1
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production in rhesus macaque endocervical cells under hormonal regulation†. Biol Reprod 2024; 111:1045-1055. [PMID: 39115371 DOI: 10.1093/biolre/ioae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the rhesus macaque (Macaca mulatta). INTERVENTION We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus-producing and mucus-modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. MAIN OUTCOME MEASURES We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using quantitative PCR (qPCR). RESULTS Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. CONCLUSION Our study is the first to use an in vitro culture system to create an epithelial cell-specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways altered by sex steroids in cervical mucus production. SUMMARY SENTENCE In vitro hormonal regulation of mucus production, modification, and secretion was profiled using primary epithelial endocervical cells.
Collapse
Affiliation(s)
- Katrina Rapp
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shuhao Wei
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Mackenzie Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Shan Yao
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Karina Ray
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Alexander Wang
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachelle Godiah
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
| | - Leo Han
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Portland, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, Stoltz DA. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest 2024; 134:e181995. [PMID: 39255033 PMCID: PMC11527443 DOI: 10.1172/jci181995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul B. McCray
- Department of Internal Medicine
- Department of Pediatrics
- Pappajohn Biomedical Institute, and
| | - Ian M. Thornell
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
| | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute, and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Ouyang X, Reihill JA, Douglas LEJ, Dunne OM, Sergeant GP, Martin SL. House dust mite allergens induce Ca 2+ signalling and alarmin responses in asthma airway epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167079. [PMID: 38367901 DOI: 10.1016/j.bbadis.2024.167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.
Collapse
Affiliation(s)
- Xuan Ouyang
- School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | | | | | - Orla M Dunne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dublin Road, Dundalk, Co. Louth, Ireland
| | | |
Collapse
|
4
|
Gan PXL, Liao W, Lim HF, Wong WSF. Dexamethasone protects against Aspergillus fumigatus-induced severe asthma via modulating pulmonary immunometabolism. Pharmacol Res 2023; 196:106929. [PMID: 37717682 DOI: 10.1016/j.phrs.2023.106929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Severe asthma is a difficult-to-treat chronic airway inflammatory disease requiring systemic corticosteroids to achieve asthma control. It has recently been shown that drugs targeting immunometabolism have elicited anti-inflammatory effects. The purpose of this study was to investigate potential immunometabolic modulatory actions of systemic dexamethasone (Dex) in an Aspergillus fumigatus (Af)-induced severe asthma model. Mice were repeatedly exposed to the Af aeroallergen before systemic treatment with Dex. Simultaneous measurements of airway inflammation, real-time glycolytic and oxidative phosphorylation (OXPHOS) activities, expression levels of key metabolic enzymes, and amounts of metabolites were studied in lung tissues, and in primary alveolar macrophages (AMs) and eosinophils. Dex markedly reduced Af-induced eosinophilic airway inflammation, which was coupled with an overall reduction in lung glycolysis, glutaminolysis, and fatty acid synthesis. The anti-inflammatory effects of Dex may stem from its immunometabolic actions by downregulating key metabolic enzymes including pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase. Substantial suppression of eosinophilic airway inflammation by Dex coincided with a specific escalation of mitochondrial proton leak in primary lung eosinophils. Besides, while our findings confirmed that inflammation corresponds with an upregulation of glycolysis, it was accompanied with an unexpectedly stable or elevated OXPHOS in the lungs and activated immune cells, respectively. Our findings reveal that the anti-inflammatory effects of Dex in severe asthma are associated with downregulation of pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase, and the augmentation of mitochondrial proton leak in lung eosinophils. These enzymes and biological processes may be valuable targets for therapeutic interventions against severe asthma.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Hui Fang Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Respiratory and Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery & Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
5
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
6
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
7
|
Goode E, Marczylo E. A scoping review: What are the cellular mechanisms that drive the allergic inflammatory response to fungal allergens in the lung epithelium? Clin Transl Allergy 2023; 13:e12252. [PMID: 37357550 PMCID: PMC10234180 DOI: 10.1002/clt2.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/27/2023] Open
Abstract
Allergic airway disease (AAD) is a collective term for respiratory disorders that can be exacerbated upon exposure to airborne allergens. The contribution of fungal allergens to AAD has become well established over recent years. We conducted a comprehensive review of the literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to better understand the mechanisms involved in the allergic response to fungi in airway epithelia, identify knowledge gaps and make recommendations for future research. The search resulted in 61 studies for final analysis. Despite heterogeneity in the models and methods used, we identified major pathways involved in fungal allergy. These included the activation of protease-activated receptor 2, the EGFR pathway, adenosine triphosphate and purinergic receptor-dependent release of IL33, and oxidative stress, which drove mucin expression and goblet cell metaplasia, Th2 cytokine production, reduced barrier integrity, eosinophil recruitment, and airway hyperresponsiveness. However, there were several knowledge gaps and therefore we recommend future research should focus on the use of more physiologically relevant methods to directly compare key allergenic fungal species, clarify specific mechanisms of fungal allergy, and assess the fungal allergy in disease models. This will inform disease management and future interventions, ultimately reducing the burden of disease.
