1
|
Rataj J, Gorecki L, Muthna D, Sorf A, Krystof V, Klener P, Ceckova M, Rezacova M, Korabecny J. Targeting FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia: Novel molecular approaches and therapeutic challenges. Biomed Pharmacother 2024; 182:117788. [PMID: 39733588 DOI: 10.1016/j.biopha.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates. Traditional AML treatments employ cytarabine and anthracyclines drugs. Furthermore, the development of FLT3 inhibitors has significantly improved therapy for FLT3-mutated AML patients. For example, the introduction of midostaurin, the first FLT3 inhibitor, improved patient outcomes. However, resistant AML cell clones continue to pose a challenge to the success of AML treatment. This review discusses FLT3 kinase, mutations, and role in AML pathogenesis. It explores the molecular mechanisms of FLT3 activation, signaling pathways, and the structure and function of the FLT3 receptor. Current and emerging therapeutic approaches are presented, while highlighting the latest FLT3 inhibitors in clinical use, and strategies to overcome drug resistance. Future directions, including personalized therapies and novel drug designs, are examined to provide updated insights into FLT3-targeted treatments. This comprehensive review aims to guide clinicians and researchers in the development of innovative therapies to improve AML patient outcomes.
Collapse
Affiliation(s)
- Jan Rataj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc 779 00, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Albertov 5/128 00, Prague 128 00, Czech Republic; First Department of Medicine, Department of Hematology, Charles University General Hospital, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic.
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic.
| |
Collapse
|
2
|
Lai YY, Horta RDS, Valenti P, Giuliano A. Retrospective Safety Evaluation of Combined Chlorambucil and Toceranib for the Treatment of Different Solid Tumours in Dogs. Animals (Basel) 2024; 14:3420. [PMID: 39682385 DOI: 10.3390/ani14233420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Chlorambucil is used in veterinary medicine for various cancers, while Toceranib, which was licenced for treating canine mast cell tumours, is now used against other solid tumours. Both drugs are generally safe, but their combined use has not been studied. This study aimed to investigate retrospectively the safety profile of the Chlorambucil-Toceranib combination against canine solid tumours. Thirty-eight dogs received this combination. Chlorambucil was administered at a median dose intensity of 15.1 mg/m2 per week, while Toceranib was given at the median dosage of 2.5 mg/kg on a Monday-Wednesday-Friday schedule. Dosages were individually adjusted according to commercially available tablet formulation, co-morbidities, and adverse events (AEs). The resulting clinical benefit rate (CBR) and overall response rate (ORR) were 55.3% and 10.5%, respectively. The median progressive free survival (PFS) and median survival time (MST) were 45.5 (12-537) days and 259 (42-1178) days, respectively. Gastrointestinal AEs occurred in 39.5% of cases (n = 15), 15.8% (n = 6) experienced UPC elevation, while hematological and biochemistry AEs affected 13.2% (n = 5) each. Most of these AEs were grades 1-2 (G1-2). None of the dogs interrupted treatment due to AEs, and the combination appeared safe. Larger prospective clinical trials are required to confirm our findings and investigate its efficacy across various cancers.
Collapse
Affiliation(s)
- Yuk-Yin Lai
- Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Rodrigo Dos Santos Horta
- Department of Veterinary Medicine and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Paola Valenti
- Clinica Veterinaria Malpensa AniCura, 21017 Samarate, VA, Italy
| | - Antonio Giuliano
- CityU Veterinary Medical Centre, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Urrutia S, Takahashi K. Precision medicine in AML: overcoming resistance. Int J Hematol 2024; 120:439-454. [PMID: 39085680 DOI: 10.1007/s12185-024-03827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The development of molecularly targeted therapy for acute myeloid leukemia is progressing at an accelerated pace. Therapies targeting FLT3, IDH1, IDH2, and BCL2 have been approved in the last 5 years. As we exploit these biological vulnerabilities, various mechanisms of resistance arise. Emergence of competing clones with different genetic drivers and acquisition of constitutional mutations in the target renders therapies ineffective, and enzymatic isoform changes can lead to reappearance of the disease phenotype. Understanding the timing and circumstances of resistance origination will allow clinicians to develop combinatorial and sequential therapeutic approaches to deepen responses and improve survival. The objective of this review is to illustrate the biological underpinnings of each therapy and the landscape of resistance mechanisms and discuss strategies to overcome on- and off-target resistance.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, 4SCR6.2085, Houston, TX, 77030-4009, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
4
|
Dauki AM, Rajakumaraswamy N, Trowe T, Weng W, Lin K, Elboudjwarej E, Qin AR, Schwabe C, Kuhne MR, Othman AA. Pharmacokinetics, pharmacodynamics, and safety of GS-3583, a FLT3 agonist Fc fusion protein, from single-ascending-dose phase I study in healthy participants. Clin Transl Sci 2024; 17:e70011. [PMID: 39169685 PMCID: PMC11339314 DOI: 10.1111/cts.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Conventional dendritic cells subtype 1 (cDC1) play a vital role in the priming and expansion of tumor-specific CD8+ T cells and their recruitment to tumor microenvironment. However, cDC1s are often underrepresented in the microenvironment. Systemic administration of Fms-like tyrosine kinase 3 ligand, a hematopoietic growth factor that binds to FLT3 on myeloid and lymphoid progenitor cells, leads to cDC1 expansion in the periphery and recruitment into the microenvironment. FLT3 pathway stimulation using GS-3583, a novel FLT3 agonistic Fc fusion protein, has the potential to promote T-cell mediated antitumor activity. This was a first-in-human, placebo-controlled study of GS-3583 in healthy participants to evaluate the safety, pharmacokinetics (PK), and pharmacodynamic (PD) of escalating single doses (75-2000 μg) of GS-3583. Each dose cohort enrolled 8-12 healthy participants who received GS-3583 or placebo as single IV infusion at 3:1 ratio. As part of the PD evaluation, the changes in the number of cDC1 cells were investigated. GS-3583 was well-tolerated in healthy participants up to the highest evaluated dose (2000 μg). There have been no serious or grade III or higher adverse events. PK analysis suggested a dose-dependent increase in GS-3583 exposure with target-mediated disposition characteristics at low doses. PD analysis shows that administration of GS-3583 resulted in transient, dose-dependent increases in cDC1 cells that returned to baseline within 3 weeks of drug administration. The pharmacokinetics and pharmacodynamics of GS-3583 following single dosing were characterized in this study which enabled subsequent phase Ib assessments in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | | | | | - Winnie Weng
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | - Kai‐Wen Lin
- Gilead Sciences, Inc.Foster CityCaliforniaUSA
| | | | | | | | | | | |
Collapse
|
5
|
Boopathy AV, Nekkalapudi A, Sung J, Schulha S, Jin D, Sharma B, Ng S, Lu S, Wimmer R, Suthram S, Ahmadi-Erber S, Lauterbach H, Orlinger KK, Hung M, Carr B, Callebaut C, Geleziunas R, Kuhne M, Schmidt S, Falkard B. Flt3 agonist enhances immunogenicity of arenavirus vector-based simian immunodeficiency virus vaccine in macaques. J Virol 2024; 98:e0029424. [PMID: 38829139 PMCID: PMC11265421 DOI: 10.1128/jvi.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens are capable of inducing efficacious humoral and cellular immune responses in nonhuman primates. Several studies have evaluated the use of immune modulators to further enhance vaccine-induced T-cell responses. The hematopoietic growth factor Flt3L drives the expansion of various bone marrow progenitor populations, and administration of Flt3L was shown to promote expansion of dendritic cell populations in spleen and blood, which are targets of arenaviral vectors. Therefore, we evaluated the potential of Flt3 signaling to enhance the immunogenicity of arenaviral vaccines encoding SIV immunogens (SIVSME543 Gag, Env, and Pol) in rhesus macaques, with a rhesus-specific engineered Flt3L-Fc fusion protein. In healthy animals, administration of Flt3L-Fc led to a 10- to 100-fold increase in type 1 dendritic cells 7 days after dosing, with no antidrug antibody (ADA) generation after repeated dosing. We observed that administration of Flt3L-Fc fusion protein 7 days before arenaviral vaccine increased the frequency and activation of innate immune cells and enhanced T-cell activation with no treatment-related adverse events. Flt3L-Fc administration induced early innate immune activation, leading to a significant enhancement in magnitude, breadth, and polyfunctionality of vaccine-induced T-cell responses. The Flt3L-Fc enhancement in vaccine immunogenicity was comparable to a combination with αCTLA-4 and supports the use of safe and effective variants of Flt3L to augment therapeutic vaccine-induced T-cell responses.IMPORTANCEInduction of a robust human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell response through therapeutic vaccination is considered essential for HIV cure. Arenaviral vaccine vectors encoding simian immunodeficiency virus (SIV) immunogens have demonstrated strong immunogenicity and efficacy in nonhuman primates. Here, we demonstrate that the immunogenicity of arenaviral vectors encoding SIV immunogens can be enhanced by administration of Flt3L-Fc fusion protein 7 days before vaccination. Flt3L-Fc-mediated increase in dendritic cells led to robust improvements in vaccine-induced T- and B-cell responses compared with vaccine alone, and Flt3L-Fc dosing was not associated with any treatment-related adverse events. Importantly, immune modulation by either Flt3L-Fc or αCTLA-4 led to comparable enhancement in vaccine response. These results indicate that the addition of Flt3L-Fc fusion protein before vaccine administration can significantly enhance vaccine immunogenicity. Thus, safe and effective Flt3L variants could be utilized as part of a combination therapy for HIV cure.
