1
|
Terroba-Navajas P, Spatola M, Chuquisana O, Joubert B, de Vries JM, Dik A, Marmolejo L, Jönsson F, Lauc G, Kovac S, Prüss H, Wiendl H, Titulaer MJ, Honnorat J, Lünemann JD. Humoral signatures of Caspr2-antibody spectrum disorder track with clinical phenotypes and outcomes. MED 2024:S2666-6340(24)00371-4. [PMID: 39393351 DOI: 10.1016/j.medj.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Immunoglobulin (Ig) G4 auto-antibodies (Abs) against contactin-associated protein-like 2 (Caspr2), a transmembrane cell adhesion protein expressed in the central and peripheral nervous system, are found in patients with a broad spectrum of neurological symptoms. While the adoptive transfer of Caspr2-specific IgG induces brain pathology in susceptible rodents, the mechanisms by which Caspr2-Abs mediate neuronal dysfunction and translate into clinical syndromes are incompletely understood. METHODS We use a systems-level approach combined with high-dimensional characterization of Ab-associated immune features to deeply profile humoral biosignatures in patients with Caspr2-Ab-associated neurological syndromes. FINDINGS We identify two signatures strongly associated with two major clinical phenotypes, limbic encephalitis (LE) and predominant peripheral nerve hyperexcitability without LE (non-LE). Caspr2-IgG Fc-driven pro-inflammatory features, characterized by increased binding affinities for activating Fcγ receptors (FcγRs) and C1q, along with a higher prevalence of IgG1-class Abs, in addition to IgG4, are strongly associated with LE. Both the occurrence of Caspr2-specific IgG1 and higher serum levels of interleukin (IL)-6 and IL-15, along with increased concentrations of biomarkers reflecting neuronal damage and glial cell activation, are associated with poorer clinical outcomes at 1-year follow-up. CONCLUSIONS The presence of IgG1 isotypes and Fc-mediated effector functions control the pathogenicity of Caspr2-specific Abs to induce LE. Biologics targeting FcR function might potentially restrain Caspr2-Ab-induced pathology and improve clinical outcomes. FUNDING This study was funded by a German-French joint research program supported by the German Research Foundation (DFG) and the Agence Nationale de la Recherche (ANR) and by the Interdisciplinary Centre for Clinical Research (IZKF) Münster.
Collapse
Affiliation(s)
- Paula Terroba-Navajas
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Marianna Spatola
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Caixa Research Institute, Barcelona, Spain.
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Service de Neurologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Juna M de Vries
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Laura Marmolejo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Friederike Jönsson
- CNRS & Institut Pasteur, Université Paris Cité, INSERM UMR1222, Antibodies in Therapy and Pathology, 75015 Paris, France
| | - Gordan Lauc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb, Croatia; Genos, Ltd., Borongajska Cesta 83H, Zagreb, Croatia
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France; MeLiS - UCBL - CNRS UMR 5284 - INSERM U1314, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
2
|
Le TN, Bright R, Truong VK, Li J, Juneja R, Vasilev K. Key biomarkers in type 2 diabetes patients: A systematic review. Diabetes Obes Metab 2024. [PMID: 39355932 DOI: 10.1111/dom.15991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is not just a local health issue but a significant global health burden, affecting patient outcomes and clinical management worldwide. Despite the wealth of studies reporting T2DM biomarkers, there is an urgent need for a comparative review. This review aims to provide a comprehensive analysis based on the reported T2DM biomarkers and how these are linked with other conditions, such as inflammation and wound healing. A comparative review was conducted on 24 001 study participants, including 10 024 T2DM patients and 13 977 controls (CTL; age 30-90 years). Four main profiles were extracted and analysed from the clinical reports over the past 11 years: haematological (1084 cases vs. 1458 CTL), protein (6753 cases vs. 9613 CTL), cytokine (975 cases vs. 1350 CTL) and lipid (1212 cases vs. 1556 CTL). This review provides a detailed analysis of the haematological profile in T2DM patients, highlighting fundamental changes such as increased white blood cells and platelet counts, accompanied by decreases in red blood cell counts and iron absorption. In the serum protein profile, a reduction in albumin and anti-inflammatory cytokines was noted along with an increase in globulin levels and pro-inflammatory cytokines. Furthermore, changes in lipid profiles were discussed, specifically the decreases in high-density lipoprotein (HDL) and the increases in low-density lipoprotein (LDL) and triglycerides. Understanding the changes in these four biomarker profiles is essential for developing innovative strategies to create diagnostic and prognostic tools for diabetes management.
Collapse
Affiliation(s)
- Thien Ngoc Le
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Vi-Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Jordan Li
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Rajiv Juneja
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong S, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex vivo generated 89 Zr-oxine labeled plasma cells by PET in a non-human primate model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595782. [PMID: 38903108 PMCID: PMC11188104 DOI: 10.1101/2024.05.24.595782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
|
4
|
Giordano L, Cacciola R, Barone P, Vecchio V, Nasso ME, Alvaro ME, Gangemi S, Cacciola E, Allegra A. Autoimmune Diseases and Plasma Cells Dyscrasias: Pathogenetic, Molecular and Prognostic Correlations. Diagnostics (Basel) 2024; 14:1135. [PMID: 38893662 PMCID: PMC11171610 DOI: 10.3390/diagnostics14111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Multiple myeloma and monoclonal gammopathy of undetermined significance are plasma cell dyscrasias characterized by monoclonal proliferation of pathological plasma cells with uncontrolled production of immunoglobulins. Autoimmune pathologies are conditions in which T and B lymphocytes develop a tendency to activate towards self-antigens in the absence of exogenous triggers. The aim of our review is to show the possible correlations between the two pathological aspects. Molecular studies have shown how different cytokines that either cause inflammation or control the immune system play a part in the growth of immunotolerance conditions that make it easier for the development of neoplastic malignancies. Uncontrolled immune activation resulting in chronic inflammation is also known to be at the basis of the evolution toward neoplastic pathologies, as well as multiple myeloma. Another point is the impact that myeloma-specific therapies have on the course of concomitant autoimmune diseases. Indeed, cases have been observed of patients suffering from multiple myeloma treated with daratumumab and bortezomib who also benefited from their autoimmune condition or patients under treatment with immunomodulators in which there has been an arising or worsening of autoimmunity conditions. The role of bone marrow transplantation in the course of concomitant autoimmune diseases remains under analysis.
Collapse
Affiliation(s)
- Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Rossella Cacciola
- Hemostasis/Hematology Unit, Department of Experimental and Clinical Medicine, University of Catania, 95123 Catania, Italy;
| | - Paola Barone
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Veronica Vecchio
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Maria Elisa Nasso
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Maria Eugenia Alvaro
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Emma Cacciola
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (L.G.); (P.B.); (V.V.); (M.E.N.); (M.E.A.)
| |
Collapse
|
5
|
Groza Y, Lacina L, Kuchař M, Rašková Kafková L, Zachová K, Janoušková O, Osička R, Černý J, Petroková H, Mierzwicka JM, Panova N, Kosztyu P, Sloupenská K, Malý J, Škarda J, Raška M, Smetana K, Malý P. Small protein blockers of human IL-6 receptor alpha inhibit proliferation and migration of cancer cells. Cell Commun Signal 2024; 22:261. [PMID: 38715108 PMCID: PMC11075285 DOI: 10.1186/s12964-024-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.
Collapse
Affiliation(s)
- Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic.
- Department of Dermatovenerology, 1st Faculty of Medicine, Charles University, U Nemocnice 2, Prague 2, 12000, Czech Republic.
| | - Milan Kuchař
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Leona Rašková Kafková
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kateřina Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Olga Janoušková
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Radim Osička
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, 14220, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Joanna Maria Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Natalya Panova
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Petr Kosztyu
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Kristýna Sloupenská
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Jan Malý
- Centre of Nanomaterials and Biotechnologies, University of J. E. Purkyně in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem, 400 96, Czech Republic
| | - Jozef Škarda
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Milan Raška
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hněvotínská 3, Olomouc, 779 00, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, 1st Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 12800, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec, 252 50, Czech Republic.
| |
Collapse
|
6
|
Zhang H, Wen H, Zhu Q, Zhang Y, Xu F, Ma T, Guo Y, Lu C, Zhao X, Ji Y, Wang Z, Chu Y, Ge D, Gu J, Liu R. Genomic profiling and associated B cell lineages delineate the efficacy of neoadjuvant anti-PD-1-based therapy in oesophageal squamous cell carcinoma. EBioMedicine 2024; 100:104971. [PMID: 38244291 PMCID: PMC10831182 DOI: 10.1016/j.ebiom.2024.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy has offered novel therapeutic options for patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Depicting the landscape of genomic and immune profiles is critical in predicting therapeutic responses. METHODS We integrated whole-exome sequencing, single-cell RNA sequencing, and immunofluorescence data of ESCC samples from 24 patients who received neoadjuvant treatment with PD-1 inhibitors plus paclitaxel and platinum-based chemotherapy to identify correlations with therapeutic responses. FINDINGS An elevation of small insertions and deletions was observed in responders. DNA mismatch repair (MMR) pathway alternations were highly frequent in patients with optimal responses and correlated with tumour infiltrating lymphocytes (TILs). Among the TILs in ESCC, dichotomous developing trajectories of B cells were identified, with one lineage differentiating towards LMO2+ germinal centre B cells and another lineage differentiating towards CD55+ memory B cells. While LMO2+ germinal centre B cells were enriched in responding tumours, CD55+ memory B cells were found to correlate with inferior responses to combination therapy, exhibiting immune-regulating features and impeding the cytotoxicity of CD8+ T cells. The comprehensive evaluation of transcriptomic B cell lineage features was validated to predict responses to immunotherapy in patients with cancer. INTERPRETATION This comprehensive evaluation of tumour MMR pathway alternations and intra-tumoural B cell features will help to improve the selection and management of patients with ESCC to receive neoadjuvant chemoimmunotherapy. FUNDING National Science Foundation of China (82373371, 82330053), Eastern Scholar Program at Shanghai Institutions of Higher Learning, National Science and Technology Major Project of China (2023YFA1800204, 2020YFC2008402), and Science and Technology Commission of Shanghai Municipality (22ZR1410700, 20ZR1410800).
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yifan Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ronghua Liu
- Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
7
|
Shim J, Park S, Venkateswaran S, Kumar D, Prince C, Parihar V, Maples L, Waller EK, Kugathasan S, Briones M, Lee M, Henry CJ, Prahalad S, Chandrakasan S. Early B-cell development and B-cell maturation are impaired in patients with active hemophagocytic lymphohistiocytosis. Blood 2023; 142:1972-1984. [PMID: 37624902 PMCID: PMC10731577 DOI: 10.1182/blood.2023020426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Vaunita Parihar
- Cancer Tissue and Pathology Shared Resource Core, Emory University School of Medicine, Atlanta, GA
| | - Larkin Maples
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Curtis J. Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
8
|
Covens K, Verbinnen B, de Jong BG, Moens L, Wuyts G, Verheyen G, Nys K, Cremer J, Smulders S, Schrijvers R, Weinhäusel A, Vermeire S, Verschueren P, Langhe ED, van Dongen JJM, van Zelm MC, Bossuyt X. Plasma cells are not restricted to the CD27+ phenotype: characterization of CD27-CD43+ antibody-secreting cells. Front Immunol 2023; 14:1165936. [PMID: 37492569 PMCID: PMC10364057 DOI: 10.3389/fimmu.2023.1165936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/27/2023] Open
Abstract
Circulating antibody-secreting cells are present in the peripheral blood of healthy individuals reflecting the continued activity of the humoral immune system. Antibody-secreting cells typically express CD27. Here we describe and characterize a small population of antibody-secreting class switched CD19+CD43+ B cells that lack expression of CD27 in the peripheral blood of healthy subjects. In this study, we characterized CD27-CD43+ cells. We demonstrate that class-switched CD27-CD43+ B cells possess characteristics of conventional plasmablasts as they spontaneously secrete antibodies, are morphologically similar to antibody-secreting cells, show downregulation of B cell differentiation markers, and have a gene expression profile related to conventional plasmablasts. Despite these similarities, we observed differences in IgA and IgG subclass distribution, expression of homing markers, replication history, frequency of somatic hypermutation, immunoglobulin repertoire, gene expression related to Toll-like receptors, cytokines, and cytokine receptors, and antibody response to vaccination. Their frequency is altered in immune-mediated disorders. Conclusion we characterized CD27-CD43+ cells as antibody-secreting cells with differences in function and homing potential as compared to conventional CD27+ antibody-secreting cells.
