1
|
Ghosh S, Tuz AA, Stenzel M, Singh V, Richter M, Soehnlein O, Lange E, Heyer R, Cibir Z, Beer A, Jung M, Nagel D, Hermann DM, Hasenberg A, Grüneboom A, Sickmann A, Gunzer M. Proteomic Characterization of 1000 Human and Murine Neutrophils Freshly Isolated From Blood and Sites of Sterile Inflammation. Mol Cell Proteomics 2024; 23:100858. [PMID: 39395581 PMCID: PMC11630641 DOI: 10.1016/j.mcpro.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024] Open
Abstract
Neutrophils are indispensable for defense against pathogens. Injured tissue-infiltrated neutrophils can establish a niche of chronic inflammation and promote degeneration. Studies investigated transcriptome of single-infiltrated neutrophils which could misinterpret molecular states of these post mitotic cells. However, neutrophil proteome characterization has been challenging due to low harvests from affected tissues. Here, we present a workflow to obtain proteome of 1000 murine and human tissue-infiltrated neutrophils. We generated spectral libraries containing ∼6200 mouse and ∼5300 human proteins from circulating neutrophils. 4800 mouse and 3400 human proteins were recovered from 1000 cells with 102-108 copies/cell. Neutrophils from stroke-affected mouse brains adapted to the glucose-deprived environment with increased mitochondrial activity and ROS-production, while cells invading inflamed human oral cavities increased phagocytosis and granule release. We provide an extensive protein repository for resting human and mouse neutrophils, identify proteins lost in low input samples, thus enabling the proteomic characterization of limited tissue-infiltrated neutrophils.
Collapse
Affiliation(s)
- Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Ali Ata Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, University of Münster, Münster, Germany
| | - Emanuel Lange
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Heyer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, Bielefeld, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marcel Jung
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dennis Nagel
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Lydon E, Osborne CM, Wagner BD, Ambroggio L, Kirk Harris J, Reeder R, Carpenter TC, Maddux AB, Leroue MK, Yehya N, DeRisi JL, Hall MW, Zuppa AF, Carcillo J, Meert K, Sapru A, Pollack MM, McQuillen P, Notterman DA, Langelier CR, Mourani PM. Proteomic profiling of the local and systemic immune response to pediatric respiratory viral infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617294. [PMID: 39416167 PMCID: PMC11482837 DOI: 10.1101/2024.10.08.617294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Viral lower respiratory tract infection (vLRTI) is a leading cause of hospitalization and death in children worldwide. Despite this, no studies have employed proteomics to characterize host immune responses to severe pediatric vLRTI in both the lower airway and systemic circulation. To address this gap, gain insights into vLRTI pathophysiology, and test a novel diagnostic approach, we assayed 1,305 proteins in tracheal aspirate (TA) and plasma from 62 critically ill children using SomaScan. We performed differential expression (DE) and pathway analyses comparing vLRTI (n=40) to controls with non-infectious acute respiratory failure (n=22), developed a diagnostic classifier using LASSO regression, and analyzed matched TA and plasma samples. We further investigated the impact of viral load and bacterial coinfection on the proteome. The TA signature of vLRTI was characterized by 200 DE proteins (Padj<0.05) with upregulation of interferons and T cell responses and downregulation of inflammation-modulating proteins including FABP and MIP-5. A nine-protein TA classifier achieved an AUC of 0.96 (95% CI 0.90-1.00) for identifying vLRTI. In plasma, the host response to vLRTI was more muted with 56 DE proteins. Correlation between TA and plasma was limited, although ISG15 was elevated in both compartments. In bacterial coinfection, we observed increases in the TNF-stimulated protein TSG-6, as well as CRP, and interferon-related proteins. Viral load correlated positively with interferon signaling and negatively with neutrophil-activation pathways. Taken together, our study provides fresh insight into the lower airway and systemic proteome of severe pediatric vLRTI, and identifies novel protein biomarkers with diagnostic potential.
Collapse
Affiliation(s)
- Emily Lydon
- Department of Medicine, University of California San Francisco, San Francisco, CA
| | - Christina M Osborne
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, University of Colorado, Colorado School of Public Health, Aurora, CO
| | - Lilliam Ambroggio
- Sections of Emergency Medicine and Hospital Medicine, Children's Hospital Colorado, Aurora, CO
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Todd C Carpenter
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Aline B Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Matthew K Leroue
- Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Mark W Hall
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH
| | - Athena F Zuppa
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joseph Carcillo
- Departments of Pediatrics and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kathleen Meert
- Department of Pediatrics, Children's Hospital of Michigan, Central Michigan University, Detroit, MI
| | - Anil Sapru
- Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
| | - Murray M Pollack
- Department of Pediatrics, Children's National Medical Center and George Washington School of Medicine and Health Sciences, Washington, DC
| | - Patrick McQuillen
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | | | - Charles R Langelier
- Department of Medicine, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Peter M Mourani
- Department of Pediatrics, Critical Care, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, AR
| |
Collapse
|
3
|
Zheng C, Li J, Chen H, Ma X, Si T, Zhu W. Dual role of CD177 + neutrophils in inflammatory bowel disease: a review. J Transl Med 2024; 22:813. [PMID: 39223577 PMCID: PMC11370282 DOI: 10.1186/s12967-024-05539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of recurrent chronic inflammatory disorders associated with autoimmune dysregulation, typically characterized by neutrophil infiltration and mucosal inflammatory lesions. Neutrophils, as the earliest immune cells to arrive at inflamed tissues, play a dual role in the onset and progression of mucosal inflammation in IBD. Most of these cells specifically express CD177, a molecule increasingly recognized for its critical role in the pathogenesis of IBD. Under IBD-related inflammatory stimuli, CD177 is highly expressed on neutrophils and promotes their migration. CD177 + neutrophils activate bactericidal and barrier-protective functions at IBD mucosal inflammation sites and regulate the release of inflammatory mediators highly correlated with the severity of inflammation in IBD patients, thus playing a dual role. However, mitigating the detrimental effects of neutrophils in inflammatory bowel disease remains a challenge. Based on these data, we have summarized recent articles on the role of neutrophils in intestinal inflammation, with a particular emphasis on CD177, which mediates the recruitment, transepithelial migration, and activation of neutrophils, as well as their functional consequences. A better understanding of CD177 + neutrophils may contribute to the development of novel therapeutic targets to selectively modulate the protective role of this class of cells in IBD.
Collapse
Affiliation(s)
- Chengli Zheng
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiekai Li
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailin Chen
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolin Ma
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyu Si
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenwei Zhu
- Department of Hematology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Becker SH, Ronayne CE, Bold TD, Jenkins MK. CD4 + T cells recruit, then engage macrophages in cognate interactions to clear Mycobacterium tuberculosis from the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609198. [PMID: 39229103 PMCID: PMC11370583 DOI: 10.1101/2024.08.22.609198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IFN-γ-producing CD4 + T cells are required for protection against lethal Mycobacterium tuberculosis ( Mtb ) infections. However, the ability of CD4 + T cells to suppress Mtb growth cannot be fully explained by IFN-γ or other known T cell products. In this study, we show that CD4 + T cell-derived IFN-γ promoted the recruitment of monocyte-derived macrophages (MDMs) to the lungs of Mtb -infected mice. Although the recruited MDMs became quickly and preferentially infected with Mtb , CD4 + T cells rapidly disinfected the MDMs. Clearance of Mtb from MDMs was not explained by IFN-γ, but rather by MHCII-mediated cognate interactions with CD4 + T cells. These interactions promoted MDM expression of glycolysis genes essential for Mtb control. Thus, by recruiting MDMs, CD4 + T cells initiate a cycle of bacterial phagocytosis, Mtb antigen presentation and disinfection in an attempt to clear the bacteria from the lungs.
Collapse
|
5
|
Tomonaga T, Higashi H, Izumi H, Nishida C, Kawai N, Sato K, Morimoto T, Higashi Y, Yatera K, Morimoto Y. Investigation of pulmonary inflammatory responses following intratracheal instillation of and inhalation exposure to polypropylene microplastics. Part Fibre Toxicol 2024; 21:29. [PMID: 39107780 PMCID: PMC11301944 DOI: 10.1186/s12989-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Microplastics have been detected in the atmosphere as well as in the ocean, and there is concern about their biological effects in the lungs. We conducted a short-term inhalation exposure and intratracheal instillation using rats to evaluate lung disorders related to microplastics. We conducted an inhalation exposure of polypropylene fine powder at a low concentration of 2 mg/m3 and a high concentration of 10 mg/m3 on 8-week-old male Fischer 344 rats for 6 h a day, 5 days a week for 4 weeks. We also conducted an intratracheal instillation of polypropylene at a low dose of 0.2 mg/rat and a high dose of 1.0 mg/rat on 12-week-old male Fischer 344 rats. Rats were dissected from 3 days to 6 months after both exposures, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected to analyze lung inflammation and lung injury. RESULTS Both exposures to polypropylene induced a persistent influx of inflammatory cells and expression of CINC-1, CINC-2, and MPO in BALF from 1 month after exposure. Genetic analysis showed a significant increase in inflammation-related factors for up to 6 months. The low concentration in the inhalation exposure of polypropylene also induced mild lung inflammation. CONCLUSION These findings suggest that inhaled polypropylene, which is a microplastic, induces persistent lung inflammation and has the potential for lung disorder. Exposure to 2 mg/m3 induced inflammatory changes and was thought to be the Lowest Observed Adverse Effect Level (LOAEL) for acute effects of polypropylene. However, considering the concentration of microplastics in a real general environment, the risk of environmental hazards to humans may be low.
