1
|
Chen CJ, Wang HC, Hou YC, Wu YY, Shieh CC, Shan YS. Blocking M2-Like Macrophage Polarization Using Decoy Oligodeoxynucleotide-Based Gene Therapy Prevents Immune Evasion for Pancreatic Cancer Treatment. Mol Cancer Ther 2024; 23:1431-1445. [PMID: 38907533 PMCID: PMC11443249 DOI: 10.1158/1535-7163.mct-23-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
M2-like macrophages exhibit immunosuppressive activity and promote pancreatic cancer progression. Reactive oxygen species (ROS) affect macrophage polarization; however, the mechanism remains unclear. This study aimed to elucidate the underlying molecular basis and design a gene therapy to inhibit M2-like polarization. Microarray analysis and immunofluorescence staining were performed in M1-like and M2-like macrophages to ascertain the expression of CYBB, a major intracellular ROS source. Coculture assay and syngeneic orthotopic pancreatic cancer mice models were used to study the mechanism of M2-like skewing. Decoy oligodeoxynucleotides (ODNs) were designed to manipulate CYBB transcription to inhibit M2-like polarization and control tumor growth. Lipopolysaccharide treatment polarized U937 cells to M1-like macrophages in which CYBB expression was increased. In contrast, coculture with PANC-1 cells induced M2-like polarization in U937 cells with CYBB downregulation. High CD204 M2-like expression in combination with low CYBB expression was associated with the worst prognosis in patients with pancreatic cancer. STAT6 and HDAC2 in U937 cells were activated by cancer cell-derived IL4 after coculture and then bound to the CYBB promoter to repress CYBB expression, resulting in M2-like polarization. Diphenyleneiodonium, 8λ³-iodatricyclo[7.4.0.02,⁷]trideca-1(13),2,4,6,9,11-hexaen-8-ylium chloride that inhibits ROS production could block this action. Knockdown of STAT6 and HDAC2 also inhibited M2-like polarization and maintained the M1-like phenotype of U937 cells after coculture. Decoy ODNs interrupting the binding of STAT6 to the CYBB promoter counteracted M2-like polarization and tumor growth and triggered antitumor immunity in vivo. Gene therapy using STAT6-CYBB decoy ODNs can inhibit M2-like polarization, representing a potential therapeutic tool for pancreatic cancer.
Collapse
Affiliation(s)
- Chang-Jung Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hao-Chen Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Medical Imaging Center, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan.
- Comparative Medicine Center, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan.
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yi-Ying Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Comparative Medicine Center, Innovation Headquarters, National Cheng Kung University, Tainan, Taiwan.
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
STAT6 decoy oligodeoxynucleotide (ODN)-containing ointment more potently inhibits mouse skin inflammation when formulated with ionic liquid technology than as a traditional Vaseline ointment. Allergol Int 2019; 68:380-382. [PMID: 30704845 DOI: 10.1016/j.alit.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 11/24/2022] Open
|
3
|
Rudolph AK, Walter T, Erkel G. The fungal metabolite cyclonerodiol inhibits IL-4/IL-13 induced Stat6-signaling through blocking the association of Stat6 with p38, ERK1/2 and p300. Int Immunopharmacol 2018; 65:392-401. [PMID: 30380514 DOI: 10.1016/j.intimp.2018.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/31/2022]
Abstract
The IL-4/IL-13/Stat6 pathway is the key driver of asthma pathophysiology. Therefore the development of inhibitors that specifically modulate IL-13/IL-4 or the downstream signaling molecules like Stat6 may be useful as a therapeutic strategy for the treatment of asthma and multiple allergic diseases. We have previously identified the fungal 2,6-cyclofarnesane cyclonerodiol as an inhibitor of IL-4 induced Stat6-dependent signaling in the alveolar epithelial cell line A549 using a transcriptional reporter. In this study we investigated the underlying mode of action of cyclonerodiol on the IL-4/IL-13/Stat6 pathway. Cyclonerodiol failed to interfere with activation, nuclear transport or binding of Stat6 to the corresponding consensus sequence on the DNA. Our results showed that cyclonerodiol blocked serine phosphorylation of Stat6 by affecting its association with p38 and Erk1/2. Cyclonerodiol also prevented the recruitment of the transcriptional coactivator p300 and Stat6 acetylation. These findings suggest that cyclonerodiol affects IL-4/IL-13 induced expression of asthma related marker genes by blocking transcriptional activation.
Collapse
Affiliation(s)
- Anna-Kristina Rudolph
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Thorsten Walter
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Erwin-Schrödinger-Str. 70, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
4
|
Dhabal S, Das P, Biswas P, Kumari P, Yakubenko VP, Kundu S, Cathcart MK, Kundu M, Biswas K, Bhattacharjee A. Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells. J Biol Chem 2018; 293:14040-14064. [PMID: 30021838 DOI: 10.1074/jbc.ra118.002321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Monoamine oxidase A (MAO-A) is a mitochondrial flavoenzyme implicated in the pathogenesis of atherosclerosis and inflammation and also in many neurological disorders. MAO-A also has been reported as a potential therapeutic target in prostate cancer. However, the regulatory mechanisms controlling cytokine-induced MAO-A expression in immune or cancer cells remain to be identified. Here, we show that MAO-A expression is co-induced with 15-lipoxygenase (15-LO) in interleukin 13 (IL-13)-activated primary human monocytes and A549 non-small cell lung carcinoma cells. We present evidence that MAO-A gene expression and activity are regulated by signal transducer and activator of transcription 1, 3, and 6 (STAT1, STAT3, and STAT6), early growth response 1 (EGR1), and cAMP-responsive element-binding protein (CREB), the same transcription factors that control IL-13-dependent 15-LO expression. We further established that in both primary monocytes and in A549 cells, IL-13-stimulated MAO-A expression, activity, and function are directly governed by 15-LO. In contrast, IL-13-driven expression and activity of MAO-A was 15-LO-independent in U937 promonocytic cells. Furthermore, we demonstrate that the 15-LO-dependent transcriptional regulation of MAO-A in response to IL-13 stimulation in monocytes and in A549 cells is mediated by peroxisome proliferator-activated receptor γ (PPARγ) and that signal transducer and activator of transcription 6 (STAT6) plays a crucial role in facilitating the transcriptional activity of PPARγ. We further report that the IL-13-STAT6-15-LO-PPARγ axis is critical for MAO-A expression, activity, and function, including migration and reactive oxygen species generation. Altogether, these results have major implications for the resolution of inflammation and indicate that MAO-A may promote metastatic potential in lung cancer cells.
Collapse
Affiliation(s)
- Sukhamoy Dhabal
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pradip Das
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Pritam Biswas
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Priyanka Kumari
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India
| | - Valentin P Yakubenko
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Suman Kundu
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Martha K Cathcart
- the Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, and
| | - Manjari Kundu
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Kaushik Biswas
- the Division of Molecular Medicine, Bose Institute, Kolkata 700054, West Bengal, India
| | - Ashish Bhattacharjee
- From the Department of Biotechnology, National Institute of Technology-Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, Burdwan, West Bengal, India,
| |
Collapse
|
5
|
Weyel XMM, Fichte MAH, Heckel A. A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides. ACS Chem Biol 2017; 12:2183-2190. [PMID: 28678467 DOI: 10.1021/acschembio.7b00367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized a two-photon-sensitive photocleavable linker based on the 7-diethylaminocoumarin structure and introduced it successfully into DNA strands. First, we demonstrated the inducibility of strand scissions upon irradiation at 365 nm. To verify and visualize the two-photon activity, we used a fluorescence assay based on a DNA strand displacement immobilized in a hydrogel. Additionally, we investigated its use in a new class of DNA decoys that are able to catch and release nuclear factor κB (NF-κB) by using light as an external trigger signal. In cell culture we were able to show the regulation of NF-κB-controlled transcription of green fluorescent protein.
