1
|
Valentina B, Jessica B, Michelle P, Nadia W, Roland H, Matthias D, Jo C, Guillaume M. CD38 as theranostic target in oncology. J Transl Med 2024; 22:998. [PMID: 39501292 PMCID: PMC11539646 DOI: 10.1186/s12967-024-05768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
CD38 is a multifunctional transmembrane glycoprotein found in multiple tissues and overexpressed in many cancer cells, notably in hematological malignancies such as leukemia and multiple myeloma (MM). Therefore, targeting CD38 remains an attractive strategy for cancer treatment in hematological malignancies as well as in solid tumors. It plays a critical role in the progression of these diseases through its ADP-ribosyl cyclase and cADPR-hydrolase activities. Its importance has led to the development of various anti-CD38 monoclonal antibodies (mAbs), including daratumumab and isatuximab, approved for MM treatment. These mAbs exert their anti-tumor effects through Fc-dependent immune mechanisms and immunomodulation, enhancing T-cell and NK-cell-mediated responses. However, resistance mechanisms arise during the treatment with daratumumab, creating the necessity for new therapies. This review explains current knowledge about the role of CD38 as a target in oncology and aims to delineate the use of single domain antibodies (sdAbs) as innovative theranostic tools in nuclear medicine. For diagnostic purposes, PET radionuclides like 68 Ga, 64Cu, and SPECT radionuclides like 99mTc and 111In, are commonly used. Significant progress has been made in anti-CD38 radioligand therapy (RLT), with anti-CD38 antibodies providing insights into tumor biology and treatment efficacy. In terms of therapy, RLT is a promising approach that offers precise targeting of malignant cells while minimizing exposure to healthy tissue. This involves the use of radionuclides emitting α particles, like 225Ac, 212Pb or 211At, and β--particles like 90Y, 131I, or 177Lu, to exert cytotoxic effects. Derived from Camelidae heavy chain antibodies, sdAbs offer advantages over conventional mAbs such as small size, high stability, specificity, and ability to recognize hidden epitopes. CD38-specific sdAbs, such as sdAb 2F8, characterized by our laboratory, showing excellent tumor targeting and their engineered constructs, such as biparatopic antibodies and chimeric antibodies, represent a new generation of theranostic agents for diagnosis and treatment CD38-expressing malignancies.
Collapse
Affiliation(s)
- Bocuzzi Valentina
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Bridoux Jessica
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Withofs Nadia
- Department of Nuclear Medicine and Oncology, CHU de Liège, Liège, Belgium
| | - Hustinx Roland
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - D'Huyvetter Matthias
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Caers Jo
- Department of Hematology, CHU de Liège, Liège, Belgium.
| | - Marcion Guillaume
- Laboratory of Hematology, GIGA I3, University of Liège, Liège, Belgium
- Center for Protein Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Irimia R, Piccaluga PP. Histone Deacetylase Inhibitors for Peripheral T-Cell Lymphomas. Cancers (Basel) 2024; 16:3359. [PMID: 39409979 PMCID: PMC11482620 DOI: 10.3390/cancers16193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are being recognized as a potentially effective treatment approach for peripheral T-cell lymphomas (PTCLs), a heterogeneous group of aggressive malignancies with an unfavorable prognosis. Recent evidence has shown that HDACis are effective in treating PTCL, especially in cases where the disease has relapsed or is resistant to conventional treatments. Several clinical trials have demonstrated that HDACis, such as romidepsin and belinostat, can elicit long-lasting positive outcomes in individuals with PTCLs, either when used alone or in conjunction with conventional chemotherapy. They exert their anti-tumor effects by regulating gene expression through the inhibition of histone deacetylases, which leads to cell cycle arrest, induction of programmed cell death, and,the transformation of cancerous T cells, as demonstrated by gene expression profile studies. Importantly, besides clinical trials, real-world evidence indicated that the utilization of HDACis presents a significant and beneficial treatment choice for PTCLs. However, although HDACis showed potential effectiveness, they could not cure most patients. Therefore, new combinations with conventional drugs as well as new targeted agents are under investigation.
Collapse
Affiliation(s)
- Ruxandra Irimia
- Department of Hematology, “Carol Davila” University of Medicine and Pharmacy, 030167 Bucharest, Romania;
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Pier Paolo Piccaluga
- Department of Medical and Surgical Sciences, School of Medicine, University of Bologna, 40138 Bologna, Italy
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Institute of Hematology and Medical Oncology “L&A Seràgnoli”, 40138 Bologna, Italy
| |
Collapse
|
4
|
Bai Z, Zhang D, Gao Y, Tao B, Zhang D, Bao S, Enninful A, Wang Y, Li H, Su G, Tian X, Zhang N, Xiao Y, Liu Y, Gerstein M, Li M, Xing Y, Lu J, Xu ML, Fan R. Spatially exploring RNA biology in archival formalin-fixed paraffin-embedded tissues. Cell 2024:S0092-8674(24)01019-5. [PMID: 39353436 DOI: 10.1016/j.cell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
The capability to spatially explore RNA biology in formalin-fixed paraffin-embedded (FFPE) tissues holds transformative potential for histopathology research. Here, we present pathology-compatible deterministic barcoding in tissue (Patho-DBiT) by combining in situ polyadenylation and computational innovation for spatial whole transcriptome sequencing, tailored to probe the diverse RNA species in clinically archived FFPE samples. It permits spatial co-profiling of gene expression and RNA processing, unveiling region-specific splicing isoforms, and high-sensitivity transcriptomic mapping of clinical tumor FFPE tissues stored for 5 years. Furthermore, genome-wide single-nucleotide RNA variants can be captured to distinguish malignant subclones from non-malignant cells in human lymphomas. Patho-DBiT also maps microRNA regulatory networks and RNA splicing dynamics, decoding their roles in spatial tumorigenesis. Single-cell level Patho-DBiT dissects the spatiotemporal cellular dynamics driving tumor clonal architecture and progression. Patho-DBiT stands poised as a valuable platform to unravel rich RNA biology in FFPE tissues to aid in clinical pathology evaluation.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| | - Dingyao Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yan Gao
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daiwei Zhang
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yadong Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haikuo Li
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Xiaolong Tian
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Ningning Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jun Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Ramirez-Gamero A, Martínez-Cordero H, Beltrán BE, Florindez J, Malpica L, Castillo JJ. Plasmablastic lymphoma: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:1586-1594. [PMID: 38767403 DOI: 10.1002/ajh.27376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
DISEASE OVERVIEW Plasmablastic lymphoma (PBL) is a rare CD20-negative aggressive lymphoma with a poor prognosis under standard treatment options. Though PBL is associated with human immunodeficiency virus infection and other immunosuppressed states, it can also affect immunocompetent individuals. DIAGNOSIS The diagnosis requires a high clinical suspicion and pathological confirmation. EBER expression and MYC gene rearrangements are frequently detected. The differential diagnosis includes EBV+ diffuse large B-cell lymphoma, extracavitary primary effusion lymphoma, ALK+ DLBCL, and HHV8+ large B-cell lymphoma, among others. RISK STRATIFICATION Age ≥60 years, advanced clinical stage, and high intermediate and high International Prognostic Index scores are associated with worse survival. MANAGEMENT Combination chemotherapy regimens, such as EPOCH, are recommended. The addition of bortezomib, lenalidomide, or daratumumab might improve outcomes. Including PBL patients and their participation in prospective clinical trials is warranted.
Collapse
MESH Headings
- Humans
- Plasmablastic Lymphoma/diagnosis
- Plasmablastic Lymphoma/therapy
- Plasmablastic Lymphoma/drug therapy
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Risk Assessment
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Doxorubicin/administration & dosage
- Vincristine/therapeutic use
- Vincristine/administration & dosage
- Prednisone/therapeutic use
- Lenalidomide/therapeutic use
- Lenalidomide/administration & dosage
- Prognosis
- Bortezomib/therapeutic use
- Bortezomib/administration & dosage
- Diagnosis, Differential
- Disease Management
- Middle Aged
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antibodies, Monoclonal
- Etoposide
Collapse
Affiliation(s)
- Andres Ramirez-Gamero
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Brady E Beltrán
- Department of Oncology and Radiotherapy, Hospital Edgardo Rebagliati Martins and Instituto de Ciencias Biomedicas, Universidad Ricardo Palma, Lima, Peru
| | - Jorge Florindez
- Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luis Malpica
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Hilton LK, Collinge B, Ben-Neriah S, Alduaij W, Shaalan H, Weng AP, Cruz M, Slack GW, Farinha P, Miyata-Takata T, Boyle M, Meissner B, Cook JR, Ondrejka SL, Ott G, Rosenwald A, Campo E, Amador C, Greiner TC, Raess PW, Song JY, Inghirami G, Jaffe ES, Weisenburger DD, Chan WC, Beiske K, Fu K, Delabie J, Pittaluga S, Iqbal J, Wright G, Sehn LH, Savage KJ, Mungall AJ, Feldman AL, Staudt LM, Steidl C, Rimsza LM, Morin RD, Scott DW. Motive and opportunity: MYC rearrangements in high-grade B-cell lymphoma with MYC and BCL2 rearrangements (an LLMPP study). Blood 2024; 144:525-540. [PMID: 38701426 PMCID: PMC11307266 DOI: 10.1182/blood.2024024251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements ("double hit"; HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of and mechanisms driving IG vs non-IG MYC rearrangements have not been elucidated. Here, we used custom targeted capture and/or whole-genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, although BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because 1 IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B-cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.