Collapse
Affiliation(s)
- Taisuke Tomonaga
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Hidenori Higashi
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Naoki Kawai
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuma Sato
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshiki Morimoto
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuyuki Higashi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| |
Collapse
|
6
|
Meng L, Zhou M, Wang Y, Pan Y, Chen Z, Wu B, Zhao Y. CD177 on neutrophils engages stress-related behavioral changes in male mice. Brain Behav Immun 2024; 120:403-412. [PMID: 38871062 DOI: 10.1016/j.bbi.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Persistent psychological stress can affect immune homeostasis and is a key factor in the development of depression. Many efforts are focused on the identifcation of pathways that link the immune system and mood disorders. Here, we found that psychological stress caused an increase in the frequency of brain-associated neutrophils and the level of neutrophil-specific antigen CD177 on peripheral neutrophils in male mice. Upregulated levels of blood CD177 are associated with depression in humans. Neutrophil depletion or Cd177 deficiency protected mice from stress-induced behavioral deficits. Importantly, adoptive transfer of CD177+ neutrophils from stressed mice increased the frequency of brain-associated leukocytes, including neutrophils, and caused behavioral defects in naive mice. These effects may be related to the endothelial adhesion advantage of CD177+ neutrophils and the interference of serine protease on endothelial junction. Our findings suggest a critical link between circulating CD177+ neutrophils and psychological stress-driven behavioral disorder.
Collapse
Affiliation(s)
- Ling Meng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Zhou
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunpeng Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zheng Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. Front Immunol 2024; 15:1418539. [PMID: 39131159 PMCID: PMC11316256 DOI: 10.3389/fimmu.2024.1418539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we show that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
8
|
Martins JO, Moritz E, Abbas SA, Bayat B, Barros MMO, de Marco R, Machado RF, Bordin JO. Analysis of maternal Fc gamma receptor IIIb isoantibodies using immunomagnetic negative selected neutrophils. Vox Sang 2024; 119:712-719. [PMID: 38597364 DOI: 10.1111/vox.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND AND OBJECTIVES The isolation of neutrophils and subsequent detection of anti-human neutrophil antigens (HNA) antibodies are crucial in clinical medicine for the diagnosis of autoimmune neutropenia, neonatal alloimmune neutropenia (NAIN) and transfusion-related acute lung injury (TRALI). This study reports two cases of maternal anti-Fc-gamma-receptor-IIIb (FcγRIIIb) isoimmunization without NAIN symptoms and compares the efficiency of immunomagnetic negative selection (IMNS) with traditional dextran/Ficoll for neutrophil isolation in HNA serological assays. MATERIALS AND METHODS Investigating two cases of maternal anti-FcγRIIIb isoimmunization, neutrophils from three donors were isolated from 8 mL of whole blood using IMNS and dextran/Ficoll. Serological assays included the granulocyte agglutination and immunofluorescence test, monoclonal antibody immobilization of granulocyte antigens and the LABScreen Multi (One Lambda). IMNS and dextran/Ficoll were compared in terms of cell yield, viability, time, cost and purity. RESULTS Maternal anti-FcγRIIIb isoantibodies with FCGR3B gene deletion were detected in both cases. Newborns and fathers exhibited specific gene combinations: FCGR3B*02/FCGR3B*02 (Case 1) and FCGR3B*02/FCGR3B*03 (Case 2). IMNS outperformed dextran/Ficoll, yielding four times more neutrophils (average neutrophil counts: 18.5 × 103/μL vs. 4.5 × 103/μL), efficiently removing non-neutrophil cells and reducing processing time (30-40 min vs. 70-90 min), although it incurred a higher cost (2.7 times). CONCLUSION Two cases of maternal anti-FcγRIIIb isoantibodies, unrelated to NAIN, were identified. Although neutropenia has not been described in these cases, we emphasize the importance of identifying asymptomatic cases with the potential for severe neutropenia. Additionally, IMNS is introduced as a rapid, high-yield, high-purity neutrophil isolation technique, beneficial for serological assays detecting anti-HNA antibodies.
Collapse
Affiliation(s)
- Juliana Oliveira Martins
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Elyse Moritz
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Samira Ali Abbas
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
- Hospital Geral de Guarulhos, São Paulo, Brazil
| | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostasis, Justus Liebig University, Giessen, Germany
| | - Melca Maria Oliveira Barros
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | - José Orlando Bordin
- Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| |
Collapse
|
9
|
Johnson E, Long MB, Chalmers JD. Biomarkers in bronchiectasis. Eur Respir Rev 2024; 33:230234. [PMID: 38960612 PMCID: PMC11220624 DOI: 10.1183/16000617.0234-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/09/2024] [Indexed: 07/05/2024] Open
Abstract
Bronchiectasis is a heterogeneous disease with multiple aetiologies and diverse clinical features. There is a general consensus that optimal treatment requires precision medicine approaches focused on specific treatable disease characteristics, known as treatable traits. Identifying subtypes of conditions with distinct underlying biology (endotypes) depends on the identification of biomarkers that are associated with disease features, prognosis or treatment response and which can be applied in clinical practice. Bronchiectasis is a disease characterised by inflammation, infection, structural lung damage and impaired mucociliary clearance. Increasingly there are available methods to measure each of these components of the disease, revealing heterogeneous inflammatory profiles, microbiota, radiology and mucus and epithelial biology in patients with bronchiectasis. Using emerging biomarkers and omics technologies to guide treatment in bronchiectasis is a promising field of research. Here we review the most recent data on biomarkers in bronchiectasis.
Collapse
Affiliation(s)
- Emma Johnson
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
10
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Xu P, Tao Z, Zhang C. Integrated multi-omics and artificial intelligence to explore new neutrophils clusters and potential biomarkers in sepsis with experimental validation. Front Immunol 2024; 15:1377817. [PMID: 38868781 PMCID: PMC11167131 DOI: 10.3389/fimmu.2024.1377817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Background Sepsis, causing serious organ and tissue damage and even death, has not been fully elucidated. Therefore, understanding the key mechanisms underlying sepsis-associated immune responses would lead to more potential therapeutic strategies. Methods Single-cell RNA data of 4 sepsis patients and 2 healthy controls in the GSE167363 data set were studied. The pseudotemporal trajectory analyzed neutrophil clusters under sepsis. Using the hdWGCNA method, key gene modules of neutrophils were explored. Multiple machine learning methods were used to screen and validate hub genes for neutrophils. SCENIC was then used to explore transcription factors regulating hub genes. Finally, quantitative reverse transcription-polymerase chain reaction was to validate mRNA expression of hub genes in peripheral blood neutrophils of two mice sepsis models. Results We discovered two novel neutrophil subtypes with a significant increase under sepsis. These two neutrophil subtypes were enriched in the late state during neutrophils differentiation. The hdWGCNA analysis of neutrophils unveiled that 3 distinct modules (Turquoise, brown, and blue modules) were closely correlated with two neutrophil subtypes. 8 machine learning methods revealed 8 hub genes with high accuracy and robustness (ALPL, ACTB, CD177, GAPDH, SLC25A37, S100A8, S100A9, and STXBP2). The SCENIC analysis revealed that APLP, CD177, GAPDH, S100A9, and STXBP2 were significant associated with various transcriptional factors. Finally, ALPL, CD177, S100A8, S100A9, and STXBP2 significantly up regulated in peripheral blood neutrophils of CLP and LPS-induced sepsis mice models. Conclusions Our research discovered new clusters of neutrophils in sepsis. These five hub genes provide novel biomarkers targeting neutrophils for the treatment of sepsis.
Collapse
Affiliation(s)
| | | | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Ke S, Lei Y, Guo Y, Xie F, Yu Y, Geng H, Zhong Y, Xu D, Liu X, Yu F, Xia X, Zhang Z, Zhu C, Ling W, Li B, Zhao W. CD177 drives the transendothelial migration of Treg cells enriched in human colorectal cancer. Clin Transl Immunology 2024; 13:e1506. [PMID: 38596253 PMCID: PMC11003710 DOI: 10.1002/cti2.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives Regulatory T (Treg) cells regulate immunity in autoimmune diseases and cancers. However, immunotherapies that target tumor-infiltrating Treg cells often induce unwanted immune responses and tissue inflammation. Our research focussed on exploring the expression pattern of CD177 in tumor-infiltrating Treg cells with the aim of identifying a potential target that can enhance immunotherapy effectiveness. Methods Single-cell RNA sequencing (scRNA-seq) data and survival data were obtained from public databases. Twenty-one colorectal cancer patient samples, including fresh tumor tissues, peritumoral tissues and peripheral blood mononuclear cells (PBMCs), were analysed using flow cytometry. The transendothelial activity of CD177+ Treg cells was substantiated using in vitro experiments. Results ScRNA-seq and flow cytometry results indicated that CD177 was exclusively expressed in intratumoral Treg cells. CD177+ Treg cells exhibited greater activation status and expressed elevated Treg cell canonical markers and immune checkpoint molecules than CD177- Treg cells. We further discovered that both intratumoral CD177+ Treg cells and CD177-overexpressing induced Treg (iTreg) cells had lower levels of PD-1 than their CD177- counterparts. Moreover, CD177 overexpression significantly enhanced the transendothelial migration of Treg cells in vitro. Conclusions These results demonstrated that Treg cells with higher CD177 levels exhibited an enhanced activation status and transendothelial migration capacity. Our findings suggest that CD177 may serve as an immunotherapeutic target and that overexpression of CD177 may improve the efficacy of chimeric antigen receptor T (CAR-T) cell therapy.
Collapse
Affiliation(s)
- Shouyu Ke
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Lei
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixian Guo
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Xie
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yimeng Yu
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danhua Xu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xu Liu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengrong Yu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Ling
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Li
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Kaiser R, Gold C, Joppich M, Loew Q, Akhalkatsi A, Mueller TT, Offensperger F, Droste Zu Senden A, Popp O, di Fina L, Knottenberg V, Martinez-Navarro A, Eivers L, Anjum A, Escaig R, Bruns N, Briem E, Dewender R, Muraly A, Akgöl S, Ferraro B, Hoeflinger JKL, Polewka V, Khaled NB, Allgeier J, Tiedt S, Dichgans M, Engelmann B, Enard W, Mertins P, Hubner N, Weckbach L, Zimmer R, Massberg S, Stark K, Nicolai L, Pekayvaz K. Peripheral priming induces plastic transcriptomic and proteomic responses in circulating neutrophils required for pathogen containment. SCIENCE ADVANCES 2024; 10:eadl1710. [PMID: 38517968 DOI: 10.1126/sciadv.adl1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024]
Abstract
Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.