Collapse
Affiliation(s)
- Xenia M M Weyel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Manuela A H Fichte
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Mandal PK, Morlacchi P, Knight JM, Link TM, Lee GR, Nurieva R, Singh D, Dhanik A, Kavraki L, Corry DB, Ladbury JE, McMurray JS. Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 6 (STAT6) with Cell-Permeable, Phosphatase-Stable Phosphopeptide Mimics Potently Inhibits Tyr641 Phosphorylation and Transcriptional Activity. J Med Chem 2015; 58:8970-84. [PMID: 26506089 DOI: 10.1021/acs.jmedchem.5b01321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Signal transducer and activator of transcription 6 (STAT6) transmits signals from cytokines IL-4 and IL-13 and is activated in allergic airway disease. We are developing phosphopeptide mimetics targeting the SH2 domain of STAT6 to block recruitment to phosphotyrosine residues on IL-4 or IL-13 receptors and subsequent Tyr641 phosphorylation to inhibit the expression of genes contributing to asthma. Structure-affinity relationship studies showed that phosphopeptides based on Tyr631 from IL-4Rα bind with weak affinity to STAT6, whereas replacing the pY+3 residue with simple aryl and alkyl amides resulted in affinities in the mid to low nM range. A set of phosphatase-stable, cell-permeable prodrug analogues inhibited cytokine-stimulated STAT6 phosphorylation in both Beas-2B human airway cells and primary mouse T-lymphocytes at concentrations as low as 100 nM. IL-13-stimulated expression of CCL26 (eotaxin-3) was inhibited in a dose-dependent manner, demonstrating that targeting the SH2 domain blocks both phosphorylation and transcriptional activity of STAT6.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ankur Dhanik
- The Department of Computer Science, Rice University , Houston, Texas 77251, United States
| | - Lydia Kavraki
- The Department of Computer Science, Rice University , Houston, Texas 77251, United States
| | - David B Corry
- Departments of Medicine and Pathology & Immunology, The Baylor College of Medicine , Houston, Texas 77030, United States
| | | | | |
Collapse
|
7
|
Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 2013; 54:1-16. [PMID: 23124025 PMCID: PMC3534796 DOI: 10.1016/j.freeradbiomed.2012.10.553] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/06/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Monocytes/macrophages are innate immune cells that play a crucial role in the resolution of inflammation. In the presence of the Th2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13), they display an anti-inflammatory profile and this activation pathway is known as alternative activation. In this study we compare and differentiate pathways mediated by IL-4 and IL-13 activation of human monocytes/macrophages. Here we report differential regulation of IL-4 and IL-13 signaling in monocytes/macrophages starting from IL-4/IL-13 cytokine receptors to Jak/Stat-mediated signaling pathways that ultimately control expression of several inflammatory genes. Our data demonstrate that although the receptor-associated tyrosine kinases Jak2 and Tyk2 are activated after the recruitment of IL-13 to its receptor (containing IL-4Rα and IL-13Rα1), IL-4 stimulates Jak1 activation. We further show that Jak2 is upstream of Stat3 activation and Tyk2 controls Stat1 and Stat6 activation in response to IL-13 stimulation. In contrast, Jak1 regulates Stat3 and Stat6 activation in IL-4-induced monocytes. Our results further reveal that although IL-13 utilizes both IL-4Rα/Jak2/Stat3 and IL-13Rα1/Tyk2/Stat1/Stat6 signaling pathways, IL-4 can use only the IL-4Rα/Jak1/Stat3/Stat6 cascade to regulate the expression of some critical inflammatory genes, including 15-lipoxygenase, monoamine oxidase A (MAO-A), and the scavenger receptor CD36. Moreover, we demonstrate here that IL-13 and IL-4 can uniquely affect the expression of particular genes such as dual-specificity phosphatase 1 and tissue inhibitor of metalloprotease-3 and do so through different Jaks. As evidence of differential regulation of gene function by IL-4 and IL-13, we further report that MAO-A-mediated reactive oxygen species generation is influenced by different Jaks. Collectively, these results have major implications for understanding the mechanism and function of alternatively activated monocytes/macrophages by IL-4 and IL-13 and add novel insights into the pathogenesis and potential treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Ashish Bhattacharjee
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Meenakshi Shukla
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Valentin P. Yakubenko
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Anny Mulya
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Suman Kundu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Martha K. Cathcart
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| |
Collapse
|
8
|
Yakubenko VP, Hsi LC, Cathcart MK, Bhattacharjee A. From macrophage interleukin-13 receptor to foam cell formation: mechanisms for αMβ2 integrin interference. J Biol Chem 2012. [PMID: 23184931 DOI: 10.1074/jbc.m112.381343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
IL-13 is a potent stimulator of alternative monocyte/macrophage activation. During alternative activation, the expression of several proteins is induced including 15-lipoxygenase (15-LO), a lipid-peroxidating enzyme and the scavenger receptor CD36. We previously reported that α(M)β(2) integrin activation or clustering suppresses the expression of both 15-LO and CD36. In this study we focused on exploring the molecular mechanisms that down-regulate CD36 expression and CD36-mediated foam cell formation in IL-13-stimulated monocytes/macrophages after α(M)β(2) activation. Our studies reveal that α(M)β(2) integrin activation inhibits the IL-13 activation of several critical pathways that are required for macrophage alternative activation; namely, blocking Jak2 and Tyk2 phosphorylation, which bind to the cytoplasmic tails of the IL-4Rα/IL-13Rα1 complex. This leads to the inhibition of tyrosine phosphorylation of Stats (Stat1, Stat3, and Stat6) and prevents the formation of a signaling complex (containing p38MAPK, PKCδ, and Stat3) that are critical for the expression of both 15-LO and CD36. Jak2-mediated Hck activation is also inhibited, thereby preventing Stats serine phosphorylation, which is essential for downstream Stat-dependent gene transcription. Moreover, inhibition of Jak2, Tyk2, or their downstream target 15-LO with antisense oligonucleotides profoundly inhibits IL-13-induced CD36 expression and CD36-dependent foam cell formation, whereas13(S) Hydroperoxyoctadecadienoic acid (HPODE), a 15-LO product and peroxisome proliferator-activated receptor-γ ligand, completely restores CD36 expression in monocytes treated with 15-LO antisense. α(M)β(2) integrin activation controls CD36 expression and foam cell formation in alternatively activated monocyte/macrophages by blocking Tyk2/Jak2 phosphorylation via a 15-LO-dependent pathway. The discovery of this mechanism helps our understanding of the potential role of alternatively activated macrophages in atherogenesis and highlights the impact of integrin α(M)β(2) on this process.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
9
|
Govan JM, Lively MO, Deiters A. Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. J Am Chem Soc 2011; 133:13176-82. [PMID: 21761875 PMCID: PMC3157586 DOI: 10.1021/ja204980v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem, NC 27157
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| |
Collapse
|
10
|
A Role for PPARgamma in the Regulation of Cytokines in Immune Cells and Cancer. PPAR Res 2011; 2008:961753. [PMID: 18566687 PMCID: PMC2430015 DOI: 10.1155/2008/961753] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/22/2008] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. PPARγ and its ligands appear to serve diverse biological functions. In addition to the well-studied effects of PPARγ on metabolism and cellular differentiation, abundant evidence suggests that PPARγ is an important regulator of the immune system and cancers. Since cytokines are not only key modulators of inflammation with pro- and anti-inflammatory functions but they also can either stimulate or inhibit tumor growth and progression, this review summarizes the role for PPARγ in the regulation of cytokine production and cytokine-mediated signal transduction pathways in immune cells and cancer.
Collapse
|
11
|
Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo. Nat Biotechnol 2008; 26:91-100. [PMID: 18176556 DOI: 10.1038/nbt1366] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 11/19/2007] [Indexed: 02/07/2023]
Abstract
Transcription factors are important targets for the treatment of a variety of malignancies but are extremely difficult to inhibit, as they are located in the cell's nucleus and act mainly by protein-DNA and protein-protein interactions. The transcriptional regulators Id1 and Id3 are attractive targets for cancer therapy as they are required for tumor invasiveness, metastasis and angiogenesis. We report here the development of an antitumor agent that downregulates Id1 effectively in tumor endothelial cells in vivo. Efficient delivery and substantial reduction of Id1 protein levels in the tumor endothelium were effected by fusing an antisense molecule to a peptide known to home specifically to tumor neovessels. In two different tumor models, systemic delivery of this drug led to enhanced hemorrhage, hypoxia and inhibition of primary tumor growth and metastasis, similar to what is observed in Id1 knockout mice. Combination with the Hsp90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin yielded virtually complete growth suppression of aggressive breast tumors.