Collapse
Affiliation(s)
- Kris Covens
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Biocartis, Research and Development, Mechelen, Belgium
| | - Bert Verbinnen
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Biomedical Laboratory Technology, Radius, Life Sciences and Chemistry, Thomas More Kempen, Geel, Belgium
| | - Britt G. de Jong
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Periodontology, ACTA, University of Amsterdam and VU University, Amsterdam, Netherlands
| | - Leen Moens
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Department of Microbiology and Immunology, Inborn Errors of Immunity, Leuven, Belgium
| | - Greet Wuyts
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
| | - Geert Verheyen
- Biomedical Laboratory Technology, Radius, Life Sciences and Chemistry, Thomas More Kempen, Geel, Belgium
| | - Kris Nys
- Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Stijn Smulders
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology and Immunology, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Andreas Weinhäusel
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
| | | | | | - Ellen De Langhe
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Jacques J. M. van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS), Salamanca, Spain
- Department of Medicine, University of Salamanca (USAL), Salamanca, Spain
| | - Menno C. van Zelm
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology Research Group, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
10
|
Dresser L, Chaar WA, Reder AT, Abuaf AF, Cipriani VP, Javed A. Effectiveness of rituximab versus oral immunosuppressive therapies in neuromyelitis optica spectrum disorder in a racially diverse cohort of subjects: A single-center retrospective study. Mult Scler Relat Disord 2023; 74:104718. [PMID: 37086634 DOI: 10.1016/j.msard.2023.104718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune, inflammatory disorder characterized by severe relapses and high level of disability. In clinical trials of NMOSD, Black patients are under-represented, < 12%, compared to a relatively high prevalence of NMSOD in this population, 10/100,000. Despite the higher prevalence of NMOSD in Black and Asian patients, there is limited knowledge of the effectiveness of disease modifying treatments across racially diverse groups. OBJECTIVE To assess the effectiveness of rituximab and oral immunosuppressive agents in a cohort of NMOSD patients, the majority of whom are Black, in a real-world, clinical setting. METHODS A single-center retrospective study was conducted at the University of Chicago Medical Center. INCLUSION CRITERIA (1) diagnosis according to the 2015 International Panel for NMO Diagnosis (IPND) Criteria, (2) positive anti-aquaporin-4 antibodies on ELISA or cell-based tests, (3) initiation of immunosuppressant therapy within 5 years of disease onset, (4) first-line treatment with rituximab, mycophenolate (MMF), or azathioprine (AZA). Patients with negative anti-AQP4 titers were excluded. Kaplan-Meier survival analysis was used to estimate proportion of relapse-free patients following initiation of first line immunosuppressive therapy. A Cox proportional hazards regression model assessed the association of risk of relapsing with first-line immunosuppressive treatments with and without adjustments of pre-specified factors (age at disease onset, duration of disease, sex, race, CNS location of relapse). RESULTS 7 of 29 patients (24%) receiving rituximab experienced a relapse within the first 3 years of treatment vs. 13 of 23 patients (57%) receiving either AZA or MMF. Within the first 6 months of treatment, 2 (6.9%) patients treated with rituximab experienced a relapse vs. 7 (30.4%) patients treated with either MMF or AZA. In the 29 patients treated with rituximab, the 1-year and 3-year proportion of relapse-free patients was 88.8% and 70.9%. For the 23 patients treated with either AZA or MMF, the 1-year and 3-year proportion of relapse-free patients was 69.5% and 38.7%. In the univariate analysis, the risk of relapse was significantly higher in patients treated with AZA or MMF compared to those treated with rituximab (hazard ratio [HR] of 2.48 [0.99 - 6.21]; p = 0.046). CONCLUSION In this real-world study involving a majority of Black NMOSD patients, rituximab was relatively more effective in preventing relapses within 3 years of therapy initiation than AZA and MMF. Rituximab remains an effective option for treating NMOSD, especially when there are delays in treatment due to access and economic issues associated with newer treatments.
Collapse
Affiliation(s)
- Laura Dresser
- MS & Neuromuscular Center of Excellence, Tampa, FL, United States of America
| | - Widad Abou Chaar
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Anthony T Reder
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Amanda Frisosky Abuaf
- Department of Neurology, The University of Wisconsin, Madison, WI, United States of America
| | - Veronica P Cipriani
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America
| | - Adil Javed
- Department of Neurology, The University of Chicago, Chicago, IL, United States of America.
| |
Collapse
|
11
|
Nada H, Sivaraman A, Lu Q, Min K, Kim S, Goo JI, Choi Y, Lee K. Perspective for Discovery of Small Molecule IL-6 Inhibitors through Study of Structure–Activity Relationships and Molecular Docking. J Med Chem 2023; 66:4417-4433. [PMID: 36971365 DOI: 10.1021/acs.jmedchem.2c01957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine that plays a key role in the pathogenesis and physiology of inflammatory and autoimmune diseases, such as coronary heart disease, cancer, Alzheimer's disease, asthma, rheumatoid arthritis, and most recently COVID-19. IL-6 and its signaling pathway are promising targets in the treatment of inflammatory and autoimmune diseases. Although, anti-IL-6 monoclonal antibodies are currently being used in clinics, huge unmet medical needs remain because of the high cost, administration-related toxicity, lack of opportunity for oral dosing, and potential immunogenicity of monoclonal antibody therapy. Furthermore, nonresponse or loss of response to monoclonal antibody therapy has been reported, which increases the importance of optimizing drug therapy with small molecule drugs. This work aims to provide a perspective for the discovery of novel small molecule IL-6 inhibitors by the analysis of the structure-activity relationships and computational studies for protein-protein inhibitors targeting the IL-6/IL-6 receptor/gp130 complex.
Collapse
|
12
|
Mahallawi WH, Alharbi WA, Aloufi SA, Ibrahim NA, Abdelrahman MM, Alhomayeed BA, Aboonq MS, Alqahtani SAM, Rajih ES, Bakhsh AM, Sandokji I. Declined Humoral Immunity of Kidney Transplant Recipients to SARS-CoV-2 Vaccines. Infect Drug Resist 2023; 16:2829-2840. [PMID: 37193301 PMCID: PMC10182766 DOI: 10.2147/idr.s408686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Background Kidney transplant recipients (KTRs) commonly suffer from impaired immunity. KTRs' compromised immune response to COVID-19 vaccines indicates urgent revision of immunisation policies. Methods A cross-sectional study was conducted in Madinah, Saudi Arabia of 84 KTRs who had received at least one dose of a COVID-19 vaccine. ELISA was used to evaluate anti-spike SARS-CoV-2 IgG and IgM antibody levels in blood samples obtained one month and seven months after vaccination. Univariate and multivariate analyses were performed to identify associations between seropositive status and factors such as the number of vaccine doses, transplant age, and immunosuppressive therapies. Results The mean age of KTRs was 44.3 ± 14.7 years. The IgG antibody seropositivity rate (n=66, 78.5%) was significantly higher than the seronegativity rate (n=18, 21.4%) in the whole cohort (p<0.001). In KTRs seroconverting after one month (n=66), anti-SARS-CoV-2 IgG levels declined significantly between one month (median [IQR]:3 [3-3]) and seven months (2.4 [1.7-2.6]) after vaccination (p<0.01). In KTRs with hypertension, IgG levels significantly decreased between one and seven months after vaccination (p<0.01). IgG levels also decreased significantly in KTRs with a transplant of >10 years (p=0.02). Maintenance immunosuppressive regimens (triple immunosuppressive therapy and steroid-based and antimetabolite-based regimens) led to a significant decrease in IgG levels between the first and second sample (p<0.01). KTRs receiving three vaccine doses showed higher antibody levels than those receiving a single dose or two doses, but the levels decreased significantly between one (median [IQR]: 3 [3-3]) and seven months (2.4 [1.9-2.6]) after vaccination (p<0.01). Conclusion KTRs' humoral response after SARS-CoV-2 vaccination is dramatically inhibited and wanes. Antibody levels show a significant decline over time in KTRs with hypertension; receiving triple immunosuppressive therapy or steroid-based or antimetabolite-based regimens; receiving mixed mRNA and viral vector vaccines; and with a transplant of >10 years.
Collapse
Affiliation(s)
- Waleed H Mahallawi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
- Correspondence: Waleed H Mahallawi, Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia, Email
| | - Wael A Alharbi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Sultan A Aloufi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Nadir A Ibrahim
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | | | | | - Moutasem S Aboonq
- Department of Physiology, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | - Emad S Rajih
- Urology Department, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Abdulaziz M Bakhsh
- Urology Department, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Ibrahim Sandokji
- Department of Pediatrics, College of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
13
|
Frede N, Lorenzetti R, Hüppe JM, Janowska I, Troilo A, Schleyer MT, Venhoff AC, Voll RE, Thiel J, Venhoff N, Rizzi M. JAK inhibitors differentially modulate B cell activation, maturation and function: A comparative analysis of five JAK inhibitors in an in-vitro B cell differentiation model and in patients with rheumatoid arthritis. Front Immunol 2023; 14:1087986. [PMID: 36776828 PMCID: PMC9908612 DOI: 10.3389/fimmu.2023.1087986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Janus kinase (JAK) inhibitors have been approved for the treatment of several immune-mediated diseases (IMIDs) including rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other IMIDs. However, detailed studies investigating the effects of different JAK inhibitors on B cells are missing. Within this study, we therefore aimed to characterize the effect of JAK inhibition on the B cell compartment. Methods To this end, we investigated the B cell compartment under JAK inhibition and compared the specific effects of the different JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib (JAK1/2) as well as filgotinib (selective JAK1) on in-vitro B cell activation, proliferation, and class switch recombination and involved pathways. Results While B cell phenotyping of RA patients showed an increase in marginal zone (MZ) B cells under JAK inhibition, comparison with healthy donors revealed that the relative frequency of MZ B cells was still lower compared to healthy controls. In an in-vitro model of T-cell-independent B cell activation we observed that JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. We detected an altered B cell differentiation with a significant increase in MZ-like B cells and an increase in plasmablast differentiation in the first days of culture, most pronounced with the pan-JAK inhibitor tofacitinib, although there was no increase in immunoglobulin secretion in-vitro. Notably, we further observed a profound reduction of switched memory B cell formation, especially with JAK1/2 inhibition. JAK inhibitor treatment led to a dose-dependent reduction of STAT3 expression and phosphorylation as well as STAT3 target gene expression and modulated the secretion of pro- and anti-inflammatory cytokines by B cells. Conclusion JAK inhibition has a major effect on B cell activation and differentiation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.