Collapse
Affiliation(s)
| | | | - Janette Sung
- Drug Metabolism, Gilead Sciences, Inc., Foster, California, USA
| | | | - Debi Jin
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | - Bhawna Sharma
- Discovery Virology, Gilead Sciences, Inc., Foster, California, USA
| | - Sarah Ng
- Oncology, Gilead Sciences, Inc., Foster, California, USA
| | - Sabrina Lu
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | | | - Silpa Suthram
- Bioinformatics, Gilead Sciences, Inc., Foster, California, USA
| | | | - Henning Lauterbach
- Global Research and Development, Hookipa Pharma Inc., New York, New York, USA
| | - Klaus K. Orlinger
- Global Research and Development, Hookipa Pharma Inc., New York, New York, USA
| | - Magdeleine Hung
- Protein Therapeutics, Gilead Sciences, Inc., Foster, California, USA
| | - Brian Carr
- Drug Metabolism, Gilead Sciences, Inc., Foster, California, USA
| | | | - Romas Geleziunas
- Clinical Virology, Gilead Sciences, Inc., Foster, California, USA
| | - Michelle Kuhne
- Oncology, Gilead Sciences, Inc., Foster, California, USA
| | - Sarah Schmidt
- Virology, Hookipa Pharma Inc., New York, New York, USA
| | - Brie Falkard
- Clinical Virology, Gilead Sciences, Inc., Foster, California, USA
| |
Collapse
|
6
|
Tolcher AW, Brody JD, Rajakumaraswamy N, Kuhne M, Trowe T, Dauki AM, Pai S, Han L, Lin KW, Petrarca M, Kummar S. Phase I Study of GS-3583, an FMS-like Tyrosine Kinase 3 Agonist Fc Fusion Protein, in Patients with Advanced Solid Tumors. Clin Cancer Res 2024; 30:2954-2963. [PMID: 38295150 PMCID: PMC11247315 DOI: 10.1158/1078-0432.ccr-23-2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE GS-3583, an FMS-like tyrosine kinase 3 (FLT3) agonist Fc fusion protein, expanded conventional dendritic cells (cDC) in the periphery of healthy volunteers, suggesting potential for GS-3583 to increase cDCs in the tumor microenvironment and promote T cell-mediated antitumor activity in cancer patients. This phase Ib open-label study assessed GS-3583 in adults with advanced solid tumors. PATIENTS AND METHODS Multiple escalating doses of GS-3583 (standard 3+3 design) were administered intravenously on days 1 and 15 of cycle 1 and day 1 of each subsequent 28-day cycle for up to 52 weeks. Dose-limiting toxicity (DLT) was evaluated during the first 28 days of GS-3583 at each dose level. RESULTS Thirteen participants enrolled in four dose-escalation cohorts, after which the study was terminated following safety review. Median (range) age was 71 (44-79), and 7 (54%) participants were male. There were no DLTs. Seven participants had grade ≥3 AEs; 2 participants had grade 5 AEs, including a second primary malignancy (acute myeloid leukemia) considered treatment-related. Dose-dependent increase in GS-3583 serum exposure was observed in the dose range of 2-20 mg with GS-3583 accumulation at higher dose levels. Expansions of cDCs occurred at all four doses with a dose-dependent trend in the durability of the cDC expansion. CONCLUSIONS GS-3583 was relatively well tolerated and induced dose-dependent expansion of cDCs in the periphery of patients with advanced solid tumors. However, development of a second primary malignancy provides a cautionary tale for the FLT3 agonist mechanism. See related commentary by Raeder and Drazer, p. 2857.
Collapse
Affiliation(s)
| | - Joshua D. Brody
- Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | | | | | | | | | - Ling Han
- Gilead Sciences, Inc., Foster City, California.
| | - Kai-Wen Lin
- Gilead Sciences, Inc., Foster City, California.
| | | | | |
Collapse
|
7
|
Kuncman Ł, Orzechowska M, Milecki T, Kucharz J, Fijuth J. High FLT3 expression increases immune-cell infiltration in the tumor microenvironment and correlates with prolonged disease-free survival in patients with non-small cell lung cancer. Mol Oncol 2024; 18:1316-1326. [PMID: 38327131 PMCID: PMC11076988 DOI: 10.1002/1878-0261.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Most of the currently used cancer immunotherapies inhibit the programmed cell death protein 1 (PD1)-programmed cell death 1 ligand 1 (PDL1) axis of T-cells. However, dendritic cells (DCs) controlled by natural killer (NK) cells via the FMS-related tyrosine kinase 3 (FLT3) axis are necessary for activation of T-cells. The aim of the study was to evaluate FLT3 as a prognostic factor and determine its role in immune infiltration (with emphasis on NK cells and DCs). Using The Cancer Genome Atlas (TCGA) database, we performed bioinformatic analysis of the gene expression datasets of 501 lung squamous cell carcinoma (LUSC) and 515 lung adenocarcinoma (LUAD) patient who had corresponding clinical data [analysis was performed in R (version 4.2.0)]. Disease-free survival (DFS) differed between the FLT3-low and FLT3-high expression groups, respectively, in LUSC (61.0 vs 71.3 months P = 0.075) and LUAD (32.7 vs 47.5 months P = 0.045). A tumor microenvironment (TME) with high immune infiltration and rich in T-cell exhaustion markers was observed in the FLT3-high group. We showed overexpression of NK cell and DC gene signatures in the FLT3-high expression group as well as overexpression of key effector genes of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes protein (STING) pathway, which is crucial in response to radiotherapy. High expression of FLT3 in the TME was associated with immune cell infiltration (especially of NK cells and DCs), increased expression of T-cell exhaustion markers and expression of effector genes of the cGAS-STING pathway, which may consequently increase susceptibility to immunotherapy and radiotherapy. High FLT3 expression correlated with prolonged DFS in the LUSC and LUAD cohorts.
Collapse
Affiliation(s)
- Łukasz Kuncman
- Department of RadiotherapyMedical University of LodzPoland
- Department of External Beam RadiotherapyNicolaus Copernicus Multidisciplinary Centre for Oncology and TraumatologyŁódźPoland
| | | | - Tomasz Milecki
- Department of UrologyPoznan University of Medical SciencesPoland
| | - Jakub Kucharz
- Department of Genitourinary OncologyThe Maria Sklodowska‐Curie National Research Institute of Oncology in WarsawPoland
| | - Jacek Fijuth
- Department of RadiotherapyMedical University of LodzPoland
- Department of External Beam RadiotherapyNicolaus Copernicus Multidisciplinary Centre for Oncology and TraumatologyŁódźPoland
| |
Collapse
|
8
|
Akwata D, Kempen AL, Dayal N, Brauer NR, Sintim HO. Identification of a Selective FLT3 Inhibitor with Low Activity against VEGFR, FGFR, PDGFR, c-KIT, and RET Anti-Targets. ChemMedChem 2024; 19:e202300442. [PMID: 37971283 DOI: 10.1002/cmdc.202300442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
FLT3 is mainly expressed in immune and various cancer cells and is a drug target for acute myeloid leukemia (AML). Recently, FLT3 has also been identified as a potential target for treating chronic pain. Most FLT3 inhibitors (FLT3i) identified to date, including approved drugs such as gilteritinib, midostaurin, ponatinib, quizartinib, and FLT3i in clinical trials, such as quizartinib and crenolanib, also inhibit closely-related kinases that are important for immune (c-KIT), cardiovascular (KDR/VEGFR2, FGFR, PDGFR) or kidney (RET) functions. While the aforementioned FLT3i may increase survival rates in AML, they are neither ideal for AML maintenance therapy nor for non-oncology applications, such as for the treatment of chronic pain, due to their promiscuous inhibition of many kinase anti-targets. Here, we report the identification of new FLT3i compounds that have low activities against kinases that have traditionally been difficult to differentiate from FLT3 inhibition, such as KDR/VEGFR, FGFR, PGFR, c-KIT, and RET. These selective compounds could be valuable chemical probes for studying FLT3 biology in the context of chronic pain and/or may represent good starting points to develop well-tolerated FLT3 therapeutics for non-oncology indications or for maintenance therapy for AML.