Collapse
Affiliation(s)
| | - Emma Marczylo
- Toxicology DepartmentUK Health Security AgencyChiltonUK
| |
Collapse
|
8
|
Rapp K, Wei S, Roberts M, Yao S, Fei SS, Gao L, Ray K, Wang A, Godiah R, Han L. Transcriptional profiling of mucus production and modification in rhesus macaque endocervical cells under hormonal regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541362. [PMID: 37292621 PMCID: PMC10245652 DOI: 10.1101/2023.05.18.541362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Objective Endocervical mucus production is a key regulator of fertility throughout the menstrual cycle. With cycle-dependent variability in mucus quality and quantity, cervical mucus can either facilitate or block sperm ascension into the upper female reproductive tract. This study seeks to identify genes involved in the hormonal regulation of mucus production, modification, and regulation through profiling the transcriptome of endocervical cells from the non-human primate, the Rhesus Macaque (Macaca mulatta). Design Experimental. Setting Translational science laboratory. Intervention We treated differentiated primary endocervical cultures with estradiol (E2) and progesterone (P4) to mimic peri-ovulatory and luteal-phase hormonal changes. Using RNA-sequencing, we identified differential expression of gene pathways and mucus producing and modifying genes in cells treated with E2 compared to hormone-free conditions and E2 compared to E2-primed cells treated with P4. Main Outcome Measures We pursued differential gene expression analysis on RNA-sequenced cells. Sequence validation was done using qPCR. Results Our study identified 158 genes that show significant differential expression in E2-only conditions compared to hormone-free control, and 250 genes that show significant differential expression in P4-treated conditions compared to E2-only conditions. From this list, we found hormone-induced changes in transcriptional profiles for genes across several classes of mucus production, including ion channels and enzymes involved in post-translational mucin modification that have not previously been described as hormonally regulated. Conclusion Our study is the first to use an in vitro culture system to create an epithelial-cell specific transcriptome of the endocervix. As a result, our study identifies new genes and pathways that are altered by sex-steroids in cervical mucus production.
Collapse
|
9
|
Kopp EB, Agaronyan K, Licona-Limón I, Nish SA, Medzhitov R. Modes of type 2 immune response initiation. Immunity 2023; 56:687-694. [PMID: 37044059 DOI: 10.1016/j.immuni.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Type 2 immunity defends against macro-parasites and can cause allergic diseases. Our understanding of the mechanisms governing the initiation of type 2 immunity is limited, whereas we know more about type 1 immune responses. Type 2 immunity can be triggered by a wide array of inducers that do not share common features and via diverse pathways and mechanisms. To address the complexity of the type 2 initiation pathways, we suggest a framework that conceptualizes different modes of induction of type 2 immunity. We discuss categories of type 2 inducers and their immunogenicity, types of tissue perturbations that are caused by these inducers, sensing strategies for the initiation of Th2 immune responses, and categorization of the signals that are produced in response to type 2 challenges. We describe tissue-specific examples of functional disruption that could lead to type 2 inflammation and propose that different sensing strategies that operate at the tissue level converge on the initiation of type 2 immune responses.