Collapse
Affiliation(s)
- Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janika M Hüppe
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marei-Theresa Schleyer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana C Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Eskandari SK, Gaya da Costa M, Faria B, Petr V, Azzi JR, Berger SP, Seelen MAJ, Damman J, Poppelaars F. An interleukin 6-based genetic risk score strengthened with interleukin 10 polymorphisms associated with long-term kidney allograft outcomes. Am J Transplant 2022; 22 Suppl 4:45-57. [PMID: 36453708 PMCID: PMC10107952 DOI: 10.1111/ajt.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022]
Abstract
Of all kidney transplants, half are still lost in the first decade after transplantation. Here, using genetics, we probed whether interleukin 6 (IL-6) could be a target in kidney transplantation to improve graft survival. Additionally, we investigated if a genetic risk score (GRS) based on IL6 and IL10 variants could improve prognostication of graft loss. In a prospective cohort study, DNA of 1271 donor-recipient kidney transplant pairs was analyzed for the presence of IL6, IL6R, IL10, IL10RA, and IL10RB variants. These polymorphisms and their GRS were then associated with 15-year death-censored allograft survival. The C|C-genotype of the IL6 polymorphism in donor kidneys and the combined C|C-genotype in donor-recipient pairs were both associated with a reduced risk of graft loss (p = .043 and p = .042, respectively). Additionally, the GRS based on IL6, IL6R, IL10, IL10RA, and IL10RB variants was independently associated with the risk of graft loss (HR 1.53, 95%-CI [1.32-1.84]; p < .001). Notably, the GRS improved risk stratification and prediction of graft loss beyond the level of contemporary clinical markers. Our findings reveal the merits of a polygenic IL-6-based risk score strengthened with IL-10- polymorphisms for the prognostication and risk stratification of late graft failure in kidney transplantation.
Collapse
Affiliation(s)
- Siawosh K. Eskandari
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Transplantation Research CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Department of AnesthesiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Bernardo Faria
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
- Nephrology R&D GroupInstitute for Research and Innovation in Health (i3S), São João University Hospital Center, University of PortoPortoPortugal
| | - Vojtech Petr
- Department of NephrologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jamil R. Azzi
- Transplantation Research CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Marc A. J. Seelen
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Jeffrey Damman
- Department of PathologyErasmus University Medical Center, Erasmus UniversityRotterdamThe Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| |
Collapse
|
15
|
Groza Y, Jemelkova J, Kafkova LR, Maly P, Raska M. IL-6 and its role in IgA nephropathy development. Cytokine Growth Factor Rev 2022; 66:1-14. [PMID: 35527168 DOI: 10.1016/j.cytogfr.2022.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
IL-6 is considered one of the well characterized cytokines exhibiting homeostatic, pro- and anti-inflammatory activities, depending on the receptor variant and the induced intracellular cis- or trans-signaling responses. IL-6-activated pathways are involved in the regulation of cell proliferation, survival, differentiation, and cell metabolism changes. Deviations in IL-6 levels or abnormal response to IL-6 signaling are associated with several autoimmune diseases including IgA nephropathy (IgAN), one of most frequent primary glomerulonephritis worldwide. IgAN is associated with increased plasma concentration of IL-6 and increased plasma concentration of aberrantly galactosylated IgA1 immunoglobulin (Gd-IgA1). Gd-IgA1 is specifically recognized by autoantibodies, leading to the formation of circulating immune complexes (CIC) with nephritogenic potential, since CIC deposited in the glomerular mesangium induce mesangial cells proliferation and glomerular injury. Infection of the upper respiratory or digestive tract enhances IL-6 production and in IgAN patients is often followed by the macroscopic hematuria. This review recapitulates general aspects of IL-6 signaling and summarizes experimental evidences about IL-6 involvement in the etiopathogenesis of IgA nephropathy through the production of Gd-IgA1 and regulation of mesangial cell proliferation.
Collapse
Affiliation(s)
- Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jana Jemelkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic
| | - Leona Raskova Kafkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic.
| | - Petr Maly
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 779 00, Czech Republic.
| |
Collapse
|
16
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
17
|
Stumpf J, Schwöbel J, Karger C, Schirutschke H, Mauer R, Klimova A, Tonn T, Hugo C. Anti-SARS-CoV-2 Revaccination Success in Kidney Transplant Recipients With No Initial Humoral Response Is Linked to Primary Vaccine Type. Front Med (Lausanne) 2022; 9:910987. [PMID: 35860743 PMCID: PMC9289185 DOI: 10.3389/fmed.2022.910987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
Background While anti-SARS-CoV-2 vaccination success in kidney transplant recipients (KTR) after two doses and 1273-mRNA was associated with higher seroconversion rates compared to BNT162b2-mRNA in our “DIA-Vacc Study” (NCT04799808), it remains unclear whether this may also be the case in non-responding KTR after a third vaccination dose. Materials and Methods Non-responding KTR (after two mRNA vaccinations) were investigated 4.5–6 months after study enrollment at first vaccination. One hundred sixty-six of 193 received a third vaccination between 3.5 and 5 months after the initial study enrollment and were always investigated 4 weeks later, exploring humoral immune response (ELISA) and specific cellular responses (interferon-γ release assay). Sixty-seven of 193 measurements in KTR were done immediately before the third vaccination or in KTR without further vaccination at 4.5–6 months. Results Of 193 KTR with no initial immune response 4 weeks after the second vaccination, 106/87 were immunized twice with 1273-mRNA/BNT162b2-mRNA, respectively. Additional mRNA booster vaccination led to positive seroconversion rates of 30–50%, while 16% of the initial non-responders demonstrated a delayed seroconversion without any booster vaccination. Using logistic regression analysis, a positive IgG response after the third vaccination was 23% more likely if the primary vaccine type was 1273-mRNA compared to BNT162b2-mRNA (OR = 4.420, 95% CI [1.208–16.173], p = 0.025). Primary vaccine type, a weak anti-SpikeS1 IgG response 4 weeks after second vaccination (3.2–35.2 BAU/ml, p < 0.001) and a lack of MMF/MPA as part of the immunosuppressive treatment (trend, p = 0.06) but no other variables studied correlated with seroconversion success. Conclusion This observational study adds important evidence toward using 1273-mRNA as the primary mRNA vaccine type for immunosuppressed KTR.
Collapse
Affiliation(s)
- Julian Stumpf
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Kuratorium für Heimdialyse (KfH)-Nierenzentrum Dresden, Dresden, Germany
- *Correspondence: Julian Stumpf,
| | | | - Claudia Karger
- Kuratorium für Heimdialyse (KfH)-Nierenzentrum am Klinikum St. Georg, Leipzig, Germany
| | - Holger Schirutschke
- Patienten-Heimversorgung Gemeinnützige Stiftung (PHV) Dialysezentrum Dresden Friedrichstadt, Dresden, Germany
| | - René Mauer
- Faculty of Medicine Carl Gustav Carus, Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases Dresden, Dresden, Germany
| | - Torsten Tonn
- Institute for Transfusion Medicine, German Red Cross Blood Donation Service North-East, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Transfusion Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Hugo
- Medizinische Klinik und Poliklinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Kuratorium für Heimdialyse (KfH)-Nierenzentrum Dresden, Dresden, Germany
| |
Collapse
|
18
|
Maioli G, Caporali R, Favalli EG. Lessons learned from the preclinical discovery and development of sarilumab for the treatment of rheumatoid arthritis. Expert Opin Drug Discov 2022; 17:799-813. [PMID: 35757853 DOI: 10.1080/17460441.2022.2093852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) pathogenesis is driven by a complex network of proinflammatory cytokines, among which interleukin-6 (IL-6) plays a key role in inducing and perpetuating chronic inflammation. Targeting the IL-6 pathway has shown to be an invaluable treatment strategy, as demonstrated by the results accrued in the last decade with the first IL-6 inhibitor, tocilizumab. More recently, a second monoclonal antibody blocking IL-6, sarilumab, has enriched our armamentarium by proving outstanding efficacy in RA treatment. AREAS COVERED After exploring the IL-6 pathway under physiological conditions and in the RA pathogenesis, in this review we discuss the pharmacologic properties of sarilumab and the clinical trials that constitute the sarilumab development program and have enabled its licensed application. EXPERT OPINION Results from clinical trials confirmed the efficacy and safety of sarilumab for the treatment of RA, similar to its precursor tocilizumab. Blocking IL-6 pathway results in comprehensive control of the disease, from both physician's and patient's perspective, and of RA comorbidities and extra-articular manifestations which are largely IL-6 driven. Finally, the proven efficacy of sarilumab as monotherapy arises the drug as a required therapeutic alternative considering the large proportion of patients intolerant or inadequate to receive conventional synthetic disease-modifying drugs (csDMARDs).
Collapse
Affiliation(s)
- Gabriella Maioli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Roberto Caporali
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| | - Ennio Giulio Favalli
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, Milan, Italy.,Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Schrezenmeier E, Rincon-Arevalo H, Jens A, Stefanski AL, Hammett C, Osmanodja B, Koch N, Zukunft B, Beck J, Oellerich M, Proß V, Stahl C, Choi M, Bachmann F, Liefeldt L, Glander P, Schütz E, Bornemann-Kolatzki K, López del Moral C, Schrezenmeier H, Ludwig C, Jahrsdörfer B, Eckardt KU, Lachmann N, Kotsch K, Dörner T, Halleck F, Sattler A, Budde K. Temporary antimetabolite treatment hold boosts SARS-CoV-2 vaccination-specific humoral and cellular immunity in kidney transplant recipients. JCI Insight 2022; 7:e157836. [PMID: 35349490 PMCID: PMC9090237 DOI: 10.1172/jci.insight.157836] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from patients with autoimmune disorders suggest that temporary MPA hold might greatly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during a temporary (5 weeks) MPA/azathioprine hold, who had not mounted a humoral immune response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus-neutralizing capacity. Interestingly, 21/25 (84%) calcineurin inhibitor-treated patients responded, but only 1/4 belatacept-treated patients responded. In line with humoral responses, counts and relative frequencies of spike receptor binding domain-specific (RBD-specific) B cells were markedly increased on day 7 after vaccination, with an increase in RBD-specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo-activated programmed cell death 1-positive T cells significantly increased after revaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of antimetabolite hold in kidney transplant recipients.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care and
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Hector Rincon-Arevalo
- Department of Nephrology and Medical Intensive Care and
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, Institute of Medical Research, University of Antioquia (UdeA), Medellín, Colombia
| | - Annika Jens
- Department of Nephrology and Medical Intensive Care and
| | - Ana-Luisa Stefanski
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | | | | | - Nadine Koch
- Department of Nephrology and Medical Intensive Care and
| | | | - Julia Beck
- Department of Clinical Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
- Chronix Biomedical GmbH, Göttingen, Germany
| | - Michael Oellerich
- Department of Clinical Pharmacology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Vanessa Proß
- Department for General and Visceral Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Stahl
- Department for General and Visceral Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care and
| | | | - Lutz Liefeldt
- Department of Nephrology and Medical Intensive Care and
| | - Petra Glander
- Department of Nephrology and Medical Intensive Care and
| | | | | | | | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | | | - Nils Lachmann
- Center for Tumor Medicine, H&I Laboratory, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Kotsch
- Department for General and Visceral Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Centre Berlin (DRFZ), Berlin, Germany
| | | | - Arne Sattler
- Department for General and Visceral Surgery, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care and
| |
Collapse
|
20
|
Li J, Luo M, Li B, Lou Y, Zhu Y, Bai X, Sun B, Lu X, Luo P. Immunomodulatory Activity of Mesenchymal Stem Cells in Lupus Nephritis: Advances and Applications. Front Immunol 2022; 13:843192. [PMID: 35359961 PMCID: PMC8960601 DOI: 10.3389/fimmu.2022.843192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/17/2022] [Indexed: 12/29/2022] Open
Abstract
Lupus nephritis (LN) is a significant cause of various acute and chronic renal diseases, which can eventually lead to end-stage renal disease. The pathogenic mechanisms of LN are characterized by abnormal activation of the immune responses, increased cytokine production, and dysregulation of inflammatory signaling pathways. LN treatment is an important issue in the prevention and treatment of systemic lupus erythematosus. Mesenchymal stem cells (MSCs) have the advantages of immunomodulation, anti-inflammation, and anti-proliferation. These unique properties make MSCs a strong candidate for cell therapy of autoimmune diseases. MSCs can suppress the proliferation of innate and adaptive immune cells, such as natural killer cells (NKs), dendritic cells (DCs), T cells, and B cells. Furthermore, MSCs suppress the functions of various immune cells, such as the cytotoxicity of T cells and NKs, maturation and antibody secretion of B cells, maturation and antigen presentation of DCs, and inhibition of cytokine secretion, such as interleukins (ILs), tumor necrosis factor (TNF), and interferons (IFNs) by a variety of immune cells. MSCs can exert immunomodulatory effects in LN through these immune functions to suppress autoimmunity, improve renal pathology, and restore kidney function in lupus mice and LN patients. Herein, we review the role of immune cells and cytokines in the pathogenesis of LN and the mechanisms involved, as well as the progress of research on the immunomodulatory role of MSCs in LN.