Collapse
Affiliation(s)
- Desmond Akwata
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Allison L Kempen
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Neetu Dayal
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Nickolas R Brauer
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, West Lafayette, USA
- Purdue Institute for Drug Discovery, 720 Clinic Drive, IN 47907, West Lafayette, USA
- Purdue Institute for Cancer Research, 201 S. University St., IN 47907, West Lafayette, USA
| |
Collapse
|
9
|
Costa A, Scalzulli E, Carmosino I, Capriata M, Ielo C, Masucci C, Passucci M, Martelli M, Breccia M. Systemic mastocytosis: 2023 update on diagnosis and management in adults. Expert Opin Emerg Drugs 2023; 28:153-165. [PMID: 37256917 DOI: 10.1080/14728214.2023.2221028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Systemic mastocytosis (SM) is a complex and heterogeneous disease, characterized by the clonal accumulation of mast cells in one or more organs. In 2022 both the World Health Organization (WHO) and the International Consensus Classification (ICC) modified the diagnostic and classification criteria of SM. Moreover, the identification of new clinical and molecular variables has improved prognostic tools and led to increasingly individualized therapeutic strategies. AREAS COVERED The aim of this review is to present the updates introduced by the International Consensus Classification in diagnostic criteria of SM. In addition, we report the latest data available from the most important clinical trials in patients both with non-advanced and advanced disease, including elenestinib and bezuclastinib. EXPERT OPINION Diagnosis and classification of SM has evolved over years. The most recent WHO and ICC classification improved SM diagnostic work-up, providing clinicians with a clear and simplified diagnostic scheme. New approved targeted therapies such as midostaurin and avapritinib modified the treatment paradigm in patients in advanced stage, and next-generation inhibitors actually investigated in clinical trials are expected in the next future.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Marcello Capriata
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Claudia Ielo
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Chiara Masucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Mauro Passucci
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy
| |
Collapse
|
10
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
11
|
Tieniber AD, Rossi F, Hanna AN, Liu M, Etherington MS, Loo JK, Param N, Zeng S, Do K, Wang L, DeMatteo RP. Multiple intratumoral sources of kit ligand promote gastrointestinal stromal tumor. Oncogene 2023; 42:2578-2588. [PMID: 37468679 DOI: 10.1038/s41388-023-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in KitV558Δ/+ tumors, even after imatinib therapy. Genetic reduction of total KitL in tumor cells of KitV558Δ/+ mice impaired tumor growth in vivo. Similarly, genetic reduction of tumor cell soluble KitL in KitV558Δ/+ mice decreased tumor size. By RNA sequencing, quantitative PCR, and immunohistochemistry, KitL expression was heterogeneous in human GIST specimens. In particular, PDGFRA-mutant tumors had much higher KitL expression than Kit-mutant tumors, suggesting the benefit of Kit activation in the absence of mutant KIT. Serum KitL was higher in GIST patients with tumors resistant to imatinib and in those with tumors expressing more KitL RNA. Overall, KitL supports the growth of GIST at baseline and after imatinib therapy and remains a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Andrew D Tieniber
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ferdinando Rossi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Hanna
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Etherington
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer K Loo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nesteene Param
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shan Zeng
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Do
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald P DeMatteo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Alehagen U, Alexander J, Aaseth JO, Larsson A, Svensson E, Opstad TB. Effects of an Intervention with Selenium and Coenzyme Q 10 on Five Selected Age-Related Biomarkers in Elderly Swedes Low in Selenium: Results That Point to an Anti-Ageing Effect-A Sub-Analysis of a Previous Prospective Double-Blind Placebo-Controlled Randomised Clinical Trial. Cells 2023; 12:1773. [PMID: 37443807 PMCID: PMC10340529 DOI: 10.3390/cells12131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Ageing is associated with cardiovascular disease (CVD). As no single biomarker reflects the full ageing process, we aimed to investigate five CVD- and age-related markers and the effects of selenium and coenzyme Q10 intervention to elucidate the mechanisms that may influence the course of ageing. Methods: This is a sub-study of a previous prospective double-blind placebo-controlled randomized clinical trial that included 441 subjects low in selenium (mean age 77, 49% women). The active treatment group (n = 220) received 200 µg/day of selenium and 200 mg/day of coenzyme Q10, combined. Blood samples were collected at inclusion and after 48 months for measurements of the intercellular adhesion molecule (ICAM-1), adiponectin, leptin, stem cell factor (SCF) and osteoprotegerin (OPG), using ELISAs. Repeated measures of variance and ANCOVA evaluations were used to compare the two groups. In order to better understand and reduce the complexity of the relationship between the biomarkers and age, factor analyses and structural equation modelling (SEM) were performed, and a structural model is presented. Results: Correlation analyses of biomarker values at inclusion in relation to age, and relevant markers related to inflammation, endothelial dysfunction and fibrosis, demonstrated the biomarkers' association with these pathological processes; however, only ICAM1 and adiponectin were directly correlated with age. SEM analyses showed, however, that the biomarkers ICAM-1, adiponectin, SCF and OPG, but not leptin, all had significant associations with age and formed two independent structural factors, both significantly related to age. While no difference was observed at inclusion, the biomarkers were differently changed in the active treatment and placebo groups (decreasing and increasing levels, respectively) at 48 months (p ≤ 0.02 in all, adjusted), and in the SEM model, they showed an anti-ageing impact. Conclusions: Supplementation with selenium/Q10 influenced the analysed biomarkers in ways indicating an anti-ageing effect, and by applying SEM methodology, the interrelationships between two independent structural factors and age were validated.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jan Alexander
- Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, 2382 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Erland Svensson
- Swedish Defence Research Agency, 164 40 Stockholm, Sweden (Ret.)
| | - Trine B. Opstad
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway;
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
13
|
Lee SJ, Jung C, Oh JE, Kim S, Lee S, Lee JY, Yoon YS. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023; 12:1554. [PMID: 37296674 PMCID: PMC10253210 DOI: 10.3390/cells12111554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Red blood cell (RBC) transfusion is a lifesaving medical procedure that can treat patients with anemia and hemoglobin disorders. However, the shortage of blood supply and risks of transfusion-transmitted infection and immune incompatibility present a challenge for transfusion. The in vitro generation of RBCs or erythrocytes holds great promise for transfusion medicine and novel cell-based therapies. While hematopoietic stem cells and progenitors derived from peripheral blood, cord blood, and bone marrow can give rise to erythrocytes, the use of human pluripotent stem cells (hPSCs) has also provided an important opportunity to obtain erythrocytes. These hPSCs include both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). As hESCs carry ethical and political controversies, hiPSCs can be a more universal source for RBC generation. In this review, we first discuss the key concepts and mechanisms of erythropoiesis. Thereafter, we summarize different methodologies to differentiate hPSCs into erythrocytes with an emphasis on the key features of human definitive erythroid lineage cells. Finally, we address the current limitations and future directions of clinical applications using hiPSC-derived erythrocytes.
Collapse
Affiliation(s)
- Shin-Jeong Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Eun Oh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangsung Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ji Yoon Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
| | - Young-sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (S.-J.L.); (C.J.); (J.E.O.); (S.K.)
- Research and Development Center, KarisBio Inc., 50-1 Yonsei-Ro, Avison Biomedical Research Center Room 525, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| |
Collapse
|
14
|
Lagunas-Rangel FA. DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: Implications for clonal evolution and disease progression. Hematol Oncol 2023; 41:26-38. [PMID: 36131612 PMCID: PMC10087755 DOI: 10.1002/hon.3076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia is a group of hematological diseases that have a high mortality rate. During the development of this pathology, hematopoietic cells acquire chromosomal rearrangements and multiple genetic mutations, including FLT3-ITD. FLT3-ITD is a marker associated with a poor clinical prognosis and involves the activation of pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT that favor the survival and proliferation of leukemic cells. In addition, FLT3-ITD leads to overproduction of reactive oxygen species and defective DNA damage repair, both implicated in the appearance of new mutations and leukemic clones. Thus, the purpose of this review is to illustrate the molecular mechanisms through which FLT3-ITD generates genetic instability and how it facilitates clonal evolution with the generation of more resistant and aggressive cells. Likewise, this article discusses the feasibility of combined therapies with FLT3 inhibitors and inhibitors of DNA repair pathways.
