churkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - S. S. Kovalev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - M. L. Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - E. N. Voronina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Gandhi M, Bakhai V, Trivedi J, Mishra A, De Andrés F, LLerena A, Sharma R, Nair S. Current perspectives on interethnic variability in multiple myeloma: Single cell technology, population pharmacogenetics and molecular signal transduction. Transl Oncol 2022; 25:101532. [PMID: 36103755 PMCID: PMC9478452 DOI: 10.1016/j.tranon.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
This review discusses the emerging single cell technologies and applications in Multiple myeloma (MM), population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction. The role(s) of epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of MM are also discussed. It is understood that ethnic component acts as a driver of variable response to chemotherapy in different sub-populations globally. This review augments our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, myeloma microenvironment at the molecular and cellular level, and developing precision medicine strategies to combat this malignancy. The emerging single cell technologies hold great promise for enhancing our understanding of MM tumor heterogeneity and clonal diversity.
Multiple myeloma (MM) is an aggressive cancer characterised by malignancy of the plasma cells and a rising global incidence. The gold standard for optimum response is aggressive chemotherapy followed by autologous stem cell transplantation (ASCT). However, majority of the patients are above 60 years and this presents the clinician with complications such as ineligibility for ASCT, frailty, drug-induced toxicity and differential/partial response to treatment. The latter is partly driven by heterogenous genotypes of the disease in different subpopulations. In this review, we discuss emerging single cell technologies and applications in MM, population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction, as well as the role(s) played by epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of the disease. Taken together, our discussions further our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, augment our understanding of the myeloma microenvironment at the molecular and cellular level and provide a basis for developing precision medicine strategies to combat this malignancy.
Collapse
Affiliation(s)
- Manav Gandhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Viral Bakhai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Jash Trivedi
- University of Mumbai, Santa Cruz, Mumbai 400055, India
| | - Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Fernando De Andrés
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Sujit Nair
- University of Mumbai, Santa Cruz, Mumbai 400055, India.
| |
Collapse
|
7
|
Co-Occurrence of Interleukin-6 Receptor Asp358Ala Variant and High Plasma Levels of IL-6: An Evidence of IL-6 Trans-Signaling Activation in Deep Vein Thrombosis (DVT) Patients. Biomolecules 2022; 12:biom12050681. [PMID: 35625609 PMCID: PMC9138210 DOI: 10.3390/biom12050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in several mechanisms, and the alteration of IL-6 signaling leads to the overactivation of various processes including immunity, inflammation, and hemostasis. Although IL-6 increase has been documented in venous thromboembolic diseases, the exact involvement of IL-6 signaling in deep vein thrombosis (DVT) has not been fully understood. Consequently, we investigated the involvement of IL-6 trans-signaling in inflammatory events occurring in DVT, focusing on the role of the interleukin-6 receptor (IL6-R) Asp358Ala variant. The circulating levels of IL-6, soluble IL6-R (sIL6-R), and soluble glycoprotein 130, as well as the Asp358Ala genotyping, were assessed in a consecutive cohort of DVT patients and healthy controls. The results indicated that IL-6 was higher in DVT compared to controls. Moreover, sIL6-R levels were strongly correlated to Asp358Ala variant in both groups, showing a high frequency of this mutation across all samples. Interestingly, our results showed a high frequency of both Asp358Ala mutation and raised IL-6 levels in DVT patients (OR = 21.32; p ≤ 0.01), highlighting that this mutation could explain the association between IL-6 overactivation and DVT outcome. Overall, this study represents a proof of concept for the targeting of IL-6 trans-signaling as a new strategy for the DVT adjuvant therapy.
Collapse
|
8
|
Morrow RJ, Allam AH, Yeo B, Deb S, Murone C, Lim E, Johnstone CN, Ernst M. Paracrine IL-6 Signaling Confers Proliferation between Heterogeneous Inflammatory Breast Cancer Sub-Clones. Cancers (Basel) 2022; 14:cancers14092292. [PMID: 35565421 PMCID: PMC9105876 DOI: 10.3390/cancers14092292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary This study provides novel mechanistic insights into the capacity of the inflammatory cytokine IL-6 and its associated STAT3-dependent signaling pathway to stimulate proliferation in trans between individual sub-clones in a model of heterogeneity in inflammatory breast cancer. The clinical relevance of this discovery is provided by our observation that proliferation of the IL-6 responsive subclone is sensitive to inhibition with the clinically approved anti-IL-6 receptor humanized monoclonal antibody Tocilizumab. These findings therefore provide a rationale for potentially repurposing Tocilizumab for the treatment of a subset of inflammatory breast cancer patients. Abstract Inflammatory breast cancer (IBC) describes a highly aggressive form of breast cancer of diverse molecular subtypes and clonal heterogeneity across individual tumors. Accordingly, IBC is recognized by its clinical signs of inflammation, associated with expression of interleukin (IL)-6 and other inflammatory cytokines. Here, we investigate whether sub-clonal differences between expression of components of the IL-6 signaling cascade reveal a novel role for IL-6 to mediate a proliferative response in trans using two prototypical IBC cell lines. We find that SUM149 and SUM 190 cells faithfully replicate differential expression observed in a subset of human IBC specimens between IL-6, the activated form of the key downstream transcription factor STAT3, and of the HER2 receptor. Surprisingly, the high level of IL-6 produced by SUM149 cells activates STAT3 and stimulates proliferation in SUM190 cells, but not in SUM149 cells with low IL-6R expression. Importantly, SUM149 conditioned medium or co-culture with SUM149 cells induced growth of SUM190 cells, and this effect was abrogated by the IL-6R neutralizing antibody Tocilizumab. The results suggest a novel function for inter-clonal IL-6 signaling in IBC, whereby IL-6 promotes in trans proliferation of IL-6R and HER2-expressing responsive sub-clones and, therefore, may provide a vulnerability that can be exploited therapeutically by repurposing of a clinically approved antibody.
Collapse
Affiliation(s)
- Riley J. Morrow
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Amr H. Allam
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Belinda Yeo
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Siddhartha Deb
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Carmel Murone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- Department of Anatomical Pathology, Austin Hospital, 145 Studley Rd, Heidelberg, VIC 3084, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Clinical Medicine, University of New South Wales, Randwick, NSW 2052, Australia
| | - Cameron N. Johnstone
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, 145 Studley Rd, Heidelberg, VIC 3084, Australia; (R.J.M.); (A.H.A.); (B.Y.); (S.D.); (C.M.); (C.N.J.)
- La Trobe University School of Cancer Medicine, 145 Studley Rd, Heidelberg, VIC 3084, Australia
- Correspondence: ; Tel.: +61-3-9496-9775
| |
Collapse
|
9
|
ILF2 enhances the DNA cytosine deaminase activity of tumor mutator APOBEC3B in multiple myeloma cells. Sci Rep 2022; 12:2278. [PMID: 35145187 PMCID: PMC8831623 DOI: 10.1038/s41598-022-06226-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Abstract
DNA cytosine deaminase APOBEC3B (A3B) is an endogenous source of mutations in many human cancers, including multiple myeloma. A3B proteins form catalytically inactive high molecular mass (HMM) complexes in nuclei, however, the regulatory mechanisms of A3B deaminase activity in HMM complexes are still unclear. Here, we performed mass spectrometry analysis of A3B-interacting proteins from nuclear extracts of myeloma cell lines and identified 30 putative interacting proteins. These proteins are involved in RNA metabolism, including RNA binding, mRNA splicing, translation, and regulation of gene expression. Except for SAFB, these proteins interact with A3B in an RNA-dependent manner. Most of these interacting proteins are detected in A3B HMM complexes by density gradient sedimentation assays. We focused on two interacting proteins, ILF2 and SAFB. We found that overexpressed ILF2 enhanced the deaminase activity of A3B by 30%, while SAFB did not. Additionally, siRNA-mediated knockdown of ILF2 suppressed A3B deaminase activity by 30% in HEK293T cell lysates. Based on these findings, we conclude that ILF2 can interact with A3B and enhance its deaminase activity in HMM complexes.