Collapse
|
12
|
Gerhold K, Darcan Y, Hamelmann E. Primary prevention of allergic diseases: current concepts and mechanisms. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2007; 3:105-13. [PMID: 20525115 PMCID: PMC2873606 DOI: 10.1186/1710-1492-3-4-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
: Atopic diseases, the new "epidemic of the twenty-first century" and a central health problem of industrial nations, call for the development of innovative primary prevention strategies. The present review provides an overview of current experimental and immunomodulatory procedures and their underlying mechanisms.
Collapse
Affiliation(s)
- Kerstin Gerhold
- Department of Pediatric Pneumology and Immunology, Charite, Universitätsmedizinm, Berlin, Germany
| | | | | |
Collapse
|
13
|
Hoffmann PR, Jourdan-Le Saux C, Hoffmann FW, Chang PS, Bollt O, He Q, Tam EK, Berry MJ. A role for dietary selenium and selenoproteins in allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 179:3258-67. [PMID: 17709542 DOI: 10.4049/jimmunol.179.5.3258] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asthma is driven by allergic airway inflammation and involves increased levels of oxidative stress. This has led to speculation that antioxidants like selenium (Se) may play important roles in preventing or treating asthma. We fed diets containing low (0.08 parts per million), medium (0.25 parts per million), or high (2.7 parts per million) Se to female C57BL/6 mice and used an established OVA challenge protocol to determine the relationship between Se intake and the development of allergic airway inflammation. Results demonstrated that mice fed medium levels of Se had robust responses to OVA challenge in the lung as measured by lung cytokine levels, airway cellular infiltrate, eosinophilia, serum anti-OVA IgE, airway hyperreactivity, goblet cell hyperplasia, and phosphorylated STAT-6 levels in the lung. In contrast, responses to OVA challenge were less robust in mice fed low or high levels of Se. In particular, mice fed low Se chow showed significantly lower responses compared with mice fed medium Se chow for nearly all readouts. We also found that within the medium Se group the expression of lung glutathione peroxidase-1 and liver selenoprotein P were increased in OVA-challenged mice compared with PBS controls. These data suggest that Se intake and allergic airway inflammation are not related in a simple dose-response manner, which may explain the inconsistent results obtained from previous descriptive studies in humans. Also, our results suggest that certain selenoproteins may be induced in response to Ag challenges within the lung.
Collapse
Affiliation(s)
- Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i, 651 Halo Street, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang X, Zhang J, Wang L, Wei H, Tian Z. Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 2007; 7:149. [PMID: 17683579 PMCID: PMC1988829 DOI: 10.1186/1471-2407-7-149] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 08/04/2007] [Indexed: 02/04/2023] Open
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is usually constitutively activated in a variety of malignancies. Therefore, STAT3 may be a promising target for treatment of tumor cells. To explore the possibility of a double-stranded decoy oligodeoxynucleotide (ODN) targeted blocking STAT3 over-activated tumor cells, we, here, evaluate the efficacy of STAT3 decoy ODN on human lung cancer cells in vitro and in vivo. Methods A STAT3 decoy ODN was transfected into A549 lung cancer cell line in vitro by using lipofectamine. The flow cytometry and fluorescent microscopy were used to detect the transfection efficiency and the sub-cellular localization of STAT3 decoy ODN in A549 cells. Cell proliferation was determined by counting cell numbers and [3H]-thymidine uptake. Cell apoptosis was examined with Annexin V and propidum iodide by flow cytometry. The expression levels of STAT3 target genes were identified by RT-PCR and immunoblot. For in vivo experiment, A549 lung carcinoma-nude mice xenograft was used as a model to examine the effect of the STAT3 decoy by intratumoral injection. At the end of treatment, TUNEL and immunohistochemistry were used to examine the apoptosis and the expression levels of bcl-xl and cyclin D1 in tumor tissues. Results STAT3 decoy ODN was effectively transfected into A549 lung cancer cells and mainly located in nucleus. STAT3-decoy ODN significantly induced apoptosis and reduced [3H]-thymidine incorporation of A549 cells as well as down-regulated STAT3-target genes in vitro. STAT3 decoy ODN also dramatically inhibited the lung tumor growth in xenografted nude mice and decreased gene expression of bcl-xl and cyclin D1. Conclusion STAT3 decoy ODN significantly suppressed lung cancer cells in vitro and in vivo, indicating that STAT3 decoy ODN may be a potential therapeutic approach for treatment of lung cancer.
Collapse
Affiliation(s)
- Xulong Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
15
|
An P, Duggal P, Wang LH, O'Brien SJ, Donfield S, Goedert JJ, Phair J, Buchbinder S, Kirk GD, Winkler CA. Polymorphisms of CUL5 are associated with CD4+ T cell loss in HIV-1 infected individuals. PLoS Genet 2007; 3:e19. [PMID: 17257057 PMCID: PMC1781497 DOI: 10.1371/journal.pgen.0030019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022] Open
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (Apobec3) antiretroviral factors cause hypermutation of proviral DNA leading to degradation or replication-incompetent HIV-1. However, HIV-1 viral infectivity factor (Vif) suppresses Apobec3 activity through the Cullin 5-Elongin B-Elongin C E3 ubiquitin ligase complex. We examined the effect of genetic polymorphisms in the CUL5 gene (encoding Cullin 5 protein) on AIDS disease progression in five HIV-1 longitudinal cohorts. A total of 12 single nucleotide polymorphisms (SNPs) spanning 93 kb in the CUL5 locus were genotyped and their haplotypes inferred. A phylogenetic network analysis revealed that CUL5 haplotypes were grouped into two clusters of evolutionarily related haplotypes. Cox survival analysis and mixed effects models were used to assess time to AIDS outcomes and CD4+ T cell trajectories, respectively. Relative to cluster I haplotypes, the collective cluster II haplotypes were associated with more rapid CD4+ T cell loss (relative hazards [RH] = 1.47 and p = 0.009), in a dose-dependent fashion. This effect was mainly attributable to a single cluster II haplotype (Hap10) (RH = 2.49 and p = 0.00001), possibly due to differential nuclear protein–binding efficiencies of a Hap10-specifying SNP as indicated by a gel shift assay. Consistent effects were observed for CD4+ T cell counts and HIV-1 viral load trajectories over time. The findings of both functional and genetic epidemiologic consequences of CUL5 polymorphism on CD4+ T cell and HIV-1 levels point to a role for Cullin 5 in HIV-1 pathogenesis and suggest interference with the Vif-Cullin 5 pathway as a possible anti-HIV-1 therapeutic strategy. Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 G (Apobec3G) is an innate antiviral protein that inhibits HIV type 1 (HIV-1) replication by causing deleterious mutations in the HIV-1 genome. Unfortunately, HIV-1 has a strategy to defeat the antiviral activity of Apobec3G. The HIV-1 viral infectivity factor (Vif) binds to Apobec3G leading to the degradation of Apobec3G through a complex containing Cullin 5 and the proteins Elongin B and Elongin C. Since Cullin 5 directly interacts with Vif and is critical to the Apobec3G degradation pathway, the authors asked if genetic variation of CUL5 could tip the balance between HIV-1 and Apobec3G and modify the course of HIV-1 infection. They showed that genetic variation in the CUL5 gene encoding Cullin 5 affected the rate of CD4+ T cell loss in patients infected with HIV-1. CUL5 haplotypes formed two clusters of evolutionarily related haplotypes with opposing effects—cluster I delayed and the cluster II accelerated CD4+ T cell loss. The effect was mainly attributable to a single haplotype or its tagging-SNP, which demonstrated differential binding of transcription factors. This finding highlights the epidemiologic importance of the HIV-1 and Cullin 5 interaction and suggests that the factors in the HIV-1 Vif-Apobec3G degradation pathway may be targets for antiviral drugs.