Collapse
|
15
|
Blackmon A, Aldoss I, Ball BJ. FLT3 Inhibitors as Maintenance Therapy after Allogeneic Stem-Cell Transplantation. Blood Lymphat Cancer 2022; 12:137-147. [PMID: 36097605 PMCID: PMC9464008 DOI: 10.2147/blctt.s281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022]
Abstract
Mutations in the FLT3 gene are associated with poor prognosis in patients with AML, even after consolidation with allogeneic hematopoietic cell transplantation (alloHCT) in first remission. Treatment failure in FLT3-mutated AML is largely driven by excessive risk of relapse compared to other genetic subtypes, including in patients post-alloHCT. As a result, there is substantial interest in studying posttransplant maintenance therapy in FLT3-mutated AML as an approach to optimize disease control and improve long-term outcomes. Clinical trials utilizing posttransplant FLT3 inhibitors, such as sorafenib and midostaurin, have shown feasibility, safety, and encouraging posttransplant outcomes, and there are ongoing studies using newer-generation tyrosine-kinase inhibitors as posttransplant maintenance therapy. Here, we review the toxicities and efficacy of FLT3 inhibitors as posttransplant maintenance, recommendations on the use of FLT3 inhibitors by international consensus guidelines, and highlight key remaining questions.
Collapse
Affiliation(s)
- Amanda Blackmon
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Brian J Ball
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
16
|
Perrard N, Pokeerbux MR, Quesnel B, Duployez N, Fenwarth L, Preudhomme C, Lefèvre G, Baillet C, Launay D, Terriou L. [GATA2 gene mutations: 3 cases]. Rev Med Interne 2022; 43:677-682. [PMID: 36041908 DOI: 10.1016/j.revmed.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Heterozygous germline mutations of GATA2 gene (guanine-adenine-thymine-adenine binding protein 2) are hereditary mutations that can be pathogenic, sometimes occurring sporadically, responsible for a florid clinical-biological picture, sometimes serious and quickly leading to the death. CASE REPORTS We reported two women and one man with germline mutations in the GATA2 gene. The first patient, aged 19, initially presented with monocytopenia and chronic lymphedema of the four limbs, suggestive of Emberger syndrome. The second patient, 28-years-old, presented with a disseminated atypical mycobacterium (Mycobacterium kansasii) infection, raising suspicion of an immune deficiency such as MonoMAC syndrome (deficiency syndrome of dendritic cells, monocytes, B lymphocytes and NK cells). The last patient, 30-years-old, presented with pancytopenia, leading to the diagnosis of a family form of myelodysplastic syndromes and acute myeloid leukemia characterized by a mutation of the GATA2 gene. CONCLUSIONS Each case illustrates a typical clinical presentation of GATA2 deficiency, although the evolution of these syndromes ultimately reveals a complex, heterogeneous and intricate picture of hematological, dermatological, infectious, pulmonary, ENT or oncological symptoms. Mutations in the GATA2 gene remain a diagnostic and therapeutic challenge for the internist, and require multidisciplinary management given the florid picture that can be of interest to all specialties. The clinical spectrum of these GATA2 mutations as well as the latest management recommendations from the recent litterature and the "GATA2 club" are described in this article.
Collapse
Affiliation(s)
- N Perrard
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France.
| | - M R Pokeerbux
- Service de médecine, clinique Sainte-Clotilde, 97400 Saint-Denis, Réunion
| | - B Quesnel
- Service des maladies du sang, CHU de Lille, Lille, France; U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France
| | - N Duployez
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - L Fenwarth
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - C Preudhomme
- U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, University Lille, 59000 Lille, France; Laboratoire d'hématologie, CHU Lille, 59000 Lille, France
| | - G Lefèvre
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France; Pôle de biologie-pathologie-génétique - institut d'immunologie, CHU de Lille, Lille, France
| | - C Baillet
- Médecine nucléaire et imagerie fonctionnelle, CHU de Lille, Lille, France
| | - D Launay
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France
| | - L Terriou
- U1286 - INFINITE - Institute for translational research in inflammation, university Lille, 59000 Lille, France; Inserm, 59000 Lille, France; Département de médecine interne et immunologie clinique, CHU Lille, 59000 Lille, France; Centre de référence des maladies autoimmunes et autoinflammatoires rares (CERAINO), 59000 Lille, France
| |
Collapse
|
17
|
Jiang X, Xiong F, Fu Q, Peng H, Jing Y, Rexiti K, Wei X, Tao S. Hematologic toxicities of sunitinib in patients with gastrointestinal stromal tumors: a systematic review and meta-analysis. Int J Colorectal Dis 2022; 37:1525-1534. [PMID: 35780257 DOI: 10.1007/s00384-022-04214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Sunitinib offers a significant survival benefit to patients with imatinib-resistant gastrointestinal stromal tumors (GIST). However, the incidence and risk of sunitinib-induced hematologic toxicities in such a population are often overlooked and have not been well characterized. This meta-analysis was performed to assess the summary incidence and risk of hematologic toxicities secondary to sunitinib in patients with GIST. METHODS Searches were performed in PubMed, Embase, Cochrane Library, and Web of Science as well as ClinicalTrials.gov to identify relevant studies up to April 2022. Studies with adequate safety profile, including anemia, neutropenia, and thrombocytopenia, were included to calculate the pooled incidence, relative risk (RR), and corresponding 95% confidence intervals (CIs). This study was registered with PROSPERO under number CRD42022328202. RESULTS A total of 2593 patients from 13 studies were included in the present meta-analysis. For patients with GIST assigned to sunitinib, the overall incidences of all-grade anemia, neutropenia, and thrombocytopenia were 26.2% (95% CI, 14.9-39.4%), 41.8% (95% CI, 29.0-55.1%), and 36.4% (95% CI, 22.8-51.1%), respectively. Regarding high-grade (grades 3 and 4) events, there were 4.7% (95% CI, 3.8-5.6%) for anemia, 9.3% (95% CI, 5.6-13.7%) for neutropenia and 5.0% (95% CI, 2.9-7.3%) for thrombocytopenia. Compared to placebo arms, sunitinib was related to an increased risk of high-grade neutropenia with an RR of 10.39 (95% CI, 1.53-70.72; p = 0.017). CONCLUSIONS Sunitinib carries a relatively high incidence of hematologic toxicities and a substantial increased risk of high-grade neutropenia in patients with GIST. Appropriate prevention and management seem to be inevitable.
Collapse
Affiliation(s)
- Xuehui Jiang
- School of Pharmacy, Nanchang University, Nanchang, China.,Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangfang Xiong
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Qun Fu
- School of Pharmacy, Nanchang University, Nanchang, China.,Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongwei Peng
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Jing
- Department of Pharmacy, Linyi Central Hospital, Linyi, China
| | - Kaisaner Rexiti
- School of Pharmacy, Nanchang University, Nanchang, China.,Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Wei
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Song Tao
- Department of Pharmacy, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Tian T, Zhang S, Luo B, Yin F, Lu W, Li Y, Huang K, Liu Q, Huang P, Garcia-Manero G, Wen S, Hu Y. Identification of the Benzoimidazole Compound as a Selective FLT3 Inhibitor by Cell-Based High-Throughput Screening of a Diversity Library. J Med Chem 2022; 65:3597-3605. [PMID: 35148084 DOI: 10.1021/acs.jmedchem.1c02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Internal tandem duplication in the FLT3 receptor tyrosine kinase (FLT3/ITD mutation) occurs in approximately 25% of acute myeloid leukemia (AML) patients. To specifically target this driver mutation in AML, we assessed and compared the cell-based cytotoxicity of a diversity library (10,000 compounds) against the normal cell line BaF3 and the isogenic leukemic cell line BaF3/ITD. A benzoimidazole scaffold-based compound (HP1142) was identified as the most selective compound against a series of murine and human leukemia cells with FLT3/ITD. Novel benzoimidazole compounds were further designed to improve the aqueous solubility of HP1142. The most potent compound, HP1328, demonstrated desirable pharmaceutical and pharmacokinetic properties. Treatment with HP1328 significantly reduced the leukemia burden and prolonged the survival of mice with FLT3/ITD leukemia. Our findings establish the specific activity of the benzoimidazole compound against FLT3/ITD leukemia and warrant further investigation in this subset of leukemia patients with poor prognosis.