Collapse
|
10
|
Schumertl T, Lokau J, Rose-John S, Garbers C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119143. [PMID: 34626681 DOI: 10.1016/j.bbamcr.2021.119143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is involved in numerous physiological and pathophysiological functions that include development, immune cell differentiation, inflammation and cancer. IL-6 can signal via the membrane-bound IL-6 receptor (IL-6R, classic signaling) or via soluble forms of the IL-6R (sIL-6R, trans-signaling). Both modes of signaling induce the formation of a homodimer of the signal transducing β-receptor glycoprotein 130 (gp130) and the activation of several intracellular signaling cascades, e.g. the Jak/STAT pathway. Intriguingly, only IL-6 trans-signaling is required for the pro-inflammatory properties of IL-6, while regenerative and anti-inflammatory functions are mediated via classic signaling. The sIL-6R is generated by different molecular mechanisms, including alternative mRNA splicing, proteolysis of the membrane-bound IL-6R and the release of extracellular vesicles. In this review, we give an in-depth overview on these molecular mechanisms with a special emphasize on IL-6R cleavage by the metalloprotease ADAM17 and other proteases. We discuss the biological functions of the sIL-6R and highlight attempts to selectively block IL-6 trans-signaling in pre-clinical animal models as well as in clinical studies in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
11
|
Xu H, Liu J, Niu M, Song S, Wei L, Chen G, Ding Y, Wang Y, Su Z, Wang H. Soluble IL-6R-mediated IL-6 trans-signaling activation contributes to the pathological development of psoriasis. J Mol Med (Berl) 2021; 99:1009-1020. [PMID: 33835216 DOI: 10.1007/s00109-021-02073-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
IL-6 has been suggested to function as an autocrine mitogen in the psoriatic epidermis. The biological activity of IL-6 relies on interactions with its receptors, including the membrane-bound IL-6 receptor (mIL-6R) and soluble IL-6 receptor (sIL-6R). Our study presents data showing that the levels of plasma IL-6 and sIL-6R were elevated in psoriatic patients. Genotyping of two single-nucleotide polymorphisms (SNPs) in IL-6R (rs4845617 and rs2228145) demonstrated that the SNP IL-6R (rs4845617) rather than IL-6R (rs2228145) shows a significant association with psoriasis (P = 0.006). To verify the functions of sIL-6R, cultured keratinocytes and imiquimod (IMQ)-induced psoriatic model mice were treated with sIL-6R. We found that the presence of sIL-6R in the HaCaT cell culture medium enhanced the IL-6-induced Stat3 activation, which resulted in abnormal keratinocyte proliferation and aberrant differentiation. Furthermore, the application of sIL-6R in vivo accelerated the pathological development of the disease. Our results demonstrate for the first time that genetic polymorphisms in the IL-6R gene are associated with psoriasis disease phenotypes in a Chinese psoriatic patient population; sIL-6R-mediated trans-signaling pathway plays a pivotal role in keratinocyte proliferation and differentiation, suggesting potential therapeutics for psoriasis. KEY MESSAGES: Patients with psoriasis displayed higher levels of IL-6 and sIL-6R compared with healthy controls. Analysis of genotypes revealed that IL-6R rs4845617 GG genotype associated with the risk of psoriasis. Supplement of sIL-6R further enhanced IL-6-induced Stat3 activation in keratinocytes. In vivo administration of sIL-6R accelerated, whereas sgp130FC alleviated, the pathological development of psoriasis.
Collapse
Affiliation(s)
- Hui Xu
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Jun Liu
- Department of Dermatology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, China
| | - Mengyuan Niu
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Shiyu Song
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Lulu Wei
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Gang Chen
- Department of Esthetic Plastic Surgery, The First Affiliated Hospital of Nanjing University of TCM, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yibing Ding
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Yong Wang
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Hongwei Wang
- Center for Translational Medicine, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
12
|
Schmidt TM, Fonseca R, Usmani SZ. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J 2021; 11:83. [PMID: 33927196 PMCID: PMC8085148 DOI: 10.1038/s41408-021-00474-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Gain of chromosome 1q (+1q) is one of the most common recurrent cytogenetic abnormalities in multiple myeloma (MM), occurring in approximately 40% of newly diagnosed cases. Although it is often considered a poor prognostic marker in MM, +1q has not been uniformly adopted as a high-risk cytogenetic abnormality in guidelines. Controversy exists regarding the importance of copy number, as well as whether +1q is itself a driver of poor outcomes or merely a common passenger genetic abnormality in biologically unstable disease. Although the identification of a clear pathogenic mechanism from +1q remains elusive, many genes at the 1q21 locus have been proposed to cause early progression and resistance to anti-myeloma therapy. The plethora of potential drivers suggests that +1q is not only a causative factor or poor outcomes in MM but may be targetable and/or predictive of response to novel therapies. This review will summarize our current understanding of the pathogenesis of +1q in plasma cell neoplasms, the impact of 1q copy number, identify potential genetic drivers of poor outcomes within this subset, and attempt to clarify its clinical significance and implications for the management of patients with multiple myeloma.
Collapse
Affiliation(s)
| | - Rafael Fonseca
- Department of Hematology, Mayo Clinic, Scottsdale, AZ, USA
| | - Saad Z Usmani
- Plasma Cell Disorders Division, Levine Cancer Institute/Atrium Health, Charlotte, NC, USA.
| |
Collapse
|
13
|
Hanamura I. Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020256. [PMID: 33445467 PMCID: PMC7827173 DOI: 10.3390/cancers13020256] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy. Gain/amplification of chromosome arm 1q21 (1q21+) is the most common adverse genomic abnormality associated with disease progression and drug resistance. While possible mechanisms of 1q21+ occurrence and candidate genes in the 1q21 amplicon have been suggested, the precise pathogenesis of MM with 1q21+ is unknown. Herein, we review the current knowledge about the clinicopathological features of 1q21+ MM, which can assist in effective therapeutic approaches for MM patients with 1q21+. Abstract Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy characterized by complex genetic and prognostic heterogeneity. Gain or amplification of chromosome arm 1q21 (1q21+) is the most frequent adverse chromosomal aberration in MM, occurring in 40% of patients at diagnosis. It occurs in a subclone of the tumor as a secondary genomic event and is more amplified as the tumor progresses and a risk factor for the progression from smoldering multiple myeloma to MM. It can be divided into either 1q21 gain (3 copies) or 1q21 amplification (≥4 copies), and it has been suggested that the prognosis is worse in cases of amplification than gain. Trisomy of chromosome 1, jumping whole-arm translocations of chromosome1q, and tandem duplications lead to 1q21+ suggesting that its occurrence is not consistent at the genomic level. Many studies have reported that genes associated with the malignant phenotype of MM are situated on the 1q21 amplicon, including CKS1B, PSMD4, MCL1, ANP32E, and others. In this paper, we review the current knowledge regarding the clinical features, prognostic implications, and the speculated pathology of 1q21+ in MM, which can provide clues for an effective treatment approach to MM patients with 1q21+.
Collapse
Affiliation(s)
- Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
14
|
Brábek J, Jakubek M, Vellieux F, Novotný J, Kolář M, Lacina L, Szabo P, Strnadová K, Rösel D, Dvořánková B, Smetana K. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int J Mol Sci 2020; 21:ijms21217937. [PMID: 33114676 PMCID: PMC7662856 DOI: 10.3390/ijms21217937] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.
Collapse
Affiliation(s)
- Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic; (J.B.); (D.R.)
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
| | - Milan Jakubek
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, 166 28 Praha 6, Czech Republic
| | - Fréderic Vellieux
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Novotný
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague 4, Czech Republic
| | - Michal Kolář
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences, 140 00 Prague 4, Czech Republic
| | - Lukáš Lacina
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague 2, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Karolína Strnadová
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic; (J.B.); (D.R.)
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
| | - Barbora Dvořánková
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Karel Smetana
- Centre for Tumour Ecology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (M.J.); (F.V.); (J.N.); (M.K.); (L.L.); (K.S.); (B.D.)
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Institute of Anatomy, Fist Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
- Correspondence: ; Tel.: +420-224-965-873
| |
Collapse
|
15
|
Shahzad MN, Ijaz I, Naqvi SSZH, Yan C, Lin F, Li S, Huang C. Association between interleukin gene polymorphisms and multiple myeloma susceptibility. Mol Clin Oncol 2020; 12:212-224. [PMID: 32064097 PMCID: PMC7016519 DOI: 10.3892/mco.2020.1979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
The present study performed a retrospective observational study in order to investigate the relationship between the interleukin family gene polymorphisms and risk of multiple myeloma (MM), based on sixteen case-control studies that contained 2,597 patients with MM and 3,851 controls. The results demonstrated that the genotypes IL-6 and IL-1 GG increased the risk of MM by approximately 40.8 and 80.2% compared with the genotypes AA and CC [odds ratio (OR)=1.14, 95% confidence interval (CI), 0.88-1.47, and OR=1.16, 95% CI, 0.61-2.19; respectively]. The results also revealed a significant association between T:C polymorphism of the IL-6 and IL-10 and the risk of MM (TC/CC: OR=1.37, 95% CI, 0.88-2.16 and TT/CC: OR=1.26, 95% CI, 0.77-2.06, respectively). Additionally, no significant association was identified between the C:A polymorphisms of the IL-6 (rs8192284) and IL-10 (rs1800872) receptors and the overall risk of MM (P>0.05). G:C polymorphisms of the IL-1β1464G>C and IL-6572G>C significantly increased the risk of MM (P<0.05). However, it has been determined that there is a significant association between the C:T polymorphism of the IL-1α-889C>T and IL-1β-3737C>T and the risk of MM (P<0.001). Subgroup analysis revealed that the detection of G:A polymorphisms in the IL-6 promoter (OR=1.05, 95% CI, 0.78-1.44) is more accurate in MM samples of the Asian population (OR=1.24, 95% CI, 0.92-1.74). In addition, no significant association was identified between the IL gene polymorphisms in MM samples categorized by ethnicity and the IL family type (P=0.27). These single nucleotide polymorphism loci may be the appropriate gene markers for gene screening and a promising therapeutic strategy in the prognostics of patients with MM.