Collapse
Affiliation(s)
- Rainer Kaiser
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christoph Gold
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Markus Joppich
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Quentin Loew
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | | | - Tonina T Mueller
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Felix Offensperger
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Oliver Popp
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Lea di Fina
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | | | - Luke Eivers
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Afra Anjum
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Raphael Escaig
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nils Bruns
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Eva Briem
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Robin Dewender
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Abhinaya Muraly
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Sezer Akgöl
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Bartolo Ferraro
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Jonathan K L Hoeflinger
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Vivien Polewka
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
| | - Najib Ben Khaled
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Julian Allgeier
- Medizinische Klinik und Poliklinik II, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Steffen Tiedt
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital Ludwig-Maximilian University, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, University Hospital Ludwig-Maximilians University, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ludwig Weckbach
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig Maximilian University Munich, Planegg-Martinsried, Germany
| | - Ralf Zimmer
- LFE Bioinformatik, Department of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Konstantin Stark
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, LMU University Hospital, LMU Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
14
|
Ma M, Li L, Yang SH, Huang C, Zhuang W, Huang S, Xia X, Tang Y, Li Z, Zhao ZB, Chen Q, Qiao G, Lian ZX. Lymphatic endothelial cell-mediated accumulation of CD177 +Treg cells suppresses antitumor immunity in human esophageal squamous cell carcinoma. Oncoimmunology 2024; 13:2327692. [PMID: 38516269 PMCID: PMC10956621 DOI: 10.1080/2162402x.2024.2327692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Regulatory T (Treg) cells are critical in shaping an immunosuppressive microenvironment to favor tumor progression and resistance to therapies. However, the heterogeneity and function of Treg cells in esophageal squamous cell carcinoma (ESCC) remain underexplored. We identified CD177 as a tumor-infiltrating Treg cell marker in ESCC. Interestingly, expression levels of CD177 and PD-1 were mutually exclusive in tumor Treg cells. CD177+ Treg cells expressed high levels of IL35, in association with CD8+ T cell exhaustion, whereas PD-1+ Treg cells expressed high levels of IL10. Pan-cancer analysis revealed that CD177+ Treg cells display increased clonal expansion compared to PD-1+ and double-negative (DN) Treg cells, and CD177+ and PD-1+ Treg cells develop from the same DN Treg cell origin. Importantly, we found CD177+ Treg cell infiltration to be associated with poor overall survival and poor response to anti-PD-1 immunotherapy plus chemotherapy in ESCC patients. Finally, we found that lymphatic endothelial cells are associated with CD177+ Treg cell accumulation in ESCC tumors, which are also decreased after anti-PD-1 immunotherapy plus chemotherapy. Our work identifies CD177+ Treg cell as a tumor-specific Treg cell subset and highlights their potential value as a prognostic marker of survival and response to immunotherapy and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Min Ma
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chuan Huang
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Weitao Zhuang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shujie Huang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Xia
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijun Li
- Guangdong Provincial Institute of Geriatrics, Concord Medical Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, School of Medicine South China University of Technology, Guangzhou, China
- Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Rizo-Téllez SA, Filep JG. Beyond host defense and tissue injury: the emerging role of neutrophils in tissue repair. Am J Physiol Cell Physiol 2024; 326:C661-C683. [PMID: 38189129 PMCID: PMC11193466 DOI: 10.1152/ajpcell.00652.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Neutrophils, the most abundant immune cells in human blood, play a fundamental role in host defense against invading pathogens and tissue injury. Neutrophils carry potentially lethal weaponry to the affected site. Inadvertent and perpetual neutrophil activation could lead to nonresolving inflammation and tissue damage, a unifying mechanism of many common diseases. The prevailing view emphasizes the dichotomy of their function, host defense versus tissue damage. However, tissue injury may also persist during neutropenia, which is associated with disease severity and poor outcome. Numerous studies highlight neutrophil phenotypic heterogeneity and functional versatility, indicating that neutrophils play more complex roles than previously thought. Emerging evidence indicates that neutrophils actively orchestrate resolution of inflammation and tissue repair and facilitate return to homeostasis. Thus, neutrophils mobilize multiple mechanisms to limit the inflammatory reaction, assure debris removal, matrix remodeling, cytokine scavenging, macrophage reprogramming, and angiogenesis. In this review, we will summarize the homeostatic and tissue-reparative functions and mechanisms of neutrophils across organs. We will also discuss how the healing power of neutrophils might be harnessed to develop novel resolution and repair-promoting therapies while maintaining their defense functions.
Collapse
Affiliation(s)
- Salma A Rizo-Téllez
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - János G Filep
- Department of Pathology and Cell Biology, University of Montreal and Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Schofield CJ, Tirouvanziam R, Garratt LW. OMIP-100: A flow cytometry panel to investigate human neutrophil subsets. Cytometry A 2024; 105:81-87. [PMID: 38179854 DOI: 10.1002/cyto.a.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. For panel design, we ensured that the commonly available fluorophores FITC/AF488, PE, and APC were assigned to the intracellular subset marker Olfactomedin 4, the maturity and activation marker CD10, and whole blood subset marker CD177, respectively. These markers can be easily replaced without affecting the core identification of neutrophils, enabling antibodies to new neutrophil antigens of interest or for fluorescent substrates to assess different neutrophil functions to be easily explored. Panel optimization was performed on whole blood and purified neutrophils. We demonstrate applications on clinical samples (whole blood and saliva) and experimental endpoints (purified neutrophils stimulated through an in vitro transmigration assay). We hope that providing a uniform platform to analyze neutrophil plasticity in various sample types will facilitate the future understanding of neutrophil subsets in health and disease.
Collapse
Affiliation(s)
- Craig J Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Luke W Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
17
|
Li J, Fang Z, Xu S, Rao H, Liu J, Lei K, Yang L, Wang C, Zeng Z. The link between neutrophils, NETs, and NLRP3 inflammasomes: The dual effect of CD177 and its therapeutic potential in acute respiratory distress syndrome/acute lung injury. BIOMOLECULES & BIOMEDICINE 2024; 24:798-812. [PMID: 38226808 PMCID: PMC11293216 DOI: 10.17305/bb.2023.10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/17/2024]
Abstract
Neutrophils are important inflammatory effector cells that protect against foreign invasion but also cause self-harm. Numerous neutrophils infiltrate the lungs in acute respiratory distress syndrome/acute lung injury (ARDS/ALI) patients. However, the exact impact of neutrophil infiltration on ARDS's onset and progression remains unclear. To investigate this, we analyzed two ARDS-related datasets from the Gene Expression Omnibus public database and discovered an association between CD177, a neutrophil-specific surface protein, and ARDS progression. We used quantitative flow cytometry to assess CD177+ neutrophils in the peripheral blood of clinical ARDS patients vs healthy controls, finding a significant increase in CD177+ neutrophils percentage among total neutrophils in ARDS patients. This finding was further confirmed in ALI mouse models. Subsequent animal experiments showed that anti-CD177 effectively reduces pulmonary edema, neutrophil infiltration, and inflammatory cytokine release, along with a decrease in reactive oxygen species (ROS) and myeloperoxidase (MPO) levels. We also established an in vitro co-culture system to mimic neutrophil and lung epithelial cell interactions. In the anti-CD177 group, we observed decreased expression of NLRP3, caspase 1, peptidyl arginine deiminase (PAD4), MPO, and ROS, along with a reduction in certain inflammatory cytokines. These results indicate a crucial role for the CD177 gene in ARDS's development and progression. Inhibiting CD177 may help mitigate excessive activation of NLRP3 inflammasomes, ROS, and neutrophil extracellular traps (NETs), thus alleviating ARDS.
Collapse
Affiliation(s)
- Jingying Li
- Department of Critical Care Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Zhansheng Fang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Shumin Xu
- Department of Operating Room, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Haiwei Rao
- Department of Critical Care Medicine, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Junzhe Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Kunjian Lei
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Lufei Yang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Chong Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Jiangxi, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| |
Collapse
|
18
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574546. [PMID: 38260289 PMCID: PMC10802432 DOI: 10.1101/2024.01.07.574546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we showed that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
|
19
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
20
|
Mulet M, Osuna-Gómez R, Zamora C, Artesero I, Arús M, Vera-Artazcoz P, Cordón A, Vilalta N, San-José P, Abril A, Moliné A, Morán I, López-Contreras J, Vidal S. Dysregulated neutrophil extracellular traps formation in sepsis. Immunology 2023; 170:374-387. [PMID: 37381594 DOI: 10.1111/imm.13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
The migration and antimicrobial functions of neutrophils seem to be impaired during sepsis and contribute to the dysregulation of immune responses and disease pathogenesis. However, the role of neutrophil extracellular traps (NETs) remains to be clarified. The study aimed to analyse sequential phenotypic and functional changes of neutrophils during the time following the diagnosis of sepsis. We prospectively enrolled 49 septic and 18 non-septic patients from the intensive care unit (ICU) and emergency room (ER) and 20 healthy volunteers (HV). Baseline blood samples from septic and non-septic patients were collected within 12 h of admission to the hospital. Additional septic samples were drawn at 24, 48 and 72 h after baseline. Neutrophil phenotype and degranulation capacity were assessed by flow cytometry and NET formation was quantified by fluorescence. Neutrophils from septic patients exhibited increased CD66b, CD11b and CD177 expression but displayed reduced NET formation at baseline compared with non-septic patients and HV controls. Neutrophils expressing CD177 interacted less with platelets, were related to reduced NETosis and tended to indicate a worse sepsis outcome. In vitro experiments revealed that neutrophil function is compromised by the origin of sepsis, including the pathogen type and the affected organ. Assessing a decision tree model, our study showed that CD11b expression and NETosis values are useful variables to discriminate septic from non-septic patients. We conclude that sepsis induces changes in neutrophil phenotype and function that may compromise the effective capacity of the host to eliminate pathogens.