Collapse
Affiliation(s)
- Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Baichao Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Ghamlouch H, Boyle EM, Blaney P, Wang Y, Choi J, Williams L, Bauer M, Auclair D, Bruno B, Walker BA, Davies FE, Morgan GJ. Insights into high-risk multiple myeloma from an analysis of the role of PHF19 in cancer. J Exp Clin Cancer Res 2021; 40:380. [PMID: 34857028 PMCID: PMC8638425 DOI: 10.1186/s13046-021-02185-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in outcome, 15-25% of newly diagnosed multiple myeloma (MM) patients have treatment resistant high-risk (HR) disease with a poor survival. The lack of a genetic basis for HR has focused attention on the role played by epigenetic changes. Aberrant expression and somatic mutations affecting genes involved in the regulation of tri-methylation of the lysine (K) 27 on histone 3 H3 (H3K27me3) are common in cancer. H3K27me3 is catalyzed by EZH2, the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2). The deregulation of H3K27me3 has been shown to be involved in oncogenic transformation and tumor progression in a variety of hematological malignancies including MM. Recently we have shown that aberrant overexpression of the PRC2 subunit PHD Finger Protein 19 (PHF19) is the most significant overall contributor to HR status further focusing attention on the role played by epigenetic change in MM. By modulating both the PRC2/EZH2 catalytic activity and recruitment, PHF19 regulates the expression of key genes involved in cell growth and differentiation. Here we review the expression, regulation and function of PHF19 both in normal and the pathological contexts of solid cancers and MM. We present evidence that strongly implicates PHF19 in the regulation of genes important in cell cycle and the genetic stability of MM cells making it highly relevant to HR MM behavior. A detailed understanding of the normal and pathological functions of PHF19 will allow us to design therapeutic strategies able to target aggressive subsets of MM.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| | - Eileen M Boyle
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Patrick Blaney
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Yubao Wang
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Louis Williams
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel Auclair
- The Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Benedetto Bruno
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Brian A Walker
- Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Faith E Davies
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA
| | - Gareth J Morgan
- Myeloma Research Program, NYU Langone Medical Center, Perlmutter Cancer Center, 522 1st Avenue, Manhattan, New York City, NY, 10016, USA.
| |
Collapse
|
22
|
Zhang Y, Gui M, Wang Y, Mani N, Chaudhuri S, Gao B, Li H, Kanwar YS, Lewis SA, Dumas SN, Ntambi. JM, Zhang K, Fang D. Inositol-Requiring Enzyme 1α-Mediated Synthesis of Monounsaturated Fatty Acids as a Driver of B Cell Differentiation and Lupus-like Autoimmune Disease. Arthritis Rheumatol 2021; 73:2314-2326. [PMID: 34105254 PMCID: PMC8651829 DOI: 10.1002/art.41883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the molecular mechanisms underlying dysregulation of lipid metabolism in the pathogenesis of systemic lupus erythematosus (SLE). METHODS B cells in peripheral blood from patients with SLE and healthy controls were stained with BODIPY dye for detection of lipids. Mice with targeted knockout of genes for B cell-specific inositol-requiring enzyme 1α (IRE-1α) and stearoyl-coenzyme A desaturase 1 (SCD-1) were used for studying the influence of the IRE-1α/SCD-1/SCD-2 pathway on B cell differentiation and autoantibody production. The preclinical efficacy of IRE-1α suppression as a treatment for lupus was tested in MRL.Faslpr mice. RESULTS In cultures with mouse IRE-1α-null B cells, supplementation with monounsaturated fatty acids largely rescued differentiation of plasma cells from B cells, indicating that the compromised capacity of B cell differentiation in the absence of IRE-1α may be attributable to a defect in monounsaturated fatty acid synthesis. Moreover, activation with IRE-1α/X-box binding protein 1 (XBP-1) was required to facilitate B cell expression of SCD-1 and SCD-2, which are 2 critical enzymes that catalyze monounsaturated fatty acid synthesis. Mice with targeted Scd1 gene deletion displayed a phenotype that was similar to that of IRE-1α-deficient mice, with diminished B cell differentiation into plasma cells. Importantly, in B cells from patients with lupus, both IRE-1α expression and Xbp1 messenger RNA splicing were significantly increased, and this was positively correlated with the expression of both Scd1 and Scd2 as well as with the amount of B cell lipid deposition. In MRL.Faslpr mice, both genetic and pharmacologic suppression of IRE-1α protected against the pathologic development and progression of lupus-like autoimmune disease. CONCLUSION The results of this study reveal a molecular link in the dysregulation of lipid metabolism in the pathogenesis of lupus, demonstrating that the IRE-1α/XBP-1 pathway controls plasma cell differentiation through SCD-1/SCD-2-mediated monounsaturated fatty acid synthesis. These findings provide a rationale for targeting IRE-1α and monounsaturated fatty acid synthesis in the treatment of patients with SLE.
Collapse
Affiliation(s)
- Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Ming Gui
- Department of Rheumatology and Immunology, Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, China
| | - Yajun Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Nikita Mani
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Shuvam Chaudhuri
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Sarah A. Lewis
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Sabrina N. Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - James M. Ntambi.
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - Kezhong Zhang
- Department of Biochemistry, Microbiology, and Immunology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| |
Collapse
|
23
|
Li H, Liu S, Han J, Li S, Gao X, Wang M, Zhu J, Jin T. Role of Toll-Like Receptors in Neuroimmune Diseases: Therapeutic Targets and Problems. Front Immunol 2021; 12:777606. [PMID: 34790205 PMCID: PMC8591135 DOI: 10.3389/fimmu.2021.777606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a class of proteins playing a key role in innate and adaptive immune responses. TLRs are involved in the development and progression of neuroimmune diseases via initiating inflammatory responses. Thus, targeting TLRs signaling pathway may be considered as a potential therapy for neuroimmune diseases. However, the role of TLRs is elusive and complex in neuroimmune diseases. In addition to the inadequate immune response of TLRs inhibitors in the experiments, the recent studies also demonstrated that partial activation of TLRs is conducive to the production of anti-inflammatory factors and nervous system repair. Exploring the mechanism of TLRs in neuroimmune diseases and combining with developing the emerging drug may conquer neuroimmune diseases in the future. Herein, we provide an overview of the role of TLRs in several neuroimmune diseases, including multiple sclerosis, neuromyelitis optica spectrum disorder, Guillain-Barré syndrome and myasthenia gravis. Emerging difficulties and potential solutions in clinical application of TLRs inhibitors will also be discussed.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shan Liu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Shengxian Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyan Gao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital, Solna, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Jarlborg M, Gabay C. Systemic effects of IL-6 blockade in rheumatoid arthritis beyond the joints. Cytokine 2021; 149:155742. [PMID: 34688020 DOI: 10.1016/j.cyto.2021.155742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 is produced locally in response to an inflammatory stimulus, and is able to induce systemic manifestations at distance from the site of inflammation. Its unique signaling mechanism, including classical and trans-signaling pathways, leads to a major expansion in the number of cell types responding to IL-6. This pleiotropic cytokine is a key factor in the pathogenesis of rheumatoid arthritis (RA) and is involved in many extra-articular manifestations that accompany the disease. Thus, IL-6 blockade is associated with various biological effects beyond the joints. In this review, the systemic effects of IL-6 in RA comorbidities and the consequences of its blockade will be discussed, including anemia of chronic disease, cardiovascular risks, bone and muscle functions, and neuro-psychological manifestations.
Collapse
Affiliation(s)
- Matthias Jarlborg
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland; VIB-UGent Center for Inflammation Research and Ghent University, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, University Hospital of Geneva, and Department of Pathology and Immunology, University of Geneva School of Medicine, Geneva, Switzerland.
| |
Collapse
|
25
|
Boulanger M, Molina E, Wang K, Kickler T, Xu Y, Garibaldi BT. Peripheral Plasma Cells Associated with Mortality Benefit in Severe COVID-19: A Marker of Disease Resolution. Am J Med 2021; 134:1029-1033. [PMID: 33811876 PMCID: PMC8010346 DOI: 10.1016/j.amjmed.2021.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cytokines seen in severe coronavirus disease 2019 (COVID-19) are associated with proliferation, differentiation, and survival of plasma cells. Plasma cells are not routinely found in peripheral blood, though may produce virus-neutralizing antibodies in COVID-19 later in the course of an infection. METHODS Using the Johns Hopkins COVID-19 Precision Medicine Analytics Platform Registry, we identified hospitalized adult patients with confirmed severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and stratified by presence of plasma cells and World Health Organization (WHO) disease severity. To identify plasma cells, we employed a sensitive flow cytometric screening method for highly fluorescent lymphocytes and confirmed these microscopically. Cox regression models were used to evaluate time to death and time to clinical improvement by the presence of plasma cells in patients with severe disease. RESULTS Of 2301 hospitalized patients with confirmed infection, 371 had plasma cells identified. Patients with plasma cells were more likely to have severe disease, though 86.6% developed plasma cells after onset of severe disease. In patients with severe disease, after adjusting for age, sex, body mass index, race, and other covariates associated with disease severity, patients with plasma cells had a reduced hazard of death (adjusted hazard ratio: 0.57; 95% confidence interval: 0.38-0.87; P value: .008). There was no significant association with the presence of plasma cells and time to clinical improvement. CONCLUSIONS Patients with severe disease who have detectable plasma cells in the peripheral blood have improved mortality despite adjusting for known covariates associated with disease severity in COVID-19. Further investigation is warranted to understand the role of plasma cells in the immune response to COVID-19.
Collapse
Affiliation(s)
- Mary Boulanger
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Md.
| | - Emily Molina
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Md
| | - Kunbo Wang
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Md
| | - Thomas Kickler
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Md
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Md
| | - Brian T Garibaldi
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Md; Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, Md
| |
Collapse
|
26
|
Wada Y, Miyamoto S, Iida S, Sano K, Sato Y, Ainai A, Saito K, Katano H, Hasegawa H, Suzuki T. Propagation of activated B cells by in vitro SFTSV infection of human peripheral blood mononuclear cells. J Infect Dis 2021; 225:269-281. [PMID: 34223910 DOI: 10.1093/infdis/jiab343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/03/2021] [Indexed: 11/12/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging, life-threatening tick-borne viral hemorrhagic fever (VHF) caused by SFTS virus (SFTSV). Transient appearance of plasmablastic lymphocytes in the peripheral blood of SFTS cases has been reported; however, the pathological significance of this transient burst in peripheral blood plasmablastic lymphocytes is unclear. Here, we show that SFTSV infection of human peripheral blood mononuclear cells (PBMCs) in vitro induced propagation of atypical lymphocytes. These atypical lymphocytes were activated B cells, which were induced by secretory factors other than viral particles; these factors were secreted by SFTSV-infected B cells. Activated B cells shared morphological and immunophenotypic characteristics with B cells of plasmablast lineage observed in peripheral blood and autopsy tissues of SFTS cases. This suggests that SFTSV-infected B cells secrete factors that induce B cell differentiation to plasmablasts, which may play an important role in pathogenesis of SFTS through the SFTSV-B cell axis.
Collapse
Affiliation(s)
- Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Sho Miyamoto
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kumpei Saito
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.,Division of Infectious Diseases Pathology, Department of Global Infectious Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
27
|
De Luca G, Tomelleri A, Dagna L, Matucci-Cerinic M. The target on B cells in Systemic Sclerosis: a "midsummer dream" to extinguish inflammation and prevent early disease progression to fibrosis. Clin Rheumatol 2021; 40:2529-2533. [PMID: 34021841 DOI: 10.1007/s10067-021-05733-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Giacomo De Luca
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132, Milan, Italy
- Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132, Milan, Italy
- Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132, Milan, Italy
- Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132, Milan, Italy.