Collapse
Affiliation(s)
- Laura K. Hilton
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Brett Collinge
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Waleed Alduaij
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Haya Shaalan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Manuela Cruz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Graham W. Slack
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pedro Farinha
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | | - Merrill Boyle
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - James R. Cook
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH
| | | | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Elias Campo
- Hematopathology Section, Hospital Clinic of Barcelona, Institut d’Investigaciones Biomediques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Catalina Amador
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Timothy C. Greiner
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Philipp W. Raess
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR
| | - Joo Y. Song
- Department of Pathology, City of Hope, Duarte, CA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dennis D. Weisenburger
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Wing C. Chan
- Department of Pathology, City of Hope, Duarte, CA
| | - Klaus Beiske
- Department of Pathology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kai Fu
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Jan Delabie
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Javeed Iqbal
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - George Wright
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew J. Mungall
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Lisa M. Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ
| | - Ryan D. Morin
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Licenziato L, Mazzone E, Tarantelli C, Accornero P, Rinaldi A, Divari S, Leung W, Webb S, De Maria R, Aresu L. Thinking Outside the Box: Indirect Myc Modulation in Canine B-Cell Lymphoma. Animals (Basel) 2024; 14:1466. [PMID: 38791684 PMCID: PMC11117341 DOI: 10.3390/ani14101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
B-cell lymphomas (BCL) is the most frequent hematological cancer in dogs. Treatment typically consists of chemotherapy, with CHOP-based protocols. However, outcome remains generally poor, urging the exploration of new therapeutic strategies with a targeted approach. Myc transcription factor plays a crucial role in regulating cellular processes, and its dysregulation is implicated in numerous human and canine malignancies, including canine BCL (cBCL). This study aims to evaluate the efficacy of indirectly inhibiting Myc in cBCL using BI2536 and MZ1 compounds in two in vitro models (CLBL-1 and KLR-1201). Both BI2536 and MZ1, alone and combined, affected cell viability in a significant concentration- and time-dependent manner. Western Blot revealed an upregulation of PLK1 expression in both cell lines upon treatment with BI2536, in association with a reduction in c-Myc protein levels. Conversely, MZ1 led to a decrease in its primary target, BRD4, along with a reduction in c-Myc. Furthermore, BI2536, both alone and in combination with MZ1, induced larger transcriptomic changes in cells compared to MZ1 alone, primarily affecting MYC target genes and genes involved in cell cycle regulation. These data underscore the potential role of Myc as therapeutic target in cBCL, providing a novel approach to indirectly modulate this molecule.
Collapse
Affiliation(s)
- Luca Licenziato
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| | - Eugenio Mazzone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (C.T.); (A.R.)
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (C.T.); (A.R.)
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| | - Wilfred Leung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Suzin Webb
- Velocity Clinical Research, Binghamton, NY 13905, USA;
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; (L.L.); (E.M.); (P.A.); (S.D.); (R.D.M.)
| |
Collapse
|
8
|
Woo YR, Kwon CS, Lee JE, Jeon BE, Kim TJ, Choo J, Seo YS, Kim SW. Ajania pacifica (Nakai) K. Bremer and Humphries Extract Limits MYC Expression to Induce Apoptosis in Diffuse Large B Cell Lymphoma. Curr Issues Mol Biol 2024; 46:4580-4594. [PMID: 38785546 PMCID: PMC11119827 DOI: 10.3390/cimb46050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The proto-oncogene MYC is frequently dysregulated in patients with diffuse large B-cell lymphoma (DLBCL) and plays a critical role in disease progression. To improve the clinical outcomes of patients with DLBCL, the development of strategies to target MYC is crucial. The use of medicinal plants for developing anticancer drugs has garnered considerable attention owing to their diverse mechanisms of action. In this study, 100 plant extracts of flora from the Republic of Korea were screened to search for novel agents with anti-DLBCL effects. Among them, Ajania pacifica (Nakai) K. Bremer and Humphries extract (APKH) efficiently suppressed the survival of DLBCL cells, while showing minimal toxicity toward normal murine bone marrow cells. APKH suppressed the expression of anti-apoptotic BCL2 family members, causing an imbalance between the pro-apoptotic and anti-apoptotic BCL2 members. This disrupted mitochondrial membrane potential, cytochrome c release, and pro-caspase-3 activation and eventually led to DLBCL cell death. Importantly, MYC expression was markedly downregulated by APKH and ectopic expression of MYC in DLBCL cells abolished the pro-apoptotic effects of APKH. These results demonstrate that APKH exerts anti-DLBCL effects by inhibiting MYC expression. Moreover, when combined with doxorubicin, an essential component of the CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone), APKH synergistically enhanced the therapeutic effect of doxorubicin. This indicates that APKH may overcome drug resistance, which is common in patients with refractory/relapsed DLBCL. To identify compounds with anti-DLBCL activities in APKH, the chemical profile analysis of APKH was performed using UPLC-QTOF/MSe analysis and assessed for its anticancer activity. Based on the UPLC-QTOF/MSe chemical profiling, it is conceivable that APKH may serve as a novel agent targeting MYC and sensitizing drug-resistant DLBCL cells to CHOP chemotherapy. Further studies to elucidate how the compounds in APKH exert tumor-suppressive role in DLBCL are warranted.
Collapse
Affiliation(s)
- Ye-Rin Woo
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Chan-Seong Kwon
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Ji-Eun Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Byeol-Eun Jeon
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
| | - Joy Choo
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Young-Seob Seo
- Korea Research Institute of Standard and Science, Daejeon 34113, Republic of Korea;
| | - Sang-Woo Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.-R.W.); (C.-S.K.); (J.-E.L.); (B.-E.J.); (T.-J.K.)
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Tumuluru S, Godfrey JK, Cooper A, Yu J, Chen X, MacNabb BW, Venkataraman G, Zha Y, Pelzer B, Song J, Duns G, Sworder BJ, Bolen C, Penuel E, Postovalova E, Kotlov N, Bagaev A, Fowler N, Smith SM, Alizadeh AA, Steidl C, Kline J. Integrative genomic analysis identifies unique immune environments associated with immunotherapy response in diffuse large B cell lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576100. [PMID: 38328071 PMCID: PMC10849512 DOI: 10.1101/2024.01.17.576100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Most diffuse large B-cell lymphoma (DLBCL) patients treated with bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was employed to characterize DLBCL immune environments, which effectively segregated DLBCLs into four quadrants - termed DLBCL-immune quadrants (IQ) - defined by cell-of-origin and immune-related gene set expression scores. Recurrent genomic alterations were enriched in each IQ, suggesting that lymphoma cell-intrinsic alterations contribute to orchestrating unique DLBCL immune environments. In relapsed/refractory DLBCL patients, DLBCL-IQ assignment correlated significantly with clinical benefit with the CD20 x CD3 BsAb, mosunetuzumab, but not with CD19-directed CAR T cells. DLBCL-IQ provides a new framework to conceptualize the DLBCL immune landscape and uncovers the differential impact of the endogenous immune environment on outcomes to BsAb and CAR T cell treatment.
Collapse
|
10
|
Yan F, Jiang V, Jordan A, Che Y, Liu Y, Cai Q, Xue Y, Li Y, McIntosh J, Chen Z, Vargas J, Nie L, Yao Y, Lee HH, Wang W, Bigcal JR, Badillo M, Meena J, Flowers C, Zhou J, Zhao Z, Simon LM, Wang M. The HSP90-MYC-CDK9 network drives therapeutic resistance in mantle cell lymphoma. Exp Hematol Oncol 2024; 13:14. [PMID: 38326887 PMCID: PMC10848414 DOI: 10.1186/s40164-024-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Brexucabtagene autoleucel CAR-T therapy is highly efficacious in overcoming resistance to Bruton's tyrosine kinase inhibitors (BTKi) in mantle cell lymphoma. However, many patients relapse post CAR-T therapy with dismal outcomes. To dissect the underlying mechanisms of sequential resistance to BTKi and CAR-T therapy, we performed single-cell RNA sequencing analysis for 66 samples from 25 patients treated with BTKi and/or CAR-T therapy and conducted in-depth bioinformatics™ analysis. Our analysis revealed that MYC activity progressively increased with sequential resistance. HSP90AB1 (Heat shock protein 90 alpha family class B member 1), a MYC target, was identified as early driver of CAR-T resistance. CDK9 (Cyclin-dependent kinase 9), another MYC target, was significantly upregulated in Dual-R samples. Both HSP90AB1 and CDK9 expression were correlated with MYC activity levels. Pharmaceutical co-targeting of HSP90 and CDK9 synergistically diminished MYC activity, leading to potent anti-MCL activity. Collectively, our study revealed that HSP90-MYC-CDK9 network is the primary driving force of therapeutic resistance.