Collapse
Affiliation(s)
- Tian Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shengyi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Department of Oncology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Feng Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Kezhi Huang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Qiao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - G Garcia-Manero
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, United States
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
19
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
20
|
Chen S, Tao L, He X, Di R, Wang X, Chu M. Single-nucleotide polymorphisms in <i>FLT3</i>, <i>NLRP5</i>, and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep. Arch Anim Breed 2021; 64:475-486. [PMID: 35024433 PMCID: PMC8738861 DOI: 10.5194/aab-64-475-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies have indicated that FLT3, NLRP5, and TGIF1 play a pivotal role in sheep fecundity. Nevertheless, little is known about the association of the polymorphisms of these genes with litter size (LS). In this study, the selected single-nucleotide polymorphisms (SNPs) were genotyped using a Sequenom MassARRAY® platform, and the distribution of different genotypes of the SNPs in the seven sheep breeds (Small-tailed Han, Hu, Cele Black, Suffolk, Tan, Prairie Tibetan, and Sunite sheep) were analyzed. The reliability of the estimated allele frequency for all seven SNPs was at least 0.9545. Given the association of the TGIF1 g.37866222C > T polymorphism with LS in Small-tailed Han sheep (p<0.05), fecundity differences might be caused by the change in amino acid from proline (Pro) to serine (Ser), which has an impact on secondary, tertiary protein structures with concomitant TGIF1 functionality changes. The FLT3 rs421947730 locus has a great effect on the LS (p<0.05), indicating that the locus of FLT3 in synergy with KILTG is likely to facilitate ovarian follicle maturation and ovulation. Moreover, NLRP5 rs426897754 is associated with the LS of the second and third parities (p<0.05). We speculate that a synonymous variant of NLRP5 may be involved in folliculogenesis accompanied by BMP15, FSHR, BMPR1B, AMH, and GDF9, resulting in the different fecundity of Small-tailed Han sheep. Our studies provide valuable genetic markers for sheep breeding.
Collapse
|
21
|
Baasch S, Giansanti P, Kolter J, Riedl A, Forde AJ, Runge S, Zenke S, Elling R, Halenius A, Brabletz S, Hengel H, Kuster B, Brabletz T, Cicin-Sain L, Arens R, Vlachos A, Rohr JC, Stemmler MP, Kopf M, Ruzsics Z, Henneke P. Cytomegalovirus subverts macrophage identity. Cell 2021; 184:3774-3793.e25. [PMID: 34115982 DOI: 10.1016/j.cell.2021.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - André Riedl
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Solveig Runge
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Zenke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, 85354 Freising, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Cicin-Sain
- Immune Aging and Chronic Infections Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hanover Medical School (MHH), 30625 Hanover, Germany
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jan Christopher Rohr
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Marc Philippe Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
22
|
Molina MS, Hoffman EA, Stokes J, Kummet N, Smith KA, Baker F, Zúñiga TM, Simpson RJ, Katsanis E. Regulatory Dendritic Cells Induced by Bendamustine Are Associated With Enhanced Flt3 Expression and Alloreactive T-Cell Death. Front Immunol 2021; 12:699128. [PMID: 34249005 PMCID: PMC8264365 DOI: 10.3389/fimmu.2021.699128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
The growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically via host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI. Pre-transplant BEN+TBI conditioning was also associated with greater Flt3 expression among host DCs and an accumulation of pre-cDC1s. Here, we demonstrate that exposure to BEN increases Flt3 expression on both murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs (moDCs). BEN favors development of murine plasmacytoid DCs, pre-cDC1s, and cDC2s. While humans do not have an identifiable equivalent to murine pre-cDC1s, exposure to BEN resulted in decreased plasmacytoid DCs and increased cDC2s. BEN exposure and heightened Flt3 signaling are associated with a distinct regulatory phenotype, with increased PD-L1 expression and decreased ICOS-L expression. BMDCs exposed to BEN exhibit diminished pro-inflammatory cytokine response to LPS and induce robust proliferation of alloreactive T-cells. These proliferative alloreactive T-cells expressed greater levels of PD-1 and underwent increased programmed cell death as the concentration of BEN exposure increased. Alloreactive CD4+ T-cell death may be attributable to pre-cDC1s and provides a potential mechanism by which BEN+TBI conditioning limits GvHD and yields T-cells tolerant to host antigen.
Collapse
Affiliation(s)
- Megan S Molina
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States
| | - Nicole Kummet
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Kyle A Smith
- Department of Physiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Forrest Baker
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Tiffany M Zúñiga
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Richard J Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States.,Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,The University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Medicine, University of Arizona, Tucson, AZ, United States.,Department of Pathology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
24
|
Lin JH, Huffman AP, Wattenberg MM, Walter DM, Carpenter EL, Feldser DM, Beatty GL, Furth EE, Vonderheide RH. Type 1 conventional dendritic cells are systemically dysregulated early in pancreatic carcinogenesis. J Exp Med 2021; 217:151817. [PMID: 32453421 PMCID: PMC7398166 DOI: 10.1084/jem.20190673] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 02/12/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023] Open
Abstract
Type 1 conventional dendritic cells (cDC1s) are typically thought to be dysregulated secondarily to invasive cancer. Here, we report that cDC1 dysfunction instead develops in the earliest stages of preinvasive pancreatic intraepithelial neoplasia (PanIN) in the KrasLSL-G12D/+ Trp53LSL-R172H/+ Pdx1-Cre–driven (KPC) mouse model of pancreatic cancer. cDC1 dysfunction is systemic and progressive, driven by increased apoptosis, and results in suboptimal up-regulation of T cell–polarizing cytokines during cDC1 maturation. The underlying mechanism is linked to elevated IL-6 concomitant with neoplasia. Neutralization of IL-6 in vivo ameliorates cDC1 apoptosis, rescuing cDC1 abundance in tumor-bearing mice. CD8+ T cell response to vaccination is impaired as a result of cDC1 dysregulation. Yet, combination therapy with CD40 agonist and Flt3 ligand restores cDC1 abundance to normal levels, decreases cDC1 apoptosis, and repairs cDC1 maturation to drive superior control of tumor outgrowth. Our study therefore reveals the unexpectedly early and systemic onset of cDC1 dysregulation during pancreatic carcinogenesis and suggests therapeutically tractable strategies toward cDC1 repair.
Collapse
Affiliation(s)
- Jeffrey H Lin
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Austin P Huffman
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Max M Wattenberg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David M Walter
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Erica L Carpenter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David M Feldser
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory L Beatty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Long Y, Yu M, Ochnik AM, Karanjia JD, Basnet SK, Kebede AA, Kou L, Wang S. Discovery of novel 4-azaaryl-N-phenylpyrimidin-2-amine derivatives as potent and selective FLT3 inhibitors for acute myeloid leukaemia with FLT3 mutations. Eur J Med Chem 2021; 213:113215. [PMID: 33516985 DOI: 10.1016/j.ejmech.2021.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 (FLT3) is one of the most pursued targets in the treatment of acute myeloid leukaemia (AML) as its gene amplification and mutations, particularly internal tandem duplication (ITD), contribute to the pathogenesis of AML and the resistance to known FLT3 inhibitors. To conquer this challenge, there is a quest for structurally novel FLT3 inhibitors. Herein, we report the discovery of a new series of 4-azaaryl-N-phenylpyrimidin-2-amine derivatives as potent and selective FLT3 inhibitors. Compounds 12b and 12r were capable of suppressing a wide range of mutated FLT3 kinases including ITD and D835Y mutants; the latter isoform is closely associated with acquired drug resistance. In addition, both compounds displayed an anti-proliferative specificity for FLT3-ITD-harbouring cell lines (i.e., MV4-11 and MOLM-13 cells) over those with expression of the wild-type kinase or even without FLT3 expression. In mechanistic studies using MV4-11 cells, 12b was found to diminish the phosphorylation of key downstream effectors of FLT3 and induce apoptosis, supporting an FLT3-ITD-targeted mechanism of its anti-proliferative action.