Collapse
Affiliation(s)
- Maria Mulet
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ruben Osuna-Gómez
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Zamora
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Iris Artesero
- Infectious Disease Division, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marc Arús
- Unit of Haemostasis and Thrombosis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula Vera-Artazcoz
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alejandra Cordón
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Noelia Vilalta
- Unit of Haemostasis and Thrombosis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Paula San-José
- Hematology Core Laboratory, Hematology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrés Abril
- Emergency Care Department, Hospital Sant Joan de Déu, Manresa, Spain
| | - Antoni Moliné
- Department of Emergency Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Indalecio Morán
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Joaquín López-Contreras
- Infectious Disease Division, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Vidal
- Department of Inflammatory Diseases, Institut Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
21
|
Andersson H, Sobti A, Jimenez DG, de Coaña YP, Ambarkhane SV, Hägerbrand K, Smith KE, Lindstedt M, Ellmark P. Early Pharmacodynamic Changes Measured Using RNA Sequencing of Peripheral Blood from Patients in a Phase I Study with Mitazalimab, a Potent CD40 Agonistic Monoclonal Antibody. Cells 2023; 12:2365. [PMID: 37830579 PMCID: PMC10572020 DOI: 10.3390/cells12192365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
CD40-targeting therapies can enhance the dendritic cell priming of tumor-specific T cells and repolarize intratumoral macrophages to alleviate the tumoral immunosuppressive environment and remodel the extracellular matrix. Mitazalimab is a potent agonistic CD40 monoclonal IgG1 antibody currently under clinical development. This study used RNA sequencing of blood samples from a subset of patients from a Phase I trial with mitazalimab (NCT02829099) to assess peripheral pharmacodynamic activity. We found that mitazalimab induced transient peripheral transcriptomic alterations (at 600 µg/kg and 900 µg/kg dose administered intravenously), which mainly were attributed to immune activation. In particular, the transcriptomic alterations showed a reduction in effector cells (e.g., CD8+ T cells and natural killer cells) and B cells peripherally with the remaining cells (e.g., dendritic cells, monocytes, B cells, and natural killer cells) showing transcription profiles consistent with activation. Lastly, distinct patient subgroups based on the pattern of transcriptomic alterations could be identified. In summary, the data presented herein reinforce the anticipated mode of action of mitazalimab and support its ongoing clinical development.
Collapse
Affiliation(s)
- Hampus Andersson
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Aastha Sobti
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - David Gomez Jimenez
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Yago Pico de Coaña
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | | | - Karin Hägerbrand
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Karin Enell Smith
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
| | - Malin Lindstedt
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| | - Peter Ellmark
- Alligator Bioscience AB, 223 81 Lund, Sweden; (H.A.); (A.S.); (D.G.J.); (Y.P.d.C.); (M.L.)
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden
| |
Collapse
|
22
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
23
|
Moon JS, Ho CC, Park JH, Park K, Shin BY, Lee SH, Sequeira I, Mun CH, Shin JS, Kim JH, Kim BS, Noh JW, Lee ES, Son JY, Kim Y, Lee Y, Cho H, So S, Park J, Choi E, Oh JW, Lee SW, Morio T, Watt FM, Seong RH, Lee SK. Lrig1-expression confers suppressive function to CD4 + cells and is essential for averting autoimmunity via the Smad2/3/Foxp3 axis. Nat Commun 2023; 14:5382. [PMID: 37666819 PMCID: PMC10477202 DOI: 10.1038/s41467-023-40986-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Regulatory T cells (Treg) are CD4+ T cells with immune-suppressive function, which is defined by Foxp3 expression. However, the molecular determinants defining the suppressive population of T cells have yet to be discovered. Here we report that the cell surface protein Lrig1 is enriched in suppressive T cells and controls their suppressive behaviors. Within CD4+ T cells, Treg cells express the highest levels of Lrig1, and the expression level is further increasing with activation. The Lrig1+ subpopulation from T helper (Th) 17 cells showed higher suppressive activity than the Lrig1- subpopulation. Lrig1-deficiency impairs the suppressive function of Treg cells, while Lrig1-deficient naïve T cells normally differentiate into other T cell subsets. Adoptive transfer of CD4+Lrig1+ T cells alleviates autoimmune symptoms in colitis and lupus nephritis mouse models. A monoclonal anti-Lrig1 antibody significantly improves the symptoms of experimental autoimmune encephalomyelitis. In conclusion, Lrig1 is an important regulator of suppressive T cell function and an exploitable target for treating autoimmune conditions.
Collapse
Affiliation(s)
- Jae-Seung Moon
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chun-Chang Ho
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
- Good T cells, Inc., Seoul, Republic of Korea
| | - Jong-Hyun Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Kyungsoo Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Bo-Young Shin
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
- Good T cells, Inc., Seoul, Republic of Korea
| | - Su-Hyeon Lee
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
| | - Ines Sequeira
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Chin Hee Mun
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Su Shin
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
- Good T cells, Inc., Seoul, Republic of Korea
| | - Jung-Ho Kim
- Good T cells, Inc., Seoul, Republic of Korea
| | | | | | | | | | - Yuna Kim
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
| | - Yeji Lee
- Good T cells, Inc., Seoul, Republic of Korea
| | - Hee Cho
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
| | - SunHyeon So
- Good T cells, Inc., Seoul, Republic of Korea
| | - Jiyoon Park
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
| | - Eunsu Choi
- Good T cells, Inc., Seoul, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Rho Hyun Seong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, Republic of Korea.
- Good T cells, Inc., Seoul, Republic of Korea.
| |
Collapse
|
24
|
Zhong S, Borlak J. Sex disparities in non-small cell lung cancer: mechanistic insights from a cRaf transgenic disease model. EBioMedicine 2023; 95:104763. [PMID: 37625265 PMCID: PMC10470261 DOI: 10.1016/j.ebiom.2023.104763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Women are at greater risk of developing non-small cell lung cancer (NSCLC), yet the underlying causes remain unclear. METHODS We performed whole genome scans in lung tumours of cRaf transgenic mice and identified miRNA, transcription factor and hormone receptor dependent gene regulations. We confirmed hormone receptors by immunohistochemistry and constructed regulatory gene networks by considering experimentally validated miRNA-gene and transcription factor-miRNA/gene targets. Bioinformatics, genomic foot-printing and gene enrichment analysis established sex-specific circuits of lung tumour growth. Translational research involved a large cohort of NSCLC patients. We evaluated commonalities in sex-specific NSCLC gene regulations between mice and humans and determined their prognostic value in Kaplan-Meier survival statistics and COX proportional hazard regression analysis. FINDINGS Overexpression of the cRaf kinase elicited an extraordinary 8-fold increase in tumour growth among females, and nearly 70% of the 112 differentially expressed genes (DEGs) were female specific. We identified oncogenes, oncomirs, tumour suppressors, cell cycle regulators and MAPK/EGFR signalling molecules, which prompted sex-based differences in NSCLC, and we deciphered a regulatory gene-network, which protected males from accelerated tumour growth. Strikingly, 41% of DEGs are targets of hormone receptors, and the majority (85%) are oestrogen receptor (ER) dependent. We confirmed the role of ER in a large cohort of NSCLC patients and validated 40% of DEGs induced by cRaf in clinical tumour samples. INTERPRETATION We report the molecular wiring that prompted sex disparities in tumour growth. This allowed us to propose the development of molecular targeted therapies by jointly blocking ER, CDK1 and arginase 2 in NSCLC. FUNDING We gratefully acknowledge the financial support of the Lower Saxony Ministry of Culture and Sciences and Volkswagen Foundation, Germany to JB (25A.5-7251-99-3/00) and of the Chinese Scholarship Council to SZ (202008080022). This publication is funded by the Deutsche Forschungsgemeinschaft (DFG) as part of the "Open Access Publikationskosten" program.
Collapse
Affiliation(s)
- Shen Zhong
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
25
|
Huang C, Fan X, Shen Y, Shen M, Yang L. Neutrophil subsets in noncancer liver diseases: Cellular crosstalk and therapeutic targets. Eur J Immunol 2023; 53:e2250324. [PMID: 37495829 DOI: 10.1002/eji.202250324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Neutrophils are the most abundant circulating granulocytes, linking innate and adaptive immunity. Neutrophils can regulate inflammatory and immune responses through degranulation, reactive oxygen species generation, the production of cytokines and chemokines, and NETosis. Emerging evidence has indicated that neutrophils contribute to the pathogenesis of various noncancer liver diseases, including nonalcoholic fatty liver disease, alcohol-associated liver disease, hepatic ischemia-reperfusion injury, and liver fibrosis. Cellular interactions among neutrophils, other immune cells, and nonimmune cells constitute a complex network that regulates the immune microenvironment of the liver. This review summarizes novel neutrophil subtypes, including CD177+ neutrophils and low-density neutrophils. Moreover, we provide an overview of the cellular cros stalk of neutrophils in noncancer liver diseases, aiming to shed new light on mechanistic studies of novel neutrophil subtypes. In addition, we discuss the potential of neutrophils as therapeutic targets in noncancer liver diseases, including inhibitors targeting NETosis, granule proteins, and chemokines.
Collapse
Affiliation(s)
- Chen Huang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Mengyi Shen
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Jiang J, Li W, Zhou L, Liu D, Wang Y, An J, Qiao S, Xie Z. Platelet ITGA2B inhibits caspase-8 and Rip3/Mlkl-dependent platelet death though PTPN6 during sepsis. iScience 2023; 26:107414. [PMID: 37554440 PMCID: PMC10404729 DOI: 10.1016/j.isci.2023.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengping Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Faculty of Anesthesiology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Zhanli Xie
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
27
|
Nasci VL, Liu P, Marks AM, Williams AC, Kriegel AJ. Transcriptomic analysis identifies novel candidates in cardiorenal pathology mediated by chronic peritoneal dialysis. Sci Rep 2023; 13:10051. [PMID: 37344499 DOI: 10.1038/s41598-023-36647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.