Collapse
Affiliation(s)
- Fangfang Yan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Jiang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Alexa Jordan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Xue
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph McIntosh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jovanny Vargas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - JohnNelson R Bigcal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jitendra Meena
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christopher Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Lukas M Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Malik S, Pradeep SP, Kumar V, Xiao Y, Deng Y, Fan R, Vasquez JC, Singh V, Bahal R. Antitumor efficacy of a sequence-specific DNA-targeted γPNA-based c-Myc inhibitor. Cell Rep Med 2024; 5:101354. [PMID: 38183981 PMCID: PMC10829792 DOI: 10.1016/j.xcrm.2023.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
Targeting oncogenes at the genomic DNA level can open new avenues for precision medicine. Significant efforts are ongoing to target oncogenes using RNA-targeted and protein-targeted platforms, but no progress has been made to target genomic DNA for cancer therapy. Here, we introduce a gamma peptide nucleic acid (γPNA)-based genomic DNA-targeted platform to silence oncogenes in vivo. γPNAs efficiently invade the mixed sequences of genomic DNA with high affinity and specificity. As a proof of concept, we establish that γPNA can inhibit c-Myc transcription in multiple cell lines. We evaluate the in vivo efficacy and safety of genomic DNA targeting in three pre-clinical models. We also establish that anti-transcription γPNA in combination with histone deacetylase inhibitors and chemotherapeutic drugs results in robust antitumor activity in cell-line- and patient-derived xenografts. Overall, this strategy offers a unique therapeutic platform to target genomic DNA to inhibit oncogenes for cancer therapy.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yong Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA; Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vijender Singh
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Podszywalow-Bartnicka P, Neugebauer KM. Multiple roles for AU-rich RNA binding proteins in the development of haematologic malignancies and their resistance to chemotherapy. RNA Biol 2024; 21:1-17. [PMID: 38798162 PMCID: PMC11135835 DOI: 10.1080/15476286.2024.2346688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.
Collapse
Affiliation(s)
- Paulina Podszywalow-Bartnicka
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Molina E, García-Gutiérrez L, Junco V, Perez-Olivares M, de Yébenes VG, Blanco R, Quevedo L, Acosta JC, Marín AV, Ulgiati D, Merino R, Delgado MD, Varela I, Regueiro JR, Moreno de Alborán I, Ramiro AR, León J. MYC directly transactivates CR2/CD21, the receptor of the Epstein-Barr virus, enhancing the viral infection of Burkitt lymphoma cells. Oncogene 2023; 42:3358-3370. [PMID: 37773203 DOI: 10.1038/s41388-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein-Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV's ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.
Collapse
Affiliation(s)
- Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Mercedes Perez-Olivares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
| | - Virginia G de Yébenes
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Quevedo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Juan C Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Ramon Merino
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Universidad Complutense, School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | | | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares-CNIC Carlos III, Madrid, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain.
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
14
|
Chujan S, Nakareangrit W, Suriyo T, Satayavivad J. Integrated Transcriptomics and Network Analysis of Potential Mechanisms and Health Effects of Convalescent COVID-19 Patients. Bioinform Biol Insights 2023; 17:11779322231206684. [PMID: 37881207 PMCID: PMC10594973 DOI: 10.1177/11779322231206684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Coronaviral disease 2019 (COVID-19) is a recent pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are still cases of COVID-19 around the world that can develop into persistent symptoms after discharge. The constellation of symptoms, termed long COVID, persists for months and can lead to various diseases such as lung inflammation and cardiovascular disease, which may lead to considerable financial burden and possible risk to human health. Moreover, the molecular mechanisms underlying the post-pandemic syndrome of COVID-19 remain unclear. In this study, we aimed to explore the molecular mechanism, disease association, and possible health risks in convalescent COVID-19 patients. Gene expression data from a human convalescent COVID-19 data set was compared with a data set from healthy normal individuals in order to identify differentially expressed genes (DEGs). To determine biological function and potential pathway alterations, the GO and KEGG databases were used to analyze the DEGs. Disease association, tissue, and organ-specific analyses were used to identify possible health effects. A total of 250 DEGs were identified between healthy and convalescent COVID-19 subjects. The biological function alterations identified revealed cytokine interactions and increased inflammation through NF-κB1, RELA, JUN, STAT3, and SP1. Interestingly, the most significant pathways were cytokine-cytokine receptor interaction, altered lipid metabolism, and atherosclerosis that play a crucial role in convalescent COVID-19. In addition, we also found pneumonitis, dermatitis, and autoimmune diseases. Based on our study, convalescent COVID-19 is associated with inflammation in a variety of organs that could lead to autoimmune and inflammatory diseases, as well as atherosclerosis. These findings are a first step toward fully exploring the disease mechanisms in depth to understand the relationship between post-COVID-19 infection and potential health risks. This is necessary for the development of appropriate strategies for the prevention and treatment of long COVID.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | | | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| |
Collapse
|
15
|
Zhang C, Lin Q, Li C, Chen Z, Deng M, Weng H, Zhu X. Analysis of endoplasmic reticulum stress-related gene signature for the prognosis and pattern in diffuse large B cell lymphoma. Sci Rep 2023; 13:13894. [PMID: 37626099 PMCID: PMC10457392 DOI: 10.1038/s41598-023-38568-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. This study aimed to determine the prognostic significance of endoplasmic reticulum (ER) stress-related genes in DLBCL. ER stress-related genes were obtained from the molecular signatures database. Gene expression data and clinical outcomes from the gene expression omnibus and TCGA datasets were collected, and differentially expressed genes (DEGs) were screened out. Gene ontology enrichment analysis, the kyoto encyclopaedia of genes and genomes pathway analysis, and geneset enrichment analysis were used to analyse the possible biological function of ER stress-related DEGs in DLBCL. Protein-protein interaction network construction using the STRING online and hub genes were identified by cytoHubba on Cytoscape software. The significant prognosis-related genes were screened, and the differential expression was validated. The immune microenvironment assessment of significant genes were evaluated. Next, the nomogram was built using univariate and multivariate Cox regression analysis. 26 ER stress-related DEGs were screened. Functional enrichment analysis showed them to be involved in the regulation of the endoplasmic reticulum mainly. NUPR1 and TRIB3 were identified as the most significant prognostic-related genes by comparison with the GSE10846, GSE11318, and TCGA datasets. NUPR1 was correlated with a good prognosis and immune infiltration in DLBCL; on the other hand, high expression of TRIB3 significantly correlated with a poor prognosis, which was an independent prognostic factor for DLBCL. In summary, we identified NUPR1 and TRIB3 as critical ER stress-related genes in DLBCL. NUPR1 might be involved in immune infiltration in DLBCL, and TRIB3 might serve as a potential therapeutic target and prognostic factor in DLBCL.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Mengmeng Deng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Xiongpeng Zhu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, China.
- Department of Haematology, Quanzhou First Hospital of Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
16
|
Yazicioglu YF, Marin E, Sandhu C, Galiani S, Raza IGA, Ali M, Kronsteiner B, Compeer EB, Attar M, Dunachie SJ, Dustin ML, Clarke AJ. Dynamic mitochondrial transcription and translation in B cells control germinal center entry and lymphomagenesis. Nat Immunol 2023; 24:991-1006. [PMID: 37095377 PMCID: PMC10232359 DOI: 10.1038/s41590-023-01484-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023]
Abstract
Germinal center (GC) B cells undergo proliferation at very high rates in a hypoxic microenvironment but the cellular processes driving this are incompletely understood. Here we show that the mitochondria of GC B cells are highly dynamic, with significantly upregulated transcription and translation rates associated with the activity of transcription factor A, mitochondrial (TFAM). TFAM, while also necessary for normal B cell development, is required for entry of activated GC precursor B cells into the germinal center reaction; deletion of Tfam significantly impairs GC formation, function and output. Loss of TFAM in B cells compromises the actin cytoskeleton and impairs cellular motility of GC B cells in response to chemokine signaling, leading to their spatial disorganization. We show that B cell lymphoma substantially increases mitochondrial translation and that deletion of Tfam in B cells is protective against the development of lymphoma in a c-Myc transgenic mouse model. Finally, we show that pharmacological inhibition of mitochondrial transcription and translation inhibits growth of GC-derived human lymphoma cells and induces similar defects in the actin cytoskeleton.