Collapse
Affiliation(s)
- Yi Long
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mingfeng Yu
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Aleksandra M Ochnik
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jasmine D Karanjia
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Sunita Kc Basnet
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Alemwork A Kebede
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Lianmeng Kou
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Shudong Wang
- Drug Discovery and Development, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
26
|
Orthopaedic Surgery Elicits a Systemic Anti-Inflammatory Signature. J Clin Med 2020; 9:jcm9072123. [PMID: 32640676 PMCID: PMC7408679 DOI: 10.3390/jcm9072123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Little information is available on the functional activity of leukocytes after arthroplasty or the expansion of populations with immune suppressive properties during the acute post-operative period. Synovial fluid and matched pre- and post-surgical blood samples were collected from total hip and knee arthroplasty patients (THA and TKA, respectively) to examine the impact of surgery on peripheral blood leukocyte frequency, bactericidal activity, and inflammatory mediator expression. For spinal surgeries, inflammatory mediator production by peripheral blood mononuclear cells (PBMCs) pre- and post-surgery was examined. An expansion of immune suppressive granulocytic myeloid-derived suppressor cells (G-MDSCs) was observed following arthroplasty, which correlated with significantly increased serum interleukin-10 (IL-10) levels. Analysis of synovial fluid from THA and TKAs revealed reduced granulocyte colony-stimulating factor (G-CSF) and soluble CD40 ligand (sCD40L) and increased interleukin-6 (IL-6), monocyte chemoattractant protein 2 (CCL2) and Fms-like tyrosine kinase 3 ligand (Flt-3L) compared to pre- and post-surgical serum. For the spinal surgery cohort, stimulation of PBMCs isolated post-surgery with bacterial antigens produced significantly less pro-inflammatory (IL-1α, IL-1β, interleukin-1 receptor antagonist (IL-1RA), IL-12p40, growth-related oncogene-α/GRO-α (CXCL1) and 6Ckine (CCL21)) and more anti-inflammatory/tissue repair mediators (IL-10, G-CSF and granulocyte-macrophage colony-stimulating factor (GM-CSF)) compared to PBMCs recovered before surgery. The observed bias towards systemic anti-inflammatory changes without concomitant increases in pro-inflammatory responses may influence susceptibility to infection following orthopaedic surgery in the context of underlying co-morbidities or risk factors.
Collapse
|
27
|
Martelli M, Monaldi C, De Santis S, Bruno S, Mancini M, Cavo M, Soverini S. Recent Advances in the Molecular Biology of Systemic Mastocytosis: Implications for Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2020; 21:E3987. [PMID: 32498255 PMCID: PMC7312790 DOI: 10.3390/ijms21113987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, molecular characterization and management of patients with systemic mastocytosis (SM) have greatly benefited from the application of advanced technologies. Highly sensitive and accurate assays for KIT D816V mutation detection and quantification have allowed the switch to non-invasive peripheral blood testing for patient screening; allele burden has prognostic implications and may be used to monitor therapeutic efficacy. Progress in genetic profiling of KIT, together with the use of next-generation sequencing panels for the characterization of associated gene mutations, have allowed the stratification of patients into three subgroups differing in terms of pathogenesis and prognosis: i) patients with mast cell-restricted KIT D816V; ii) patients with multilineage KIT D816V-involvement; iii) patients with "multi-mutated disease". Thanks to these findings, new prognostic scoring systems combining clinical and molecular data have been developed. Finally, non-genetic SETD2 histone methyltransferase loss of function has recently been identified in advanced SM. Assessment of SETD2 protein levels and activity might provide prognostic information and has opened new research avenues exploring alternative targeted therapeutic strategies. This review discusses how progress in recent years has rapidly complemented previous knowledge improving the molecular characterization of SM, and how this has the potential to impact on patient diagnosis and management.
Collapse
Affiliation(s)
- Margherita Martelli
- Department of Experimental, Diagnostic and Specialty Medicine, Hematology/Oncology “L. e A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy; (C.M.); (S.D.S.); (S.B.); (M.M.); (M.C.); (S.S.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
OPINION STATEMENT There is increasing awareness that AML is a widely heterogeneous disease, not only based on clinical characteristics and demographics of the patients we treat but also based on the genomics of the disease. Wider accessibility to next-generation DNA sequencing in AML has identified recurrent genetic abnormalities that drive disease biology, define overall prognosis, and predict for response to newly developed target-specific therapies. This knowledge has allowed the field to move away from a "one-size-fits-all" approach in newly diagnosed AML, to a more thoughtful, individualized approachy based on these factors. The first steps in realizing this new approach involve developing systems to efficiently obtain and analyze patient- and disease-related factors prior to starting therapy and having available clinical trials to address each subtype.
Collapse
|
29
|
Weber GE, Koenig KA, Khrestian M, Shao Y, Tuason ED, Gramm M, Lal D, Leverenz JB, Bekris LM. An Altered Relationship between Soluble TREM2 and Inflammatory Markers in Young Adults with Down Syndrome: A Preliminary Report. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1111-1118. [PMID: 31959733 PMCID: PMC7033027 DOI: 10.4049/jimmunol.1901166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023]
Abstract
Individuals with Down syndrome (DS) develop Alzheimer's disease (AD)-related neuropathology, characterized by amyloid plaques with amyloid β (Aβ) and neurofibrillary tangles with tau accumulation. Peripheral inflammation and the innate immune response are elevated in DS. Triggering receptor expressed in myeloid cells 2 (TREM2) genetic variants are risk factors for AD and other neurodegenerative diseases. Soluble TREM2 (sTREM2), a soluble cleavage product of TREM2, is elevated in AD cerebrospinal fluid and positively correlates with cognitive decline. There is relatively little information about TREM2 in DS. Our objective was to examine the relationship between sTREM2 and inflammatory markers in young adults with DS, prior to the development of dementia symptoms. Because TREM2 plays a role in the innate immune response and has been associated with dementia, the hypothesis of this exploratory study was that young adults with DS predementia (n = 15, mean age = 29.5 y) would exhibit a different relationship between sTREM2 and inflammatory markers in plasma, compared with neurotypical, age-matched controls (n = 16, mean age = 29.6 y). Indeed, young adults with DS had significantly elevated plasma sTREM2 and inflammatory markers. Additionally, in young adults with DS, sTREM2 correlated positively with 24 of the measured cytokines, whereas there were no significant correlations in the control group. Hierarchical clustering of sTREM2 and cytokine concentrations also differed between the groups, supporting the hypothesis that its function is altered in people with DS predementia. This preliminary report of human plasma provides a basis for future studies investigating the relationship between TREM2 and the broader immune response predementia.
Collapse
Affiliation(s)
- Grace E Weber
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | - Maria Khrestian
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Yvonne Shao
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | - Marie Gramm
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
- Cologne Center for Genomics, University of Cologne, 50931 Cologne, Germany; and
| | - Dennis Lal
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195
| | - James B Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Neurological Institute, Clevland Clinic, Cleveland, OH 44195
| | - Lynn M Bekris
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
30
|
Plenter RJ, Coulombe MG, Roybal HM, Lin CM, Gill RG, Zamora MR, Grazia TJ. C-kit-derived CD11b + cells are critical for cardiac allograft prolongation by autologous C-kit + progenitor cells. Cell Immunol 2020; 347:104023. [PMID: 31836133 DOI: 10.1016/j.cellimm.2019.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Autologous C-kit+ cells robustly prolong cardiac allografts. As C-kit+ cells can transdifferentiate to hematopoietic cells as well as non-hematopoietic cells, we aimed to clarify the class(es) of C-kit-derived cell(s) required for cardiac allograft prolongation. Autologous C-kit+ cells were administered post-cardiac transplantation and allografts were evaluated for C-kit+ inoculum-derived cells. Results suggested that alloimmunity was a major signal for trafficking of C-kit-derived cells to the allograft and demonstrated that C-kit+ inoculum-derived cells expressed CD11b early after transfer. Allograft survival studies with CD11b-DTR C-kit+ cells demonstrated a requirement for C-kit+-derived CD11b+ cells. Co-therapy studies demonstrated near complete abrogation of acute rejection with concomitant CTLA4-Ig therapy and no loss of prolongation in combination with Cyclosporine A. These results strongly implicate a C-kit-derived myeloid population as critical for allograft preservation and demonstrate the potential therapeutic application of autologous C-kit+ progenitor cells as calcineurin inhibitor-sparing agents and possibly as co-therapeutics for durable graft survival.