Collapse
Affiliation(s)
- Ping An
- Laboratory of Genomic Diversity, SAIC-Frederick, Incorporated, National Cancer Institute, Frederick, Maryland, United States of America
| | - Priya Duggal
- Inherited Disease Research Branch, National Human Genome Research Institute, Baltimore, Maryland, United States of America
| | - Li Hua Wang
- Basic Research Program, SAIC-Frederick, Incorporated, National Cancer Institute, Frederick, Maryland, United States of America
| | - Stephen J O'Brien
- Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, United States of America
| | - Sharyne Donfield
- Rho Incorporated, Chapel Hill, North Carolina, United States of America
| | - James J Goedert
- National Cancer Institute, Bethesda, Maryland, United States of America
| | - John Phair
- Northwestern University, Chicago, Illinois, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Gregory D Kirk
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Cheryl A Winkler
- Laboratory of Genomic Diversity, SAIC-Frederick, Incorporated, National Cancer Institute, Frederick, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Miyazaki Y, Satoh T, Nishioka K, Yokozeki H. STAT-6-mediated control of P-selectin by substance P and interleukin-4 in human dermal endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:697-707. [PMID: 16877367 PMCID: PMC1698799 DOI: 10.2353/ajpath.2006.051211] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
P-Selectin expressed on endothelial cells contributes to acute and chronic inflammation by promoting leukocyte tethering/rolling. Despite increasing evidence of P-selectin expression on human umbilical vein endothelial cells in vitro, the regulatory mechanisms of P-selectin expression on dermal endothelial cells in skin diseases are not fully understood. Here, we demonstrate increased expression of P-selectin in dermal vessels of regional skin in urticaria and atopic dermatitis. The present in vitro analyses with human dermal microvascular endothelial cells (HDMECs) revealed that histamine rapidly induced P-selectin expression. Interleukin (IL)-4 and IL-13 induced prolonged expression of surface P-selectin by HDMECs. A combination of tumor necrosis factor-alpha and IL-4 inhibited P-selectin expression. Pretreatment of HDMECs with tumor necrosis factor-alpha followed by incubation with IL-4 markedly increased P-selectin expression. Notably, incubation with substance P alone induced prolonged P-selectin expression. Activation of STAT6 appears to be a key factor in P-selectin expression induced by substance P and IL-4 because treatment with STAT6 decoy oligodeoxynucleotides significantly inhibited P-selectin expression. The present results indicate that novel, complex mechanisms are involved in endothelial P-selectin expression in the skin. STAT6 in dermal endothelial cells appears to be a potent target for controlling cellular infiltrate in allergic and/or neuroinflammatory skin diseases.
Collapse
Affiliation(s)
- Yasuhiro Miyazaki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Japan
| | | | | | | |
Collapse
|
17
|
Sun Z, Yao Z, Liu S, Tang H, Yan X. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. Immunobiology 2006; 211:199-209. [PMID: 16530087 DOI: 10.1016/j.imbio.2005.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Tumor-associated macrophages (TAMs) have the potential to induce both immune activation and immune tolerance. Recent studies have indicated that in breast cancers the pro-tumor role of TAMs is dominant. We induced rat peritoneal macrophages with rat breast cancer cell-conditioned medium and analyzed signal transducer and activators of transcription 3 (Stat3) activities of the cells. Then these cells were transfected with Stat3 decoy oligonucleotides (ODNs) and were stimulated by lipopolysaccharide (LPS). The results demonstrate that induced macrophages displayed a reduction of cytotoxicity and antigen-presenting function in comparison with control but transfection with Stat3 decoy ODNs enhanced cytotoxicity and antigen-presenting function of the macrophages. Furthermore, injection of induced macrophages promoted tumor growth accompanied by immunosuppression in the rat tumor models, but injection of induced macrophages transfected with Stat3 decoy ODNs led to retarded tumor growth accompanied by immune activation. The data suggest that immunosuppressive activities of TAMs correlate with over-activated Stat3 signaling of the cells and disruption of Stat3 activity of TAMs can enhance rat immune response to breast cancer.
Collapse
Affiliation(s)
- Zhengkui Sun
- Department of General Surgery, The First Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing 400016, China.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The defense of the host from foreign pathogens is the commonly accepted function of the vertebrate immune system. A complex system consisting of many differing cells and structures communicating by both soluble and cell bound ligands, serves to protect the host from infection, and plays a role in preventing the development of certain types of tumours. Numerous signalling pathways are involved in the coordination of the immune system, serving both to activate and attenuate its responses to attack. The ability of the immune system, specifically those cells involved in acute inflammatory responses, to mediate the directed (and sometimes indirect) killing of cells and pathogens, make it a potential threat to host survival. Furthermore, the production and release of various survival factors such as the pleiotropic cytokine IL-6, a major mediator of inflammation and activator of signal transducer and activator of transcription 3, serves to block apoptosis in cells during the inflammatory process, keeping them alive in very toxic environments. Unfortunately, these same pathways serve also to maintain cells progressing towards neoplastic growth, protecting them from cellular apoptotic deletion and chemotherapeutic drugs. Here, we discuss the relationships between cancer and inflammation, and some of the molecular mechanisms involved in mediating the unintended consequences of host defense and tumour survival.
Collapse
Affiliation(s)
- David R Hodge
- Laboratory of Molecular Immunoregulation, Cytokine Molecular Mechanisms Section, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
19
|
Xi S, Gooding WE, Grandis JR. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 2005; 24:970-9. [PMID: 15592503 DOI: 10.1038/sj.onc.1208316] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of more effective prevention and treatment strategies for solid tumors is limited by an incomplete understanding of the critical growth pathways that are activated in carcinogenesis. Signal transducers and activators of transcription (STAT) proteins have been linked to transformation and tumor progression. Several approaches have been used to block STAT3 in cancer cells resulting in reduced proliferation and apoptosis. We tested the hypothesis that blocking STAT3 activation using a transcription factor decoy approach would decrease tumor growth and STAT3 target gene expression in vivo. In a xenograft model of squamous cell carcinoma of the head and neck (SCCHN), daily administration of the STAT3 decoy (25 microg) resulted in decreased tumor volumes, abrogation of STAT3 activation, and decreased expression of STAT3 target genes (VEGF, Bcl-xL, and cyclin D1) compared to treatment with a mutant control decoy. Blockade of STAT3 with the STAT3 decoy also induced apoptosis and decreased proliferation, an effect that was augmented when the STAT3 decoy was combined with cisplatin, both in vitro and in vivo. These results suggest that a transcription factor decoy approach may be used to target STAT3 in cancers that demonstrate increased STAT3 activation including SCCHN.
Collapse
Affiliation(s)
- Sichuan Xi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
20
|
|
21
|
Yokozeki H, Wu MH, Sumi K, Awad S, Satoh T, Katayama I, Takeda K, Akira S, Kaneda Y, Nishioka K. In vivo transfection of a cis element 'decoy' against signal transducers and activators of transcription 6 (STAT6)-binding site ameliorates IgE-mediated late-phase reaction in an atopic dermatitis mouse model. Gene Ther 2005; 11:1753-62. [PMID: 15306842 DOI: 10.1038/sj.gt.3302341] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signal transducers and activators of transcription 6 (STAT6) play a crucial role in the transactivation of IL-4 and IL-13, which might be involved in the pathogenesis of atopic dermatitis (AD). We herein reported that the IgE-mediated late-phase reaction significantly decreased in STAT6-deficient (STAT6(-/-)) mice in AD model mice induced by intravenous injection of monoclonal anti-dinitrophenyl (DNP)-IgE antibody and subsequent skin testing with dinitrofluorobenzene. We therefore hypothesized that synthetic double-stranded DNA with a high affinity for STAT6 could be introduced in vivo as decoy cis elements to bind the transcriptional factor and block the gene activation contributing to the onset and progression of AD, thus providing effective therapy for AD. Treatment by the transfection of STAT6 decoy oligodeoxynucleotides (ODNs), but not scramble decoy ODN after sensitization by anti-DNP-IgE antibody, had a significant inhibitory effect on not only STAT6 binding to nuclei but also on the late-phase response. A histological analysis revealed that both edema and the infiltration of neutrophils and eosinophils significantly decreased in STAT6 decoy ODN-transfected mice. To examine the mechanism of the in vivo effect of STAT6 decoy ODN, we employed an in vitro mast cells culture system. After IgE receptor engagement, mast cells transfected by STAT6 decoy ODN exhibited normal histamine release, but their cytokine release (TNF-alpha, IL-6) markedly decreased. We herein report the first successful in vivo transfer of STAT6 decoy ODN to reduce the late-phase reaction, thereby providing a new therapeutic strategy for AD.