Collapse
Affiliation(s)
- Victoria L Nasci
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda M Marks
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
28
|
Xu Z, Liu Y, He S, Sun R, Zhu C, Li S, Hai S, Luo Y, Zhao Y, Dai L. Integrative Proteomics and N-Glycoproteomics Analyses of Rheumatoid Arthritis Synovium Reveal Immune-Associated Glycopeptides. Mol Cell Proteomics 2023; 22:100540. [PMID: 37019382 PMCID: PMC10176071 DOI: 10.1016/j.mcpro.2023.100540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune disease characterized by synovial inflammation, synovial tissue hyperplasia, and destruction of bone and cartilage. Protein glycosylation plays key roles in the pathogenesis of RA but in-depth glycoproteomics analysis of synovial tissues is still lacking. Here, by using a strategy to quantify intact N-glycopeptides, we identified 1260 intact N-glycopeptides from 481 N-glycosites on 334 glycoproteins in RA synovium. Bioinformatics analysis revealed that the hyper-glycosylated proteins in RA were closely linked to immune responses. By using DNASTAR software, we identified 20 N-glycopeptides whose prototype peptides were highly immunogenic. We next calculated the enrichment scores of nine types of immune cells using specific gene sets from public single-cell transcriptomics data of RA and revealed that the N-glycosylation levels at some sites, such as IGSF10_N2147, MOXD2P_N404, and PTCH2_N812, were significantly correlated with the enrichment scores of certain immune cell types. Furthermore, we showed that aberrant N-glycosylation in the RA synovium was related to increased expression of glycosylation enzymes. Collectively, this work presents, for the first time, the N-glycoproteome of RA synovium and describes immune-associated glycosylation, providing novel insights into RA pathogenesis.
Collapse
Affiliation(s)
- Zhiqiang Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Zhu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shan Hai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| |
Collapse
|
29
|
Hu W, Gao W, Gong Y, Guo P, Li W, Shu X, Lü S, Zeng Z, Zhang Y, Long M. Trail Formation Alleviates Excessive Adhesion and Maintains Efficient Neutrophil Migration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17577-17591. [PMID: 36976830 DOI: 10.1021/acsami.3c00288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which β2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.
Collapse
Affiliation(s)
- Wenhui Hu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Wenbo Gao
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yixin Gong
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Guo
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu Zeng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, P.R. China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Gorukmez O, Gorukmez O, Topak A. Clinical exome sequencing findings in 1589 patients. Am J Med Genet A 2023; 191:1557-1564. [PMID: 36964972 DOI: 10.1002/ajmg.a.63190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Clinical exome sequencing (CES) is important for the diagnosis of Mendelian diseases, which are clinically and etiologically heterogeneous. Sharing of large amounts of CES data associated with clinical findings will increase the accuracy of variant interpretation. We performed a retrospective study to state the diagnostic yield of CES in 1589 patients with a wide phenotypic spectrum. CES was performed using the Sophia Clinical Exome Sequencing Kit with 4493 genes, followed by sequencing on a NextSeq 500 system. The diagnosis rate was 36.8% when only pathogenic and likely pathogenic variants were included. Consanguineous unions and positive family history were associated with a high diagnostic yield. The neurological disease group had the highest number of patients. The groups with high diagnosis rates were ear, eye, and muscle disease groups. Seven candidate genes (EFHC2, HSPB3, FAAH2, ITGB1, GYG2, CD177, and CSTF2T) that are not yet associated with human diseases were identified. Owing to the high diagnostic yield of CES compared with that of other genetic tests, it can be used as a standard diagnostic test in patients with rare genetic disorders that require a wide differential diagnosis, especially in laboratories with limited resources.
Collapse
Affiliation(s)
- Ozlem Gorukmez
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| | - Orhan Gorukmez
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| | - Ali Topak
- Department of Medical Genetics, Bursa Yüksek İhtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
31
|
Sbrana S, Cecchettini A, Bastiani L, Mazzone A, Vozzi F, Caselli C, Neglia D, Clemente A, Scholte AJHA, Parodi O, Pelosi G, Rocchiccioli S. Association of Circulating Neutrophils with Relative Volume of Lipid-Rich Necrotic Core of Coronary Plaques in Stable Patients: A Substudy of SMARTool European Project. Life (Basel) 2023; 13:life13020428. [PMID: 36836785 PMCID: PMC9958623 DOI: 10.3390/life13020428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Coronary atherosclerosis is a chronic non-resolving inflammatory process wherein the interaction of innate immune cells and platelets plays a major role. Circulating neutrophils, in particular, adhere to the activated endothelium and migrate into the vascular wall, promoting monocyte recruitment and influencing plaque phenotype and stability at all stages of its evolution. We aimed to evaluate, by flow cytometry, if blood neutrophil number and phenotype-including their phenotypic relationships with platelets, monocytes and lymphocytes-have an association with lipid-rich necrotic core volume (LRNCV), a generic index of coronary plaque vulnerability, in a group of stable patients with chronic coronary syndrome (CCS). METHODS In 55 patients, (68.53 ± 1.07 years of age, mean ± SEM; 71% male), the total LRNCV in each subject was assessed by a quantitative analysis of all coronary plaques detected by computed tomography coronary angiography (CTCA) and was normalized to the total plaque volume. The expression of CD14, CD16, CD18, CD11b, HLA-DR, CD163, CCR2, CCR5, CX3CR1, CXCR4 and CD41a cell surface markers was quantified by flow cytometry. Adhesion molecules, cytokines and chemokines, as well as MMP9 plasma levels, were measured by ELISA. RESULTS On a per-patient basis, LRNCV values were positively associated, by a multiple regression analysis, with the neutrophil count (n°/µL) (p = 0.02), neutrophil/lymphocyte ratio (p = 0.007), neutrophil/platelet ratio (p = 0.01), neutrophil RFI CD11b expression (p = 0.02) and neutrophil-platelet adhesion index (p = 0.01). Significantly positive multiple regression associations of LRNCV values with phenotypic ratios between neutrophil RFI CD11b expression and several lymphocyte and monocyte surface markers were also observed. In the bivariate correlation analysis, a significantly positive association was found between RFI values of neutrophil-CD41a+ complexes and neutrophil RFI CD11b expression (p < 0.0001). CONCLUSIONS These preliminary findings suggest that a sustained increase in circulating neutrophils, together with the up-regulation of the integrin/activation membrane neutrophil marker CD11b may contribute, through the progressive intra-plaque accumulation of necrotic/apoptotic cells exceeding the efferocytosis/anti-inflammatory capacity of infiltrating macrophages and lymphocytes, to the relative enlargement of the lipid-rich necrotic core volume of coronary plaques in stable CAD patients, thus increasing their individual risk of acute complication.
Collapse
Affiliation(s)
- Silverio Sbrana
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
- Correspondence: (S.S.); (S.R.)
| | - Antonella Cecchettini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Luca Bastiani
- CNR Institute of Clinical Physiology, 54100 Massa, Italy
| | | | | | | | - Danilo Neglia
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| | | | | | | | | | - Silvia Rocchiccioli
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy
- Correspondence: (S.S.); (S.R.)
| |
Collapse
|
32
|
Riça IG, Joughin BA, Teke ME, Emmons TR, Griffith A, Cahill LA, Banner-Goodspeed V, Robson SC, Hernandez JM, Segal BH, Otterbein LE, Hauser CJ, Lederer JA, Yaffe MB. Neutrophil heterogeneity and emergence of a distinct population of CD11b/CD18-activated low-density neutrophils after trauma. J Trauma Acute Care Surg 2023; 94:187-196. [PMID: 36694330 PMCID: PMC9881754 DOI: 10.1097/ta.0000000000003823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Multiple large clinical trauma trials have documented an increased susceptibility to infection after injury. Although neutrophils (polymorphonuclear leukocytes [PMNs]) were historically considered a homogeneous cell type, we hypothesized that injury could alter neutrophil heterogeneity and predispose to dysfunction. To explore whether trauma modifies PMN heterogeneity, we performed an observational mass-spectrometry-based cytometry study on total leukocytes and low-density PMNs found in the peripheral blood mononuclear cell fraction of leukocytes from healthy controls and trauma patients. METHODS A total of 74 samples from 12 trauma patients, each sampled at 1 or more time points, and matched controls were fractionated and profiled by mass-spectrometry-based cytometry using a panel of 44 distinct markers. After deconvolution and conservative gating on neutrophils, data were analyzed using Seurat, followed by clustering of principal components. RESULTS Eleven distinct neutrophil populations were resolved in control and trauma neutrophils based on differential protein surface marker expression. Trauma markedly altered the basal heterogeneity of neutrophil subgroups seen in the control samples, with loss of a dominant population of resting neutrophils marked by high expression of C3AR and low levels of CD63, CD64, and CD177 (cluster 1), and expansion of two alternative neutrophil populations, one of which is marked by high expression of CD177 with suppression of CD10, CD16, C3AR, CD63, and CD64 (cluster 6). Remarkably, following trauma, a substantially larger percentage of neutrophils sediment in the monocyte fraction. These low-density neutrophils bear markers of functional exhaustion and form a unique trauma-induced population (cluster 9) with markedly upregulated expression of active surface adhesion molecules (activated CD11b/CD18), with suppression of nearly all other surface markers, including receptors for formyl peptides, leukotrienes, chemokines, and complement. CONCLUSION Circulating neutrophils demonstrate considerable evidence of functional heterogeneity that is markedly altered by trauma. Trauma induces evolution of a novel, exhausted, low-density neutrophil population with immunosuppressive features.