Collapse
Affiliation(s)
- Muhamaad Naveed Shahzad
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Iqra Ijaz
- Sino-German Department for The Treatment of Ovarian Tumors, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Syed Shah Zaman Haider Naqvi
- Department of Diabetes and Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cheng Yan
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fanli Lin
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shutan Li
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunlan Huang
- Stem Cell Laboratory, Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Huang X, Ye Q, Zhu Z, Chen W, Chen Y, Li J, Chen S, Xia N, Huang X, Ye Z. Polymorphism of IL6 receptor gene is associated with ischaemic stroke in patients with metabolic syndrome. Brain Res 2019; 1728:146594. [PMID: 31836512 DOI: 10.1016/j.brainres.2019.146594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 11/19/2022]
Abstract
The interleukin 6 receptor (IL6R) gene has been shown to locate in the chromosome 1q21 associated with metabolic syndrome (MetS), a condition related to the augmented risk of ischaemic stroke (IS), cardiovascular diseases and all-cause mortality. The aim of this study was to assess the relationship between IL6R gene polymorphisms and IS in patients with MetS in the Chinese Han population. We designed a case-control study enrolling 447 patients with MetS plus IS and 438 patients with MetS alone. Tag single nucleotide polymorphisms (SNPs) of the IL6R gene were determined by a fine-mapping strategy and genotyped using SNPscan technology. A logistic regression model was used to analzse the associations between the genetic variations in IL6R and the risk of IS in MetS patients. The linkage disequilibrium (LD) analysis was performed and four gamete rules were used to define the block. The haplotypes was reconstructed by the SNPstats software. Two SNPs were significantly related to the risk of IS in MetS patients after adjusting for potential confounders as follows: regarding rs12083537, the GG genotype and the GA genotype decreased the risk of IS in the MetS patients compared with the IS risk in the patients with the AA genotype (multivariate-adjusted, P = 0.005); and regarding rs8192284, the CC genotype and the AC genotype decreased the risk of IS compared with the IS risk in the patients with the AA genotype (multivariate-adjusted, P = 0.004). Strong LD was existed in block 2 and the haplotype analysis showed that compared with the ACCG haplotype, the ATCT haplotype (adjusted OR 1.700; 95% CI 1.246-2.319; P = 0.001) increased the risk of IS in the MetS patients. The analysis of the SNP-SNP interactions showed that rs8192284 was the most influential contributor to the risk of IS in the MetS patients. Our results indicate that rs12083537 and rs8192284 in the IL6R gene might be related to the risk of IS in MetS patients.
Collapse
Affiliation(s)
- Xiaoya Huang
- Department of Neurology, Wenzhou Central Hospital & Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Qiang Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenguo Zhu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wei Chen
- Department of Radiology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yanyan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Siyan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Niange Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiangdong Huang
- Department of Neurology, Wenzhou Central Hospital & Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Zusen Ye
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
17
|
Wosiski-Kuhn M, Robinson M, Strupe J, Arounleut P, Martin M, Caress J, Cartwright M, Bowser R, Cudkowicz M, Langefeld C, Hawkins GA, Milligan C. IL6 receptor 358Ala variant and trans-signaling are disease modifiers in amyotrophic lateral sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e631. [PMID: 31611269 PMCID: PMC6865852 DOI: 10.1212/nxi.0000000000000631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Objective To test the hypothesis that patients with amyotrophic lateral sclerosis (ALS) inheriting the common interleukin 6 receptor (IL6R) coding variant (Asp358Ala, rs2228145, C allele) have associated increases in interleukin 6 (IL6) and IL6R levels in serum and CSF and faster disease progression than noncarriers. Methods An observational, case-control study of paired serum and CSF of 47 patients with ALS, 46 healthy, and 23 neurologic disease controls from the Northeastern ALS Consortium Biofluid Repository (cohort 1) was performed to determine serum levels of IL6, sIL6R, and soluble glycoprotein 130 and compared across groups and IL6R genotype. Clinical data regarding disease progression from a separate cohort of 35 patients with ALS from the Wake Forest ALS Center (cohort 2) were used to determine change in ALSFRS-R scores by genotype. Results Patients with ALS had increased CSF IL6 levels compared with healthy (p < 0.001) and neurologic (p = 0.021) controls. Patients with ALS also had increased serum IL6 compared with healthy (p = 0.040) but not neurologic controls. Additive allelic increases in serum IL6R were observed in all groups (average increase of 52% with the presence of the IL6R C allele; p < 0.001). However, only subjects with ALS had significantly increased CSF sIL6R levels compared with controls (p < 0.001). When compared across genotypes, only patients with ALS inheriting the IL6R C allele exhibit increased CSF IL6. ALSFRS-R scores decreased more in patients with ALS with the IL6R C allele than in those without (p = 0.019). Conclusions Theses results suggest that for individuals inheriting the IL6R C allele, the cytokine exerts a disease- and location-specific role in ALS. Follow-up, prospective studies are necessary, as this subgroup of patients may be identified as ideally responsive to IL6 receptor–blocking therapies.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Mac Robinson
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Jane Strupe
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Phonepasong Arounleut
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Matthew Martin
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - James Caress
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Michael Cartwright
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Robert Bowser
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Merit Cudkowicz
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Carl Langefeld
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Gregory A Hawkins
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH
| | - Carol Milligan
- From the Department of Neurobiology and Anatomy (M.W.-K., M.R., J.S., P.A., M.M., C.M.); Department of Neurology (J.C., M. Cartwright); and Department of Biochemistry (G.A.H.), Wake Forest School of Medicine; Division of Public Health (C.L.), Department of Biostatistical Sciences, Wake Forest School of Medicine; Departments of Neurology and Neurobiology (R.B.), Barrow Neurological Institute & St. Joseph's Hospital and Medical Center; Department of Neurology (M. Cudkowicz), Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School; and Current Address Department of Pediatrics (M.M.), Nationwide Children's Hospital, Columbus OH.
| |
Collapse
|
18
|
Revez JA, Bain LM, Watson RM, Towers M, Collins T, Killian KJ, O'Byrne PM, Gauvreau GM, Upham JW, Ferreira MA. Effects of interleukin-6 receptor blockade on allergen-induced airway responses in mild asthmatics. Clin Transl Immunology 2019; 8:e1044. [PMID: 31223480 PMCID: PMC6566140 DOI: 10.1002/cti2.1044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/12/2023] Open
Abstract
Background Interleukin (IL)-6 signalling has been implicated in allergic asthma by animal, genetic association and clinical studies. In this study, we tested the hypothesis that tocilizumab (TCZ), a human monoclonal antibody that blocks IL-6 signalling, can prevent the development of allergen-induced bronchoconstriction in humans. Methods We performed a randomised, double-blind, placebo-controlled study, with eligible participants completing two allergen inhalation challenge tests, conducted before and after treatment with a single dose of TCZ or placebo. The primary efficacy endpoint was the magnitude of the late asthmatic response recorded between 3 and 7 after allergen challenge. The secondary efficacy endpoint was the early asthmatic response, measured 20 min to 2 h after allergen challenge. Results A total of 66 patients enrolled between September 2014 and August 2017, when the trial was stopped for futility based on results from an interim analysis. Eleven patients fulfilled all eligibility criteria assessed at baseline and were subsequently randomised to the TCZ (n = 6) or placebo (n = 5) groups. Both the primary and secondary efficacy endpoints were not significantly different between the two groups. Five patients reported adverse events (AEs), three in the TCZ group (11 AEs) and two in the placebo group (four AEs). Only one AE was TCZ-related (mild neutropenia), and there were no serious AEs. Significant treatment effects were observed for serum levels of C-reactive protein, IL-6 and soluble IL-6R levels. Conclusion In a small proof-of-concept clinical trial, we found no evidence that a single dose of tocilizumab was able to prevent allergen-induced bronchoconstriction. (Trial registered in the Australian New Zealand Clinical Trials Registry, number ACTRN12614000123640).
Collapse
Affiliation(s)
- Joana A Revez
- QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Lisa M Bain
- QIMR Berghofer Medical Research Institute Brisbane QLD Australia
| | - Rick M Watson
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Michelle Towers
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | - Tina Collins
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | - Kieran J Killian
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Paul M O'Byrne
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - Gail M Gauvreau
- Division of Respirology Department of Medicine McMaster University Hamilton ON Canada
| | - John W Upham
- Diamantina Institute University of Queensland Brisbane QLD Australia
| | | |
Collapse
|
19
|
Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer. Pathol Res Pract 2019; 215:152410. [PMID: 30992230 DOI: 10.1016/j.prp.2019.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/23/2022]
Abstract
Proteolytic cleavage of transmembrane proteins is an important post-translational modification that regulates the biological function of numerous transmembrane proteins. Among the 560 proteases encoded in the human genome, the metalloprotease A Disintegrin and Metalloprotease 17 (ADAM17) has gained much attention in recent years and has emerged as a central regulatory hub in inflammation, immunity and cancer development. In order to do so, ADAM17 cleaves a variety of substrates, among them the interleukin-6 receptor (IL-6R), the pro-inflammatory cytokine tumor necrosis factor α (TNFα) and most ligands of the epidermal growth factor receptor (EGFR). This review article provides an overview of the functions of ADAM17 with a special focus on its cellular regulation. It highlights the importance of ADAM17 to understand the biology of IL-6 and TNFα and their role in inflammatory diseases. Finally, the role of ADAM17 in the formation and progression of different tumor entities is discussed.