Collapse
Affiliation(s)
- H Yokozeki
- Department of Dermatology and Immunodermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sumi K, Yokozeki H, Wu MH, Satoh T, Kaneda Y, Takeda K, Akira S, Nishioka K. In vivo transfection of a cis element 'decoy' against signal transducers and activators of the transcription 6 (STAT6) binding site ameliorates the response of contact hypersensitivity. Gene Ther 2005; 11:1763-71. [PMID: 15306843 DOI: 10.1038/sj.gt.3302345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We herein demonstrate that STAT6 plays an important role in the induction of not only acute contact hypersensitivity (CHS), but also chronic CHS in a mouse model using STAT6-deficient (STAT6(-/-)) mice. We, therefore, determine whether synthetic double-stranded DNA with a high affinity for STAT6 can be introduced in vivo as a decoy cis element to bind the transcriptional factor and block the induction of not only acute CHS but also chronic CHS. Treatment by the transfection of STAT6 decoy oligodeoxynucleotides (ODN), after the induction of 2,4,6-trinitrochlorobenzene or other haptens had a significant inhibitory effect on the induction of both acute CHS and chronic CHS. We thus examined the mechanism of the in vivo effect of the transfection of STAT6 decoy ODN in both acute and chronic CHS. In the histological analysis, the infiltration of eosinophils and degranulated mast cells, and the production of IL-4, IL-6 and eotaxin, but not IFN-gamma in the extracts from challenged skin significantly decreased by the transfection of STAT6 decoy ODN. We herein report the first successful in vivo transfer of STAT6 decoy ODN to inhibit acute and chronic CHS, thus providing a new therapeutic strategy not only for the treatment of CHS but also for atopic dermatitis.
Collapse
Affiliation(s)
- K Sumi
- Department of Environmental Immunodermatology, Postgraduate School, Tokyo Medical & Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mischiati C, Sereni A, Finotti A, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Pedone C, Borgatti M, Gambari R. Complexation to cationic microspheres of double-stranded peptide nucleic acid-DNA chimeras exhibiting decoy activity. J Biomed Sci 2005; 11:697-704. [PMID: 15316146 DOI: 10.1007/bf02256136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 04/15/2004] [Indexed: 11/28/2022] Open
Abstract
The major aim of this paper was to determine whether cationic microspheres (CM), consisting of the permeable polymer Eudragit RS 100 plus the cationic surfactant dioctadecyl-dimethyl-ammonium bromide (DDAB(18)), could bind to double-stranded peptide nucleic acid PNA-DNA-PNA (PDP) chimeras exhibiting decoy activity against NF-kappaB transcription factors. Microspheres were produced by the 'solvent evaporation method' and centrifugation at 500, 1,000 and 3,000 rpm to obtain different-sized microparticles. Microsphere morphology, size and size distribution were determined by optical and electron microscopy observations. In order to determine their binding activity, double-stranded DNA-based and PDP-based decoy molecules were incubated with different amounts of microparticles in the presence of 100 ng of either (32)P-labeled DNA-DNA or DNA-PDP hybrid molecules or cold PDP-PDP hybrids. The complexes were analyzed by agarose gel electrophoresis. The resistance of (32)P-labeled DNA-DNA and DNA-PDP molecules in the presence of serum or cellular extracts was evaluated after binding to CM by gel electrophoresis analysis. DDAB(18) Eudragit RS 100 microspheres are able to bind to DNA-PDP and PDP-PDP hybrids, to deliver these molecules to target cells and to protect DNA-PDP molecules from enzymatic degradation in simulated biological fluids. In addition, when assayed in ex vivo conditions, DDAB(18) Eudragit RS 100 microspheres exhibited low toxicity. The results presented in this paper demonstrate that CM can be considered suitable formulations for pharmacogenomic therapy employing double-stranded PDP chimeras.
Collapse
Affiliation(s)
- Carlo Mischiati
- Department of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bloebaum RM, Grant JA, Sur S. Immunomodulation: the future of allergy and asthma treatment. Curr Opin Allergy Clin Immunol 2004; 4:63-7. [PMID: 15090922 DOI: 10.1097/00130832-200402000-00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW As the prevalence of asthma and allergic disease increases around the world, it is clear that more effective therapies and disease-modifying agents are needed. Treatment for allergic disease is evolving with an increase in understanding of the etiology. RECENT FINDINGS The first immunomodulatory treatment was recently approved for use in the United States when the Food and Drug Administration approved the use of a humanized monoclonal anti-IgE antibody in patients with allergic asthma. Another strategy that has proved effective in a murine model is the downregulation of the whole immune system by targeting adhesion molecules, which has been evaluated in a recent human trial. Other strategies for the treatment of allergic diseases concentrate on refocusing the immune system away from an allergic-type response. These include the use of targeted therapies towards specific cytokines, cytokine receptors or chemokine receptors, and the use of specific bacterial DNA sequences (unmethylated cytosine-guanine dinucleotides). Finally, attention is being focused on possible therapies that may tilt the immune response to a non-allergic response by interfering with signaling molecule pathways. SUMMARY Immunomodulation will play a key role in future therapies for allergic disease. These treatment modalities may not only treat allergic disease, but also be beneficial in reducing the morbidity and mortality for which it is responsible.
Collapse
Affiliation(s)
- R Matthew Bloebaum
- The University of Texas Medical Branch, Department of Internal Medicine, Allergy and Immunology Division, Galveston, Texas 77555-1083, USA
| | | | | |
Collapse
|
25
|
Frank DA. StAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat Res 2003; 115:267-91. [PMID: 12613201 DOI: 10.1007/0-306-48158-8_11] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- David A Frank
- Department of Adult Oncology, Dana-Farber Cancer Institute, Departments of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Taha R, Hamid Q, Cameron L, Olivenstein R. T helper type 2 cytokine receptors and associated transcription factors GATA-3, c-MAF, and signal transducer and activator of transcription factor-6 in induced sputum of atopic asthmatic patients. Chest 2003; 123:2074-82. [PMID: 12796191 DOI: 10.1378/chest.123.6.2074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND It is well-known that the expression of T helper (Th) type 2 cytokines such as interleukin (IL)-4 and IL-5, and their receptors, is up-regulated within the airways of allergic asthmatic patients. Furthermore, higher numbers of cells producing GATA-3, c-MAF, and signal transducer and activator of transcription factor (STAT)-6, which are transcription factors (TFs) that are implicated in the regulation and signaling of the Th2 cytokines, have been observed in bronchial biopsy specimens from asthmatic patients but not in those of healthy control subjects. METHODS We examined whether these mediators also can be detected in induced sputum. Immunoreactivity for IL-4Ralpha, IL-5Ralpha, GATA-3, c-MAF, and STAT-6 was investigated in samples of induced sputum from asthmatic patients (n = 8) and healthy control subjects (n = 8). RESULTS Our results showed that the numbers of cells expressing IL-4 receptor alpha (Ralpha) and IL-5Ralpha were higher in samples from asthmatic patients compared to those of control subjects (p < 0.01). More cells exhibiting GATA-3, c-MAF, and STAT-6 immunoreactivity also were found in asthmatic patients vs those in control subjects (p < 0.005). Furthermore, the expression of STAT-6 and IL-4Ralpha, GATA-3 and IL-5Ralpha, and c-MAF with both IL-4Ralpha and IL-5Ralpha was correlated (p < 0.05). CONCLUSIONS This study demonstrated that induced sputum provides sufficient sensitivity for examining the pathways of cytokine signaling, cytokine receptor signaling, and intracellular signaling. Furthermore, these data show correlations between the expression of Th2 cytokine receptors and associated TFs in the human lung, which has not been documented previously.
Collapse
Affiliation(s)
- Rame Taha
- Meakins-Christie Laboratories and Montreal Chest Research Institute, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
27
|
Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101:2940-54. [PMID: 12480704 DOI: 10.1182/blood-2002-04-1204] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are a 7-member family of cytoplasmic transcription factors that contribute to signal transduction by cytokines, hormones, and growth factors. STAT proteins control fundamental cellular processes, including survival, proliferation, and differentiation. Given the critical roles of STAT proteins, it was hypothesized that inappropriate or aberrant activation of STATs might contribute to cellular transformation and, in particular, leukemogenesis. Constitutive activation of mutated STAT3 has in fact been demonstrated to result in transformation. STAT activation has been extensively studied in leukemias, and mechanisms of STAT activation and the potential role of STAT signaling in leukemogenesis are the focus of this review. A better understanding of mechanisms of dysregulation of STAT signaling pathways may serve as a basis for designing novel therapeutic strategies that target these pathways in leukemia cells.