Collapse
Affiliation(s)
| | - Eros Marin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ciaran Sandhu
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Silvia Galiani
- Medical Research Centre Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Barbara Kronsteiner
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Nuffield Department of Medicine Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
17
|
Chao C, Tang R, Zhao J, Di D, Qian Y, Wang B. Oncogenic roles and related mechanisms of the long non-coding RNA MINCR in human cancers. Front Cell Dev Biol 2023; 11:1087337. [PMID: 37215074 PMCID: PMC10196036 DOI: 10.3389/fcell.2023.1087337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in regulating epigenetic mechanisms and gene expression levels, and their dysregulation is closely associated with a variety of diseases such as cancer. Several studies have demonstrated that lncRNAs are dysregulated during tumor progression. Recently, the MYC-induced long non-coding RNA MINCR, a newly identified lncRNA, has been demonstrated to act as an oncogene in different cancers, including gallbladder cancer, hepatocellular cancer, colorectal cancer, non-small cell lung cancer, oral squamous cell carcinoma, nasopharyngeal cancer, and glioma. Moreover, MINCR has been reported to act as a biomarker in the prognosis of patients with different cancers. In this review, we summarize and analyze the oncogenic roles of MINCR in a variety of human cancers in terms of its clinical significance, biological functions, cellular activities, and regulatory mechanism. Our analysis of the literature suggests that MINCR has potential as a novel biomarker and therapeutic target in human cancers.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renzhe Tang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiamin Zhao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
18
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
19
|
Martínez-Martín S, Beaulieu ME, Soucek L. Targeting MYC-driven lymphoma: lessons learned and future directions. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:205-222. [PMID: 37457123 PMCID: PMC10344726 DOI: 10.20517/cdr.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 07/18/2023]
Abstract
MYC plays a central role in tumorigenesis by orchestrating cell proliferation, growth and survival, among other transformation mechanisms. In particular, MYC has often been associated with lymphomagenesis. In fact, MYC overexpressing lymphomas such as high-grade B-cell lymphoma (HGBL) and double expressor diffuse large B-cell lymphomas (DLBCL), are considered addicted to MYC. In such a context, MYC targeting therapies are of special interest, as MYC withdrawal is expected to result in tumor regression. However, whether high MYC levels are always predictive of increased sensitivity to these approaches is not clear yet. Even though no MYC inhibitor has received regulatory approval to date, substantial efforts have been made to investigate avenues to render MYC a druggable target. Here, we summarize the different classes of molecules currently under development, which mostly target MYC indirectly in aggressive B-cell lymphomas, paying special attention to subtypes with MYC/BCL2 or BCL6 translocations or overexpression.
Collapse
Affiliation(s)
| | - Marie-Eve Beaulieu
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Laura Soucek
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
20
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
21
|
Bomken S, Enshaei A, Schwalbe EC, Mikulasova A, Dai Y, Zaka M, Fung KTM, Bashton M, Lim H, Jones L, Karataraki N, Winterman E, Ashby C, Attarbaschi A, Bertrand Y, Bradtke J, Buldini B, Burke GAA, Cazzaniga G, Gohring G, De Groot-Kruseman HA, Haferlach C, Nigro LL, Parihar M, Plesa A, Seaford E, Sonneveld E, Strehl S, Van der Velden VHJ, Rand V, Hunger SP, Harrison CJ, Bacon CM, Van Delft FW, Loh ML, Moppett J, Vormoor J, Walker BA, Moorman AV, Russell LJ. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 2023; 108:717-731. [PMID: 35484682 PMCID: PMC9973471 DOI: 10.3324/haematol.2021.280557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Collapse
Affiliation(s)
- Simon Bomken
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne.
| | - Amir Enshaei
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Edward C Schwalbe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Masood Zaka
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Kent T M Fung
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne
| | - Huezin Lim
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa Jones
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Nefeli Karataraki
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Emily Winterman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Cody Ashby
- Department of Biomedical Informatics / Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Yves Bertrand
- Department of Institute of Hematology Oncology Pediatric (IHOP), Hospices Civils de Lyon, Lyon
| | - Jutta Bradtke
- Institute of Pathology, Department Cytogenetics, University Hospital Giessen and Marburg
| | | | - G A Amos Burke
- Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza
| | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Hesta A De Groot-Kruseman
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | - Luca Lo Nigro
- Head of Cytogenetic-Cytofluorimetric-Molecular Biology Laboratory, Center of Pediatric Hematology Oncology, Azienda Policlinico "G. Rodolico - San Marco", Catania
| | - Mayur Parihar
- Department of Cytogenetics and Laboratory Haematology, Tata Medical Centre, Kolkata, India
| | - Adriana Plesa
- Hematology and Flow cytometry Laboratory, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon
| | - Emma Seaford
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna
| | | | - Vikki Rand
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine J Harrison
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Chris M Bacon
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Frederik W Van Delft
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - John Moppett
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | - Josef Vormoor
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa J Russell
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
22
|
Ma L, Gong Q, Chen Y, Luo P, Chen J, Shi C. Targeting positive cofactor 4 induces autophagic cell death in MYC-expressing diffuse large B-cell lymphoma. Exp Hematol 2023; 119-120:42-57.e4. [PMID: 36642374 DOI: 10.1016/j.exphem.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
MYC-expressing diffuse large B-cell lymphoma (DLBCL) is one of the refractory lymphomas. Currently, the pathogenesis of MYC-expressing DLBCL is still unclear, and there is a lack of effective therapy. We characterized positive cofactor 4 (PC4) as an upstream regulator of c-Myc, and PC4 is overexpressed in DLBCL and is closely related to clinical staging, prognosis, and c-Myc expression. Furthermore, our in vivo and in vitro studies revealed that PC4 knockdown can induce autophagic cell death and enhance the therapeutic effect of doxorubicin in MYC-expressing DLBCL. Inhibition of c-Myc-mediated aerobic glycolysis and activation of the AMPK/mTOR signaling pathway are responsible for the autophagic cell death induced by PC4 knockdown in MYC-expressing DLBCL. Using dual-luciferase reporter assay and electrophoretic mobility shift assay assays, we also found that PC4 exerts its oncogenic functions by directly binding to c-Myc promoters. To sum up, our study provides novel insights into the functions and mechanisms of PC4 in MYC-expressing DLBCL and suggests that PC4 may be a promising therapeutic target for MYC-expressing DLBCL.
Collapse
Affiliation(s)
- Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China
| | - Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, First Affiliated Hospital of the Army Medical University, Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
23
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
24
|
Baptista MJ, Tapia G, Muñoz‐Marmol A, Muncunill J, Garcia O, Montoto S, Gribben JG, Calaminici M, Martinez A, Veloza L, Martínez‐Trillos A, Aldamiz T, Menarguez J, Terol M, Ferrandez A, Alcoceba M, Briones J, González‐Barca E, Climent F, Muntañola A, Moraleda J, Provencio M, Abrisqueta P, Abella E, Colomo L, García‐Ballesteros C, Garcia‐Caro M, Sancho J, Ribera J, Mate J, Navarro J. Genetic and phenotypic characterisation of HIV-associated aggressive B-cell non-Hodgkin lymphomas, which do not occur specifically in this population: diagnostic and prognostic implications. Histopathology 2022; 81:826-840. [PMID: 36109172 PMCID: PMC9828544 DOI: 10.1111/his.14798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023]
Abstract
The frequency of aggressive subtypes of B-cell non-Hodgkin lymphoma (B-NHL), such as high-grade B-cell lymphomas (HGBL) with MYC and BCL2 and/or BCL6 rearrangement (HGBL-DH/TH) or Burkitt-like lymphoma (BL) with 11q aberration, is not well known in the HIV setting. We aimed to characterise HIV-associated aggressive B-NHL according to the 2017 WHO criteria, and to identify genotypic and phenotypic features with prognostic impact. Seventy-five HIV-associated aggressive B-NHL were studied by immunohistochemistry (CD10, BCL2, BCL6, MUM1, MYC, and CD30), EBV-encoded RNAs (EBERs), and fluorescence in situ hybridisation (FISH) to evaluate the status of the MYC, BCL2, and BCL6 genes and chromosome 11q. The 2017 WHO classification criteria and the Hans algorithm, for the cell-of-origin classification of diffuse large B-cell lymphomas (DLBCL), were applied. In DLBCL cases, the frequencies of MYC and BCL6 rearrangements (14.9 and 27.7%, respectively) were similar to those described in HIV-negative patients, but BCL2 rearrangements were infrequent (4.3%). MYC expression was identified in 23.4% of DLBCL cases, and coexpression of MYC and BCL2 in 13.0%, which was associated with a worse prognosis. As for BL cases, the expression of MUM1 (30.4%) conferred a worse prognosis. Finally, the prevalence of HGBL-DH/TH and BL-like with 11q aberration are reported in the HIV setting. The phenotypic and genotypic characteristics of HIV-associated aggressive B-NHL are similar to those of the general population, except for the low frequency of BCL2 rearrangements in DLBCL. MYC and BCL2 coexpression in DLBCL, and MUM-1 expression in BL, have a negative prognostic impact on HIV-infected individuals.