Collapse
Affiliation(s)
- Stefan Düsterhöft
- Institute for Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
20
|
Lokau J, Garbers C. Activating mutations of the gp130/JAK/STAT pathway in human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 116:283-309. [PMID: 31036294 DOI: 10.1016/bs.apcsb.2018.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family are involved in numerous physiological and pathophysiological processes. Dysregulated and increased activities of its members can be found in practically all human inflammatory diseases including cancer. All cytokines activate several intracellular signaling cascades, including the Jak/STAT, MAPK, PI3K, and Src/YAP signaling pathways. Additionally, several mutations in proteins involved in these signaling cascades have been identified in human patients, which render these proteins constitutively active and result in a hyperactivation of the signaling pathway. Interestingly, some of these mutations are associated with or even causative for distinct human diseases, making them interesting targets for therapy. This chapter describes the basic biology of the gp130/Jak/STAT pathway, summarizes what is known about the molecular mechanisms of the activating mutations, and gives an outlook how this knowledge can be exploited for targeted therapy in human diseases.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
21
|
Ishibashi M, Soeda S, Sasaki M, Handa H, Imai Y, Tanaka N, Tanosaki S, Ito S, Odajima T, Sugimori H, Asayama T, Sunakawa M, Kaito Y, Kinoshita R, Kuribayashi Y, Onodera A, Moriya K, Tanaka J, Tsukune Y, Komatsu N, Inokuchi K, Tamura H. Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget 2018; 9:34784-34793. [PMID: 30410677 PMCID: PMC6205184 DOI: 10.18632/oncotarget.26196] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022] Open
Abstract
The signaling lymphocytic activation molecule family (SLAMF7; also known as CS1 or CD319) is highly expressed on plasma cells from multiple myeloma (MM) as well as natural killer (NK) cells and is a well-known therapeutic target of elotuzumab. The objective of this study was to evaluate the clinical significance of serum soluble SLAMF7 (sSLAMF7) levels in patients with MM (n=103) and furthermore the impact of sSLMF7 on the antitumor activity of anti-SLAMF7 antibody. Thirty-one percent of MM patients, but not patients with monoclonal gammopathy of undetermined significance and healthy controls, had detectable levels of serum sSLAMF7, which were significantly increased in advanced MM patients. Further, MM in sSLAMF7-postive patients exhibited aggressive clinical characteristics with shorter progression-free survival times in comparison with sSLAMF7-negative patients. In responders to MM therapy, the levels of sSLAMF7 were undetectable or decreased compared with those before treatment. In addition, the anti-SLAMF7 antibody-mediated antibody-dependent cellular cytotoxicity of NK cells against MM cell lines was inhibited by recombinant SLAMF7 protein. Thus, our findings suggest that high concentrations of sSLAMF7, which could transiently suppress the therapeutic effects of elotuzumab, may be a useful indicator of disease progression in MM patients.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Saori Soeda
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Makoto Sasaki
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Sakae Tanosaki
- Department of Hematology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shigeki Ito
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Takeshi Odajima
- Faculty of Health Science, Daito Bunka University Graduate School of Sports and Health Science, Tokyo, Japan
| | - Hiroki Sugimori
- Department of Preventive Medicine, Daito Bunka University Graduate School of Sports and Health Science, Saitama, Japan
| | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | | | - Asaka Onodera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Tsukune
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
22
|
John S, Sharma N, Sborov DW, Williams N, Jones D, Benson DM, Efebera YA, Rosko AE, Vincent J, Hofmeister CC. Most multiple myeloma patients have low testosterone. Leuk Lymphoma 2018; 60:836-838. [PMID: 30277092 DOI: 10.1080/10428194.2018.1508664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sonya John
- a College of Medicine , The Ohio State University , Columbus , OH , USA
| | - Nidhi Sharma
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Douglas W Sborov
- c Division of Hematology & Hematologic Malignancies, Department of Internal Medicine , Huntsman Cancer Institute University of Utah , Salt Lake City , UT , USA
| | - Nita Williams
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Desirée Jones
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Don M Benson
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Yvonne A Efebera
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Ashley E Rosko
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Jennifer Vincent
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Craig C Hofmeister
- b Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
23
|
Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche. Oncotarget 2018; 7:56013-56029. [PMID: 27463014 PMCID: PMC5302893 DOI: 10.18632/oncotarget.10820] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma cell growth relies on intrinsic aggressiveness, due to a high karyotypic instability, or on the support from bone marrow (BM) niche. We and other groups have provided evidences that Notch signaling is related to tumor cell growth, pharmacological resistance, localization/recirculation in the BM and bone disease. This study indicates that high gene expression levels of Notch signaling members (JAG1, NOTCH2, HES5 and HES6) correlate with malignant progression or high-risk disease, and Notch signaling may participate in myeloma progression by increasing the BM levels of interleukin-6 (IL-6), a major player in myeloma cell growth and survival. Indeed, in vitro results, confirmed by correlation analysis on gene expression profiles of myeloma patients and immunohistochemical studies, demonstrated that Notch signaling controls IL-6 gene expression in those myeloma cells capable of IL-6 autonomous production as well as in surrounding BM stromal cells. In both cases Notch signaling activation may be triggered by myeloma cell-derived Jagged ligands. The evidence that Notch signaling positively controls IL-6 in the myeloma-associated BM makes this pathway a key mediator of tumor-directed reprogramming of the bone niche. This work strengthens the rationale for a novel Notch-directed therapy in multiple myeloma based on the inhibition of Jagged ligands.
Collapse
|
24
|
Tsukamoto H, Fujieda K, Senju S, Ikeda T, Oshiumi H, Nishimura Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci 2017; 109:523-530. [PMID: 29090850 PMCID: PMC5834784 DOI: 10.1111/cas.13433] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
Accompanied by the growing clinical applications of immunotherapy in the treatment of cancer patients, development of novel therapeutic approaches to reverse the immune-suppressive environment in cancer patients is eagerly anticipated, because the success of cancer immunotherapy is currently limited by immune-suppressive effects in tumor-bearing hosts. Interleukin (IL)-6, a pleotropic proinflammatory cytokine, participates in tumor cell-autonomous processes that are required for their survival and growth, and is therefore known as a poor prognostic factor in cancer patients. In addition, an emerging role of IL-6 in modulating multiple functions of immune cells including T cells, dendritic cells, and macrophages is responsible for the dysfunction of innate and adaptive immunity against tumors. Therefore, the IL-6-targeting approach is of value as a promising strategy for desensitization and prevention of immune-suppressive effects, and should be an effective treatment when combined with current immunotherapies. The aim of the present review is to discuss the immune-suppressive aspects of IL-6, notably with modification of T-cell functions in cancer patients, and their relationship to anti-tumor immune responses and cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Fujieda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Nishimura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Tsukamoto H, Fujieda K, Senju S, Ikeda T, Oshiumi H, Nishimura Y. Immune-suppressive effects of interleukin-6 on T-cell-mediated anti-tumor immunity. Cancer Sci 2017. [PMID: 29090850 DOI: 10.1111/cas.13433.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Accompanied by the growing clinical applications of immunotherapy in the treatment of cancer patients, development of novel therapeutic approaches to reverse the immune-suppressive environment in cancer patients is eagerly anticipated, because the success of cancer immunotherapy is currently limited by immune-suppressive effects in tumor-bearing hosts. Interleukin (IL)-6, a pleotropic proinflammatory cytokine, participates in tumor cell-autonomous processes that are required for their survival and growth, and is therefore known as a poor prognostic factor in cancer patients. In addition, an emerging role of IL-6 in modulating multiple functions of immune cells including T cells, dendritic cells, and macrophages is responsible for the dysfunction of innate and adaptive immunity against tumors. Therefore, the IL-6-targeting approach is of value as a promising strategy for desensitization and prevention of immune-suppressive effects, and should be an effective treatment when combined with current immunotherapies. The aim of the present review is to discuss the immune-suppressive aspects of IL-6, notably with modification of T-cell functions in cancer patients, and their relationship to anti-tumor immune responses and cancer immunotherapy.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Fujieda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Investigation, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Nishimura Project Laboratory, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I, Fulciniti MT, Mistry N, Jiang S, Bao N, Marchica V, Neri A, Bueso-Ramos C, Wu CJ, Zhang L, Liang H, Peng X, Giuliani N, Draetta G, Clise-Dwyer K, Kantarjian H, Munshi N, Orlowski R, Garcia-Manero G, DePinho RA, Colla S. ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell 2017; 32:88-100.e6. [PMID: 28669490 PMCID: PMC5593798 DOI: 10.1016/j.ccell.2017.05.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.