- Department Experimental and Clinical Medicine and Division of Rheumatology AOUC, University of Florence, Via delle Oblate 4, 50139, Florence, Italy.
| |
Collapse
|
28
|
Huan X, Luo S, Zhong H, Zheng X, Song J, Zhou L, Lu J, Wang Y, Xu Y, Xi J, Zou Z, Chen S, Zhao C. In-depth peripheral CD4 + T profile correlates with myasthenic crisis. Ann Clin Transl Neurol 2021; 8:749-762. [PMID: 33616296 PMCID: PMC8045923 DOI: 10.1002/acn3.51312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Myasthenia gravis (MG) is an autoimmune disease caused by autoantibodies against neuromuscular junctions. Myasthenic crisis (MC) represents the most severe state of MG with high in‐hospital mortality. We aimed to identify immune signatures using in‐depth profiling in MC, and to assess the correlations between immune biomarkers with clinical severity longitudinally. Methods We studied 181 participants including 57 healthy controls, 96 patients with MG who never experienced crisis and 28 MC patients from December 2018 through June 2020. Follow‐up visits occurred prospectively from crisis to 6 months off‐mechanical ventilation. The frequencies of 20 CD4+ T subpopulations and 18 serum cytokines were associated with clinical scores using correlations and principal component analysis. Results Patients in crisis exhibited a proinflammatory CD4+T response with elevated Th1 (P = 0.026), and Th17 cells (P = 0.032); decreased T follicular helper 2 (Tfh2) cells (P < 0.001), Tnaive in Tfh cells (P < 0.001), ICOS−Tfh cells (P = 0.017), and T central memory in Tfh (P = 0.022) compared with controls, and increased frequencies of Tregs (P = 0.026) and Tfh17 (P = 0.045) compared with non‐crisis MG. Cytokine cascade was identified in crisis including the ones associated with Th1 (IL‐1β/2/12p70/18/27/IFN‐γ/TNF‐α), Th2 (IL‐4/5/13), Th17 (IL‐6/17A/21/22/23/GM‐CSF), Th9 (IL‐9), and Treg (IL‐10). Longitudinally, seven immune biomarkers including Tregs, IL‐2/4/17A/IFN‐γ/TNF‐α/GM‐CSF had significant correlations with MG‐activities of daily living score. Interpretation Vigorous inflammatory CD4+ T signatures were identified in MC and are associated with clinical severity. Future research is needed to explore its potential candidacy for therapeutic intervention and predicting impending crisis.
Collapse
Affiliation(s)
- Xiao Huan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Huahua Zhong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Xueying Zheng
- Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Jie Song
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Jun Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital Fudan University, Shanghai, China
| | - Yafang Xu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Zhangyu Zou
- Department of Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
29
|
Moura RA, Fonseca JE. JAK Inhibitors and Modulation of B Cell Immune Responses in Rheumatoid Arthritis. Front Med (Lausanne) 2021; 7:607725. [PMID: 33614673 PMCID: PMC7892604 DOI: 10.3389/fmed.2020.607725] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic immune-mediated inflammatory disease that can lead to joint destruction, functional disability and substantial comorbidity due to the involvement of multiple organs and systems. B cells have several important roles in RA pathogenesis, namely through autoantibody production, antigen presentation, T cell activation, cytokine release and ectopic lymphoid neogenesis. The success of B cell depletion therapy with rituximab, a monoclonal antibody directed against CD20 expressed by B cells, has further supported B cell intervention in RA development. Despite the efficacy of synthetic and biologic disease modifying anti-rheumatic drugs (DMARDs) in the treatment of RA, few patients reach sustained remission and refractory disease is a concern that needs critical evaluation and close monitoring. Janus kinase (JAK) inhibitors or JAKi are a new class of oral medications recently approved for the treatment of RA. JAK inhibitors suppress the activity of one or more of the JAK family of tyrosine kinases, thus interfering with the JAK-Signal Transducer and Activator of Transcription (STAT) signaling pathway. To date, there are five JAK inhibitors (tofacitinib, baricitinib, upadacitinib, peficitinib and filgotinib) approved in the USA, Europe and/ or Japan for RA treatment. Evidence from the literature indicates that JAK inhibitors interfere with B cell functions. In this review, the main results obtained in clinical trials, pharmacokinetic, in vitro and in vivo studies concerning the effects of JAK inhibitors on B cell immune responses in RA are summarized.
Collapse
Affiliation(s)
- Rita A Moura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| |
Collapse
|
30
|
Chen M, Yan F, Liu S, Wang Y, Chen J, Zhou E, Lin L, Ye J. Xbp1-u and Xbp1-s from Nile tilapia (Oreochromis niloticus): Transcriptional profiling upon Streptococcus agalactiae infection and the potential role in B cell activation and differentiation. FISH & SHELLFISH IMMUNOLOGY 2020; 107:202-210. [PMID: 33011436 DOI: 10.1016/j.fsi.2020.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/02/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
X-box protein 1 (Xbp1), an essential transcription factor including an unstable form (Xbp1-u) and a stable form (Xbp1-s), plays an vital role in B cell activation and differentiation to plasma cells. In this study, we cloned and identified Xbp1-u gene from Nile tilapia (Oreochromis niloticus), containing 783 bp of nucleotide sequence encoding 260 amino acids. The deduced protein possesses a basic region leucine zipper domain (bZIP) and 26 ribonucleotides of OnXbp1-u transcript. Transcription analysis revealed OnXbp1-u and OnXbp1-s were widely distributed in all examined tissues, with a high expression in immune-related tissues. When stimulated with Streptococcus agalactiae in vivo, the expressions of OnXbp1-u and OnXbp1-s were significantly up-regulated in liver, spleen, head kidney, blood, skin and intestine. After in vitro challenge upon S.agalactiae, the similar up-regulations of OnXbp1-u and OnXbp1-s were also demonstrated in head kidney leukocytes. Moreover, the OnXbp1-u and OnXbp1-s could get involved in LPS-inducible B cell activation and (r)OnIL6-inducible B cell differentiation. Taken together, the results indicated that OnXbp1-u and OnXbp1-s might not only involved in the immune response against S. agalactiae challenge, but also in the B cell activation and differentiation in Nile tilapia.
Collapse
Affiliation(s)
- Meng Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Fangfang Yan
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuo Liu
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuhong Wang
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianlin Chen
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Enxu Zhou
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Health and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
31
|
Concomitant Imbalances of Systemic and Mucosal Immunity Increase HIV Acquisition Risk. J Acquir Immune Defic Syndr 2020; 84:85-91. [PMID: 31985699 DOI: 10.1097/qai.0000000000002299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported association of increased cervical RANTES and decreased secretory leukocyte protease inhibitor (SLPI) with higher risk of HIV acquisition in reproductive-age women. We now examine the interaction of concomitantly altered systemic and cervical immunity on such risk. METHODS We measured immune biomarkers in 4390 cervical and 2390 paired serum specimens at quarterly visits in 218 HIV seroconverters and 784 seronegative women. We assessed proinflammatory (IL-1β, IL-6, IL-8, MIP-3α, and RANTES), anti-inflammatory (IL-1RA and SLPI), vascular activation (vascular endothelial growth factor and Intercellular Adhesion Molecule-1) and defensin (BD2) cervical biomarkers and systemic (peripheral blood) C reactive protein (CRP), IL-6, IL-7, and sCD14 as indicators of immune dysregulation. Biomarker levels were Box-Cox transformed and odds ratios for HIV acquisition calculated based on top quartile or higher/lower than median levels for all HIV-negative visits. RESULTS Subsequent HIV acquisition was associated with 5 of 14 individual biomarkers: low systemic CRP [odds ratio (OR) = 1.49, 1.21-1.83] and IL-6 (OR = 1.23, 1.00-1.51), high cervical BD-2 (OR = 1.33, 1.11-1.58) and RANTES (OR = 1.20, 1.01-1.43), and low cervical IL-1RA (OR = 0.65, 0.48-0.86). Low systemic CRP concomitant with altered cervical immunity, especially high BD2, conveyed highest HIV risk (1.63, 1.29-2.05). Additional markers of increased risk emerged when low systemic CRP coincided with: low systemic IL-6 and IL-7 (OR = 1.53, 1.18-1.97); high cervical IL-8 and MIP-3α (OR = 1.40, 1.07-1.83); high cervical IL-1β and IL-6 (OR = 1.43, 1.09-1.86); or low cervical SLPI (OR = 1.36, 1.08-1.71). CONCLUSIONS Changes in both peripheral and mucosal immunity may precede and predispose women to HIV infection. Suppressed systemic immunity (ie, low CRP) alone or in combination with imbalanced cervical innate immunity (high proinflammatory and low anti-inflammatory mediators) indicated increased vulnerability to infection. Understanding these combined effects on HIV susceptibility is essential to preventing new infections.
Collapse
|
32
|
Yokoyama Y, Sawada K, Aoyama N, Yoshimura N, Sako M, Hirai F, Kashiwagi N, Suzuki Y. Efficacy of Granulocyte and Monocyte Adsorptive Apheresis in Patients With Inflammatory Bowel Disease Showing Lost Response to Infliximab. J Crohns Colitis 2020; 14:1264-1273. [PMID: 32166331 DOI: 10.1093/ecco-jcc/jjaa051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS In inflammatory bowel disease [IBD] patients, antibody-to-infliximab [ATI] generation is responsible for loss of response [LOR] and infusion reaction [IR] to infliximab. An immuno-therapeutic approach is considered an option to overcome LOR. Granulocyte/monocyte adsorptive apheresis [GMA] using an Adacolumn has been shown to have clinical efficacy together with immunomodulatory effects in IBD patients. METHODS We developed an ATI-CAI assay utilizing a C1q immobilized plate and applied it to measure ATI in patients who were receiving infliximab, including 56 with sustained response, 76 with LOR and six with IR. Furthermore, 14 patients with LOR and two with paradoxical skin reactions who received infliximab + GMA combination therapy were analysed. RESULTS Fourteen patients with LOR, seven with Crohn's disease and seven with ulcerative colitis, showed significantly improved clinical indices [p = 0.0009], and decreased ATI [p = 0.0171] and interleukin-6 [p = 0.0537] levels at week 8 following initiation of infliximab + GMA therapy. Nine patients who received combination therapy achieved remission, which was maintained to week 24 with infliximab alone. Additionally, cutaneous lesions in two patients with IR were improved. ATI-CAI assay efficiency was not influenced by infliximab concentration during the test. Pre- and post-infliximab infusion ATI levels were not different. Patients with ATI greater than the 0.153 μg/mL cut-off value were likely to experience LOR [odds ratio 3.0]. CONCLUSIONS Patients who received infliximab + GMA therapy appeared to regain clinical response to infliximab by a decrease in ATI level. Furthermore, the concentration of infliximab in the test did not influence ATI measurement, but was associated with clinical response.