Collapse
Affiliation(s)
- Maria Joao Baptista
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Gustavo Tapia
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Ana‐María Muñoz‐Marmol
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Josep Muncunill
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Olga Garcia
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Silvia Montoto
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - John G Gribben
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Maria Calaminici
- Centre for Haemato‐OncologyBarts Cancer Institute, Queen Mary University of LondonLondonUK
| | - Antonio Martinez
- Department of Pathology, Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | - Luis Veloza
- Department of Pathology, Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
| | | | - Teresa Aldamiz
- Department of Infectious DiseasesHospital Gregorio MarañónMadridSpain
| | | | - María‐José Terol
- Department of Hematology and OncologyHospital Clínic Universitari de ValènciaValenciaSpain
| | - Antonio Ferrandez
- Department of PathologyHospital Clínic Universitari de ValènciaValenciaSpain
| | - Miguel Alcoceba
- Department of HematologyHospital Universitario de Salamanca (HUS/IBSAL), CIBERONC and Centro de Investigación del Cáncer‐IBMCC (USAL‐CSIC)SalamancaSpain
| | - Javier Briones
- Department of Hematology, Hospital de la Santa Creu i Sant PauJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Eva González‐Barca
- Department of HematologyICO‐Hospital Duran i ReynalsL'Hospitalet de LlobregatSpain
| | - Fina Climent
- Department of PathologyHospital Universitari de Bellvitge‐IDIBELL, L'Hospitalet de LlobregatBadalonaSpain
| | - Ana Muntañola
- Department of Clinical HematologyHospital Universitari Mutua de TerrassaTerrassaSpain
| | - José‐María Moraleda
- Department of HematologyHospital Clinico Universitario Virgen de la ArrixacaMurciaSpain
| | - Mariano Provencio
- Department of Medical OncologyHospital Universitario Puerta De HierroMajadahondaSpain
| | - Pau Abrisqueta
- Department of HematologyHospital Vall d'HebrónBarcelonaSpain
| | | | - Lluis Colomo
- Department of PathologyHospital del MarBarcelonaSpain
| | | | | | - Juan‐Manuel Sancho
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - Josep‐Maria Ribera
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| | - José‐Luis Mate
- Department of Pathology, Hospital Germans Trias i Pujol, IGTPUniversitat Autònoma de BarcelonaBadalonaSpain
| | - José‐Tomas Navarro
- Department of Hematology, ICO‐Germans Trias i Pujol Hospital, Josep Carreras Leukaemia Research Institute (IJC)Universitat Autònoma de BarcelonaBadalonaSpain
| |
Collapse
|
25
|
Fahrmann JF, Saini NY, Chia-Chi C, Irajizad E, Strati P, Nair R, Fayad LE, Ahmed S, Lee HJ, Iyer S, Steiner R, Vykoukal J, Wu R, Dennison JB, Nastoupil L, Jain P, Wang M, Green M, Westin J, Blumenberg V, Davila M, Champlin R, Shpall EJ, Kebriaei P, Flowers CR, Jain M, Jenq R, Stein-Thoeringer CK, Subklewe M, Neelapu SS, Hanash S. A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma. Cell Rep Med 2022; 3:100720. [PMID: 36384092 PMCID: PMC9729795 DOI: 10.1016/j.xcrm.2022.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma (LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is associated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid biopsy, is predictive of response to anti-CD19 CAR-T therapy in patients with r/r LBCL. Elevated plasma acetylated polyamines were associated with non-durable response. Concordantly, increased expression of spermidine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP) consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an independent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chang Chia-Chi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Swaminathan Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Viktoria Blumenberg
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marco Davila
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christoph K Stein-Thoeringer
- National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany; Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Advances in Understanding of Metabolism of B-Cell Lymphoma: Implications for Therapy. Cancers (Basel) 2022; 14:cancers14225552. [PMID: 36428647 PMCID: PMC9688663 DOI: 10.3390/cancers14225552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
There have been significant recent advances in the understanding of the role of metabolism in normal and malignant B-cell biology. Previous research has focused on the role of MYC and mammalian target of rapamycin (mTOR) and how these interact with B-cell receptor signaling and hypoxia to regulate glycolysis, glutaminolysis, oxidative phosphorylation (OXPHOS) and related metabolic pathways in germinal centers. Many of the commonest forms of lymphoma arise from germinal center B-cells, reflecting the physiological attenuation of normal DNA damage checkpoints to facilitate somatic hypermutation of the immunoglobulin genes. As a result, these lymphomas can inherit the metabolic state of their cell-of-origin. There is increasing interest in the potential of targeting metabolic pathways for anti-cancer therapy. Some metabolic inhibitors such as methotrexate have been used to treat lymphoma for decades, with several new agents being recently licensed such as inhibitors of phosphoinositide-3-kinase. Several other inhibitors are in development including those blocking mTOR, glutaminase, OXPHOS and monocarboxylate transporters. In addition, recent work has highlighted the importance of the interaction between diet and cancer, with particular focus on dietary modifications that restrict carbohydrates and specific amino acids. This article will review the current state of this field and discuss future developments.
Collapse
|
27
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
28
|
Concomitant Inhibition of IRE1α/XBP1 Axis of UPR and PARP: A Promising Therapeutic Approach against c-Myc and Gammaherpesvirus-Driven B-Cell Lymphomas. Int J Mol Sci 2022; 23:ijms23169113. [PMID: 36012375 PMCID: PMC9409055 DOI: 10.3390/ijms23169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared to type III latency BL cells. The other interesting finding of this study was that the inhibition of IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive B-cell lymphomas such as BL and PEL.
Collapse
|
29
|
Simultaneous Analysis of the p16 Gene and Protein in Canine Lymphoma Cells and Their Correlation with pRb Phosphorylation. Vet Sci 2022; 9:vetsci9080393. [PMID: 36006308 PMCID: PMC9416461 DOI: 10.3390/vetsci9080393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lymphoma is one of the most frequently diagnosed malignancies in dogs. The most common epigenetic alteration is gene methylation. Methylation of the p16 gene leads to decreased expression of its protein. The p16 protein inhibits the activity of cyclin-dependent kinase, as a negative control of the cell cycle to prevent phosphorylation of the retinoblastoma (pRb) protein. The methylation of the p16 gene has been reported in canine lymphomas, however, p16 protein expression has not been examined in previous studies. In this study, the gene and protein expression of p16, and phosphorylation of pRb, were examined simultaneously in canine lymphoma/leukemia cell lines treated with or without a demethylation drug in vitro. We identified the hypermethylation of the p16 gene, the decreased expression of p16 protein and the hyperphosphorylation of pRb in four out of eight cell lines. Furthermore, we revealed that the expression of the p16 protein was more stable than that of the p16 gene and more closely related to the phosphorylation of pRb. In conclusion, the p16 protein expression is suggested as a promising biomarker for canine lymphoma cells, and the p16–pRb pathway could be a target for the better treatment of canine lymphomas. Abstract Cyclin-dependent kinase inhibitor p16 (CDKN2A) primarily functions as a negative regulator of the retinoblastoma protein (pRb) pathway to prevent pRb phosphorylation, thus playing a critical role in cell cycle arrest. In canine lymphoma cells, methylation due to inactivation of the p16 gene has been reported. However, its protein expression has not been examined in previous studies. In our in vitro study, the gene and protein expression of p16 and phosphorylated pRb were examined simultaneously in eight canine lymphoma and leukemia cell lines (17-71, CLBL-1, GL-1, CLC, CLGL-90, Ema, Nody-1, and UL-1). Methylation of the p16 gene was also explored using the demethylation drug 5-Aza-2′-deoxycytidine (5-Aza). After 5-Aza treatment, p16 gene and protein expression increased and pRb phosphorylation decreased, suggesting that both hypermethylation of the p16 gene and pRb hyperphosphorylation occurred in four out of eight cell lines (CLBL-1, CLC, Nody-1, and UL-1). Moreover, the estimation of p16’s protein expression was better than that of p16’s mRNA expression because the expression of the protein was more stable than those of the gene, and highly related to the phosphorylation of pRb. These results revealed that p16’s protein expression could be a promising biomarker for canine lymphoma cells.
Collapse
|
30
|
Clinical Features and Immunophenotypes of Double-Hit Diffuse Large B-Cell Lymphoma. Diagnostics (Basel) 2022; 12:diagnostics12051106. [PMID: 35626262 PMCID: PMC9139504 DOI: 10.3390/diagnostics12051106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022] Open
Abstract
Double-hit (DH) genetics induces a reduction in the complete remission (CR) and, consequently, in poor overall survival (OS) in diffuse large B-cell lymphoma (DLBCL) patients. Unfortunately, DH identification is time-consuming. Here, we retrospectively reviewed 92 newly diagnosed DLBCL patients, stratified them into the DH (n = 14) and non-DH groups (n = 78), and compared their clinical features and outcomes. The results revealed that the DH group had a higher percentage of bulky disease than the non-DH group (64.3% vs. 28.2%; p = 0.013). More patients in the DH group tested positive for double expresser (DE) (50.0% vs. 21.8%; p = 0.044). The three-year OS rates of patients with and without DH were 33.3% and 52.2%, respectively (p = 0.016). Importantly, advance stage and multiple comorbidities were correlated with a high mortality rate in multivariate analysis. Furthermore, by combining DE and the bulky disease, a specificity of 89.7% for DH prediction was achieved. In summary, DH genetics, not DE immunopositivity, could be a factor for an inferior OS in DLBCL. A combination of bulky disease and a positive DE immunophenotype could facilitate DH genetics prediction in newly diagnosed DLBCL patients.
Collapse
|
31
|
Roh J, Cho H, Pak HK, Lee YS, Lee SW, Ryu JS, Chae EJ, Kim KW, Huh J, Choi YS, Jeong SH, Suh C, Yoon DH, Park CS. BCL2 super-expressor diffuse large B-cell lymphoma: a distinct subgroup associated with poor prognosis. Mod Pathol 2022; 35:480-488. [PMID: 34764434 DOI: 10.1038/s41379-021-00962-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
Overexpression of the BCL2 protein has been reported as a poor prognostic factor for diffuse large B-cell lymphoma (DLBCL). However, there are currently no standardized criteria for evaluating BCL2 protein expression. We aimed to evaluate the prognostic value of BCL2 expression determined by immunohistochemistry (IHC), incorporating both the staining intensity and proportion, in patients with de novo DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) as first-line treatment. We defined tumors with BCL2 expression in nearly all tumor cells with a uniformly strong intensity by IHC as BCL2 super-expressor. The BCL2 super-expressors (n = 35) showed significantly worse event-free survival (EFS; HR, 1.903; 95% CI, 1.159-3.126, P = 0.011) and overall survival (OS; HR, 2.467; 95% CI, 1.474-4.127, P = 0.001) compared with the non-BCL2 super-expressors (n = 234) independent of the international prognostic index (IPI), cell of origin (COO), and double expressor status in the training set (n = 269). The adverse prognostic impact of BCL2 super-expression was confirmed in the validation set (n = 195). When the survival outcomes were evaluated in the entire cohort (n = 464), BCL2 super-expressor group was significantly associated with inferior EFS and OS regardless of IPI, COO, MYC expression, and stages. BCL2 super-expressors had genetic aberrations enriched in the NOTCH and TP53 signaling pathways. This study suggests that the BCL2 super-expressor characterizes a distinct subset of DLBCL with a poor prognosis and warrants further investigation as a target population for BCL-2 inhibitors.