Collapse
Affiliation(s)
- Matteo Marchesini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yamini Ogoti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elena Fiorini
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil Aktas Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Luigi Nezi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marianna D'Anca
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Storti
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Mehmet Kemal Samur
- Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Teresa Fulciniti
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Nipun Mistry
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naran Bao
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valentina Marchica
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milano, Milan 20122, Italy
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xinxin Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Giuliani
- Department of Clinical and Experimental Medicine, University of Parma, Parma 43100, Italy
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Munshi
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Robert Orlowski
- Department of Lymphoma/Myeloma, The University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
27
|
Zhang JZ, Liu CM, Peng HP, Zhang Y. Association of genetic variations in IL-6/IL-6R pathway genes with gastric cancer risk in a Chinese population. Gene 2017; 623:1-4. [PMID: 28442395 DOI: 10.1016/j.gene.2017.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/04/2017] [Accepted: 04/21/2017] [Indexed: 01/18/2023]
Abstract
Interleukin-6 (IL-6) and its receptor (IL-6R) were regarded to be responsible for the occurrence of gastric cancer for their regulation roles in the inflammation. The genetic variations in these two genes (IL-6: rs6949149, rs1800796, rs10499563 and IL-6R: rs2228145) have been suggested to be associated with gastric cancer risk. However, the published results were inconsistent among subjects of different ethnicity. To evaluate such an association in Chinese population, we carried out this case-control study based on 473 patients with gastric cancer and 474 healthy controls, whose genotypes were detected by the Sequenom MassARRAY platform, and Helicobacter pylori infection was assessed by immunogold testing kit. This study showed that rs1800796 CG genotype was associated with decreased risk of gastric cancer (adjusted OR=0.75, 95% CI: 0.57-0.99, p=0.043). The stratified analysis revealed that, in the Helicobacter pylori negative infection subgroup, rs2228145 AC (adjusted OR=0.64, 95% CI: 0.42-0.97) and AC/CC (adjusted OR=0.66, 95% CI: 0.45-0.99) genotypes were associated with decreased risk of gastric cancer, respectively. In contrast, in the Helicobacter pylori positive infection subgroup, rs10499563 TC (adjusted OR=0.64, 95% CI: 0.43-0.95), CC (adjusted OR=0.35, 95% CI: 0.14-0.90), TC/CC (adjusted OR=0.59, 95% CI: 0.40-0.87) genotype were associated with decreased gastric cancer risk, respectively. Moreover, in the male subgroup, rs1800796 CG (adjusted OR=0.61, 95% CI: 0.44-0.84) and CG/GG (adjusted OR=0.67, 95% CI: 0.49-0.91) genotype were associated with decreased risk of gastric cancer, respectively. In short, this study suggested that IL-6R rs2228145 and IL-6 rs10499563 genotype were associated with decreased risk of gastric cancer for the individuals with negative and positive Helicobacter pylori infection.
Collapse
Affiliation(s)
- Jian-Zhi Zhang
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Chang-Ming Liu
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Hui-Ping Peng
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China
| | - Ying Zhang
- Inspection Division, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu, China.
| |
Collapse
|
28
|
Tsukamoto H, Fujieda K, Hirayama M, Ikeda T, Yuno A, Matsumura K, Fukuma D, Araki K, Mizuta H, Nakayama H, Senju S, Nishimura Y. Soluble IL6R Expressed by Myeloid Cells Reduces Tumor-Specific Th1 Differentiation and Drives Tumor Progression. Cancer Res 2017; 77:2279-2291. [PMID: 28235765 DOI: 10.1158/0008-5472.can-16-2446] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 02/02/2017] [Indexed: 11/16/2022]
Abstract
IL6 produced by tumor cells promotes their survival, conferring a poor prognosis in patients with cancer. IL6 also contributes to immunosuppression of CD4+ T cell-mediated antitumor effects. In this study, we focused on the impact of IL6 trans-signaling mediated by soluble IL6 receptors (sIL6R) expressed in tumor-bearing hosts. Higher levels of sIL6R circulating in blood were observed in tumor-bearing mice, whereas the systemic increase of sIL6R was not prominent in tumor-bearing mice with myeloid cell-specific conditional deletion of IL6R even when tumor cells produced sIL6R. Abundant sIL6R was released by CD11b+ cells from tumor-bearing mice but not tumor-free mice. Notably, IL6-mediated defects in Th1 differentiation, T-cell helper activity for tumor-specific CD8+ T cells, and downstream antitumor effects were rescued by myeloid-specific deletion of sIL6R. Expression of the T-cell transcription factor c-Maf was upregulated in CD4+ T cells primed in tumor-bearing mice in an IL6-dependent manner. Investigations with c-Maf loss-of-function T cells revealed that c-Maf activity was responsible for IL6/sIL6R-induced Th1 suppression and defective T-cell-mediated antitumor responses. In patients with cancer, myeloid cell-derived sIL6R was also possibly associated with Th1 suppression and c-Maf expression. Our results argued that increased expression of sIL6R from myeloid cells and subsequent c-Maf induction were adverse events for counteracting tumor-specific Th1 generation. Overall, this work provides a mechanistic rationale for sIL6R targeting to improve the efficacy of T-cell-mediated cancer immunotherapy. Cancer Res; 77(9); 2279-91. ©2017 AACR.
Collapse
Affiliation(s)
- Hirotake Tsukamoto
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Koji Fujieda
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.,Department of Orthopaedic Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Tokunori Ikeda
- Department of Clinical Research Center, Faculty of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Akira Yuno
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Keiko Matsumura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Daiki Fukuma
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Honjo, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Kumamoto University, Honjo, Kumamoto, Japan
| | - Satoru Senju
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan.
| |
Collapse
|
29
|
Rosenson RS, Koenig W. Mendelian Randomization Analyses for Selection of Therapeutic Targets for Cardiovascular Disease Prevention: a Note of Circumspection. Cardiovasc Drugs Ther 2016; 30:65-74. [PMID: 26797681 DOI: 10.1007/s10557-016-6642-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors identified from genome-wide association studies have been used to understand causative variants for complex diseases. Studies conducted on large populations of individuals from many geographical regions have provided insights into genetic pathways involved in the causal pathway for atherosclerotic cardiovascular disease. A single genetic trait may ineffectively evaluate the pathway of interest, and it may not account for other complementary genetic pathways that may be activated at various stages of the disease process or evidence-based therapies that alter the molecular and cellular milieu.
Collapse
Affiliation(s)
- Robert S Rosenson
- Cardiometabolics Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY, 10029, USA.
| | - Wolfgang Koenig
- Klinik für Herz-& Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Lazarettstr. 36, 80636, Munich, Germany
| |
Collapse
|
30
|
Li Y, Du Z, Wang X, Wang G, Li W. Association of IL-6 Promoter and Receptor Polymorphisms with Multiple Myeloma Risk: A Systematic Review and Meta-Analysis. Genet Test Mol Biomarkers 2016; 20:587-596. [PMID: 27525545 DOI: 10.1089/gtmb.2015.0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND A number of studies show that the pleiotropic cytokine interleukin-6 (IL-6) plays an important role in the pathogenesis of multiple myeloma (MM). However, whether MM risk is associated with IL-6 genetic variability remains uncertain. OBJECTIVE The aim of our study was to evaluate the association between two different IL-6 polymorphisms (located in the IL-6 promoter and receptor, respectively) and the risk of developing MM using a meta-analytic approach. MATERIALS AND METHODS A systematic search for studies on the association of IL-6/IL-6R single-nucleotide polymorphisms with susceptibility to MM was conducted in PubMed, Cochrane Library, Embase, CNKI (Chinese) and Wanfang (Chinese) Digital Dissertations Databases from inception through November 2014. A meta-analysis was performed and results were presented as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS A total of eight case-control studies on the IL-6 promoter polymorphism and three studies on the IL-6 receptor (IL-6R) polymorphism were included. No significant association was found between the IL-6 promoter rs1800795 (G>C) polymorphism and MM susceptibility. A significantly increased risk of MM was observed with the IL-6R rs8192284 (A>C) polymorphism. In subgroup analyses, grouped by ethnicity, region, quality of studies, and Hardy-Weinberg equilibrium of control group, similar results were found. CONCLUSION Unlike the IL-6 promoter rs1800795 (G>C) polymorphism, the IL-6R rs8192284 (A>C) polymorphism may be associated with MM risk. However, large-scale studies are needed to validate our findings since they are based on a relatively small number of studies.
Collapse
Affiliation(s)
- Yuying Li
- Cancer Center, First Hospital of Jilin University , Changchun, China
| | - Zhonghua Du
- Cancer Center, First Hospital of Jilin University , Changchun, China
| | - Xu Wang
- Cancer Center, First Hospital of Jilin University , Changchun, China
| | - Guanjun Wang
- Cancer Center, First Hospital of Jilin University , Changchun, China
| | - Wei Li
- Cancer Center, First Hospital of Jilin University , Changchun, China
| |
Collapse
|
31
|
Generation of Soluble Interleukin-11 and Interleukin-6 Receptors: A Crucial Function for Proteases during Inflammation. Mediators Inflamm 2016; 2016:1785021. [PMID: 27493449 PMCID: PMC4963573 DOI: 10.1155/2016/1785021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/14/2016] [Indexed: 01/08/2023] Open
Abstract
The cytokines interleukin-11 (IL-11) and IL-6 are important proteins with well-defined pro- and anti-inflammatory functions. They activate intracellular signaling cascades through a homodimer of the ubiquitously expressed signal-transducing β-receptor glycoprotein 130 (gp130). Specificity is gained through the cell- and tissue-specific expression of the nonsignaling IL-11 and IL-6 α-receptors (IL-11R and IL-6R), which determine the responsiveness of the cell to these two cytokines. IL-6 is a rare example, where its soluble receptor (sIL-6R) has agonistic properties, so that the IL-6/sIL-6R complex is able to activate cells that are usually not responsive to IL-6 alone (trans-signaling). Recent evidence suggests that IL-11 can signal via a similar trans-signaling mechanism. In this review, we highlight similarities and differences in the functions of IL-11 and IL-6. We summarize current knowledge about the generation of the sIL-6R and sIL-11R by different proteases and discuss possible roles during inflammatory processes. Finally, we focus on the selective and/or combined inhibition of IL-6 and IL-11 signaling and how this might translate into the clinics.