Collapse
Affiliation(s)
- Yoko Yokoyama
- Division of Internal Medicine, Department of Inflammatory Bowel Disease, Hyogo College of Medicine, Hyogo, Japan
| | - Koji Sawada
- Dojima Internal Medicine and Gastroenterological Clinic, Osaka, Japan
| | - Nobuo Aoyama
- Aoyama Clinic, GI Endoscopy & IBD Centre, Kobe, Japan
| | - Naoki Yoshimura
- Department of Internal Medicine, Division of IBD, Tokyo Yamate Medical Centre, Tokyo, Japan
| | - Minako Sako
- Department of Internal Medicine, Division of IBD, Tokyo Yamate Medical Centre, Tokyo, Japan
| | - Fumihito Hirai
- Department of Gastroenterology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Yasuo Suzuki
- IBD Centre, Toho University Sakura Medical Centre, Chiba, Japan
| |
Collapse
|
33
|
De Biasi S, Lo Tartaro D, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, Mattioli M, Paolini A, Gozzi L, Jaacoub D, Faltoni M, Volpi S, Milić J, Sita M, Sarti M, Pucillo C, Girardis M, Guaraldi G, Mussini C, Cossarizza A. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. Eur J Immunol 2020; 50:1283-1294. [PMID: 32910469 DOI: 10.1002/eji.202048838] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
Studies on the interactions between SARS-CoV-2 and humoral immunity are fundamental to elaborate effective therapies including vaccines. We used polychromatic flow cytometry, coupled with unsupervised data analysis and principal component analysis (PCA), to interrogate B cells in untreated patients with COVID-19 pneumonia. COVID-19 patients displayed normal plasma levels of the main immunoglobulin classes, of antibodies against common antigens or against antigens present in common vaccines. However, we found a decreased number of total and naïve B cells, along with decreased percentages and numbers of memory switched and unswitched B cells. On the contrary, IgM+ and IgM- plasmablasts were significantly increased. In vitro cell activation revealed that B lymphocytes showed a normal proliferation index and number of dividing cells per cycle. PCA indicated that B-cell number, naive and memory B cells but not plasmablasts clustered with patients who were discharged, while plasma IgM level, C-reactive protein, D-dimer, and SOFA score with those who died. In patients with pneumonia, the derangement of the B-cell compartment could be one of the causes of the immunological failure to control SARS-Cov2, have a relevant influence on several pathways, organs and systems, and must be considered to develop vaccine strategies.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Caterina Bellinazzi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lucia Fidanza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Licia Gozzi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Dina Jaacoub
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Faltoni
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Volpi
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Jovana Milić
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Sita
- Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Mario Sarti
- Clinical Microbiology Unit, AOU Policlinico, Modena, Italy
| | - Carlo Pucillo
- Laboratory of Immunology, Department of Medicine, University of Udine, Udine, Italy
| | - Massimo Girardis
- Department of Anesthesia and Intensive Care, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, AOU Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.,National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
34
|
Tanaka S, Hashimoto B, Izaki S, Oji S, Fukaura H, Nomura K. Clinical and immunological differences between MOG associated disease and anti AQP4 antibody-positive neuromyelitis optica spectrum disorders: Blood-brain barrier breakdown and peripheral plasmablasts. Mult Scler Relat Disord 2020; 41:102005. [PMID: 32114369 DOI: 10.1016/j.msard.2020.102005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with anti-aquaporin-4 (AQP4) water channel antibody-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD) and myelin oligodendrocyte glycoprotein (MOG) associated disease (MOGAD) often present with similar clinical symptoms, and some cases are hard to differentiate at the time of onset. In this study, we compared the clinical characteristics, cerebrospinal fluid (CSF) analysis parameters, and peripheral T/B lymphocyte subsets during the active and chronic phases in AQP4-NMOSD and MOGAD. METHODS A total of 17 MOGAD cases and 24 AQP4-NMOSD cases were studied. The clinical characteristics in both groups were summarized, including disease duration, total number of attacks, lesions, prevention of relapse during remission, and CSF analysis results during the active phase. T/B lymphocyte subsets were further investigated in the active and chronic phases. RESULTS In the comparative study on clinical symptoms, a large proportion of optic neuritis was unilateral in MOGAD. In the comparative study on CSF analysis, protein level was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.006); myelin basic protein was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.04); albumin quotient was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.02); and IgG Quotient was significantly lower in MOGAD compared with AQP4-NMOSD (p = 0.05). In the analysis of T/B lymphocyte subsets, plasmablasts of the B cell subset in the active phase were significantly lower in MOGAD (2.1 ± 2.4) compared to AQP4-NMOSD (7.8 ± 7.2) (p < 0.05). In the chronic phase, transitional B cells were significantly higher in MOGAD (2.1 ± 1.8) compared to AQP4-NMOSD (0.6 ± 0.4) (p < 0.01). CONCLUSION Clinical characteristics of MOGAD were similar to those of AQP4-NMOSD, but increased blood brain barrier permeability was suggested to be less severe in MOGAD compared to AQP4-NMOSD from CSF analysis. Furthermore, the pathogenesis of the two diseases was clearly distinct as plasmablasts in the active phase were not elevated in MOGAD, but were increased in AQP4-NMOSD.
Collapse
Affiliation(s)
- Satoru Tanaka
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.
| | - Baku Hashimoto
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Shoko Izaki
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Satoru Oji
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Hikoaki Fukaura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Kyoichi Nomura
- Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
35
|
Erdő-Bonyár S, Rapp J, Minier T, Ráth G, Najbauer J, Czirják L, Németh P, Berki T, Simon D. Toll-Like Receptor Mediated Activation of Natural Autoantibody Producing B Cell Subpopulations in an Autoimmune Disease Model. Int J Mol Sci 2019; 20:E6152. [PMID: 31817576 PMCID: PMC6940962 DOI: 10.3390/ijms20246152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Altered expression and function of the Toll-like receptor (TLR) homologue CD180 molecule in B cells have been associated with autoimmune disorders. In this study, we report decreased expression of CD180 at protein and mRNA levels in peripheral blood B cells of diffuse cutaneous systemic sclerosis (dcSSc) patients. To analyze the effect of CD180 stimulation, together with CpG (TLR9 ligand) treatment, on the phenotype defined by CD19/CD27/IgD/CD24/CD38 staining, and function (CD69 and CD180 expression, cytokine and antibody secretion) of B cell subpopulations, we used tonsillar B cells. After stimulation, we found reduced expression of CD180 protein and mRNA in total B cells, and CD180 protein in B cell subpopulations. The frequency of CD180+ cells was the highest in the CD19+CD27+IgD+ non-switched (NS) B cell subset, and they showed the strongest activation after anti-CD180 stimulation. Furthermore, B cell activation via CD180 induced IL-6 and natural autoantibody secretion. Treatment with the combination of anti-CD180 antibody and CpG resulted in increased IL-6 and IL-10 secretion and natural autoantibody production of B cells. Our results support the role of CD180 in the induction of natural autoantibody production, possibly by NS B cells, and suggest an imbalance between the pathologic and natural autoantibody production in SSc patients.
Collapse
Affiliation(s)
- Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (L.C.)
| | - Judit Rapp
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
| | - Tünde Minier
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (L.C.)
| | - Gábor Ráth
- Department of Pediatrics, Clinical Center, University of Pécs Medical School, H-7623 Pécs, Hungary;
| | - József Najbauer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
| | - László Czirják
- Department of Rheumatology and Immunology, Clinical Center, University of Pécs Medical School, H-7632 Pécs, Hungary; (T.M.); (L.C.)
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, H-7624 Pécs, Hungary; (S.E.-B.); (J.R.); (J.N.); (P.N.); (D.S.)
| |
Collapse
|
36
|
Polito R, Nigro E, Pecoraro A, Monaco ML, Perna F, Sanduzzi A, Genovese A, Spadaro G, Daniele A. Adiponectin Receptors and Pro-inflammatory Cytokines Are Modulated in Common Variable Immunodeficiency Patients: Correlation With Ig Replacement Therapy. Front Immunol 2019; 10:2812. [PMID: 31827477 PMCID: PMC6890605 DOI: 10.3389/fimmu.2019.02812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 11/13/2022] Open
Abstract
Adiponectin exerts beneficial pleiotropic effects through three receptors, AdipoR1, AdipoR2, and T-cadherin; it also exerts immunomodulatory effects. We previously demonstrated that adiponectin levels are altered in common variable immunodeficiency disease (CVID). The purpose of the present study was to investigate further the specific involvement of adiponectin in CVID by characterizing (i) the expression profile of adiponectin receptors on peripheral blood mononuclear cells; (ii) the levels of another relevant adipokine, namely leptin; (iii) the levels of five other cytokines (IL-2, IL-6, IL-10, TNFα, and IFNγ) in 24 patients on maintenance therapy, in 18 treatment-naïve patients (before and 24 h after the first Ig infusion) and in 28 healthy controls. We found that (i) adiponectin was down-expressed in patients on maintenance therapy and in treatment-naïve patients, and that it increased in treatment-naïve patients 24 h after the first Ig infusion; (ii) leptin expression did not differ between maintenance patients and controls either before or after the first Ig infusion; (iii) AdipoR1 expression was significantly higher on B lymphocytes, monocytes and NK cells of CVID patients than in controls; (iv) the expression of AdipoR1 and AdipoR2 on B lymphocytes, monocytes and NK cells was higher after the first Ig infusion than in treatment-naïve patients; (v) T-cadherin expression did not differ between treatment- naïve CVID patients and controls, and was not affected by Ig infusion; and (vi) IL-6, IL-8, IL-10, and TNFα levels were differently expressed in CVID patients on therapy maintenance and were not affected by the first Ig replacement therapy. This is the first study to demonstrate that the expression of AdipoRs in peripheral blood mononuclear cells from CVID patients differs from that of controls, and changes after the first Ig infusion. The specificity of adiponectin involvement in CVID is supported by the absence of changes in leptin levels and in the levels of the cytokines investigated. Taken together, these results suggest that the adiponectin system plays an important and specific role in CVID. A better understanding of adiponectin as a link in the cross-talk between the immune system and adipose tissue may provide additional benefits for the management of CVID patients.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli," Caserta, Italy.,CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| | - Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy.,Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pecoraro
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | - Franco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Alessandro Sanduzzi
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli "Federico II," Naples, Italy
| | - Arturo Genovese
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giuseppe Spadaro
- Dipartimento di Scienze Mediche Traslazionali, Allergologia e Immunologia Clinica, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli," Caserta, Italy.,CEINGE-Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
37
|
Abstract
Objective: To investigate the potential role of β-galactosidase in altering immunoglobulin G (IgG) galactosylation in serum of rheumatoid arthritis (RA).Methods: The expression level and activity of β-galactosidase in serum and CD 19+ B cells were measured by enzyme-linked immune sorbent assay (ELISA). The effect of β-galactosidase on the N-glycan changes in serum from mice intravenously treated with β-galactosidase was observed by linear ion-trap quadrupole-electrospray ionization mass spectrometry (LTQ-ESI-MS). We established a collagen-induced arthritis (CIA) rat model to explore the biological function of β-galactosidase in RA.Results: The expression level of β-galactosidase in serum of 32 patients was elevated when compared with those of 30 healthy controls. The activity and expression level of β-galactosidase in CD19+ B cells from RA patients was higher than those from healthy controls. The ratio of m/z 1142/937 was reduced in mice treated with β-galactosidase when compared with normal mice. We found that β-galactosidase was implicated in the development of inflammation by affecting body weight and elevating the expression level of interleukin-6, tumor necrosis factor-α, and rheumatoid factor in the serum.Conclusions: Our results suggested the high level of β-galactosidase in B cells and serum of RA patients and revealed that altered β-galactosidase may be implicated in the progression of inflammation.
Collapse
Affiliation(s)
- Zhipeng Su
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Jingjing Gao
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Qing Xie
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Yanping Wang
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Yunsen Li
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| |
Collapse
|
38
|
Roy SF, Ghazawi FM, Tran D, Bouffard D. Cutaneous plasmacytosis and multinucleate cell angiohistiocytoma-like lesion in a patient with hepatitis B: A fortuitous triad? J Cutan Pathol 2019; 46:678-683. [PMID: 31070801 DOI: 10.1111/cup.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 11/27/2022]
Abstract
A 28-year-old woman of Chinese descent, with congenital chronic hepatitis B presented with a 7-year history of erythematous-brown papules and plaques on her groins, axillae, and forehead. A first skin biopsy showed findings consistent with two concomitant, yet highly uncommon cutaneous diseases. The presence of lymphoid nodules with germinal centers and clustered polyclonal plasma cells was consistent with cutaneous plasmocytosis. Second, a diffuse proliferation of non-atypical small vessels (CD31+, CD34+, and HHV8-) in a hypercellular stroma peppered with angulated giant cells (CD163+, CD68-) was suggestive of multinucleate cell angiohistiocytoma (MCAH). Interestingly, the second biopsy of a different plaque on the forehead showed only plasmacytosis and the clinical appearance of both plaques and papules alluded to the distinct presence of both concurrent entities. We speculate the immune modulating effects of chronic hepatitis B may have led to a polyclonal plasmacytic proliferation within the dermis. Furthermore, MCAH has been reported in conjunction with other inflammatory skin diseases such as hidradenitis suppurativa and as such we propose that the MCAH lesion in our case may have arisen as a secondary, reactive process to the cutaneous plasmacytosis.