Collapse
Affiliation(s)
- Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Hyungwoo Cho
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyo-Kyung Pak
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoon Sei Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Jin Chae
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Seok Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Seong Hyun Jeong
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
A bitesize introduction to canine hematologic malignancies. Blood Adv 2022; 6:4073-4084. [PMID: 35316831 PMCID: PMC9278293 DOI: 10.1182/bloodadvances.2021005045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/09/2022] [Indexed: 11/20/2022] Open
Abstract
Hematologic malignancies are frequently diagnosed in dogs and result in a spectrum of clinical signs associated with specific disease types. The most frequently encountered hematologic tumors in dogs include lymphoma, lymphoid and myeloid leukemias, and mast cell, plasma cell, and histiocytic neoplasias. Coupled with the heterogeneous presentations of the different categories and subtypes of canine hematologic malignancies, outcomes for these tumors are also variable. Considering this, appropriate treatment options range from active surveillance to curative intent approaches harnessing surgical, chemotherapeutic, and radiation-based modalities. The underlying pathology of many of these diseases bears remarkable resemblance to that of the corresponding diagnosis made in human patients. We introduce some of the pathogenic drivers of canine hematologic cancers alongside their clinical presentations. An overview of standard-of-care therapies for each of these diseases is also provided. As comparative oncology gains recognition as a valuable setting in which to investigate the pathogenesis of neoplasia and provide powerful, clinically relevant, immunocompetent models for the evaluation of novel therapies, the number of clinicians and scientists participating in cancer research involving dogs is expected to increase. This review aims at providing an introductory overview of canine hematologic malignancies.
Collapse
|
33
|
Bröske AME, Korfi K, Belousov A, Wilson S, Ooi CH, Bolen CR, Canamero M, Alcaide EG, James I, Piccione EC, Carlile DJ, Dimier N, Umaña P, Bacac M, Weisser M, Dickinson M. Pharmacodynamics and molecular correlates of response to glofitamab in relapsed/refractory non-Hodgkin lymphoma. Blood Adv 2022; 6:1025-1037. [PMID: 34941996 PMCID: PMC8945294 DOI: 10.1182/bloodadvances.2021005954] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Glofitamab, a novel CD20xCD3, T-cell-engaging bispecific antibody, exhibited single-agent activity in Study NP30179, a first-in-human, phase 1 trial in relapsed/refractory B-cell non-Hodgkin lymphoma. Preclinical studies showed that glofitamab leads to T-cell activation, proliferation, and tumor cell killing upon binding to CD20 on malignant cells. Here, we provide evidence of glofitamab's clinical activity, including pharmacodynamic profile, mode of action, and factors associated with clinical response, by evaluating biomarkers in patient samples from the dose-escalation part of this trial. Patients enrolled in Study NP30179 received single-dose obinutuzumab pretreatment (1000 mg) 7 days before IV glofitamab (5 µg-25 mg). Glofitamab treatment lasted ≤12 cycles once every 2 or 3 weeks. Blood samples were collected at predefined time points per the clinical protocol; T-cell populations were evaluated centrally by flow cytometry, and cytokine profiles were analyzed. Immunohistochemical and genomic biomarker analyses were performed on tumor biopsy samples. Pharmacodynamic modulation was observed with glofitamab treatment, including dose-dependent induction of cytokines, and T-cell margination, proliferation, and activation in peripheral blood. Gene expression analysis of pretreatment tumor biopsy samples indicated that tumor cell intrinsic factors such as TP53 signaling are associated with resistance to glofitamab, but they may also be interlinked with a diminished effector T-cell profile in resistant tumors and thus represent a poor prognostic factor per se. This integrative biomarker data analysis provides clinical evidence regarding glofitamab's mode of action, supports optimal biological dose selection, and will further guide clinical development. This trial was registered at www.clinicaltrials.gov as #NCT03075696.
Collapse
Affiliation(s)
- Ann-Marie E. Bröske
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Koorosh Korfi
- Roche Innovation Center Zürich, Roche Pharma Research and Early Development, Zürich, Switzerland
| | - Anton Belousov
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Sabine Wilson
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Chia-Huey Ooi
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | | | - Marta Canamero
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Enrique Gomez Alcaide
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Ian James
- A4P Consulting Ltd., Sandwich, United Kingdom
| | | | - David J. Carlile
- Roche Innovation Center Welwyn, Roche Pharma Research and Early Development, Welwyn Garden City, United Kingdom; and
| | - Natalie Dimier
- Roche Innovation Center Welwyn, Roche Pharma Research and Early Development, Welwyn Garden City, United Kingdom; and
| | - Pablo Umaña
- Roche Innovation Center Zürich, Roche Pharma Research and Early Development, Zürich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zürich, Roche Pharma Research and Early Development, Zürich, Switzerland
| | - Martin Weisser
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, Penzberg, Germany
| | - Michael Dickinson
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital and The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Pather S, Patel M. HIV-associated DLBCL: Clinicopathological factors including dual-colour chromogenic in situ hybridisation to assess MYC gene copies. Ann Diagn Pathol 2022; 58:151913. [DOI: 10.1016/j.anndiagpath.2022.151913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/01/2022]
|
35
|
Differential Transcriptional Reprogramming by Wild Type and Lymphoma-Associated Mutant MYC Proteins as B-Cells Convert to a Lymphoma Phenotype. Cancers (Basel) 2021; 13:cancers13236093. [PMID: 34885204 PMCID: PMC8657136 DOI: 10.3390/cancers13236093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The MYC transcription factor regulates a vast number of genes and is implicated in many human malignancies. In some hematological malignancies, MYC is frequently subject to missense mutations that enhance its transformation activity. Here, we use a novel murine cell system to (i) characterize the transcriptional effects of progressively increasing MYC levels as normal primary B-cells transform to lymphoma cells and (ii) determine how this gene regulation program is modified by lymphoma-associated MYC mutations (T58A and T58I) that enhance its transformation activity. Unlike many previous studies, the cell system exploits primary B-cells that are transduced to allow regulated MYC expression under circumstances where apoptosis and senescence pathways are abrogated by the over-expression of the Bcl-xL and BMI1 proteins. In such cells, transition from a normal to a lymphoma phenotype is directly dependent on the MYC expression level, without a requirement for secondary events that are normally required during MYC-driven oncogenic transformation. A generalized linear model approach allowed an integrated analysis of RNA sequencing data to identify regulated genes in relation to both progressively increasing MYC level and wild type or mutant status. Using this design, a total of 7569 regulated genes were identified, of which the majority (n = 7263) were regulated in response to progressively increased levels of wild type MYC, while a smaller number of genes (n = 917) were differentially regulated, compared to wild type MYC, in T58A MYC- and/or T58I MYC-expressing cells. Unlike most genes that are similarly regulated by both wild type and mutant MYC genes, the set of 917 genes did not significantly overlap with known lipopolysaccharide regulated genes, which represent genes regulated by MYC in normal B cells. The genes that were differently regulated in cells expressing mutant MYC proteins were significantly enriched in DNA replication and G2 phase to mitosis transition genes. Thus, mutants affecting MYC proteins may augment quantitative oncogenic effects on the expression of normal MYC-target genes with qualitative oncogenic effects, by which sets of cell cycle genes are abnormally targeted by MYC as B cells transition into lymphoma cells. The T58A and T58I mutations augment MYC-driven transformation by distinct mechanisms.
Collapse
|
36
|
Kos IA, Thurner L, Bittenbring JT, Christofyllakis K, Kaddu-Mulindwa D. Advances in Lymphoma Molecular Diagnostics. Diagnostics (Basel) 2021; 11:diagnostics11122174. [PMID: 34943410 PMCID: PMC8699850 DOI: 10.3390/diagnostics11122174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Lymphomas encompass a diverse group of malignant lymphoid neoplasms. Over recent years much scientific effort has been undertaken to identify and understand molecular changes in lymphomas, resulting in a wide range of genetic alterations that have been reported across all types of lymphomas. As many of these changes are now incorporated into the World Health Organization’s defined criteria for the diagnostic evaluation of patients with lymphoid neoplasms, their accurate identification is crucial. Even if many alterations are not routinely evaluated in daily clinical practice, they may still have implications in risk stratification, treatment, prognosis or disease monitoring. Moreover, some alterations can be used for targeted treatment. Therefore, these advances in lymphoma molecular diagnostics in some cases have led to changes in treatment algorithms. Here, we give an overview of and discuss advances in molecular techniques in current clinical practice, as well as highlight some of them in a clinical context.