Collapse
Affiliation(s)
- Elizabeth B Kopp
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Karen Agaronyan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA
| | - Ileana Licona-Limón
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Simone A Nish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, New Haven, CT 06510, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Philp AR, Miranda F, Gianotti A, Mansilla A, Scudieri P, Musante I, Vega G, Figueroa CD, Galietta LJV, Sarmiento JM, Flores CA. KCa3.1 differentially regulates trachea and bronchi epithelial gene expression in a chronic-asthma mouse model. Physiol Genomics 2022; 54:273-282. [PMID: 35658672 DOI: 10.1152/physiolgenomics.00134.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are potentially exploitable as pharmacological targets to treat asthma. This study evaluated the role of KCa3.1 channels, encoded by Kcnn4, in regulating the gene expression of mouse airway epithelium and the development of asthma traits. We used the ovalbumin (OVA) challenge as an asthma model in wild type and Kcnn4-/- mice, performed histological analysis, and measured serum IgE to evaluate asthma traits. We analyzed gene expression of isolated epithelial cells of trachea or bronchi using mRNA sequencing and gene ontology and performed Ussing chamber experiments in mouse trachea to evaluate anion secretion. Gene expression of epithelial cells from mouse airways differed between trachea and bronchi, indicating regional differences in the inflammatory and transepithelial transport properties of proximal and distal airways. We found that Kcnn4 silencing reduced mast cell numbers, mucus, and collagen in the airways, and reduced the amount of epithelial anion secretion in the OVA-challenged animals. Additionally, gene expression was differentially modified in the trachea and bronchi, with Kcnn4 genetic silencing significantly altering the expression of genes involved in the TNF pathway, supporting the potential of KCa3.1 as a therapeutic target for asthma.
Collapse
Affiliation(s)
- Amber R Philp
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | - Fernando Miranda
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | | | - Agustín Mansilla
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Austral University of Chile, Valdivia, Chile
| | | | | | - Génesis Vega
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile
| | | | - Luis J V Galietta
- TIGEM, Pozzuoli, Italia.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - José M Sarmiento
- Departamento de Fisiología, Austral University of Chile, Valdivia, Chile
| | - Carlos A Flores
- Centro de Estudios Científicos, Valdivia, Los Rios, Chile.,Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
11
|
Xie X, Yu T, Hou Y, Han A, Ding Y, Nie H, Cui Y. Ferulic acid ameliorates lipopolysaccharide-induced tracheal injury via cGMP/PKGII signaling pathway. Respir Res 2021; 22:308. [PMID: 34863181 PMCID: PMC8642995 DOI: 10.1186/s12931-021-01897-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tracheal injury is a common clinical condition that still lacks an effective therapy at present. Stimulation of epithelial sodium channel (ENaC) increases Na+ transport, which is a driving force to keep tracheal mucosa free edema fluid during tracheal injury. Ferulic acid (FA) has been proved to be effective in many respiratory diseases through exerting anti-oxidant, anti-inflammatory, and anti-thrombotic effects. However, these studies rarely involve the level of ion transport, especially ENaC. METHODS C57BL/J male mice were treated intraperitoneally with normal saline or FA (100 mg/kg) 12 h before, and 12 h after intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg), respectively. The effects of FA on tracheal injury were not only assessed through HE staining, immunofluorescence assay, and protein/mRNA expressions of ENaC located on tracheas, but also evaluated by the function of ENaC in mouse tracheal epithelial cells (MTECs). Besides, to explore the detailed mechanism about FA involved in LPS-induced tracheal injury, the content of cyclic guanosine monophosphate (cGMP) was measured, and Rp-cGMP (cGMP inhibitor) or cGMP-dependent protein kinase II (PKGII)-siRNA (siPKGII) were applied in primary MTECs, respectively. RESULTS Histological examination results demonstrated that tracheal injury was obviously attenuated by pretreatment of FA. Meanwhile, FA could reverse LPS-induced reduction of both protein/mRNA expressions and ENaC activity. ELISA assay verified cGMP content was increased by FA, and administration of Rp-cGMP or transfection of siPKGII could reverse the FA up-regulated ENaC protein expression in MTECs. CONCLUSIONS Ferulic acid can attenuate LPS-induced tracheal injury through up-regulation of ENaC at least partially via the cGMP/PKGII pathway, which may provide a promising new direction for preventive and therapeutic strategy in tracheal injury.