Collapse
|
32
|
Kapelski P, Skibinska M, Maciukiewicz M, Wilkosc M, Frydecka D, Groszewska A, Narozna B, Dmitrzak-Weglarz M, Czerski P, Pawlak J, Rajewska-Rager A, Leszczynska-Rodziewicz A, Slopien A, Zaremba D, Twarowska-Hauser J. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population. Schizophr Res 2015; 169:1-9. [PMID: 26481614 DOI: 10.1016/j.schres.2015.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed.
Collapse
Affiliation(s)
- Pawel Kapelski
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland.
| | - Maria Skibinska
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Malgorzata Maciukiewicz
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research, Institute Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T1R8, Canada
| | - Monika Wilkosc
- Institute of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Agata Groszewska
- Department of Biochemistry, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poland
| | - Beata Narozna
- Department of Pulmonology, Pediatric Allergy, and Clinical Immunology, Laboratory of Molecular and Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Piotr Czerski
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Pawlak
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | | | - Anna Leszczynska-Rodziewicz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Agnieszka Slopien
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Dorota Zaremba
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Joanna Twarowska-Hauser
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| |
Collapse
|
33
|
Amaral WZ, Krueger RF, Ryff CD, Coe CL. Genetic and environmental determinants of population variation in interleukin-6, its soluble receptor and C-reactive protein: insights from identical and fraternal twins. Brain Behav Immun 2015; 49:171-81. [PMID: 26086344 PMCID: PMC4567498 DOI: 10.1016/j.bbi.2015.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022] Open
Abstract
Interleukin-6 and C-reactive protein are commonly assessed biomarkers linked to illness, obesity, and stressful life events. However, relatively little is known about their heritability. By comparing Caucasian twins from the Midlife in the US project (MIDUS), we estimated the heritability of IL-6, its soluble receptor, and CRP. Based on the hypothesis that adiposity might contribute more to IL-6 than to sIL-6r, we fit heritability models quantifying the extent to which each reflected genetic and environmental factors shared with obesity. Genetic influences on IL-6 and its receptor proved to be distinct. Further, the appearance of a heritable basis for IL-6 was mediated largely via shared paths with obesity. Supporting this conclusion, we confirmed that when unrelated adult controls are carefully matched to twin participants on BMI, age, gender and socioeconomic indices, their IL-6 is similar to the corresponding twins. In contrast, the effect of BMI on CRP was split between shared genetics and environmental influences. In conclusion, IL-6 is strongly affected by factors associated with obesity accounting for its lability and responsiveness to diet, life style and contemporaneous events.
Collapse
Affiliation(s)
- Wellington Z Amaral
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Robert F Krueger
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Carol D Ryff
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Christopher L Coe
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
34
|
Kapelski P, Skibinska M, Maciukiewicz M, Pawlak J, Permoda-Osip A, Twarowska-Hauser J. Family-based association study of interleukin 6 (IL6) and its receptor (IL6R) functional polymorphisms in schizophrenia in the Polish population. J Neuroimmunol 2015. [DOI: 10.1016/j.jneuroim.2014.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia 2014; 29:715-26. [PMID: 25179733 DOI: 10.1038/leu.2014.255] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is incurable in virtually all patients due to the presence of innate and emergent drug-resistance. To identify potential drug resistance mechanisms in MM we used iTRAQ (isobaric tags for relative and absolute quantitation) mass spectrometry to compare protein expression profiles of drug-resistant (RPMI 8226-R5) and sensitive (RPMI 8226-S) isogenic cell lines. We identified selective overexpression of myristoylated alanine-rich C-kinase substrate (MARCKS) in drug-resistant R5 cells. MARCKS overexpression was also observed in several drug-resistant human myeloma cell lines (HMCLs) and in drug-resistant primary MM samples. Functionally, inhibition of MARCKS phosphorylation by enzastaurin or knockdown of the gene by RNAi significantly enhanced the sensitivity of resistant HMCLs and primary MM samples to bortezomib and to other anti-myeloma drugs, providing evidence that MARCKS can modulate drug response. Mechanistically, pMARCKS (phosphorylated form of MARCKS) was found to function as an E2F-1 cofactor to regulate SKP2 transcription. pMARCKS promoted cell-cycle progression by facilitating SKP2 expression, suppressing p27(Kip1) and potentially counteracting drug-induced cell-cycle arrest by promoting Cyclin E/CDK2 activity. Importantly, MARCKS knockdown in combination with bortezomib treatment overcame bortezomib resistance, significantly inhibited tumor growth and prolonged host survival in a MM xenograft model. These data provide a rationale for therapeutic targeting of pMARCKS to improve the outcome of patients with refractory/relapsed MM.
Collapse
|
36
|
The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1485-94. [DOI: 10.1016/j.bbadis.2014.05.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022]
|
37
|
Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 2014; 70:11-20. [PMID: 24986424 DOI: 10.1016/j.cyto.2014.05.024] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with well-defined pro- and anti-inflammatory properties. Although only small amounts in the picogram range can be detected in healthy humans, IL-6 expression is highly and transiently up-regulated in nearly all pathophysiological states. IL-6 induces intracellular signaling pathways after binding to its membrane-bound receptor (IL-6R), which is only expressed on hepatocytes and certain subpopulations of leukocytes (classic signaling). Transduction of the signal is mediated by the membrane-bound β-receptor glycoprotein 130 (gp130). In a second pathway, named trans-signaling, IL-6 binds to soluble forms of the IL-6R (sIL-6R), and this agonistic IL-6/sIL-6R complexes can in principle activate all cells due to the uniform expression of gp130. Importantly, several soluble forms of gp130 (sgp130) are found in the human blood, which are considered to be the natural inhibitors of IL-6 trans-signaling. Most pro-inflammatory roles of IL-6 have been attributed to the trans-signaling pathway, whereas anti-inflammatory and regenerative signaling, including the anti-bacterial acute phase response of the liver, is mediated by IL-6 classic signaling. In this simplistic view, only a minority of cell types expresses the IL-6R and is therefore responsive for IL-6 classic signaling, whereas gp130 is ubiquitously expressed throughout the human body. However, several reports point towards a much more complex situation. A plethora of factors, including proteases, cytokines, chemical drugs, and intracellular signaling pathways, are able to modulate the cellular expression of the membrane-bound and soluble forms of IL-6R and gp130. In this review, we summarize current knowledge of regulatory mechanisms that control and regulate the dynamic expression of IL-6 and its two receptors.
Collapse
Affiliation(s)
- Janina Wolf
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
38
|
Lin H, Wang M, Brody JA, Bis JC, Dupuis J, Lumley T, McKnight B, Rice KM, Sitlani CM, Reid JG, Bressler J, Liu X, Davis BC, Johnson AD, O'Donnell CJ, Kovar CL, Dinh H, Wu Y, Newsham I, Chen H, Broka A, DeStefano AL, Gupta M, Lunetta KL, Liu CT, White CC, Xing C, Zhou Y, Benjamin EJ, Schnabel RB, Heckbert SR, Psaty BM, Muzny DM, Cupples LA, Morrison AC, Boerwinkle E. Strategies to design and analyze targeted sequencing data: cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:335-43. [PMID: 24951659 PMCID: PMC4176824 DOI: 10.1161/circgenetics.113.000350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genome-wide association studies have identified thousands of genetic variants that influence a variety of diseases and health-related quantitative traits. However, the causal variants underlying the majority of genetic associations remain unknown. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium Targeted Sequencing Study aims to follow up genome-wide association study signals and identify novel associations of the allelic spectrum of identified variants with cardiovascular-related traits. METHODS AND RESULTS The study included 4231 participants from 3 CHARGE cohorts: the Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, and the Framingham Heart Study. We used a case-cohort design in which we selected both a random sample of participants and participants with extreme phenotypes for each of 14 traits. We sequenced and analyzed 77 genomic loci, which had previously been associated with ≥1 of 14 phenotypes. A total of 52 736 variants were characterized by sequencing and passed our stringent quality control criteria. For common variants (minor allele frequency ≥1%), we performed unweighted regression analyses to obtain P values for associations and weighted regression analyses to obtain effect estimates that accounted for the sampling design. For rare variants, we applied 2 approaches: collapsed aggregate statistics and joint analysis of variants using the sequence kernel association test. CONCLUSIONS We sequenced 77 genomic loci in participants from 3 cohorts. We established a set of filters to identify high-quality variants and implemented statistical and bioinformatics strategies to analyze the sequence data and identify potentially functional variants within genome-wide association study loci.