Collapse
Affiliation(s)
- R J Plenter
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - M G Coulombe
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - H M Roybal
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - C M Lin
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - R G Gill
- Department of Microbiology and Immunology, University of Colorado, Aurora, CO, USA; Department of Surgery, University of Colorado, Aurora, CO, USA.
| | - M R Zamora
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
| | - T J Grazia
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA; Department of Microbiology and Immunology, University of Colorado, Aurora, CO, USA; Division of Pulmonary Diseases, Section of Advanced Lung Disease and Lung Transplantation, Baylor University Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Phospho-Profiling Linking Biology and Clinics in Pediatric Acute Myeloid Leukemia. Hemasphere 2019; 4:e312. [PMID: 32072137 PMCID: PMC7000467 DOI: 10.1097/hs9.0000000000000312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text Aberrant activation of key signaling-molecules is a hallmark of acute myeloid leukemia (AML) and may have prognostic and therapeutic implications. AML summarizes several disease entities with a variety of genetic subtypes. A comprehensive model spanning from signal activation patterns in major genetic subtypes of pediatric AML (pedAML) to outcome prediction and pre-clinical response to signaling inhibitors has not yet been provided. We established a high-throughput flow-cytometry based method to assess activation of hallmark phospho-proteins (phospho-flow) in 166 bone-marrow derived pedAML samples under basal and cytokine stimulated conditions. We correlated levels of activated phospho-proteins at diagnosis with relapse incidence in intermediate (IR) and high risk (HR) subtypes. In parallel, we screened a set of signaling inhibitors for their efficacy against primary AML blasts in a flow-cytometry based ex vivo cytotoxicity assay and validated the results in a murine xenograft model. Certain phospho-signal patterns differ between genetic subtypes of pedAML. Some are consistently seen through all AML subtypes such as pSTAT5. In IR/HR subtypes high levels of GM-CSF stimulated pSTAT5 and low levels of unstimulated pJNK correlated with increased relapse risk overall. Combination of GM-CSF/pSTAT5high and basal/pJNKlow separated three risk groups among IR/HR subtypes. Out of 10 tested signaling inhibitors, midostaurin most effectively affected AML blasts and simultaneously blocked phosphorylation of multiple proteins, including STAT5. In a mouse xenograft model of KMT2A-rearranged pedAML, midostaurin significantly prolonged disease latency. Our study demonstrates the applicability of phospho-flow for relapse-risk assessment in pedAML, whereas functional phenotype-driven ex vivo testing of signaling inhibitors may allow individualized therapy.
Collapse
|
32
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
33
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
34
|
Di Vito C, Mikulak J, Mavilio D. On the Way to Become a Natural Killer Cell. Front Immunol 2019; 10:1812. [PMID: 31428098 PMCID: PMC6688484 DOI: 10.3389/fimmu.2019.01812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphocytes playing pivotal roles in host defense and immune-surveillance. The homeostatic modulation of germ-line encoded/non-rearranged activating and inhibitory NK cell receptors (NKRs) determines the capability of these innate lymphocytes to either spare "self" cells or to kill viral-infected, tumor-transformed and heterologous cell targets. However, despite being discovered more than 40 years ago, several aspects of NK cell biology remain unknown or are still being debated. In particular, our knowledge of human NK cell ontogenesis and differentiation is still in its infancy as the majority of our experimental evidence on this topic mainly comes from findings obtained in vitro or with animal models in vivo. Although both the generation and the maintenance of human NK cells are sustained by hematopoietic stem cells (HSCs), the precise site(s) of NK cell development are still poorly defined. Indeed, HSCs and hematopoietic precursors are localized in different anatomical compartments that also change their ontogenic commitments before and after birth as well as in aging. Currently, the main site of NK cell generation and maturation in adulthood is considered the bone marrow, where their interactions with stromal cells, cytokines, growth factors, and other soluble molecules support and drive maturation. Different sequential stages of NK cell development have been identified on the basis of the differential expression of specific markers and NKRs as well as on the acquisition of specific effector-functions. All these phenotypic and functional features are key in inducing and regulating homing, activation and tissue-residency of NK cells in different human anatomic sites, where different homeostatic mechanisms ensure a perfect balance between immune tolerance and immune-surveillance. The present review summarizes our current knowledge on human NK cell ontogenesis and on the related pathways orchestrating a proper maturation, functions, and distributions.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
35
|
Abstract
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| |
Collapse
|
36
|
Gaudichon J, Jakobczyk H, Debaize L, Cousin E, Galibert MD, Troadec MB, Gandemer V. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: Reconciling biological concepts and clinical issues. Blood Rev 2019; 36:40-56. [PMID: 31010660 DOI: 10.1016/j.blre.2019.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Long-term survival rates in childhood acute lymphoblastic leukemia (ALL) are currently above 85% due to huge improvements in treatment. However, 15-20% of children still experience relapses. Relapses can either occur in the bone marrow or at extramedullary sites, such as gonads or the central nervous system (CNS), formerly referred to as ALL-blast sanctuaries. The reason why ALL cells migrate to and stay in these sites is still unclear. In this review, we have attempted to assemble the evidence concerning the microenvironmental factors that could explain why ALL cells reside in such sites. We present criteria that make extramedullary leukemia niches and solid tumor metastatic niches comparable. Indeed, considering extramedullary leukemias as metastases could be a useful approach for proposing more effective treatments. In this context, we conclude with several examples of potential niche-based therapies which could be successfully added to current treatments of ALL.
Collapse
Affiliation(s)
- Jérémie Gaudichon
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology and Oncology Department, University Hospital, Caen, France.
| | - Hélène Jakobczyk
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Lydie Debaize
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Elie Cousin
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France.
| | - Marie-Bérengère Troadec
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France
| | - Virginie Gandemer
- CNRS, IGDR (Institut de Génétique et Développement de Rennes), Univ Rennes, UMR 6290, Rennes F-35000, France; Pediatric Hematology Department, University Hospital, Rennes, France.
| |
Collapse
|
37
|
Hassan M, Ulezko Antonova A, Li JM, Hosoba S, Rupji M, Kowalski J, Perricone AJ, Jaye DL, Marsh H, Yellin M, Devine S, Waller EK. Flt3L Treatment of Bone Marrow Donors Increases Graft Plasmacytoid Dendritic Cell Content and Improves Allogeneic Transplantation Outcomes. Biol Blood Marrow Transplant 2018; 25:1075-1084. [PMID: 30503387 PMCID: PMC10373795 DOI: 10.1016/j.bbmt.2018.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Abstract
A higher number of donor plasmacytoid dendritic cells (pDCs) is associated with increased survival and reduced graft-versus-host disease (GVHD) in human recipients of unrelated donor bone marrow (BM) grafts, but not granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood grafts. We show that in murine models, donor BM pDCs are associated with increased survival and decreased GVHD compared with G-CSF-mobilized pDCs. To increase the content of pDCs in BM grafts, we studied the effect of FMS-like tyrosine kinase 3 ligand (Flt3L) treatment of murine BM donors on transplantation outcomes. Flt3L treatment (300 μg/kg/day) resulted in a schedule-dependent increase in the content of pDCs in the BM. Mice treated on days -4 and -1 had a >5-fold increase in pDC content without significant changes in numbers of HSCs, T cells, B cells, and natural killer cells in the BM graft. In an MHC-mismatched murine transplant model, recipients of Flt3L-treated T cell-depleted (TCD) BM (TCD F-BM) and cytokine-untreated T cells had increased survival and decreased GVHD scores with fewer Th1 and Th17 polarized T cells post-transplantation compared with recipients of equivalent numbers of untreated donor TCD BM and T cells. Gene array analyses of pDCs from Flt3L-treated human and murine donors showed up-regulation of adaptive immune pathways and immunoregulatory checkpoints compared with pDCs from untreated BM donors. Transplantation of TCD F-BM plus T cells resulted in no loss of the graft-versus-leukemia (GVL) effect compared with grafts from untreated donors in 2 murine GVL models. Thus, Flt3L treatment of BM donors is a novel method for increasing the pDC content in allografts, improving survival, and decreasing GVHD without diminishing the GVL effect.