Collapse
Affiliation(s)
- Ingred Goretti Riça
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian A. Joughin
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martha E. Teke
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tiffany R. Emmons
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alec Griffith
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Laura A. Cahill
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Simon C. Robson
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Jonathan M. Hernandez
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brahm H. Segal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, University of Buffalo School of Medicine, Buffalo, NY14263 USA
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - Carl J. Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Michael B. Yaffe
- Departments of Biological Engineering and Biology, David H. Koch Institute for Integrative Cancer Research, and Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
33
|
Bauer A, Pachl E, Hellmuth JC, Kneidinger N, Heydarian M, Frankenberger M, Stubbe HC, Ryffel B, Petrera A, Hauck SM, Behr J, Kaiser R, Scherer C, Deng L, Teupser D, Ahmidi N, Muenchhoff M, Schubert B, Hilgendorff A. Proteomics reveals antiviral host response and NETosis during acute COVID-19 in high-risk patients. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166592. [PMID: 36328146 PMCID: PMC9622026 DOI: 10.1016/j.bbadis.2022.166592] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited. We addressed the gap of existing knowledge with regard to a differentiated understanding of disease dynamics in SARS-CoV-2 infection while specifically considering disease stage and severity. We biomedically characterized quantitative proteomics in a hospitalized cohort of COVID-19 patients with mild to severe symptoms suffering from different (co)-morbidities in comparison to both healthy individuals and patients with non-COVID related inflammation. Deep clinical phenotyping enabled the identification of individual disease trajectories in COVID-19 patients. By the use of the individualized disease phase assignment, proteome analysis revealed a severity dependent general type-2-centered host response side-by-side with a disease specific antiviral immune reaction in early disease. The identification of phenomena such as neutrophil extracellular trap (NET) formation and a pro-coagulatory response characterizing severe disease was successfully validated in a second cohort. Together with the regulation of proteins related to SARS-CoV-2-specific symptoms identified by proteome screening, we not only confirmed results from previous studies but provide novel information for biomarker and therapy development.
Collapse
Affiliation(s)
- Alina Bauer
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Elisabeth Pachl
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Fraunhofer IKS, Fraunhofer Institute for Cognitive Systems IKS, 80686 Munich, Germany
| | - Johannes C. Hellmuth
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,German Cancer Consortium (DKTK), Munich, Germany,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Kneidinger
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany,Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Marion Frankenberger
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Hans C. Stubbe
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans and Artimmune, Orléans, France
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Jürgen Behr
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany,Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rainer Kaiser
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Li Deng
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Institute of Virology, Technical University of Munich, 81675 Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Narges Ahmidi
- Fraunhofer IKS, Fraunhofer Institute for Cognitive Systems IKS, 80686 Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Benjamin Schubert
- Helmholtz Zentrum München, Computational Health Department, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany,Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany; Center for Comprehensive Developmental Care (CDeC(LMU)) at the Interdisciplinary Social Pediatric Center (iSPZ), LMU Hospital, Munich, Germany.
| |
Collapse
|
34
|
Soehnlein O. Hijacking CD177 for whole-body visualization of neutrophil dynamics. NATURE CARDIOVASCULAR RESEARCH 2023; 2:104-105. [PMID: 39196053 DOI: 10.1038/s44161-022-00211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Affiliation(s)
- Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Centre of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
35
|
Zhu Y, Chen J, Li J, Zhou C, Huang X, Chen B. Ginsenoside Rg1 as a promising adjuvant agent for enhancing the anti-cancer functions of granulocytes inhibited by noradrenaline. Front Immunol 2023; 14:1070679. [PMID: 36817446 PMCID: PMC9929943 DOI: 10.3389/fimmu.2023.1070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone. Methods and results After screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo. Discussion In future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Xin Huang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
37
|
Diagnostic, prognostic, and immunological roles of CD177 in cervical cancer. J Cancer Res Clin Oncol 2023; 149:173-189. [PMID: 36352147 DOI: 10.1007/s00432-022-04465-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND CD177, an indicator of prognosis in diverse cancers, is involved in the physiological processes of various tumor cells, and acts as an immune molecule with novel functions in cancer pathogenesis. However, the diagnostic, prognostic, and immunological role of CD177 in cervical cancer remains unclear. METHODS Utilizing publicly available databases and integrating several bioinformatics analysis methods, we evaluated the expression level of CD177 in cervical cancer by GENT2, HPA, and GEO databases. And the experiments of western blot and immunohistochemical staining were used to test the hypothesis. The Kaplan-Meier Plotter database, Xena Shiny, and the constructed nomogram were clearly demonstrated its prognostic value for patients. Gene set enrichment analysis explored the relationship between CD177 and cervical cancer immune responses and immune cells infiltration level. In addition, we investigated the association between CD177 expression and stromal score, immune score, immune checkpoint, and drug sensitivity by TCGA RNA-seq data. RESULTS CD177 was apparently expressed at low levels in cervical cancer and predicted a poor survival rate for patients. CD177 significantly activated immune-related signaling pathways and had a positive relationship with immune cell infiltration level. The high CD177 expression group possessed the high stromal score and immune score. CD177 had potential interactions with CTLA4, CD27, BLTA, CD200R1, CD80, NRP1, TNFRSF25, TIGIT, ICOS, and TNFSF9 checkpoint markers. And CD177 expression was positively relevant with drug sensitivity for Lapatinib, Belinostat, ATRA, Gefitinib, Navitoclax, and Tamoxifen. SIGNIFICANCE These findings may shed light on the vital role of CD177 in cervical cancer diagnosis, prognosis, and immunological functions, and it may be a promising predictor and potential factor for cervical cancer patients.
Collapse
|
38
|
A shared tissue transcriptome signature and pathways in psoriasis and ulcerative colitis. Sci Rep 2022; 12:19740. [PMID: 36396672 PMCID: PMC9671879 DOI: 10.1038/s41598-022-22465-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Despite multiple efficacious therapies in common between psoriasis (PS) and Ulcerative Colitis (UC), mechanisms underlying their common pathophysiology remain largely unclear. Here we sought to establish a link by evaluating expression differences and pathway alterations in diseased tissues. We identified two sets of differentially expressed genes (DEGs) between lesional and nonlesional tissues in meta-analyses of data collected from baseline samples in 3 UC and then 3 PS available clinical studies from Pfizer. A shared gene signature was defined by 190 DEGs common to both diseases. Commonly dysregulated pathways identified via enrichment analysis include interferon signaling, partly driven by genes IFI6, CXCL9, CXCL10 and CXCL11, which may attract chemotaxis of Th1 cells to inflammatory sites; IL-23 pathway (IL-23A, CCL20, PI3, CXCL1, LCN2); and Th17 pathway except IL-17A. Elevated expression of costimulatory molecules ICOS and CTLA4 suggests ongoing T-cell activation in both diseases. The clinical value of the shared signature is demonstrated by a gene set improvement score reflecting post-treatment molecular improvement for each disease. This is the first study using transcriptomic meta-analysis to define a tissue gene signature and pathways dysregulated in both PS and UC. These findings suggest immune mechanisms may initiate and sustain inflammation similarly in the two diseases.
Collapse
|
39
|
Carrillo-Rodríguez P, Robles-Guirado JÁ, Cruz-Palomares A, Palacios-Pedrero MÁ, González-Paredes E, Más-Ciurana A, Franco-Herrera C, Ruiz-de-Castroviejo-Teba PA, Lario A, Longobardo V, Montosa-Hidalgo L, Pérez-Sánchez-Cañete MM, Corzo-Corbera MM, Redondo-Sánchez S, Jodar AB, Blanco FJ, Zumaquero E, Merino R, Sancho J, Zubiaur M. Extracellular vesicles from pristane-treated CD38-deficient mice express an anti-inflammatory neutrophil protein signature, which reflects the mild lupus severity elicited in these mice. Front Immunol 2022; 13:1013236. [DOI: 10.3389/fimmu.2022.1013236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In CD38-deficient (Cd38-/-) mice intraperitoneal injection of pristane induces a lupus-like disease, which is milder than that induced in WT mice, showing significant differences in the inflammatory and autoimmune processes triggered by pristane. Extracellular vesicles (EV) are present in all body fluids. Shed by cells, their molecular make-up reflects that of their cell of origin and/or tissue pathological situation. The aim of this study was to analyze the protein composition, protein abundance, and functional clustering of EV released by peritoneal exudate cells (PECs) in the pristane experimental lupus model, to identify predictive or diagnostic biomarkers that might discriminate the autoimmune process in lupus from inflammatory reactions and/or normal physiological processes. In this study, thanks to an extensive proteomic analysis and powerful bioinformatics software, distinct EV subtypes were identified in the peritoneal exudates of pristane-treated mice: 1) small EV enriched in the tetraspanin CD63 and CD9, which are likely of exosomal origin; 2) small EV enriched in CD47 and CD9, which are also enriched in plasma-membrane, membrane-associated proteins, with an ectosomal origin; 3) small EV enriched in keratins, ECM proteins, complement/coagulation proteins, fibrin clot formation proteins, and endopetidase inhibitor proteins. This enrichment may have an inflammation-mediated mesothelial-to-mesenchymal transition origin, representing a protein corona on the surface of peritoneal exudate EV; 4) HDL-enriched lipoprotein particles. Quantitative proteomic analysis allowed us to identify an anti-inflammatory, Annexin A1-enriched pro-resolving, neutrophil protein signature, which was more prominent in EV from pristane-treated Cd38-/- mice, and quantitative differences in the protein cargo of the ECM-enriched EV from Cd38-/- vs WT mice. These differences are likely to be related with the distinct inflammatory outcome shown by Cd38-/- vs WT mice in response to pristane treatment. Our results demonstrate the power of a hypothesis-free and data-driven approach to transform the heterogeneity of the peritoneal exudate EV from pristane-treated mice in valuable information about the relative proportion of different EV in a given sample and to identify potential protein markers specific for the different small EV subtypes, in particular those proteins defining EV involved in the resolution phase of chronic inflammation.