Collapse
Affiliation(s)
- Simon F Roy
- Division of Pathology, University of Montréal, Montréal, Québec, Canada
| | - Feras M Ghazawi
- Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| | - Diane Tran
- Dermatology, Independent Practice, Montréal, Québec, Canada
| | - Danielle Bouffard
- Division of Pathology, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
39
|
Stork ACJ, Rijkers GT, Vlam L, Cats EA, de Jong BAW, Fritsch-Stork RDE, Veldink JH, van den Berg LH, Notermans NC, van der Pol WL. Serum cytokine patterns in immunoglobulin m monoclonal gammopathy-associated polyneuropathy. Muscle Nerve 2019; 59:694-698. [PMID: 30847948 DOI: 10.1002/mus.26462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/26/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Polyneuropathy with immunoglobulin M monoclonal gammopathy (IgM-PNP) is associated with the presence of IgM antibodies against nerve constituents such as myelin associated glycoprotein (MAG) and gangliosides. METHODS To test whether B-cell-stimulating cytokines are increased in IgM-PNP, we measured serum concentrations of 11 cytokines in 81 patients with IgM-PNP and 113 controls. RESULTS Median interleukin (IL)-6 concentrations were higher in patients with IgM-PNP, and median IL-10 concentrations were higher in the subgroup with anti-MAG IgM antibodies. These serum concentrations were not increased in 110 patients with multifocal motor neuropathy. DISCUSSION Median IL-6 and IL-10 serum concentrations differ between patients with anti-MAG neuropathy and other patients with IgM-PNP compared with healthy and neuropathy controls. These differences may indicate differences in immune-mediated disease mechanisms. Muscle Nerve 59:694-698, 2019.
Collapse
Affiliation(s)
- Abraham C J Stork
- Neurological Department, Hietzing General Hospital with Neurological Center Rosenhügel, Riedelgasse 5, 1130, Vienna, Austria
| | - Ger T Rijkers
- University College Roosevelt, Middelburg, The Netherlands
| | - Lotte Vlam
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elisabeth A Cats
- Department of Neurology, Gelre Hospital, Apeldoorn, The Netherlands
| | - Ben A W de Jong
- Laboratory for Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - Nicolette C Notermans
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| | - W-Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
40
|
Bénézech C, Jackson-Jones LH. ILC2 Orchestration of Local Immune Function in Adipose Tissue. Front Immunol 2019; 10:171. [PMID: 30792718 PMCID: PMC6374325 DOI: 10.3389/fimmu.2019.00171] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023] Open
Abstract
ILC2s were originally identified as IL-5 and IL-13 secreting "natural helper cells" present within the fat-associated lymphoid clusters of the mesenteries in both mouse and man. The presence of ILCs in adipose tissue has more recently expanded to include all ILC groups. Since their initial discovery, our knowledge of these cells and their role in adipose immune responses has expanded significantly. In this review we summarize the current literature on the role that ILC2s play in orchestrating adipose tissue function in both lean and obese states. We go on to address new data detailing interactions of adipose ILCs with innate like B-cells (IBC) and discuss how this interaction results in localized protection of mucosal sites during infection and inflammation via the production of innate antibodies.
Collapse
Affiliation(s)
- Cécile Bénézech
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Helen Jackson-Jones
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
41
|
Biggioggero M, Crotti C, Becciolini A, Favalli EG. Tocilizumab in the treatment of rheumatoid arthritis: an evidence-based review and patient selection. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 13:57-70. [PMID: 30587928 PMCID: PMC6304084 DOI: 10.2147/dddt.s150580] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by articular and systemic manifestations, such as anemia, fatigue, osteoporosis, and increased risk for cardiovascular diseases. The pathogenesis of RA is driven by a complex network of proinflammatory cytokines, with a pivotal role of IL-6 and tumor necrosis factor (TNF). The management of RA has been dramatically changed during the last years by the introduction of a treat-to-target approach aiming to achieve an acceptable disease control. Nowadays, TNF inhibitors (TNFis) are the most frequently prescribed class of biologic therapies, but the significant proportion of patients experiencing the failure of a TNFi led to the development of alternative therapeutic options targeted on different pathways. Considering the increasing number of targeted therapeutic options for RA, there is a growing interest in the identification of potential predictors of clinical response to each available mechanism of action, with the aim to drive the management of the disease toward a personalized approach according to the concept of precision medicine. Tocilizumab (TCZ) is the first humanized anti-IL-6 receptor subunit alpha (anti-IL-6R) monoclonal antibody approved for the treatment of RA refractory to methotrexate or TNFis. TCZ inhibits both the cis- and trans-signaling cascades involving the Janus kinase-signal transducer and the activator of transcription pathway, playing a crucial role in modulating not only joint inflammation but also the previously mentioned extra-articular manifestations and comorbidities of RA, such as fatigue, anemia, bone loss, depression, type 2 diabetes, and increased cardiovascular risk. In this review, moving from pathogenetic insights and evidence-based clinical data from randomized controlled trials and real-life observational studies, we will discuss the drivers for the selection of patient candidates to receive TCZ, in order to clarify the current positioning of this drug in the treatment algorithm of RA.
Collapse
Affiliation(s)
| | - Chiara Crotti
- Department of Clinical Sciences and Health Community, University of Milan, Division of Rheumatology, Gaetano Pini Institute, Milan, Italy
| | | | | |
Collapse
|
42
|
Brynjolfsson SF, Persson Berg L, Olsen Ekerhult T, Rimkute I, Wick MJ, Mårtensson IL, Grimsholm O. Long-Lived Plasma Cells in Mice and Men. Front Immunol 2018; 9:2673. [PMID: 30505309 PMCID: PMC6250827 DOI: 10.3389/fimmu.2018.02673] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Even though more than 30 years have passed since the eradication of smallpox, high titers of smallpox-specific antibodies are still detected in the blood of subjects vaccinated in childhood. In fact, smallpox-specific antibody levels are maintained in serum for more than 70 years. The generation of life-long immunity against infectious diseases such as smallpox and measles has been thoroughly documented. Although the mechanisms behind high persisting antibody titers in the absence of the causative agent are still unclear, long lived plasma cells (LLPCs) play an important role. Most of the current knowledge on LLPCs is based on experiments performed in mouse models, although the amount of data derived from human studies is increasing. As the results from mouse models are often directly extrapolated to humans, it is important to keep in mind that there are differences. These are not only the obvious such as the life span but there are also anatomical differences, for instance the adiposity of the bone marrow (BM) where LLPCs reside. Whether these differences have an effect on the function of the immune system, and in particular on LLPCs, are still unknown. In this review, we will briefly discuss current knowledge of LLPCs, comparing mice and humans.
Collapse
Affiliation(s)
- Siggeir F Brynjolfsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Linn Persson Berg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Teresa Olsen Ekerhult
- Department of Urology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Inga Rimkute
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary-Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ola Grimsholm
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,B Cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
43
|
Epstein-Barr Virus Type 2 Infects T Cells and Induces B Cell Lymphomagenesis in Humanized Mice. J Virol 2018; 92:JVI.00813-18. [PMID: 30089703 DOI: 10.1128/jvi.00813-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/05/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) has been classified into two strains, EBV type 1 (EBV-1) and EBV type 2 (EBV-2) based on genetic variances and differences in transforming capacity. EBV-1 readily transforms B cells in culture while EBV-2 is poorly transforming. The differing abilities to immortalize B cells in vitro suggest that in vivo these viruses likely use alternative approaches to establish latency. Indeed, we recently reported that EBV-2 has a unique cell tropism for T cells, infecting T cells in culture and in healthy Kenyan infants, strongly suggesting that EBV-2 infection of T cells is a natural part of the EBV-2 life cycle. However, limitations of human studies hamper further investigation into how EBV-2 utilizes T cells. Therefore, BALB/c Rag2null IL2rγnull SIRPα humanized mice were utilized to develop an EBV-2 in vivo model. Infection of humanized mice with EBV-2 led to infection of both T and B cells, unlike infection with EBV-1, in which only B cells were infected. Gene expression analysis demonstrated that EBV-2 established a latency III infection with evidence of ongoing viral reactivation in both B and T cells. Importantly, EBV-2-infected mice developed tumors resembling diffuse large B cell lymphoma (DLBCL). These lymphomas had morphological features comparable to those of EBV-1-induced DLBCLs, developed at similar rates with equivalent frequencies, and expressed a latency III gene profile. Thus, despite the impaired ability of EBV-2 to immortalize B cells in vitro, EBV-2 efficiently induces lymphomagenesis in humanized mice. Further research utilizing this model will enhance our understanding of EBV-2 biology, the consequence of EBV infection of T cells, and the capacity of EBV-2 to drive lymphomagenesis.IMPORTANCE EBV is a well-established B cell-tropic virus. However, we have recently shown that the EBV type 2 (EBV-2) strain also infects primary T cells in culture and in healthy Kenyan children. This finding suggests that EBV-2, unlike the well-studied EBV-1 strain, utilizes the T cell compartment to persist. As EBV is human specific, studies to understand the role of T cells in EBV-2 persistence require an in vivo model. Thus, we developed an EBV-2 humanized mouse model, utilizing immunodeficient mice engrafted with human cord blood CD34+ stem cells. Characterization of the EBV-2-infected humanized mice established that both T cells and B cells are infected by EBV-2 and that the majority of infected mice develop a B cell lymphoma resembling diffuse large B cell lymphoma. This new in vivo model can be utilized for studies to enhance our understanding of how EBV-2 infection of T cells contributes to persistence and lymphomagenesis.
Collapse
|
44
|
Annibali V, Umeton R, Palermo A, Severa M, Etna MP, Giglio S, Romano S, Ferraldeschi M, Buscarinu MC, Vecchione A, Annese A, Policano C, Mechelli R, Pizzolato Umeton R, Fornasiero A, Angelini DF, Guerrera G, Battistini L, Coccia EM, Salvetti M, Ristori G. Analysis of coding and non-coding transcriptome of peripheral B cells reveals an altered interferon response factor (IRF)-1 pathway in multiple sclerosis patients. J Neuroimmunol 2018; 324:165-171. [PMID: 30270021 DOI: 10.1016/j.jneuroim.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 01/15/2023]
Abstract
Several evidences emphasize B-cell pathogenic roles in multiple sclerosis (MS). We performed transcriptome analyses on peripheral B cells from therapy-free patients and age/sex-matched controls. Down-regulation of two transcripts (interferon response factor 1-IRF1, and C-X-C motif chemokine 10-CXCL10), belonging to the same pathway, was validated by RT-PCR in 26 patients and 21 controls. IRF1 and CXCL10 transcripts share potential seeding sequences for hsa-miR-424, that resulted up-regulated in MS patients. We confirmed this interaction and its functional effect by transfection experiments. Consistent findings indicate down-regulation of IRF1/CXCL10 axis, that may plausibly contribute to a pro-survival status of B cells in MS.