Collapse
Affiliation(s)
- Xiaoyong Xie
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, China.,Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Aixin Han
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
12
|
Leitz DHW, Duerr J, Mulugeta S, Seyhan Agircan A, Zimmermann S, Kawabe H, Dalpke AH, Beers MF, Mall MA. Congenital Deletion of Nedd4-2 in Lung Epithelial Cells Causes Progressive Alveolitis and Pulmonary Fibrosis in Neonatal Mice. Int J Mol Sci 2021; 22:6146. [PMID: 34200296 PMCID: PMC8201155 DOI: 10.3390/ijms22116146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFβ signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.
Collapse
Affiliation(s)
- Dominik H. W. Leitz
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Surafel Mulugeta
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk Suite 216, Philadelphia, PA 19104, USA; (S.M.); (M.F.B.)
| | - Ayça Seyhan Agircan
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3D, 37075 Goettingen, Germany;
- Laboratory of Molecular Life Science, Department of Gerontology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi Chuo-ku, Kobe 650-0047, Japan
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Department of Pharmacology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Michael F. Beers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3450 Hamilton Walk Suite 216, Philadelphia, PA 19104, USA; (S.M.); (M.F.B.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (D.H.W.L.); (M.A.M.)
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Department of Translational Pulmonology, University of Heidelberg, Im Neuenheimer Feld 156, 69120 Heidelberg, Germany;
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
13
|
Conditional deletion of Nedd4-2 in lung epithelial cells causes progressive pulmonary fibrosis in adult mice. Nat Commun 2020; 11:2012. [PMID: 32332792 PMCID: PMC7181726 DOI: 10.1038/s41467-020-15743-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2018] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by patchy scarring of the distal lung with limited therapeutic options and poor prognosis. Here, we show that conditional deletion of the ubiquitin ligase Nedd4-2 (Nedd4l) in lung epithelial cells in adult mice produces chronic lung disease sharing key features with IPF including progressive fibrosis and bronchiolization with increased expression of Muc5b in peripheral airways, honeycombing and characteristic alterations in the lung proteome. NEDD4-2 is implicated in the regulation of the epithelial Na+ channel critical for proper airway surface hydration and mucus clearance and the regulation of TGFβ signaling, which promotes fibrotic remodeling. Our data support a role of mucociliary dysfunction and aberrant epithelial pro-fibrotic response in the multifactorial disease pathogenesis. Further, treatment with the anti-fibrotic drug pirfenidone reduced pulmonary fibrosis in this model. This model may therefore aid studies of the pathogenesis and therapy of IPF. Idiopathic pulmonary fibrosis (IPF) is a devastating disease with poor prognosis. Here, the authors show that deficiency of the E3 ubiqutin-protein ligase Nedd4-2 in airway epithelial cells causes IPF-like disease in adult mice. This model may aid studies of the pathogenesis and therapy of IPF.