Collapse
|
40
|
Völs S, Kaisar-Iluz N, Shaul ME, Ryvkin A, Ashkenazy H, Yehuda A, Atamneh R, Heinberg A, Ben-David-Naim M, Nadav M, Hirsch S, Mitesser V, Salpeter SJ, Dzikowski R, Hayouka Z, Gershoni JM, Fridlender ZG, Granot Z. Targeted nanoparticles modify neutrophil function in vivo. Front Immunol 2022; 13:1003871. [PMID: 36275643 PMCID: PMC9580275 DOI: 10.3389/fimmu.2022.1003871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play critical roles in a broad spectrum of clinical conditions. Accordingly, manipulation of neutrophil function may provide a powerful immunotherapeutic approach. However, due to neutrophils characteristic short half-life and their large population number, this possibility was considered impractical. Here we describe the identification of peptides which specifically bind either murine or human neutrophils. Although the murine and human neutrophil-specific peptides are not cross-reactive, we identified CD177 as the neutrophil-expressed binding partner in both species. Decorating nanoparticles with a neutrophil-specific peptide confers neutrophil specificity and these neutrophil-specific nanoparticles accumulate in sites of inflammation. Significantly, we demonstrate that encapsulating neutrophil modifying small molecules within these nanoparticles yields specific modulation of neutrophil function (ROS production, degranulation, polarization), intracellular signaling and longevity both in vitro and in vivo. Collectively, our findings demonstrate that neutrophil specific targeting may serve as a novel mode of immunotherapy in disease.
Collapse
Affiliation(s)
- Sandra Völs
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Naomi Kaisar-Iluz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Merav E. Shaul
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arik Ryvkin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ronza Atamneh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Adina Heinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M. Gershoni
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Zvi G. Fridlender
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| |
Collapse
|
41
|
Wittorf KJ, Weber KK, Swenson SA, Buckley SM. Ubiquitin E3 ligase FBXO21 regulates cytokine-mediated signaling pathways, but is dispensable for steady-state hematopoiesis. Exp Hematol 2022; 114:33-42.e3. [PMID: 35987460 DOI: 10.1016/j.exphem.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Hematopoietic cell fate decisions such as self-renewal and differentiation are highly regulated through multiple molecular pathways. One pathway, the ubiquitin proteasome system (UPS), controls protein levels by tagging them with polyubiquitin chains and promoting their degradation through the proteasome. Ubiquitin E3 ligases serve as the substrate-recognition component of the UPS. By investigating the FBOX family of E3 ligases, we discovered that Fbxo21 was highly expressed in the hematopoietic stem and progenitor cell (HSPC) population, and exhibited low to no expression in mature myeloid populations. To determine the role of FBXO21 on HSPC maintenance, self-renewal, and differentiation, we generated shRNAs against FBXO21 and a hematopoiesis-specific Fbxo21 conditional knockout (cKO) mouse model. We found that silencing FBXO21 in HSPCs led to a loss in colony formation and an increase in cell differentiation in vitro. Additionally, stressing the HSPC populations in our Fbxo21 cKO mouse with 5-fluorouracil injections resulted in a decrease in survival, despite these populations exhibiting minimal alterations during steady-state hematopoiesis. Although FBXO21 has previously been proposed to regulate cytokine signaling via ASK and p38, our results indicate that depletion of FBXO21 led to altered ERK signaling in vitro. Together, these findings suggest ubiquitin E3 ligase FBXO21 regulates HSPCs through cytokine-mediated pathways.
Collapse
Affiliation(s)
- Karli J Wittorf
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Kasidy K Weber
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samantha A Swenson
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Shannon M Buckley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
42
|
Jurgec S, Jezernik G, Gorenjak M, Büdefeld T, Potočnik U. Meta-Analytic Comparison of Global RNA Transcriptomes of Acute and Chronic Myeloid Leukemia Cells Reveals Novel Gene Candidates Governing Myeloid Malignancies. Cancers (Basel) 2022; 14:cancers14194681. [PMID: 36230605 PMCID: PMC9562668 DOI: 10.3390/cancers14194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite advances in the understanding of genetic risk factors and molecular mechanisms underlying acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), clinical outcomes of current therapies in terms of disease relapse and mortality rate pose a great economic and social burden. To overcome this, the identification of new molecular prognostic biomarkers and pharmacological targets is crucial. Recent studies have suggested that AML and CML may share common pathogenic mechanisms and cellular substrates. To this end, in the present study, global transcriptome profiles of AML and CML at the molecular and cellular level were directly compared using a combination of meta-analysis and modern statistics, and novel candidate genes and specific biological processes associated with the pathogenesis of AML and CML were characterized. Our study significantly improves our current understanding of myeloid leukemia and will help develop new therapeutic targets and biomarkers for disease progression, management and treatment response. Abstract Background: Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) represent a group of hematological malignancies characterized by the pathogenic clonal expansion of leukemic myeloid cells. The diagnosis and clinical outcome of AML and CML are complicated by genetic heterogeneity of disease; therefore, the identification of novel molecular biomarkers and pharmacological targets is of paramount importance. Methods: RNA-seq-based transcriptome data from a total of five studies were extracted from NCBI GEO repository and subjected to an in-depth bioinformatics analysis to identify differentially expressed genes (DEGs) between AML and CML. A systemic literature survey and functional gene ontology (GO) enrichment analysis were performed for the top 100 DEGs to identify novel candidate genes and biological processes associated with AML and CML. Results: LINC01554, PTMAP12, LOC644936, RPS27AP20 and FAM133CP were identified as novel risk genes for AML and CML. GO enrichment analysis showed that DEGs were significantly associated with pre-RNA splicing, reactive oxygen species and glycoprotein metabolism, the cellular endomembrane system, neutrophil migration and antimicrobial immune response. Conclusions: Our study revealed novel biomarkers and specific biological processes associated with AML and CML. Further studies are required to evaluate their value as molecular targets for managing and treating the myeloid malignancies.
Collapse
Affiliation(s)
- Staša Jurgec
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Büdefeld
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2345-854
| |
Collapse
|
43
|
Nowak JK, Adams AT, Kalla R, Lindstrøm JC, Vatn S, Bergemalm D, Keita ÅV, Gomollón F, Jahnsen J, Vatn MH, Ricanek P, Ostrowski J, Walkowiak J, Halfvarson J, Satsangi J. Characterisation of the Circulating Transcriptomic Landscape in Inflammatory Bowel Disease Provides Evidence for Dysregulation of Multiple Transcription Factors Including NFE2, SPI1, CEBPB, and IRF2. J Crohns Colitis 2022; 16:1255-1268. [PMID: 35212366 PMCID: PMC9426667 DOI: 10.1093/ecco-jcc/jjac033] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 01/11/2023]
Abstract
AIM To assess the pathobiological and translational importance of whole-blood transcriptomic analysis in inflammatory bowel disease [IBD]. METHODS We analysed whole-blood expression profiles from paired-end sequencing in a discovery cohort of 590 Europeans recruited across six countries in the IBD Character initiative (newly diagnosed patients with Crohn's disease [CD; n = 156], ulcerative colitis [UC; n = 167], and controls [n = 267]), exploring differential expression [DESeq2], co-expression networks [WGCNA], and transcription factor involvement [EPEE, ChEA, DoRothEA]. Findings were validated by analysis of an independent replication cohort [99 CD, 100 UC, 95 controls]. In the discovery cohort, we also defined baseline expression correlates of future treatment escalation using cross-validated elastic-net and random forest modelling, along with a pragmatic ratio detection procedure. RESULTS Disease-specific transcriptomes were defined in IBD [8697 transcripts], CD [7152], and UC [8521], with the most highly significant changes in single genes, including CD177 (log2-fold change [LFC] = 4.63, p = 4.05 × 10-118), MCEMP1 [LFC = 2.45, p = 7.37 × 10-109], and S100A12 [LFC = 2.31, p = 2.15 × 10-93]. Significantly over-represented pathways included IL-1 [p = 1.58 × 10-11], IL-4, and IL-13 [p = 8.96 × 10-9]. Highly concordant results were obtained using multiple regulatory activity inference tools applied to the discovery and replication cohorts. These analyses demonstrated central roles in IBD for the transcription factors NFE2, SPI1 [PU.1], CEBPB, and IRF2, all regulators of cytokine signalling, based on a consistent signal across cohorts and transcription factor ranking methods. A number of simple transcriptome-based models were associated with the need for treatment escalation, including the binary CLEC5A/CDH2 expression ratio in UC (hazard ratio = 23.4, 95% confidence interval [CI] 5.3-102.0). CONCLUSIONS Transcriptomic analysis has allowed for a detailed characterisation of IBD pathobiology, with important potential translational implications.
Collapse
Affiliation(s)
- Jan K Nowak
- Corresponding authors: Dr Jan K. Nowak, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | - Rahul Kalla
- MRC Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonas C Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Simen Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Jerzy Ostrowski
- Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Jaroslaw Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Jack Satsangi
- Jack Satsangi, Translational Gastroenterology Unit, Experimental Medicine Division, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
44
|
Ramdas B, Yuen LD, Palam LR, Patel R, Pasupuleti SK, Jideonwo V, Zhang J, Maguire C, Wong E, Kanumuri R, Zhang C, Sandusky G, Chan RJ, Zhang C, Stieglitz E, Haneline L, Kapur R. Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells. Mol Ther 2022; 30:2505-2521. [PMID: 35443935 PMCID: PMC9263321 DOI: 10.1016/j.ymthe.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton's tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
Collapse
Affiliation(s)
- Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Lisa Deng Yuen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Lakshmi Reddy Palam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roshini Patel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Santhosh Kumar Pasupuleti
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jideonwo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ji Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Callista Maguire
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric Wong
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - Rahul Kanumuri
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chujing Zhang
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
| | - George Sandusky
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca J Chan
- Senior Director, Oncology, U.S. Medical Affairs, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Laura Haneline
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
45
|
Colombo F, Illescas O, Noci S, Minnai F, Pintarelli G, Pettinicchio A, Vannelli A, Sorrentino L, Battaglia L, Cosimelli M, Dragani TA, Gariboldi M. Gut microbiota composition in colorectal cancer patients is genetically regulated. Sci Rep 2022; 12:11424. [PMID: 35794137 PMCID: PMC9259655 DOI: 10.1038/s41598-022-15230-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractThe risk of colorectal cancer (CRC) depends on environmental and genetic factors. Among environmental factors, an imbalance in the gut microbiota can increase CRC risk. Also, microbiota is influenced by host genetics. However, it is not known if germline variants influence CRC development by modulating microbiota composition. We investigated germline variants associated with the abundance of bacterial populations in the normal (non-involved) colorectal mucosa of 93 CRC patients and evaluated their possible role in disease. Using a multivariable linear regression, we assessed the association between germline variants identified by genome wide genotyping and bacteria abundances determined by 16S rRNA gene sequencing. We identified 37 germline variants associated with the abundance of the genera Bacteroides, Ruminococcus, Akkermansia, Faecalibacterium and Gemmiger and with alpha diversity. These variants are correlated with the expression of 58 genes involved in inflammatory responses, cell adhesion, apoptosis and barrier integrity. Genes and bacteria appear to be involved in the same processes. In fact, expression of the pro-inflammatory genes GAL, GSDMD and LY6H was correlated with the abundance of Bacteroides, which has pro-inflammatory properties; abundance of the anti-inflammatory genus Faecalibacterium correlated with expression of KAZN, with barrier-enhancing functions. Both the microbiota composition and local inflammation are regulated, at least partially, by the same germline variants. These variants may regulate the microenvironment in which bacteria grow and predispose to the development of cancer. Identification of these variants is the first step to identifying higher-risk individuals and proposing tailored preventive treatments that increase beneficial bacterial populations.