Collapse
|
37
|
Miyaoka M, Kikuti YY, Carreras J, Itou A, Ikoma H, Tomita S, Shiraiwa S, Ando K, Nakamura N. AID is a poor prognostic marker of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements. Pathol Int 2021; 72:35-42. [PMID: 34727403 DOI: 10.1111/pin.13182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Diffuse large B-cell lymphoma with MYC rearrangement is defined as double/triple-hit lymphoma (DHL/THL) or single-hit lymphoma (SHL) by the inclusion of the BCL2 and BCL6 rearrangements status. DHL/THL is called as "high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements" in the World Health Organization 2017 Classification of Tumors of Hematopoietic and Lymphoid Tissues. To find a prognostic biomarker of DHL/THL, we firstly examined 19 cases (molecular analysis series;10 cases of DHL/THL and 9 cases of SHL) with gene expression profile analysis. The gene expression profile analysis showed that the high expression of AICDA was associated with an adverse prognosis in DHL/THL, but not in SHL. Then, we evaluated immunohistochemical expression of AID, the protein product of AICDA, in 50 cases (molecular analysis series of 19 cases and additional immunohistochemistry series of 31 cases; 12 cases of DHL/THL and 19 cases of SHL) and confirmed that its expression was also associated with an adverse prognosis in DHL/THL. Therefore, AICDA and AID can be a predictor of an adverse clinical outcome in DHL/THL and immunohistochemistry of AID is useful to find DHL/THL-adverse prognosis group.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Atsushi Itou
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Haruka Ikoma
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sakura Tomita
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| | - Sawako Shiraiwa
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University, School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University, School of Medicine, Isehara, Japan
| |
Collapse
|
38
|
Coexisting and Second Primary Cancers in Patients with Uveal Melanoma: A 10-Year Nationwide Database Analysis. J Clin Med 2021; 10:jcm10204744. [PMID: 34682867 PMCID: PMC8538461 DOI: 10.3390/jcm10204744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
Uveal melanoma is the most common intraocular tumor in adults. Metastatic disease occurs in about 30% of patients, for which there is currently no effective treatment. More than half of patients are long-term survivors, and it is well established that cancer survivors are prone to developing second primary cancers. In this study, we analyzed 10 years’ worth of data from the nationwide database to determine the rates of coexisting malignancies and second primary cancers associated with uveal melanoma. The mean annual incidence of uveal melanoma was 1.1 per million. Approximately 43% of patients had coexisting cancers. The most common coexisting cancer was lung cancer (10%) followed by liver cancer (6%) and non-Hodgkin lymphoma (6%). In patients whose first cancer in their lifetime was uveal melanoma, the 10-year cumulative incidence of second primary cancers was 22% (95% confidence interval, 9–31%). The age- and sex-adjusted standard incidence rates was 3.61 (95% confidence interval, 2.61–4.86). The most common second primary cancers were lung cancer and hepatocellular carcinoma, followed by prostate, thyroid, pancreatic, and ovarian cancers. Age was the only factor associated with second primary cancer development. Our findings will be helpful in providing counseling for cancer screening in uveal melanoma patients.
Collapse
|
39
|
Human CD22-Transgenic, Primary Murine Lymphoma Challenges Immunotherapies in Organ-Specific Tumor Microenvironments. Int J Mol Sci 2021; 22:ijms221910433. [PMID: 34638774 PMCID: PMC8508822 DOI: 10.3390/ijms221910433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted immunotherapies have greatly changed treatment of patients with B cell malignancies. To further enhance immunotherapies, research increasingly focuses on the tumor microenvironment (TME), which differs considerably by organ site. However, immunocompetent mouse models of disease to study immunotherapies targeting human molecules within organ-specific TME are surprisingly rare. We developed a myc-driven, primary murine lymphoma model expressing a human-mouse chimeric CD22 (h/mCD22). Stable engraftment of three distinct h/mCD22+ lymphoma was established after subcutaneous and systemic injection. However, only systemic lymphoma showed immune infiltration that reflected human disease. In this model, myeloid cells supported lymphoma growth and showed a phenotype of myeloid-derived suppressor cells. The human CD22-targeted immunotoxin Moxetumomab was highly active against h/mCD22+ lymphoma and similarly reduced infiltration of bone marrow and spleen of all three models up to 90-fold while efficacy against lymphoma in lymph nodes varied substantially, highlighting relevance of organ-specific TME. As in human aggressive lymphoma, anti-PD-L1 as monotherapy was not efficient. However, anti-PD-L1 enhanced efficacy of Moxetumomab suggesting potential for future clinical application. The novel model system of h/mCD22+ lymphoma provides a unique platform to test targeted immunotherapies and may be amenable for other human B cell targets such as CD19 and CD20.
Collapse
|
40
|
Iqbal M, Castano YG, Paludo J, Rosenthal A, Li Z, Beltran M, Moustafa MA, Inwards D, Porrata L, Micallef I, Bisneto JCV, Johnston P, Ansell SM, Reeder C, Murthy H, Roy V, Foran J, Tun HW, Kharfan-Dabaja MA, Ayala E. Impact of Cell of Origin on Outcomes After Autologous Hematopoietic Cell Transplant in Diffuse Large B-Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e89-e95. [PMID: 34593359 DOI: 10.1016/j.clml.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) at diagnosis is associated with superior long-term outcomes compared to non-GCB-DLBCL in patients treated with conventional chemo-immunotherapy. Whether cell of origin (COO) by Hans algorithm retains its prognostic significance in patients with (R/R) relapsed/refractory DLBCL undergoing autologous hematopoietic cell transplant (auto-HCT) is not well established. Three hundred and fifty-seven patients underwent auto-HCT between 2005 and 2018. The COO status was determined in 284 patients and these were included in the analysis. One hundred ninety-four patients had GCB-DLBCL while 90 had non-GCB-DLBCL. Median follow up was 1.7 (0-13) years. The GCB-DLBCL was associated with inferior 5-year overall survival at 44% (95%CI, 36-52) versus 64% (95%CI, 54-77) (P = .004) and a higher relapse incidence at 67% (95%CI, 58-74) versus 49% (95%CI, 35-60) (P = .01) in the non-GCB-DLBCL. The difference between GCB and non-GCB-DLBCL remained statistically significant in multivariate analysis. Additionally, response at the time of transplant was an independent prognostic factor. GCB-DLBCL was enriched in double-hit and triple hit phenotype based on available fluorescence in situ hybridization data. These results suggest an enrichment of high-risk genetic rearrangements in R/R GCB-DLBCL resulting in limited efficacy of auto-HCT.
Collapse
Affiliation(s)
- Madiha Iqbal
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL.
| | | | - Jonas Paludo
- Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | | | - Zhuo Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL
| | | | - Muhamad Alhaj Moustafa
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - David Inwards
- Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Luis Porrata
- Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | - Ivana Micallef
- Division of Hematology-Oncology, Mayo Clinic, Rochester, MN
| | | | | | | | - Craig Reeder
- Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ
| | - Hemant Murthy
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Vivek Roy
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - James Foran
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Han W Tun
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| | - Ernesto Ayala
- Division of Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
41
|
Bhavsar S, Liu YC, Gibson SE, Moore EM, Swerdlow SH. Mutational Landscape of TdT+ Large B-cell Lymphomas Supports Their Distinction From B-lymphoblastic Neoplasms: A Multiparameter Study of a Rare and Aggressive Entity. Am J Surg Pathol 2021; 46:71-82. [PMID: 34392269 DOI: 10.1097/pas.0000000000001750] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the current World Health Organization classification, terminal deoxynucleotidyl transferase (TdT) expression in a high grade/large cell B-cell lymphoma (LBCL) indicates a B-lymphoblastic lymphoma/leukemia (B-LBL), although TdT expression in what appear to be mature LBCL or following mature B-cell neoplasms is reported. The frequency of TdT+ LBCL, how to best categorize these cases, and their clinicopathologic features, molecular landscape, and relationship to classic B-LBL remain to be better defined. TdT expression was therefore assessed in 258 LBCL and the results correlated with the cytologic, phenotypic, and cytogenetic findings. Targeted mutational analysis, review of prior biopsies, and assessment of clinical associations was performed in the 6 cases with >10% TdT+ cells. All 6 TdT+ LBCL were blastoid-appearing, CD34-, MYC+, BCL2+, and had MYC rearrangements (R) (5/6 with BCL2 and/or BCL6-R). 5/6 had a prior TdT- LBCL and/or follicular lymphoma and all had an aggressive course. Fifteen nonsynonymous variants in 11 genes were seen in the 4/5 tested cases with mutations. TdT+ and TdT- areas in 1 case showed identical mutations. The mutational profiles were more like those reported in germinal center B-cell type-diffuse LBCL rather than B-LBL. Evolution from preceding TdT- lymphomas was nondivergent in 1/3 tested cases and partially divergent in 2. The clinicopathologic and cytogenetic features of these 6 cases were similar to those found in a meta-analysis that included additional cases of TdT+ LBCL or B-LBL following follicular lymphoma. Thus, TdT+, CD34- large B-cell neoplasms with MYC rearrangements and often a "double hit" are rare, frequently a transformational event and aggressive but are distinct from classic B-LBL.