Collapse
|
14
|
Dutta AK, Boggs K, Khimji AK, Getachew Y, Wang Y, Kresge C, Rockey DC, Feranchak AP. Signaling through the interleukin-4 and interleukin-13 receptor complexes regulates cholangiocyte TMEM16A expression and biliary secretion. Am J Physiol Gastrointest Liver Physiol 2020; 318:G763-G771. [PMID: 32090602 PMCID: PMC7191463 DOI: 10.1152/ajpgi.00219.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
TMEM16A is a Ca2+-activated Cl- channel in the apical membrane of biliary epithelial cells, known as cholangiocytes, which contributes importantly to ductular bile formation. Whereas cholangiocyte TMEM16A activity is regulated by extracellular ATP-binding membrane purinergic receptors, channel expression is regulated by interleukin-4 (IL-4) through an unknown mechanism. Therefore, the aim of the present study was to identify the signaling pathways involved in TMEM16A expression and cholangiocyte secretion. Studies were performed in polarized normal rat cholangiocyte monolayers, human Mz-Cha-1 biliary cells, and cholangiocytes isolated from murine liver tissue. The results demonstrate that all the biliary models expressed the IL-4Rα/IL-13Rα1 receptor complex. Incubation of cholangiocytes with either IL-13 or IL-4 increased the expression of TMEM16A protein, which was associated with an increase in the magnitude of Ca2+-activated Cl- currents in response to ATP in single cells and the short-circuit current response in polarized monolayers. The IL-4- and IL-13-mediated increase in TMEM16A expression was also associated with an increase in STAT6 phosphorylation. Specific inhibition of JAK-3 inhibited the increase in TMEM16A expression and the IL-4-mediated increase in ATP-stimulated currents, whereas inhibition of STAT6 inhibited both IL-4- and IL-13-mediated increases in TMEM16A expression and ATP-stimulated secretion. These studies demonstrate that the cytokines IL-13 and IL-4 regulate the expression and function of biliary TMEM16A channels through a signaling pathway involving STAT6. Identification of this regulatory pathway provides new insight into biliary secretion and suggests new targets to enhance bile formation in the treatment of cholestatic liver disorders.NEW & NOTEWORTHY The Ca2+-activated Cl- channel transmembrane member 16A (TMEM16A) has emerged as an important regulator of biliary secretion and hence, ductular bile formation. The present studies represent the initial description of the regulation of TMEM16A expression in biliary epithelium. Identification of this regulatory pathway involving the IL-4 and IL-13 receptor complex and JAK-3 and STAT-6 signaling provides new insight into biliary secretion and suggests new therapeutic targets to enhance bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Amal K. Dutta
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kristy Boggs
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Al-karim Khimji
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yonas Getachew
- 2Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Youxue Wang
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Charles Kresge
- 1Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- 3Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew P. Feranchak
- 4Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Measurement of Multi Ion Transport through Human Bronchial Epithelial Cell Line Provides an Insight into the Mechanism of Defective Water Transport in Cystic Fibrosis. MEMBRANES 2020; 10:membranes10030043. [PMID: 32178452 PMCID: PMC7142439 DOI: 10.3390/membranes10030043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
We measured concentration changes of sodium, potassium, chloride ions, pH and the transepithelial potential difference by means of ion-selective electrodes, which were placed on both sides of a human bronchial epithelial 16HBE14σ cell line grown on a porous support in the presence of ion channel blockers. We found that, in the isosmotic transepithelial concentration gradient of either sodium or chloride ions, there is an electroneutral transport of the isosmotic solution of sodium chloride in both directions across the cell monolayer. The transepithelial potential difference is below 3 mV. Potassium and pH change plays a minor role in ion transport. Based on our measurements, we hypothesize that in a healthy bronchial epithelium, there is a dynamic balance between water absorption and secretion. Water absorption is caused by the action of two exchangers, Na/H and Cl/HCO3, secreting weakly dissociated carbonic acid in exchange for well dissociated NaCl and water. The water secretion phase is triggered by an apical low volume-dependent factor opening the Cystic Fibrosis Transmembrane Regulator CFTR channel and secreting anions that are accompanied by paracellular sodium and water transport.