Collapse
Affiliation(s)
- Mustafa Benekli
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
28
|
Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, Robbins PD, Gadiparthi S, Burke NA, Watkins SF, Grandis JR. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A 2003; 100:4138-43. [PMID: 12640143 PMCID: PMC153061 DOI: 10.1073/pnas.0534764100] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor signal transducer and activator of transcription 3 (Stat3) is constitutively activated in a variety of cancers including squamous cell carcinoma of the head and neck (SCCHN). Previous investigations have demonstrated that activated Stat3 contributes to a loss of growth control and transformation. To investigate the therapeutic potential of blocking Stat3 in cancer cells, we developed a transcription factor decoy to selectively abrogate activated Stat3. The Stat3 decoy was composed of a 15-mer double-stranded oligonucleotide, which corresponded closely to the Stat3 response element within the c-fos promoter. The Stat3 decoy bound specifically to activated Stat3 and blocked binding of Stat3 to a radiolabeled Stat3 binding element. By contrast, a mutated version of the decoy that differed by only a single base pair did not bind the activated Stat3 protein. Treatment of head and neck cancer cells with the Stat3 decoy inhibited proliferation and Stat3-mediated gene expression, but did not decrease the proliferation of normal oral keratinocytes. Thus, disruption of activated Stat3 by using a transcription factor decoy approach may serve as a novel therapeutic strategy for cancers characterized by constitutive Stat3 activation.
Collapse
Affiliation(s)
- Paul L Leong
- Department of Otolaryngology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Kraus J, Börner C, Höllt V. Distinct palindromic extensions of the 5'-TTC...GAA-3' motif allow STAT6 binding in vivo. FASEB J 2003; 17:304-6. [PMID: 12475891 DOI: 10.1096/fj.02-0482fje] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
STATs (signal transducers and activators of transcription) are transcription factors downstream of cytokine and growth factor signals. All of the seven different STATs bind to regulatory promoter elements with the common core motif 5'-TTC(N)2-4GAA-3'. A key question is how the different STAT factors recognize "their" response elements, that is, what distinguishes for example STAT1 from STAT6 binding sites. In vivo, binding of the different STATs to DNA elements is highly specific and disruption of the genes for the different STAT factors is accompanied with distinct, non-overlaping phenotypical effects. As a first step towards discrimination of target sequences for the various STATs, we determined requirements for binding sites for STAT6. In functional assays, six sequences were identified. These have palindromic extensions of the core motif in common (underlined): 5'-TTTCNNNGAAA-3', 5'-CTTCNNNGAAG-3', 5'-TTTCNNNNGAAA-3', 5'-CTTCNNNNGAAG-3', 5'-TTCCNNGGAA-3' and 5'-TTCANNTGAA-3'. Different approaches and mutational analysis demonstrated the functionality of these sequences and high specific binding to STAT6. (I) These elements mediate transcriptional induction by interleukin-(IL)-4, IL-13, IL-15, and platelet-derived growth factor. (II) When used as "decoy" oligonucleotides, they bind STAT6 and disrupt its function in vivo, attenuating (a) STAT6/IL-4-mediated reporter gene transcription and (b) STAT6/IL-4-mediated induction of mu-opioid receptor mRNA of Raji cells.
Collapse
Affiliation(s)
- Jürgen Kraus
- Department of Pharmacology and Toxicology, University of Magdeburg, Magdeburg, Germany.
| | | | | |
Collapse
|
31
|
Piva R, Gambari R. Transcription factor decoy (TFD) in breast cancer research and treatment. Technol Cancer Res Treat 2002; 1:405-16. [PMID: 12625767 DOI: 10.1177/153303460200100512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic oligonucleotides have recently been the object of many investigations aimed to develop sequence-selective compounds able to modulate, either positively or negatively, transcription of eukaryotic and viral genes. Alteration of transcription could be obtained by using synthetic oligonucleotides mimicking target sites of transcription factors (the transcription factor decoy -TFD- approach). This could lead to either inhibition or activation of gene expression, depending on the biological functions of the target transcription factors. Since several transcription factors are involved in tumor onset and progression, this issue is of great interest in order to design anti-tumor compounds. In addition to oligonucleotides, peptide nucleic acids (PNA) can be proposed for the modulation of gene expression. In this respect, double-stranded PNA-DNA chimeras have been shown to be capable to exhibit strong decoy activity. In the case of treatment of breast cancer cells, decoy oligonucleotides mimicking CRE binding sites, promoter region of estrogen receptor alpha gene, NF-kB binding sites have been used with promising results. Therefore, the transcription factor decoy approach could be object of further studies to develop protocols for the treatment of breast cancer. In the future, transcription factors regulating cell cycle, hormone-dependent differentiation, tumor invasion and metastasis are expected to be suitable targets for transcription factor decoy.
Collapse
Affiliation(s)
- Roberta Piva
- Department of Biochemistry and Molecular Biology, Ferrara University, Via Luigi Borsari, 46, 44100 Ferrara, Italy
| | | |
Collapse
|
32
|
Litterst CM, Pfitzner E. An LXXLL motif in the transactivation domain of STAT6 mediates recruitment of NCoA-1/SRC-1. J Biol Chem 2002; 277:36052-60. [PMID: 12138096 DOI: 10.1074/jbc.m203556200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) regulates transcriptional activation in response to interleukin-4 (IL-4)-induced tyrosine phosphorylation by direct interaction with coactivators. The CREB-binding protein and the nuclear coactivator 1 (NCoA-1), a member of the p160/steroid receptor coactivator family, bind independently to specific regions of STAT6 and act as coactivators. In this study we show that an LXXLL motif in the STAT6 transactivation domain mediates the interaction with NCoA-1. Peptides representing this motif as well as antibodies generated against this motif inhibited STAT6/NCoA-1 interaction in glutathione S-transferase pulldown assays. Peptides derived from the STAT6 transactivation domain adjacent to the LXXLL motif as well as antibodies against these peptides showed no inhibitory effect. Mutagenesis of the LXXLL motif eliminated the STAT6/NCoA-1 interaction in vitro and in vivo, supporting the specific role of this motif in NCoA-1 binding. Importantly, mutagenesis of the STAT-LXXLL motif strongly diminished the IL-4-regulated activation of the endogenous STAT6 target gene eotaxin-3. Taken together, these results indicate that the STAT6-LXXLL-binding motif mediates the interaction with NCoA-1 in transcriptional activation and represents a new potential drug target for the inhibition of the STAT6 transactivation function in allergic diseases.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, Paul-Ehrlich-Strasse 42-44, 60596 Frankfurt, Germany
| | | |
Collapse
|
33
|
Abstract
Asthma continues to be a significant health care problem, as reflected by the increasing rise in disease morbidity and mortality. Because steroids are relatively safe, clinically effective, and easy to administer, they remain the gold standard of treatment. After many decades of use, however, it is apparent that inhaled corticosteroids have failed to halt the progression of the asthma epidemic. Newer, more effective drugs are being developed to combat this disease, and the interest in developing new medications to treat allergic disease and asthma has increased exponentially. The financial burden of asthma has also been a significant motivating factor in the development of new medications. It is estimated that in 1998 the total cost of asthma on society was $11 billion [175]. This consideration has further intensified the quest to develop more effective asthma medications. Table 1 reviews the wide array of drugs currently being investigated. With the development and approval of novel asthma treatments, millions of asthma sufferers will undoubtedly have increased therapeutic options for control of their disease in the near future.
Collapse
Affiliation(s)
- Patricia Leonard
- Department of Allergy and Immunology, University of Texas Medical Branch, MRB 8.104, 301 University Boulevard, Galveston, TX 77555, USA
| | | |
Collapse
|
34
|
Von Knethen A, Brüne B. Activation of peroxisome proliferator-activated receptor gamma by nitric oxide in monocytes/macrophages down-regulates p47phox and attenuates the respiratory burst. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2619-26. [PMID: 12193733 DOI: 10.4049/jimmunol.169.5.2619] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NO appears as an important determinant in auto and paracrine macrophage function. We hypothesized that NO switches monocyte/macrophage function from a pro- to an anti-inflammatory phenotype by activating anti-inflammatory properties of the peroxisome proliferator-activated receptor (PPAR)gamma. NO-releasing compounds (100 micro M S-nitrosoglutathione or 50 micro M spermine-NONOate) as well as inducible NO synthase induction provoked activation of PPARgamma. This was proven by EMSAs, with the notion that supershift analysis pointed to the involvement of PPARgamma. PCR analysis ruled out induction of PPARgamma mRNA as a result of NO supplementation. Reporter assays, with a construct containing a triple PPAR response element in front of a thymidine kinase minimal promoter driving the luciferase gene, were positive in response to NO delivery. DNA binding capacity as well as the transactivating capability of PPARgamma were attenuated by addition of the antioxidant N-acetyl-cysteine or in the presence of the NO scavenger 2-phenyl-4,4,5,6-tetramethyl-imidazoline-1-oxyl 3-oxide. Having established that NO but not lipophilic cyclic GMP analogs activated PPARgamma, we verified potential anti-inflammatory consequences. The oxidative burst of macrophages, evoked by phorbol ester, was attenuated in association with NO-elicited PPARgamma activation. A cause-effect relationship was demonstrated when PPAR response element decoy oligonucleotides, supplied in front of NO delivery, allowed to regain an oxidative response. PPARgamma-mediated down-regulation of p47 phagocyte oxidase, a component of the NAD(P)H oxidase system, was identified as one molecular mechanism causing inhibition of superoxide radical formation. We conclude that NO participates in controlling the pro- vs anti-inflammatory phenotype of macrophages by modulating PPARgamma.