Collapse
|
46
|
Brown BA, Guda PR, Zeng X, Anthony A, Couse A, Barnes LF, Sharon EM, Trinidad JC, Sen CK, Jarrold MF, Ghatak S, Clemmer DE. Analysis of Keratinocytic Exosomes from Diabetic and Nondiabetic Mice by Charge Detection Mass Spectrometry. Anal Chem 2022; 94:8909-8918. [PMID: 35699514 PMCID: PMC9450994 DOI: 10.1021/acs.analchem.2c00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes (Exoκ) leads to persistent inflammation [Zhou, X. ACS Nano 2020, 14(10), 12732-12748]. Herein, we use charge detection mass spectrometry (CDMS) to analyze intact Exoκ isolated from a 5 day old wound-edge tissue of diabetic mice and a heterozygous nondiabetic littermate control group. In CDMS, the charge (z) and mass-to-charge ratio (m/z) of individual exosome particles are measured simultaneously, enabling the direct analysis of masses in the 1-200 MDa range anticipated for exosomes. These measurements reveal a broad mass range for Exoκ from ∼10 to >100 MDa. The m and z values for these exosomes appear to fall into families (subpopulations); a statistical modeling analysis partially resolves ∼10-20 Exoκ subpopulations. Complementary proteomics, immunofluorescence, and electron microscopy studies support the CDMS results that Exoκ from diabetic and nondiabetic mice vary substantially. Subpopulations having high z (>650) and high m (>44 MDa) are more abundant in nondiabetic animals. We propose that these high m and z particles may arise from differences in cargo packaging. The veracity of this idea is discussed in light of other recent CDMS results involving genome packaging in vaccines, as well as exosome imaging experiments. Characterization of intact exosome particles based on the physical properties of m and z provides a new means of investigating wound healing and suggests that CDMS may be useful for other pathologies.
Collapse
Affiliation(s)
- Brooke A Brown
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Poornachander R Guda
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Xuyao Zeng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Adam Anthony
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Andrew Couse
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Lauren F Barnes
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Edie M Sharon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine & Engineering, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505, United States
| |
Collapse
|
47
|
Margraf A, Perretti M. Immune Cell Plasticity in Inflammation: Insights into Description and Regulation of Immune Cell Phenotypes. Cells 2022; 11:cells11111824. [PMID: 35681519 PMCID: PMC9180515 DOI: 10.3390/cells11111824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammation is a life-saving immune reaction occurring in response to invading pathogens. Nonetheless, inflammation can also occur in an uncontrolled, unrestricted manner, leading to chronic disease and organ damage. Mechanisms triggering an inflammatory response, hindering such a response, or leading to its resolution are well-studied but so far insufficiently elucidated with regard to precise therapeutic interventions. Notably, as an immune reaction evolves, requirements and environments for immune cells change, and thus cellular phenotypes adapt and shift, leading to the appearance of distinct cellular subpopulations with new functional features. In this article, we aim to highlight properties of, and overarching regulatory factors involved in, the occurrence of immune cell phenotypes with a special focus on neutrophils, macrophages and platelets. Additionally, we point out implications for both diagnostics and therapeutics in inflammation research.
Collapse
|
48
|
Sendo F, Yoshitake H, Araki Y. Targeting of neutrophil activation in the early phase of the disease for prevention of Coronavirus disease-19 severity. Microbiol Immunol 2022; 66:264-276. [PMID: 35348252 PMCID: PMC9111295 DOI: 10.1111/1348-0421.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
The prevention of the disease severity seems critical for reducing the mortality of Coronavirus (CoV) disease‐19. The neutrophils play a key role in the induction of severity. It is proposed here that inhibition of neutrophil activation and/or cascade reactions of complement, leading to this cell activation at the early phase of the disease, is a potential tool to inhibit aggravation of the disease. The need for appropriate timing in intervention is emphasized as follows. (1) Intervention at the very early stage of severe acute respiratory syndrome‐CoV‐2 infection may harm the defensive host response to the infection because of the critical function of neutrophils in this response, and (2) intervention at too late a stage will not stop the infiltration of fully activated neutrophils that produce large amounts of toxic substances.
Collapse
Affiliation(s)
| | - Hiroshi Yoshitake
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan
| | - Yoshihiko Araki
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba, Japan.,Division of Microbiology, Department of Pathology & Microbiology, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| |
Collapse
|
49
|
Liu XT, Shi ZR, Lu SY, Hong D, Qiu XN, Tan GZ, Xiong H, Guo Q, Wang L. Enhanced Migratory Ability of Neutrophils Toward Epidermis Contributes to the Development of Psoriasis via Crosstalk With Keratinocytes by Releasing IL-17A. Front Immunol 2022; 13:817040. [PMID: 35401573 PMCID: PMC8983831 DOI: 10.3389/fimmu.2022.817040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Microabscess of neutrophils in epidermis is one of the histological hallmarks of psoriasis. The axis of neutrophil–keratinocyte has been thought to play a critical role in the pathogenesis of psoriasis. However, the features and mechanism of interaction between the two cell types remain largely unknown. Herein, we found that blood neutrophils were increased in psoriasis patients, positively correlated with disease severity and highly expressed CD66b, but not CD11b and CD62L compared to healthy controls. Keratinocytes expressed high levels of psoriasis-related inflammatory mediators by direct and indirect interaction with neutrophils isolated from psoriasis patients and healthy controls. The capacity of neutrophils in provoking keratinocytes inflammatory response was comparable between the two groups and is dependent on IL-17A produced by itself. Neutrophils isolated from psoriasis patients displayed more transcriptome changes related to integrin and increased migration capacity toward keratinocytes with high CD11b expression on cell surface. Of interest, neutrophils were more susceptible to keratinocyte stimulation than to fibroblasts and human umbilical vein endothelial cells (HUVECs) in terms of CD11b expression and the production of ROS and NETs. In conclusion, neutrophils from psoriasis patients gain a strong capacity of IL-17A production and integrins expression that possibly facilitates their abilities to promote production of psoriasis-related inflammatory mediators and migration, a phenomenon likely induced by their interaction with keratinocytes but not with fibroblasts. These findings provide a proof-of-concept that development of new drugs targeting migration of neutrophils could be a more specific and safe solution to treat psoriasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Guo
- *Correspondence: Qing Guo, ; Liangchun Wang,
| | | |
Collapse
|
50
|
Grieshaber-Bouyer R, Exner T, Hackert NS, Radtke FA, Jelinsky SA, Halyabar O, Wactor A, Karimizadeh E, Brennan J, Schettini J, Jonsson H, Rao DA, Henderson LA, Müller-Tidow C, Lorenz HM, Wabnitz G, Lederer JA, Hadjipanayis A, Nigrovic PA. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Ann Rheum Dis 2022; 81:805-814. [PMID: 35168946 DOI: 10.1136/annrheumdis-2021-221866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/02/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Neutrophils are typically the most abundant leucocyte in arthritic synovial fluid. We sought to understand changes that occur in neutrophils as they migrate from blood to joint. METHODS We performed RNA sequencing of neutrophils from healthy human blood, arthritic blood and arthritic synovial fluid, comparing transcriptional signatures with those from murine K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils. RESULTS Blood neutrophils from healthy donors and patients with active arthritis showed largely similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1600 differentially expressed genes. Gene signatures identified a prominent response to interferon gamma (IFN-γ), as well as to tumour necrosis factor, interleukin-6 and hypoxia, in both humans and mice. Mass cytometry confirmed that healthy and arthritic donor blood neutrophils are largely indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. Reproduction of key elements of this signature in cultured blood neutrophils required both IFN-γ and prolonged culture. CONCLUSIONS Circulating neutrophils from patients with arthritis resemble those from healthy controls, but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFN-γ response and ageing as complementary drivers of the synovial fluid neutrophil phenotype.
Collapse
Affiliation(s)
- Ricardo Grieshaber-Bouyer
- Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany .,Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tarik Exner
- Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany.,Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nicolaj S Hackert
- Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany.,Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix A Radtke
- Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany.,Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott A Jelinsky
- Computational Systems Immunology, Worldwide Research & Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Wactor
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elham Karimizadeh
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Brennan
- Computational Systems Immunology, Worldwide Research & Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Jorge Schettini
- Computational Systems Immunology, Worldwide Research & Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Helena Jonsson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carsten Müller-Tidow
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.,Department of Medicine V (Hematology Oncology Rheumatology), Heidelberg University Hospital, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V (Hematology, Oncology and Rheumatology), Heidelberg University Hospital, Heidelberg, Germany
| | - Guido Wabnitz
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Hadjipanayis
- Computational Systems Immunology, Worldwide Research & Development, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA .,Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|