Collapse
Affiliation(s)
- Mojibade Hassan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Alina Ulezko Antonova
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Jian Ming Li
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Sakura Hosoba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Manali Rupji
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Jeanne Kowalski
- Biostatistics and Bioinformatics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Adam J Perricone
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | | | | | - Steven Devine
- National Marrow Donor Program, Minneapolis, Minnesota
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
38
|
Zriwil A, Böiers C, Kristiansen TA, Wittmann L, Yuan J, Nerlov C, Sitnicka E, Jacobsen SEW. Direct role of FLT3 in regulation of early lymphoid progenitors. Br J Haematol 2018; 183:588-600. [PMID: 30596405 PMCID: PMC6492191 DOI: 10.1111/bjh.15578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/21/2018] [Indexed: 02/01/2023]
Abstract
Given that FLT3 expression is highly restricted on lymphoid progenitors, it is possible that the established role of FLT3 in the regulation of B and T lymphopoiesis reflects its high expression and role in regulation of lymphoid-primed multipotent progenitors (LMPPs) or common lymphoid progenitors (CLPs). We generated a Flt3 conditional knock-out (Flt3fl/fl) mouse model to address the direct role of FLT3 in regulation of lymphoid-restricted progenitors, subsequent to turning on Rag1 expression, as well as potentially ontogeny-specific roles in B and T lymphopoiesis. Our studies establish a prominent and direct role of FLT3, independently of the established role of FLT3 in regulation of LMPPs and CLPs, in regulation of fetal as well as adult early B cell progenitors, and the early thymic progenitors (ETPs) in adult mice but not in the fetus. Our findings highlight the potential benefit of targeting poor prognosis acute B-cell progenitor leukaemia and ETP leukaemia with recurrent FLT3 mutations using clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Alya Zriwil
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Charlotta Böiers
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Trine A Kristiansen
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lilian Wittmann
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Joan Yuan
- Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ewa Sitnicka
- Lund Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden.,Division of Molecular Haematology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sten E W Jacobsen
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Wallenberg Institute for Regenerative Medicine, Department of Cell and Molecular Biology, Center for Haematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
39
|
Roskoski R. The role of small molecule Kit protein-tyrosine kinase inhibitors in the treatment of neoplastic disorders. Pharmacol Res 2018; 133:35-52. [DOI: 10.1016/j.phrs.2018.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
|
40
|
He Y, Sun L, Xu Y, Fu L, Li Y, Bao X, Fu H, Xie C, Lou L. Combined inhibition of PI3Kδ and FLT3 signaling exerts synergistic antitumor activity and overcomes acquired drug resistance in FLT3-activated acute myeloid leukemia. Cancer Lett 2018; 420:49-59. [PMID: 29409989 DOI: 10.1016/j.canlet.2018.01.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
PI3Kδ and FLT3 are frequently activated in acute myeloid leukemia (AML) and have been implicated as potential therapeutic targets. In this report, we demonstrate that combined inhibition of PI3Kδ and FLT3 exerts synergistic antitumor activity in FLT3-activated AML. Synergistic antiproliferative effects were observed in FLT3-activated MV-4-11 and EOL-1 AML cell lines, but not in FLT3-independent RS4;11 and HEL cells, as demonstrated by both pharmacological inhibition and silencing of PI3Kδ/FLT3. Combined treatment with PI3Kδ and FLT3 inhibitors more effectively inhibited AKT and ERK phosphorylation, and induced apoptosis more efficiently than either agent alone. This synergistic effect was confirmed in hematopoietic 32D cells transfected with an FLT3-ITD mutant, but not FLT3 wild type. In in vivo FLT3-activated AML xenografts, a PI3Kδ inhibitor CAL101 combined with FLT3 inhibitor led to significantly enhanced antitumor activity compared with either agent alone, in association with simultaneous inhibition of AKT and ERK. Importantly, CAL101 combined with FLT3 inhibitors overcame acquired drug resistance in FLT3-ITD AML cells. Thus, combined inhibition of PI3Kδ and FLT3 may be a promising strategy in FLT3-activated AML, particularly for patients with FLT3-inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Ye He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Liping Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yongping Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Li Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xubin Bao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
41
|
Marron TU, Hammerich L, Brody J. Local Immunotherapies of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Wu Y, Tian Z, Wei H. Developmental and Functional Control of Natural Killer Cells by Cytokines. Front Immunol 2017; 8:930. [PMID: 28824650 PMCID: PMC5543290 DOI: 10.3389/fimmu.2017.00930] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are effective in combating infections and tumors and as such are tempting for adoptive transfer therapy. However, they are not homogeneous but can be divided into three main subsets, including cytotoxic, tolerant, and regulatory NK cells, with disparate phenotypes and functions in diverse tissues. The development and functions of such NK cells are controlled by various cytokines, such as fms-like tyrosine kinase 3 ligand (FL), kit ligand (KL), interleukin (IL)-3, IL-10, IL-12, IL-18, transforming growth factor-β, and common-γ chain family cytokines, which operate at different stages by regulating distinct signaling pathways. Nevertheless, the specific roles of each cytokine that regulates NK cell development or that shapes different NK cell functions remain unclear. In this review, we attempt to describe the characteristics of each cytokine and the existing protocols to expand NK cells using different combinations of cytokines and feeder cells. A comprehensive understanding of the role of cytokines in NK cell development and function will aid the generation of better efficacy for adoptive NK cell treatment.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
43
|
Tornack J, Kawano Y, Garbi N, Hämmerling GJ, Melchers F, Tsuneto M. Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150+long-term repopulating murine hematopoietic stem cells. Eur J Immunol 2017; 47:1477-1487. [DOI: 10.1002/eji.201646730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/19/2017] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Julia Tornack
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Yohei Kawano
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Natalio Garbi
- Division of Molecular Immunology; German Cancer Research Center; Heidelberg Germany
- Department of Molecular Immunology, Institutes of Molecular Medicine and Experimental Immunology; University of Bonn; Bonn Germany
| | - Günter J. Hämmerling
- Division of Molecular Immunology; German Cancer Research Center; Heidelberg Germany
| | - Fritz Melchers
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
| | - Motokazu Tsuneto
- Senior Group Lymphocyte Development; Max Planck Institute for Infection Biology; Berlin Germany
- Reproductive Centre; Mio Fertility Clinic; Tottori Japan
| |
Collapse
|
44
|
Williams KM, Moore AR, Lucas PJ, Wang J, Bare CV, Gress RE. FLT3 ligand regulates thymic precursor cells and hematopoietic stem cells through interactions with CXCR4 and the marrow niche. Exp Hematol 2017; 52:40-49. [PMID: 28552733 DOI: 10.1016/j.exphem.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 01/07/2023]
Abstract
Impaired immune reconstitution after hematopoietic stem cell transplantation (HSCT) is attributed in part to impaired thymopoiesis. Recent data suggest that precursor input may be a point of regulation for the thymus. We hypothesized that administration of FLT3 ligand (FLT3L) would enhance thymopoiesis after adoptive transfer of aged, FLT3L-treated bone marrow (BM) to aged, Lupron-treated hosts by increasing murine HSC (Lin[minus]Sca1+c-Kit+ [LSK] cells) trafficking and survival. In murine models of aged and young hosts, we show that FLT3L enhances thymopoiesis in aged, Lupron-treated hosts through increased survival and export of LSK cells via CXCR4 regulation. In addition, we elucidate an underlying mechanism of FLT3L action on BM LSK cells-FLT3L drives LSK cells into the stromal niche using Hoescht (Ho) dye perimortem. In summary, we show that FLT3L administration leads to: (1) increased LSK cells and early thymocyte progenitor precursors that can enhance thymopoiesis after transplantation and androgen withdrawal, (2) mobilization of LSK cells through downregulation of CXCR4, (3) enhanced BM stem cell survival associated with Bcl-2 upregulation, and (4) BM stem cell enrichment through increased trafficking to the BM niche. Therefore, we show a mechanism by which FLT3L activity on hematopoeitic and thymic progenitor cells may contribute to thymic recovery. These data have potential clinical relevance to enhance thymic reconstitution after cytoreductive therapy.
Collapse
Affiliation(s)
- Kirsten M Williams
- Children's Research Institute, Children's National Medical Institutes, Washington, DC.
| | - Amber R Moore
- Stanford Immunology, Stanford University School of Medicine, Stanford, CA
| | - Philip J Lucas
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Juin Wang
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Catherine V Bare
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
45
|
Schito L, Rey S, Konopleva M. Integration of hypoxic HIF-α signaling in blood cancers. Oncogene 2017; 36:5331-5340. [DOI: 10.1038/onc.2017.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/26/2017] [Indexed: 12/15/2022]
|
46
|
Lagunas-Rangel FA, Chávez-Valencia V. FLT3–ITD and its current role in acute myeloid leukaemia. Med Oncol 2017; 34:114. [DOI: 10.1007/s12032-017-0970-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|
47
|
The spleen microenvironment influences disease transformation in a mouse model of KIT D816V-dependent myeloproliferative neoplasm. Sci Rep 2017; 7:41427. [PMID: 28128288 PMCID: PMC5269732 DOI: 10.1038/srep41427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.
Collapse
|
48
|
Jesus TT, Oliveira PF, Sousa M, Cheng CY, Alves MG. Mammalian target of rapamycin (mTOR): a central regulator of male fertility? Crit Rev Biochem Mol Biol 2017; 52:235-253. [PMID: 28124577 DOI: 10.1080/10409238.2017.1279120] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Collapse
Affiliation(s)
- Tito T Jesus
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Pedro F Oliveira
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,c i3S - Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Mário Sousa
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,d Centre for Reproductive Genetics Prof. Alberto Barros , Porto , Portugal
| | - C Yan Cheng
- e The Mary M. Wohlford Laboratory for Male Contraceptive Research , Center for Biomedical Research, Population Council , New York , NY , USA
| | - Marco G Alves
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| |
Collapse
|
49
|
|
50
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|