Collapse
Affiliation(s)
- Viviana Annibali
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Renato Umeton
- Department of Informatics, Dana-Farber Cancer Institute, Boston, MA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Antonia Palermo
- Department of Mathematics and Computer Science, University of Calabria
| | - Martina Severa
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marilena Paola Etna
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Giglio
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Silvia Romano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Michela Ferraldeschi
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Buscarinu
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Andrea Vecchione
- Division of Pathology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Anita Annese
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Claudia Policano
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Rosella Mechelli
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Arianna Fornasiero
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Eliana Marina Coccia
- Department of Infectious, Parasitic and Immune-mediated Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Salvetti
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed (M.S.), Pozzilli, IS, Italy.
| | - Giovanni Ristori
- Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
45
|
Hirai A, Aung NY, Ohe R, Nishida A, Kato T, Meng H, Ishizawa K, Fujii J, Yamakawa M. Expression of TRPM8 in human reactive lymphoid tissues and mature B-cell neoplasms. Oncol Lett 2018; 16:5930-5938. [PMID: 30344743 PMCID: PMC6176370 DOI: 10.3892/ol.2018.9386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a member of the transient receptor potential superfamily of Ca2+ channels. The aim of the present study was to clarify TRPM8 expression in reactive lymphoid tissues and mature B-cell neoplasms. Reactive and neoplastic lymphoid tissues were used to evaluate TRPM8 expression by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). TRPM8+ cells were frequently detected in the follicular light zone and marginal zone of reactive lymphoid tissues. Double immunostaining revealed that TRPM8+ cells co-expressed cluster of differentiation (CD) 38, CD79a, CD138, interferon regulatory factor 4/melanoma associated antigen (mutated) 1, B cell CLL/lymphoma 6 and transmembrane activator and CAML interactor. TRPM8+ neoplastic cells were frequently detected in plasma cell myeloma. The positive band of TRPM8 mRNA was confirmed by RT-PCR in cases of myeloma. The present study is, to the best of our knowledge, the first to demonstrate the expression of TRPM8 in reactive lymphoid tissues and mature B-cell neoplasms, revealing that TRPM8 is frequently expressed in pre-plasmablasts, plasmablasts, plasma cells and mature B-cell lymphomas that are likely to differentiate into plasma cells.
Collapse
Affiliation(s)
- Akinori Hirai
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Naing Ye Aung
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Akiko Nishida
- Division of Pathology, Nihonkai General Hospital, Sakata, Yamagata 998-8501, Japan
| | - Tomoya Kato
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Hongxue Meng
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Kenichi Ishizawa
- Third Department of Internal Medicine, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Yamagata University Faculty of Medicine, Yamagata, Yamagata 990-9585, Japan
| |
Collapse
|
46
|
Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, Adams S, Marasco E, Rosser EC, Radziszewska A, Carsetti R, Ioannou Y, Beales PL, Kelberman D, Isenberg DA, Mauri C, Nistala K, Wedderburn LR. CD19 +CD24 hiCD38 hi B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-α. Front Immunol 2018; 9:1372. [PMID: 29988398 PMCID: PMC6024011 DOI: 10.3389/fimmu.2018.01372] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/12/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a rare form of childhood autoimmune myositis that presents with proximal muscle weakness and skin rash. B cells are strongly implicated in the pathogenesis of the disease, but the underlying mechanisms are unknown. Therefore, the main objective of our study was to investigate mechanisms driving B cell lymphocytosis and define pathological features of B cells in JDM patients. Patients were recruited through the UK JDM Cohort and Biomarker study. Peripheral blood B cell subpopulations were immunophenotyped by flow cytometry. The results identified that immature transitional B cells were significantly expanded in active JDM, actively dividing, and correlated positively with disease activity. Protein and RNAseq analysis revealed high interferon alpha (IFNα) and TLR7-pathway signatures pre-treatment. Stimulation of B cells through TLR7/8 promoted both IL-10 and IL-6 production in controls but failed to induce IL-10 in JDM patient cells. Interrogation of the CD40–CD40L pathway (known to induce B cell IL-10 and IL-6) revealed similar expression of IL-10 and IL-6 in B cells cultured with CD40L from both JDM patients and controls. In conclusion, JDM patients with active disease have a significantly expanded immature transitional B cell population which correlated with the type I IFN signature. Activation through TLR7 and IFNα may drive the expansion of immature transitional B cells in JDM and skew the cells toward a pro-inflammatory phenotype.
Collapse
Affiliation(s)
| | - Meredyth G Ll Wilkinson
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Claire T Deakin
- Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom.,Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| | - Georg W Otto
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stefanie Dowle
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Chantal L Duurland
- Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stuart Adams
- Haematology, Specialist Integrated Haematological Malignancy Diagnostic Service (SIHMDS), Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emiliano Marasco
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Elizabeth C Rosser
- Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anna Radziszewska
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino Gesù IRCSS, Rome, Italy
| | - Yiannis Ioannou
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Philip L Beales
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Daniel Kelberman
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom.,Experimental and Personalised Medicine, Genetics and Genomic Medicine, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David A Isenberg
- Centre for Rheumatology, University College London, London, United Kingdom.,Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom
| | - Claudia Mauri
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Kiran Nistala
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology, Arthritis Research UK, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom.,Infection, Inflammation and Rheumatology Section, University College London, Great Ormond Street Institute of Child Health, London, United Kingdom.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
47
|
Abstract
Interleukin-6 (IL-6) is a pivotal cytokine with a diverse repertoire of physiological functions that include regulation of immune cell proliferation and differentiation. Dysregulation of IL-6 signalling is associated with inflammatory and lymphoproliferative disorders such as rheumatoid arthritis and Castleman disease, and several classes of therapeutics have been developed that target components of the IL-6 signalling pathway. So far, monoclonal antibodies against IL-6 or IL-6 receptor (IL-6R) and Janus kinases (JAK) inhibitors have been successfully developed for the treatment of autoimmune diseases such as rheumatoid arthritis. However, clinical trials of agents targeting IL-6 signalling have also raised questions about the diseases and patient populations for which such agents have an appropriate benefit-risk profile. Knowledge from clinical trials and advances in our understanding of the complexities of IL-6 signalling, including the potential to target an IL-6 trans-signalling pathway, are now indicating novel opportunities for therapeutic intervention. In this Review, we overview the roles of IL-6 in health and disease and analyse progress with several approaches of inhibiting IL-6-signalling, with the aim of illuminating when and how to apply IL-6 blockade.
Collapse
|
48
|
Ticha O, Moos L, Wajant H, Bekeredjian-Ding I. Expression of Tumor Necrosis Factor Receptor 2 Characterizes TLR9-Driven Formation of Interleukin-10-Producing B Cells. Front Immunol 2018; 8:1951. [PMID: 29403470 PMCID: PMC5780339 DOI: 10.3389/fimmu.2017.01951] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
B cell-derived interleukin-10 (IL-10) production has been described as a hallmark for regulatory function in B lymphocytes. However, there is an ongoing debate on the origin of IL-10-secreting B cells and lack of specific surface markers has turned into an important obstacle for studying human B regulatory cells. In this study, we propose that tumor necrosis factor receptor 2 (TNFR2) expression can be used for enrichment of IL-10-secreting B cells. Our data confirm that IL-10 production can be induced by TLR9 stimulation with CpG ODN and that IL-10 secretion accompanies differentiation of peripheral blood B cells into plasma blasts. We further show that CpG ODN stimulation induces TNFR2 expression, which correlates with IL-10 secretion and terminal differentiation. Indeed, flow cytometric sorting of TNFR2+ B cells revealed that TNFR2+ and TNFR2− fractions correspond to IL-10+ and IL-10− fractions, respectively. Furthermore, CpG-induced TNFR2+ B cells were predominantly found in the IgM+ CD27+ B cell subset and spontaneously released immunoglobulin. Finally, our data corroborate the functional impact of TNFR2 by demonstrating that stimulation with a TNFR2 agonist significantly augments IL-10 and IL-6 production in B cells. Altogether, our data highlight a new role for TNFR2 in IL-10-secreting human B lymphocytes along with the potential to exploit this finding for sorting and isolation of this currently ill-defined B cell subset.
Collapse
Affiliation(s)
- Olga Ticha
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Lukas Moos
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
49
|
Dubey D, Forsthuber T, Flanagan EP, Pittock SJ, Stüve O. B-cell-targeted therapies in relapsing forms of MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 4:e405. [PMID: 29082296 PMCID: PMC5656409 DOI: 10.1212/nxi.0000000000000405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/13/2017] [Indexed: 01/04/2023]
Abstract
In recent years, there has been a significant increase in the therapeutic options available for the management of relapsing forms of MS. Therapies primarily targeting B cells, including therapeutic anti-CD20 monoclonal antibodies, have been evaluated in phase I, phase II, and phase III clinical trials. Results of these trials have shown their efficacy and relatively tolerable adverse effect profiles, suggesting a favorable benefit-to-risk ratio. In this review, we discuss the pathogenic role of B cells in MS and the rationale behind the utilization of B-cell depletion as a therapeutic cellular option. We also discuss the data of clinical trials for anti-CD20 antibodies in relapsing forms of MS and existing evidence for other B-cell–directed therapeutic strategies.
Collapse
Affiliation(s)
- Divyanshu Dubey
- Department of Neurology (D.B., E.P.F., S.J.P.), and Department of Laboratory Medicine and Pathology (S.J.P.), Mayo Clinic, Rochester, MN; Department of Biology (T.F.), University of Texas at San Antonio; Department of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas; Neurology Section (O.S.), VA North Texas Health Care System, Dallas VA Medical Center, TX; and Department of Neurology (O.S.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Thomas Forsthuber
- Department of Neurology (D.B., E.P.F., S.J.P.), and Department of Laboratory Medicine and Pathology (S.J.P.), Mayo Clinic, Rochester, MN; Department of Biology (T.F.), University of Texas at San Antonio; Department of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas; Neurology Section (O.S.), VA North Texas Health Care System, Dallas VA Medical Center, TX; and Department of Neurology (O.S.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Eoin P Flanagan
- Department of Neurology (D.B., E.P.F., S.J.P.), and Department of Laboratory Medicine and Pathology (S.J.P.), Mayo Clinic, Rochester, MN; Department of Biology (T.F.), University of Texas at San Antonio; Department of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas; Neurology Section (O.S.), VA North Texas Health Care System, Dallas VA Medical Center, TX; and Department of Neurology (O.S.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Sean J Pittock
- Department of Neurology (D.B., E.P.F., S.J.P.), and Department of Laboratory Medicine and Pathology (S.J.P.), Mayo Clinic, Rochester, MN; Department of Biology (T.F.), University of Texas at San Antonio; Department of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas; Neurology Section (O.S.), VA North Texas Health Care System, Dallas VA Medical Center, TX; and Department of Neurology (O.S.), Klinikum rechts der Isar, Technische Universität München, Germany
| | - Olaf Stüve
- Department of Neurology (D.B., E.P.F., S.J.P.), and Department of Laboratory Medicine and Pathology (S.J.P.), Mayo Clinic, Rochester, MN; Department of Biology (T.F.), University of Texas at San Antonio; Department of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas; Neurology Section (O.S.), VA North Texas Health Care System, Dallas VA Medical Center, TX; and Department of Neurology (O.S.), Klinikum rechts der Isar, Technische Universität München, Germany
| |
Collapse
|
50
|
Mei HE, Hahne S, Redlin A, Hoyer BF, Wu K, Baganz L, Lisney AR, Alexander T, Rudolph B, Dörner T. Plasmablasts With a Mucosal Phenotype Contribute to Plasmacytosis in Systemic Lupus Erythematosus. Arthritis Rheumatol 2017. [DOI: 10.1002/art.40181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Henrik E. Mei
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | - Stefanie Hahne
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | - Andreas Redlin
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | - Bimba F. Hoyer
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | - Kaiyin Wu
- Charité University Medicine Berlin; Berlin Germany
| | - Lisa Baganz
- German Rheumatism Research Center Berlin; Berlin Germany
| | - Anna R. Lisney
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | - Tobias Alexander
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| | | | - Thomas Dörner
- Charité University Medicine Berlin and German Rheumatism Research Center Berlin; Berlin Germany
| |
Collapse
|