Collapse
|
35
|
Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trumper L, Kapp U, Mak TW. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2002; 99:618-26. [PMID: 11781246 DOI: 10.1182/blood.v99.2.618] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The unique clinicopathologic features of Hodgkin lymphoma (HL) are due to the multiple cytokines produced by its neoplastic cells, the Hodgkin and Reed-Sternberg (HRS) cells. Cytokine signaling is mediated through the signal transducer and activator of transcription (STAT) family of transcription factors. Immunoblotting and immunohistochemistry were used to examine cell lines and tissue sections derived from patients with HL and non-Hodgkin lymphoma (NHL) for expression of activated STAT proteins. Constitutive phosphorylation of STAT6 and STAT3 was common in HL. STAT6 was constitutively phosphorylated in 5 of 5 HL cell lines and in HRS cells from 25 of 32 (78%) classical HL cases. STAT3 was constitutively phosphorylated in 4 of 5 HL cell lines and in HRS cells from 27 of 31 (87%) classical HL cases. Only 4 of 24 NHL cases demonstrated constitutive STAT6 activation, whereas STAT3 activation was observed in 6 of 13 (46%) cases of B-cell NHL and 8 of 11 (73%) cases of T-cell NHL. Constitutive STAT5 phosphorylation was not a common feature of HL or NHL. STAT6 mediates signaling by interleukin 13 (IL-13), a cytokine frequently expressed by HRS cells. Antibody-mediated neutralization of IL-13 resulted in significant decreases in both cellular proliferation and levels of phosphorylated STAT6 of HL cell lines. In conclusion, constitutive STAT6 phosphorylation is a common and distinctive feature of HRS cells in classical HL, whereas STAT3 activation was regularly present in both HL and NHL. These results suggest that IL-13 signaling is largely responsible for the constitutive STAT6 activation observed in HRS cells and further implicate IL-13 as an important growth factor in classical HL.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Autocrine Communication
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Cell Division
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytoskeletal Proteins
- DNA-Binding Proteins/metabolism
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Herpesvirus 4, Human/genetics
- Hodgkin Disease/genetics
- Hodgkin Disease/metabolism
- Hodgkin Disease/pathology
- Hodgkin Disease/virology
- Humans
- Inflammation
- Interleukin-13/physiology
- Interleukin-13 Receptor alpha1 Subunit
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Male
- Middle Aged
- Milk Proteins
- Neoplasm Proteins/metabolism
- Paracrine Communication
- Phosphorylation
- Protein Processing, Post-Translational
- Receptors, Interleukin/physiology
- Receptors, Interleukin-13
- Reed-Sternberg Cells/metabolism
- Reed-Sternberg Cells/pathology
- STAT3 Transcription Factor
- STAT5 Transcription Factor
- STAT6 Transcription Factor
- Signal Transduction
- Trans-Activators/metabolism
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Brian F Skinnider
- Amgen Institute and Department of Oncologic Pathology, Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Wang LH, Yang XY, Mihalic K, Xiao W, Li D, Farrar WL. Activation of estrogen receptor blocks interleukin-6-inducible cell growth of human multiple myeloma involving molecular cross-talk between estrogen receptor and STAT3 mediated by co-regulator PIAS3. J Biol Chem 2001; 276:31839-44. [PMID: 11429412 DOI: 10.1074/jbc.m105185200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen receptors (ERs)(1) highly expressed by multiple myeloma (MM) cells and stimulation of estrogenic ligands leads to cell apoptosis. Interleukin (IL)-6 is a major growth factor in the pathogenesis of MM. However, little is known concerning the molecular consequences of ER activation on IL-6-regulated MM cell growth. Here we show that the ER agonist 17 beta-estradiol completely abolished IL-6-inducible MM cell proliferation. By contrast, the ER antagonist ICI 182,780 overcame the inhibitory effect of estrogen. Estrogen blocked STAT3 DNA binding and transactivation but failed to affect the mRNA expression of IL-6 receptor chains or activation of JAK2 and STAT3. Estrogen-activated ER did not associate directly with STAT3. Estrogen induced the mRNA expression of PIAS3 (protein inhibitor of activated STAT3) and increased PIAS3 physical association with STAT3, suggesting a possible mechanism of STAT3 inhibition requiring PIAS3 as a co-regulator modulating the cross-talk between ER and STAT3. These data directly demonstrate STAT3 to be a molecular participant in ER inhibition of the IL-6 signaling pathway in human MM cells and provides the molecular basis for the potential use of estrogenic ligands in the treatment of MM or other tumors where IL-6 has an autocrine or paracrine role.
Collapse
Affiliation(s)
- L H Wang
- Intramural Research Support Program, Science Applications International Corporation, National Cancer Institute, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
37
|
Christodoulopoulos P, Cameron L, Nakamura Y, Lemière C, Muro S, Dugas M, Boulet LP, Laviolette M, Olivenstein R, Hamid Q. TH2 cytokine-associated transcription factors in atopic and nonatopic asthma: evidence for differential signal transducer and activator of transcription 6 expression. J Allergy Clin Immunol 2001; 107:586-91. [PMID: 11295643 DOI: 10.1067/mai.2001.114883] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The expression of IL-4 and IL-5 is increased in patients with atopic asthma compared with control subjects and correlates with indices of pulmonary function. In nonatopic asthma the expression of IL-4, unlike IL-5, fails to correlate with pulmonary function, and compared with their atopic counterparts, these patients have fewer cells expressing IL-4 receptor (IL-4R). As such, a deficiency in the IL-4 signaling pathway may be implicated in nonatopic asthma. The transcription factors GATA-3 and cMAF mediate IL-4 and IL-5 synthesis, whereas signal transducer and activator of transcription 6 (STAT-6) is critical for IL-4R signaling. OBJECTIVE This study examines the expression profile of these transcription factors in asthma, according to atopic status. METHODS With immunocytochemistry, the expression of GATA-3, cMAF, and STAT-6 protein was determined in sections of bronchial biopsy specimens from patients with atopic asthma (n = 7), patients with nonatopic asthma (n = 8), and control subjects (n = 8). RESULTS Higher numbers of cells expressing GATA-3 and cMAF were observed in patients with atopic and those with nonatopic asthma than in control subjects and patients with tuberculosis (P <.001). There were also more STAT-6-immunoreactive cells in patients with atopic and those with nonatopic asthma than in control subjects (P <.0001, P <.05). Notably, however, fewer cells expressing STAT-6 protein were observed in nonatopic versus atopic asthma (P <.0001). CONCLUSIONS These results demonstrate the upregulation of GATA-3 and cMAF in both variants of asthma and indicate that reduced IL-4R signaling, because of lower STAT-6 expression, may be a feature of nonatopic asthma.