Collapse
Affiliation(s)
- Honghuang Lin
- Department of Medicine, Boston University School of Medicine, Boston
- The NHLBI’s Framingham Heart Study,Framingham, MA
| | - Min Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Josée Dupuis
- The NHLBI’s Framingham Heart Study,Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Thomas Lumley
- Department of Statistics, University of Auckland, New Zealand
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Kenneth M. Rice
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Jeffrey G. Reid
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Jan Bressler
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaoming Liu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Brian C. Davis
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | | | | | - Christie L. Kovar
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Huyen Dinh
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Yuanqing Wu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Irene Newsham
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Han Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Andi Broka
- LinGA Computing Resource, Boston University, Boston, MA
| | - Anita L. DeStefano
- The NHLBI’s Framingham Heart Study,Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Mayetri Gupta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Kathryn L. Lunetta
- The NHLBI’s Framingham Heart Study,Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Charles C. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Chuanhua Xing
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Yanhua Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Emelia J. Benjamin
- Department of Medicine, Boston University School of Medicine, Boston
- The NHLBI’s Framingham Heart Study,Framingham, MA
| | - Renate B. Schnabel
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Hamburg, Germany
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
- Department of Health Services, University of Washington, Seattle, WA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - L. Adrienne Cupples
- The NHLBI’s Framingham Heart Study,Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Alanna C. Morrison
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
39
|
Ruzzo A, Catalano V, Canestrari E, Giacomini E, Santini D, Tonini G, Vincenzi B, Fiorentini G, Magnani M, Graziano F. Genetic modulation of the interleukin 6 (IL-6) system in patients with advanced gastric cancer: a background for an alternative target therapy. BMC Cancer 2014; 14:357. [PMID: 24886605 PMCID: PMC4046495 DOI: 10.1186/1471-2407-14-357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 05/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND IL-6 triggers oncogenic/angiogenic signals and the cytokine-dependent pro-cachexia cascade. The prognostic role of the functional IL-6 (promoter) rs1800795 and the IL-6R (receptor) rs8192284 single nucleotide polymorphisms (SNP) was studied in patients with advanced gastric cancer treated with palliative chemotherapy. METHODS One-hundred-sixty-one patients were genotyped for rs1800795 and rs8192284 SNPs using polymerase chain reaction based restriction fragment length polymorphism (PCR-RFLP) analysis assay. These results were studied for association with overall survival (OS). RESULTS In 161 assessable patients, frequencies of rs1800795 G/G, G/C and C/C genotypes were 46%, 42% and 12%, respectively. Frequencies of rs8192284 A/A, A/C and C/C genotypes were 36%, 45% and 19%, respectively. Carriers of the rs1800795 G/G and rs8192284 C/C genotypes showed the worst OS. In the multivariate model, rs1800795 G/G (1.69 hazard ratio; 95% confidence interval 1.18-2.42), and rs8192284 C/C (1.78 hazard ratio; 95% confidence interval 1.12-2.83) confirmed an adverse prognostic impact. CONCLUSIONS In this population, genetic variants that up-regulate the IL-6 system showed impact on OS. This findings sustain the hypothesis that anti-IL-6 compounds deserve clinical studies as novel therapeutics in the palliative treatment of cancer patients.
Collapse
Affiliation(s)
- Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Dongen J, Jansen R, Smit D, Hottenga JJ, Mbarek H, Willemsen G, Kluft C, Penninx BWJ, Ferreira MA, Boomsma DI, de Geus EJC. The contribution of the functional IL6R polymorphism rs2228145, eQTLs and other genome-wide SNPs to the heritability of plasma sIL-6R levels. Behav Genet 2014; 44:368-82. [PMID: 24791950 DOI: 10.1007/s10519-014-9656-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 04/03/2014] [Indexed: 12/21/2022]
Abstract
The non-synonymous SNP rs2228145 in the IL6R gene on chromosome 1q21.3 is associated with a wide range of common diseases, including asthma, rheumatoid arthritis, type 1 diabetes and coronary heart disease. We examined the contribution of this functional IL6R gene polymorphism rs2228145 versus other genome-wide SNPs to the variance of sIL-6R levels in blood plasma in a large population-based sample (N ~5,000), and conducted an expression QTL analysis to identify SNPs associated with IL6R gene expression. Based on data from 2,360 twin families, the broad heritability of sIL-6R was estimated at 72 and 51% of the total variance was explained by the functional SNP rs2228145. Converging findings from GWAS, linkage, and GCTA analyses indicate that additional variance of sIL-6R levels can be explained by other variants in the IL6R region, including variants at the 3'-end of IL6R tagged by rs60760897 that are associated with IL6R RNA expression.
Collapse
Affiliation(s)
- Jenny van Dongen
- Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 2014; 18:495-512. [PMID: 24548241 DOI: 10.1517/14728222.2014.888417] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Increased IL-6 and soluble IL-6 receptor (sIL-6R) levels in depressed patients was first shown over 20 years ago. The pro-inflammatory effects of IL-6 are predominantly mediated by IL-6 trans-signalling via the sIL-6R, whereas IL-6R membrane signalling has anti-inflammatory effects. AREAS COVERED We review data on IL-6 and sIL-6R in inflammation, depression, animal models of depression and the effects of different classes of antidepressants. The biological context for IL-6 trans-signalling as a pathogenic factor in depression involves its role in the acute phase response, disorders in zinc and the erythron, hypothalamic-pituitary-adrenal axis activation, induction of the tryptophan catabolite pathway, oxidative stress, bacterial translocation, transition towards sensitisation, autoimmune processes and neuroprogression and the multicausal aetiology of depression, considering that psychosocial stressors and comorbid immune-inflammatory diseases are associated with the onset of depression. EXPERT OPINION The homeostatic functions of IL-6 imply that ubiquitous IL-6 inhibitors, for example, tocilizumab, may not be the optimal treatment target in depression. A more promising target may be to increase soluble glycoprotein 130 (sgp130) inhibition of IL-6 trans-signalling, while allowing the maintenance of IL-6R membrane signalling. Future research should delineate the effects of treatments with sgp130Fc in combination with antidepressants in various animal models of chronic depression.
Collapse
Affiliation(s)
- Michael Maes
- Deakin University, Department of Psychiatry , Geelong , Australia
| | | | | | | |
Collapse
|
42
|
Bedewy AML, EL-Maghraby SM. Do baseline Cereblon gene expression and IL-6 receptor expression determine the response to thalidomide-dexamethasone treatment in Multiple myeloma patients? Eur J Haematol 2013; 92:13-8. [DOI: 10.1111/ejh.12207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmed M. L. Bedewy
- Hematology Department; Medical Research Institute; Alexandria University; Alexandria Egypt
| | - Shereen M. EL-Maghraby
- Hematology Department; Medical Research Institute; Alexandria University; Alexandria Egypt
| |
Collapse
|
43
|
Ziakas PD, Karsaliakos P, Prodromou ML, Mylonakis E. Interleukin-6 polymorphisms and hematologic malignancy: a re-appraisal of evidence from genetic association studies. Biomarkers 2013; 18:625-31. [DOI: 10.3109/1354750x.2013.840799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Burger R. Impact of interleukin-6 in hematological malignancies. ACTA ACUST UNITED AC 2013; 40:336-43. [PMID: 24273487 DOI: 10.1159/000354194] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
Abstract
Almost 3 decades have passed since the discovery and cloning of IL-6, and a tremendous amount of work has contributed to the current knowledge of the biological functions of this cytokine, its receptor, and the signaling pathways that are activated. The understanding of the role of IL-6 in human disease has led to the development of novel therapeutic strategies that block the biological functions of IL-6. In clinical studies, IL-6 and IL-6 receptor antibodies have proven efficacy in rheumatoid arthritis, systemic juvenile idiopathic arthritis, and Castleman's disease, conditions that are known to be driven by IL-6. The focus of this overview is the role of IL-6 in the pathophysiology of hematological malignancies.
Collapse
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, University Hospital Schleswig-Holstein and Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
45
|
Yang C, Wang J, Chen D, Chen J, Xiong F, Zhang H, Zhang Y, Gu N, Dou J. Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(-) CD34(-) tumor stem-like cells in multiple myeloma-bearing mice. Int J Nanomedicine 2013; 8:1439-49. [PMID: 23610522 PMCID: PMC3629869 DOI: 10.2147/ijn.s38447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is growing evidence that CD138(-) CD34(-) cells may actually be tumor stem cells responsible for initiation and relapse of multiple myeloma. However, effective drugs targeted at CD138(-) CD34(-) tumor stem cells are yet to be developed. The purpose of this study was to investigate the inhibitory effect of paclitaxel-loaded Fe3O4 nanoparticles (PTX-NPs) on CD138(-) CD34(-) tumor stem cells in multiple myeloma-bearing mice. METHODS CD138(-) CD34(-) cells were isolated from a human U266 multiple myeloma cell line using an immune magnetic bead sorting method and then subcutaneously injected into mice with nonobese diabetic/severe combined immunodeficiency to develop a multiple myeloma-bearing mouse model. The mice were treated with Fe3O4 nanoparticles 2 mg/kg, paclitaxel 4.8 mg/kg, and PTX-NPs 0.64 mg/kg for 2 weeks. Tumor growth, pathological changes, serum and urinary interleukin-6 levels, and molecular expression of caspase-3, caspase-8, and caspase-9 were evaluated. RESULTS CD138(-) CD34(-) cells were found to have tumor stem cell characteristics. All the mice developed tumors in 40 days after injection of 1 × 10(6) CD138(-) CD34(-) tumor stem cells. Tumor growth in mice treated with PTX-NPs was significantly inhibited compared with the controls (P < 0.005), and the groups that received nanoparticles alone (P < 0.005) or paclitaxel alone (P < 0.05). In addition, the PTX-NPs markedly inhibited interleukin-6 secretion, increased caspase-8, caspase-9, and caspase-3 expression, and induced apoptosis of tumor cells in the treated mice. CONCLUSION PTX-NPs proved to be a potent anticancer treatment strategy that may contribute to targeted therapy for multiple myeloma tumor stem cells in future clinical trials.