Collapse
Affiliation(s)
- Shweta Bhavsar
- Department of Pathology, UPMC Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
42
|
Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci 2021; 22:7761. [PMID: 34299381 PMCID: PMC8305799 DOI: 10.3390/ijms22147761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The MYC oncoprotein and its family members N-MYC and L-MYC are known to drive a wide variety of human cancers. Emerging evidence suggests that MYC has a bi-directional relationship with the molecular clock in cancer. The molecular clock is responsible for circadian (~24 h) rhythms in most eukaryotic cells and organisms, as a mechanism to adapt to light/dark cycles. Disruption of human circadian rhythms, such as through shift work, may serve as a risk factor for cancer, but connections with oncogenic drivers such as MYC were previously not well understood. In this review, we examine recent evidence that MYC in cancer cells can disrupt the molecular clock; and conversely, that molecular clock disruption in cancer can deregulate and elevate MYC. Since MYC and the molecular clock control many of the same processes, we then consider competition between MYC and the molecular clock in several select aspects of tumor biology, including chromatin state, global transcriptional profile, metabolic rewiring, and immune infiltrate in the tumor. Finally, we discuss how the molecular clock can be monitored or diagnosed in human tumors, and how MYC inhibition could potentially restore molecular clock function. Further study of the relationship between the molecular clock and MYC in cancer may reveal previously unsuspected vulnerabilities which could lead to new treatment strategies.
Collapse
Affiliation(s)
- Jamison B. Burchett
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Amelia M. Knudsen-Clark
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
43
|
Takayanagi N, Momose S, Kikuchi J, Tanaka Y, Anan T, Yamashita T, Higashi M, Tokuhira M, Kizaki M, Tamaru JI. Fluorescent nanoparticle-mediated semiquantitative MYC protein expression analysis in morphologically diffuse large B-cell lymphoma. Pathol Int 2021; 71:594-603. [PMID: 34171161 DOI: 10.1111/pin.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
The current World Health Organization (WHO) classification defines a new disease entity of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, making fluorescence in situ hybridization (FISH) screening for these genes mandatory. In addition, the prognostic significance of MYC expression was reported, with a cut-off value of 40%. However, interobserver discrepancies arise due to the heterogeneous intensity of MYC expression by immunohistochemistry. Moreover, a cut-off value of positivity for MYC protein in diffuse large B-cell lymphoma (DLBCL) varies among studies at present. Here, we applied a high-sensitivity semiquantitative immunohistochemical technique using fluorescent nanoparticles called phosphor-integrated dots (PID) to evaluate the MYC expression in 50 de novo DLBCL cases, and compared it with the conventional diaminobenzidine (DAB)-developing system. The high MYC expression detected by the PID-mediated system predicted poor overall survival in DLBCL patients. However, we found no prognostic value of MYC protein expression for any cut-off value by the DAB-developing system, even if the intensity was considered. These results indicate that the precise evaluation of MYC protein expression can clarify the prognostic values in DLBCL, irrespective of MYC rearrangement.
Collapse
Affiliation(s)
- Natsuko Takayanagi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun Kikuchi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Yuka Tanaka
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomoe Anan
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Michihide Tokuhira
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
44
|
Domostegui A, Peddigari S, Mercer CA, Iannizzotto F, Rodriguez ML, Garcia-Cajide M, Amador V, Diepstraten ST, Kelly GL, Salazar R, Kozma SC, Kusnadi EP, Kang J, Gentilella A, Pearson RB, Thomas G, Pelletier J. Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Blood 2021; 137:3351-3364. [PMID: 33512431 PMCID: PMC8212515 DOI: 10.1182/blood.2020007452] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eμ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eμ-Myc but not Trp53-/-;Eμ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eμ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.
Collapse
Affiliation(s)
- Ana Domostegui
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Suresh Peddigari
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Carol A Mercer
- Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Flavia Iannizzotto
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Marta L Rodriguez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Virginia Amador
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ramón Salazar
- Catalan Institute of Oncology, Molecular Mechanisms and Experimental Therapy in Oncology Program, IDIBELL, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Eric P Kusnadi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Jian Kang
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - George Thomas
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, Molecular Mechanisms and Experimental Therapy in Oncology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
45
|
Lin YH, Wang H, Fiore A, Förster M, Tung LT, Belle JI, Robert F, Pelletier J, Langlais D, Nijnik A. Loss of MYSM1 inhibits the oncogenic activity of cMYC in B cell lymphoma. J Cell Mol Med 2021; 25:7089-7094. [PMID: 34114734 PMCID: PMC8278115 DOI: 10.1111/jcmm.16554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
MYSM1 is a chromatin‐binding protein, widely investigated for its functions in haematopoiesis in human and mouse; however, its role in haematologic malignancies remains unexplored. Here, we investigate the cross‐talk between MYSM1 and oncogenic cMYC in the transcriptional regulation of genes encoding ribosomal proteins, and the implications of these mechanisms for cMYC‐driven carcinogenesis. We demonstrate that in cMYC‐driven B cell lymphoma in mouse models, MYSM1‐loss represses ribosomal protein gene expression and protein synthesis. Importantly, the loss of MYSM1 also strongly inhibits cMYC oncogenic activity and protects against B cell lymphoma onset and progression in the mouse models. This advances the understanding of the molecular and transcriptional mechanisms of lymphomagenesis, and suggests MYSM1 as a possible drug target for cMYC‐driven malignancies.
Collapse
Affiliation(s)
- Yun Hsiao Lin
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Amanda Fiore
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - Michael Förster
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill University Genome Centre, McGill University, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.,McGill University Research Centre on Complex Traits, McGill University, QC, Canada
| |
Collapse
|
46
|
Lap CJ, Nassereddine S, Dunleavy K. Novel Biological Insights and New Developments in Management of Burkitt Lymphoma and High-Grade B-Cell Lymphoma. Curr Treat Options Oncol 2021; 22:60. [PMID: 34097157 DOI: 10.1007/s11864-021-00857-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Burkitt lymphoma (BL) is highly curable, and prompt institution of therapy is critical to achieving optimal outcomes. Although current "standard" approaches are very effective in disease eradication, treatment-related toxicity makes optimal delivery of curative therapy a challenge, especially in older and immunocompromised individuals. Reduced intensity approaches with fewer toxic complications have been the focus of some recent studies. A critical question is if they can replace "standard" approaches by maintaining high curability with improved tolerability. Additionally, new molecular insights in BL biology suggest that in the future, "targeted therapy" approaches may be feasible using small molecule inhibitors and novel strategies. Recently, a new category of aggressive lymphoma named "high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 translocations" has been recognized. This category overlaps clinically and biologically with BL and has an inferior prognosis compared to most B-cell lymphomas, and the optimal approach to its management remains, as yet, undefined. In this review, we discuss the current landscape of BL treatment including recent results with low-intensity regimens and also consider current approaches to HGBL. We also explore how recently elucidated novel biological insights in BL biology may shape future therapeutic directions including the use of novel cellular therapy approaches.
Collapse
Affiliation(s)
- Coen J Lap
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Samah Nassereddine
- Department of Hematology and Oncology, Medical Faculty Associates, George Washington University, Washington, DC, USA
- The George Washington University School of Medicine, Washington, DC, USA
| | - Kieron Dunleavy
- Division of Hematology-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
47
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
48
|
Wang L, Tang G, Medeiros LJ, Xu J, Huang W, Yin CC, Wang M, Jain P, Lin P, Li S. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica 2021; 106:1381-1389. [PMID: 32273477 PMCID: PMC8094099 DOI: 10.3324/haematol.2019.243071] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mantle cell lymphoma (MCL) with MYC rearrangement (MYC-R) is rare and little is known about the importance of MYC extra copies (EC) in the absence of MYC-R in MCL patients. This study includes 88 MCL patients with MYC tested by fluorescence in situ hybridization and/or conventional cytogenetics, including 27 with MYC-R, 21 with MYC-EC, and 40 with normal (NL) MYC. MCL patients with MYC-R more often had blastoid/pleomorphic morphology; a higher frequency of CD10, MYC, and simultaneous MYC and BCL2 expression; a higher level of MYC; and a higher Ki67 proliferation rate (p<0.05) than those without MYC-R. Although patients with MYC-R more frequently received aggressive chemotherapy (p=0.001), their overall survival (OS) was significantly shorter than those without MYC-R. Compared with patients with MYC/BCL2 double hit lymphoma (DHL), patients with MYC-R MCL had a similar OS but more commonly had bone marrow involvement, stage 4 disease, and a different immunophenotype. MCL patients with MYC-EC showed an OS intermediate between those with MYC-R and MYC-NL, either all or only blastoid/pleomorphic MCL patients included. Multivariate analysis showed that MYC-R, but not MYC-EC, had an independent and negative impact on OS. In conclusion, MYC-R but not MYC-EC showed a higher MYC expression and is an adverse prognostic factor for MCL patients. Although the OS of MCL patients with MYC-R is similar to that of MYC/BCL2 DHL patients, these groups have different clinicopathologic features supporting the retention of MCL with MYC-R in the category of MCL, as recommended in the revised World Health Organization classification.
Collapse
Affiliation(s)
- Lifu Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenting Huang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
50
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|