Collapse
Affiliation(s)
- P Christodoulopoulos
- Meakins-Christie Laboratories, McGill University, Sacré-Côeur Hospital, Laval University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kips JC, Tournoy KG, Pauwels RA. New anti-asthma therapies: suppression of the effect of interleukin (IL)-4 and IL-5. Eur Respir J 2001; 17:499-506. [PMID: 11405532 DOI: 10.1183/09031936.01.17304990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma is currently defined as a chronic inflammatory disorder of the airways. The central role of allergen-specific Th2 cells in the regulation of this mucosal airway inflammation has been highlighted. Hence, there is large interest in the therapeutic potential of an anti-Th2 cell approach. One of the strategies which has been developed, is to inhibit the effect of interleukin (IL)-4 or IL-5, two main Th2 cell derived cytokines. Interleukin-4 is pivotal in the pathogenesis of allergic disorders through its wide range of effects. An important observation, especially during secondary antigen exposure, is the possible redundancy with IL-13. Both cytokines share common elements in their receptor and intracellular signalling pathway. As a result, compounds can be developed that selectively inhibit the effect of either IL-4 or IL-13, or alternatively, by interfering with the common pathway, inhibit the effect of both cytokines. Eosinophils are generally seen as a particularly harmful element in the allergic inflammation. The importance of IL-5 on eosinophil biology has clearly been established. Conversely, in man, the biological effects of IL-5 are largely limited to eosinophil function. Therefore, IL-5 antagonists offer the unique opportunity of selectively neutralizing the effect of eosinophils. Several strategies have now been developed that successfully inhibit the biological effect of interleukin-4 or interleukin-5. Some of these compounds have proven to be biologically active in man. The challenge now is to establish their therapeutic role in asthma.
Collapse
Affiliation(s)
- J C Kips
- Dept of Respiratory Diseases, Ghent University Hospital, Belgium
| | | | | |
Collapse
|
39
|
Von Knethen A A, Brüne B. Delayed activation of PPARgamma by LPS and IFN-gamma attenuates the oxidative burst in macrophages. FASEB J 2001; 15:535-44. [PMID: 11156969 DOI: 10.1096/fj.00-0187com] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Desensitization of macrophages is important during the development of sepsis. It was our intention to identify mechanisms that promote macrophage deactivation upon contact with endotoxin (LPS) and interferon-gamma (IFN-gamma) in vitro. Macrophage activation was achieved with 12-O-tetradecanoylphorbol 13-acetate (TPA), and the oxidative burst (i.e., oxygen radical formation) was followed by oxidation of the redox-sensitive dyes hydroethidine and dichlorodihydrofluorescein diacetate. Prestimulation of macrophages for 15 h with a combination of LPS/IFN-gamma attenuated oxygen radical formation in response to TPA. Taking the anti-inflammatory properties of the peroxisome proliferator-activating receptorgamma (PPARgamma) into consideration, we established activation of PPARgamma in response to LPS/IFN-gamma by an electrophoretic mobility shift, supershift, and a reporter gene assay. The reporter contains a triple PPAR-responsive element (PPRE) in front of a thymidine kinase minimal promoter driving the luciferase gene. We demonstrated that PPRE decoy oligonucleotides, supplied in front of LPS/IFN-gamma, allowed a full oxidative burst to recover upon TPA addition. Furthermore, we suppressed the oxidative burst by using the PPARgamma agonists 15-deoxy-Delta12,14-prostaglandin J2, BRL 49653, or ciglitazone. No effect was observed with WY 14643, a PPARalpha agonist. We conclude that activation of PPARs, most likely PPARgamma, promotes macrophage desensitization, thus attenuating the oxidative burst. This process appears important during development of sepsis.
Collapse
Affiliation(s)
- A Von Knethen A
- Department of Medicine IV-Experimental Division, University of Erlangen-Nürnberg, Faculty of Medicine, 91054 Erlangen, Germany
| | | |
Collapse
|
40
|
Abstract
Signal Transducers and Activators of Transcription (STATs) are a family of cytoplasmic proteins with roles as signal messengers and transcription factors that participate in normal cellular responses to cytokines and growth factors. Frequently, however, abnormal activity of certain STAT family members, particularly Stat3 and Stat5, is associated with a wide variety of human malignancies, including hematologic, breast, head and neck, and prostate cancers. Application of molecular biology and pharmacology tools in disease-relevant models has confirmed Stat3 as having a causal role in oncogenesis, and provided validation of Stat3 as a target for cancer drug discovery and therapeutic intervention. Furthermore, a constitutively-active mutant form of Stat3 is sufficient to induce oncogenic transformation of cells, which form tumors in vivo. Constitutive activation of Stat3 signaling is accompanied by upregulation of cyclin D1, c-Myc, and Bcl-x, changes consistent with subversion of normal cellular growth and survival control mechanisms. Block of constitutive Stat3 signaling results in growth inhibition and apoptosis of Stat3-positive tumor cells in vitro and in vivo. The observed dependence of certain tumors on constitutive Stat3 signaling for growth and survival has wide implications for cancer therapy, offering the potential for preferential tumor cell killing. This review evaluates constitutive Stat3 activation as a 'cancer-causing' factor, and proposes a number of molecular strategies for targeting Stat3 signaling for therapeutic intervention.
Collapse
Affiliation(s)
- J Turkson
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | |
Collapse
|
41
|
Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest 2000; 106:1071-5. [PMID: 11067859 PMCID: PMC301425 DOI: 10.1172/jci11459] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- M J Mann
- Department of Surgery, and. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
McKay DM, Botelho F, Ceponis PJ, Richards CD. Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1094-103. [PMID: 11053007 DOI: 10.1152/ajpgi.2000.279.5.g1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Signal transducers and activators of transcription (STATs) are critical intracellular signaling molecules for many cytokines. We compared the ability of T84 epithelial cells to activate STATs in response to cytokines [interferon-gamma (IFN-gamma), interleukin (IL)-4, IL-10, and tumor necrosis factor-alpha (10 ng/ml)] and conditioned medium from superantigen [Staphylococcus aureus enterotoxin B (SEB)]-activated peripheral blood mononuclear cells (PBMC) using electrophoretic mobility shift assays (EMSA). Of the cytokines tested, only IFN-gamma caused a STAT-1 response. Exposure to SEB-PBMC-conditioned medium resulted in STAT-1 or STAT-1/3 activation, and inclusion of anti-IFN-gamma antibodies in the conditioned medium abolished the STAT-1 signal. Cells treated with transcription factor decoys, DNA oligonucleotides bearing the STAT-1 recognition motif, and then SEB-PBMC-conditioned medium displayed a reduced STAT-1 signal on EMSA, yet this treatment did not prevent the drop in transepithelial resistance (measured in Ussing chambers) caused by SEB-PBMC-conditioned medium. In contrast, the phosphatidylinositol 3'-kinase (PI 3-K) inhibitor LY-294002 significantly reduced the drop in transepithelial resistance caused by SEB-PBMC-conditioned medium. Thus data are presented showing STAT-1 (+/-STAT-3) and PI 3-K activation in epithelial cells in response to immune mediators released by superantigen immune activation. Although the involvement of STAT-1/-3 in the control of barrier function remains a possibility, PI-3K has been identified as a regulator of T84 paracellular permeability.
Collapse
Affiliation(s)
- D M McKay
- Intestinal Disease Research Programme, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | |
Collapse
|
43
|
Ceponis PJ, Botelho F, Richards CD, McKay DM. Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 2000; 275:29132-7. [PMID: 10871612 DOI: 10.1074/jbc.m003516200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interleukins 4 and 13 can affect their target cells by activation of signal transducer and activator of transcription 6 (STAT 6) or phosphatidylinositol 3-kinase (PI3K). We examined the signal transduction events involved in IL-4 and IL-13 regulation of epithelial paracellular permeability using T84 cells, a model human colonic epithelium. T84 cells treated with IL-4 or IL-13 displayed virtually identical dose- and time-dependent STAT 6 activation as assessed by electrophoretic mobility shift assay (EMSA) and decreases in transepithelial resistance (TER). STAT 6 DNA binding activity was maximal in nuclear extracts 30 min after exposure to IL-4 or IL-13, and TER was maximally reduced by 24 h post-treatment. Pretreatment of epithelia with transcription factor decoys (phosphorothioated DNA oligonucleotides containing the STAT 6 binding site) dramatically reduced STAT 6 activation as detected by EMSA, but did not attenuate the TER reduction by IL-4 or IL-13. In contrast, although the PI3K inhibitors wortmannin and LY294002 did not affect IL-4 or IL-13 STAT 6 activation, they significantly inhibited the ability of either cytokine to lower TER. Thus, we provide evidence for PI3K as the major proximal signaling event in IL-4 and IL-13 regulation of TER and speculate that pharmacological targeting of enterocytic PI3K activity may represent a means to manipulate epithelial permeability.
Collapse
Affiliation(s)
- P J Ceponis
- Intestinal Disease Research Programme and Infection and Immunity Programme, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | |
Collapse
|