Collapse
Affiliation(s)
- Cuiping Yang
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ferreira RC, Freitag DF, Cutler AJ, Howson JMM, Rainbow DB, Smyth DJ, Kaptoge S, Clarke P, Boreham C, Coulson RM, Pekalski ML, Chen WM, Onengut-Gumuscu S, Rich SS, Butterworth AS, Malarstig A, Danesh J, Todd JA. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet 2013; 9:e1003444. [PMID: 23593036 PMCID: PMC3617094 DOI: 10.1371/journal.pgen.1003444] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/26/2013] [Indexed: 12/21/2022] Open
Abstract
Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10−22) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10−22). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10−7). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant. Interleukin-6 (IL-6) is a complex cytokine, which plays a critical role in the regulation of inflammatory responses. Genetic variation in the IL-6 receptor gene is associated with the risk of several human diseases with an inflammatory component, including coronary heart disease, rheumatoid arthritis, and asthma. A common non-synonymous single nucleotide polymorphism in this gene (Asp358Ala) has been suggested to be the causal variant in this region by affecting the circulatory concentrations of soluble IL-6R (sIL-6R). In this study we extend the genetic association of this variant to type 1 diabetes and provide evidence that this variant exerts its functional mechanism by regulating the balance between sIL-6R (generated through cleavage of the surface receptor and by alternative splicing of a soluble IL6R isoform) and membrane-bound IL-6R. These data show for the first time that the minor allele of this non-synonymous variant (Ala358) directly controls the surface levels of IL-6R on individual immune cells and that these differences in protein levels translate into a functional impairment in IL-6R signaling. These findings may have implications for clinical trials targeting inflammatory mechanisms involving IL-6R signaling and may provide tools for identifying patients with specific benefit from therapeutic intervention in the IL-6R signaling pathway.
Collapse
Affiliation(s)
- Ricardo C. Ferreira
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Daniel F. Freitag
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Antony J. Cutler
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joanna M. M. Howson
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Deborah J. Smyth
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Kaptoge
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pamela Clarke
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte Boreham
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Richard M. Coulson
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marcin L. Pekalski
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Adam S. Butterworth
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Anders Malarstig
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
- Precision Medicine, Pfizer Global Research and Development, Cambridge, United Kingdom
| | - John Danesh
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - John A. Todd
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Stone K, Woods E, Szmania SM, Stephens OW, Garg TK, Barlogie B, Shaughnessy JD, Hall B, Reddy M, Hoering A, Hansen E, van Rhee F. Interleukin-6 receptor polymorphism is prevalent in HIV-negative Castleman Disease and is associated with increased soluble interleukin-6 receptor levels. PLoS One 2013; 8:e54610. [PMID: 23372742 PMCID: PMC3553080 DOI: 10.1371/journal.pone.0054610] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/13/2012] [Indexed: 01/08/2023] Open
Abstract
Multicentric Castleman Disease is largely driven by increased signaling in the pathway for the plasma cell growth factor interleukin-6. We hypothesized that interleukin-6/interleukin-6 receptor/gp130 polymorphisms contribute to increased interleukin-6 and/or other components of the interleukin-6 signaling pathway in HIV-negative Castleman Disease patients. The study group was composed of 58 patients and 50 healthy donors of a similar racial/ethnic profile. Of seven polymorphisms chosen for analysis, we observed an increased frequency between patients and controls of the minor allele of interleukin-6 receptor polymorphism rs4537545, which is in linkage disequilibrium with interleukin-6 receptor polymorphism rs2228145. Further, individuals possessing at least one copy of the minor allele of either polymorphism expressed higher levels of soluble interleukin-6 receptor. These elevated interleukin-6 receptor levels may contribute to increased interleukin-6 activity through the trans-signaling pathway. These data suggest that interleukin-6 receptor polymorphism may be a contributing factor in Castleman Disease, and further research is warranted.
Collapse
Affiliation(s)
- Katie Stone
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Emily Woods
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Susann M. Szmania
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Owen W. Stephens
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Tarun K. Garg
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Brett Hall
- Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - Manjula Reddy
- Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - Antje Hoering
- Cancer Research and Biostatistics, Seattle, Washington, United States of America
| | - Emily Hansen
- Cancer Research and Biostatistics, Seattle, Washington, United States of America
| | - Frits van Rhee
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
48
|
Raman K, Chong M, Akhtar-Danesh GG, D'Mello M, Hasso R, Ross S, Xu F, Paré G. Genetic Markers of Inflammation and Their Role in Cardiovascular Disease. Can J Cardiol 2013; 29:67-74. [DOI: 10.1016/j.cjca.2012.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 10/27/2022] Open
|
49
|
Tsirakis G, Pappa CA, Kaparou M, Boula A, Katsomitrou V, Xekalou A, Kyriakaki S, Alexandrakis MG. The relationship between soluble receptor of interleukin-6 with angiogenic cytokines and proliferation markers in multiple myeloma. Tumour Biol 2012; 34:859-64. [PMID: 23242610 DOI: 10.1007/s13277-012-0618-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/03/2012] [Indexed: 12/16/2022] Open
Abstract
Soluble interleukin-6 receptor (sIL-6R) is part of IL-6 receptor that may stimulate cells that do not express the whole molecule. It may enhance myeloma cell proliferation and furthermore angiogenesis. The aim of the study was to evaluate the clinical significance and the relationship between serum levels of sIL-6R, with various stimulators of angiogenesis, such as hepatocyte growth factor (HGF) and interleukin-18 (IL-18) and with markers of proliferation, such as beta-2 microglobulin (B2M) levels and plasma cell Ki-67 proliferation index in the bone marrow, in patients with multiple myeloma (MM). We studied 45 newly diagnosed MM patients. Serum levels of sIL-6R, HGF, IL-18, and B2M and Ki-67 proliferation index (Ki-67 PI) in bone marrow's plasma cells were determined. The mean concentrations of sIL-6R, HGF, IL-18, and B2M and the value of Ki-67 were significantly higher in the patients compared to controls and with increasing disease stage. sIL-6R was strongly positively correlated with HGF, IL-18, B2M, and Ki-67 PI. There is a positive correlation between plasma cell growth, as determined by Ki-67 PI, and different angiogenic cytokines, such as HGF and IL-18, with sIL-6R. This relationship suggests the significant role of these cytokines in the proliferation and disease activity in MM patients.
Collapse
Affiliation(s)
- George Tsirakis
- Department of Hematology, University Hospital of Heraklion, P.O. Box 1352, Voutes, Heraklion, 71110, Greece
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Prediagnosis biomarkers of insulin-like growth factor-1, insulin, and interleukin-6 dysregulation and multiple myeloma risk in the Multiple Myeloma Cohort Consortium. Blood 2012; 120:4929-37. [PMID: 23074271 DOI: 10.1182/blood-2012-03-417253] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1), insulin, and IL-6 are dysregulated in multiple myeloma pathogenesis and may also contribute to multiple myeloma etiology. To examine their etiologic role, we prospectively analyzed concentrations of serologic markers in 493 multiple myeloma cases and 978 controls from 8 cohorts in the Multiple Myeloma Cohort Consortium. We computed odds ratios (ORs) and 95% confidence intervals (CIs) for multiple myeloma per 1-SD increase in biomarker concentration using conditional logistic regression. We examined heterogeneity by time since blood collection (≤ 3, 4- ≤ 6, and > 6 years) in stratified models. Fasting IGF binding protein-1 concentration was associated with multiple myeloma risk within 3 years (OR, 95% CI per 1-SD increase: 2.3, 1.4-3.8, P = .001) and soluble IL-6 receptor level was associated within 6 years after blood draw (OR (≤ 3 years), 95% CI, 1.4, 1.1-1.9, P = .01; OR(4- ≤ 6 years), 95% CI, 1.4, 1.1-1.7, P = .002). No biomarker was associated with longer-term multiple myeloma risk (ie, > 6 years). Interactions with time were statistically significant (IGF binding protein-1, P-heterogeneity = .0016; sIL6R, P-heterogeneity = .016). The time-restricted associations probably reflect the bioactivity of tumor and microenvironment cells in transformation from monoclonal gammopathy of undetermined significance or smoldering multiple myeloma to clinically manifest multiple myeloma.
Collapse
|