Collapse
|
16
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
17
|
Balázs A, Mall MA. Mucopurulent Triggering of the Airway Epithelium. Implications in Health and Cystic Fibrosis. Am J Respir Crit Care Med 2019; 197:418-420. [PMID: 29298399 DOI: 10.1164/rccm.201712-2554ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Anita Balázs
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany
| | - Marcus A Mall
- 1 Department of Translational Pulmonology University of Heidelberg Heidelberg, Germany.,2 Department of Pediatric Pulmonology and Immunology Charité-Universitätsmedizin Berlin Berlin, Germany and.,3 Translational Lung Research Center Heidelberg German Center for Lung Research Heidelberg, Germany
| |
Collapse
|
18
|
New ISE-Based Apparatus for Na +, K +, Cl -, pH and Transepithelial Potential Difference Real-Time Simultaneous Measurements of Ion Transport across Epithelial Cells Monolayer⁻Advantages and Pitfalls. SENSORS 2019; 19:s19081881. [PMID: 31009998 PMCID: PMC6515391 DOI: 10.3390/s19081881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/18/2019] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Cystic Fibrosis (CF) is the most common fatal human genetic disease, which is caused by a defect in an anion channel protein (CFTR) that affects ion and water transport across the epithelium. We devised an apparatus to enable the measurement of concentration changes of sodium, potassium, chloride, pH, and transepithelial potential difference by means of ion-selective electrodes that were placed on both sides of a 16HBE14σ human bronchial epithelial cell line that was grown on a porous support. Using flat miniaturized ISE electrodes allows for reducing the medium volume adjacent to cells to approximately 20 μL and detecting changes in ion concentrations that are caused by transport through the cell layer. In contrast to classic electrochemical measurements, in our experiments neither the calibration of electrodes nor the interpretation of results is simple. The calibration solutions might affect cell physiology, the medium composition might change the direction of actions of the membrane channels and transporters, and water flow that might trigger or cut off the transport pathways accompanies the transport of ions. We found that there is an electroneutral transport of sodium chloride in both directions of the cell monolayer in the isosmotic transepithelial concentration gradient of sodium or chloride ions. The ions and water are transported as an isosmotic solution of 145 mM of NaCl.
Collapse
|
19
|
Mesenchymal stem cells for inflammatory airway disorders: promises and challenges. Biosci Rep 2019; 39:BSR20182160. [PMID: 30610158 PMCID: PMC6356012 DOI: 10.1042/bsr20182160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
The regenerative and immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them attractive in the treatment of many diseases. Although they have shown promising preclinical studies of immunomodulation and paracrine effects in inflammatory airway disorders and other lung diseases, there are still challenges that have to be overcome before MSCs can be safely, effectively, and routinely applied in the clinical setting. A good understanding of the roles and mechanisms of the MSC immunomodulatory effects will benefit the application of MSC-based clinical therapy. In this review, we summarize the promises and challenges of the preclinical and clinical trials of MSC therapies, aiming to better understand the role that MSCs play in attempt to treat inflammatory airway disorders.
Collapse
|
20
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
21
|
Balázs A, Mall MA. Role of the SLC26A9 Chloride Channel as Disease Modifier and Potential Therapeutic Target in Cystic Fibrosis. Front Pharmacol 2018; 9:1112. [PMID: 30327603 PMCID: PMC6174851 DOI: 10.3389/fphar.2018.01112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The solute carrier family 26, member 9 (SLC26A9) is an epithelial chloride channel that is expressed in several organs affected in patients with cystic fibrosis (CF) including the lungs, the pancreas, and the intestine. Emerging evidence suggests SLC26A9 as a modulator of wild-type and mutant CFTR function, and as a potential alternative target to circumvent the basic ion transport defect caused by deficient CFTR-mediated chloride transport in CF. In this review, we summarize in vitro studies that revealed multifaceted molecular and functional interactions between SLC26A9 and CFTR that may be implicated in normal transepithelial chloride secretion in health, as well as impaired chloride/fluid transport in CF. Further, we focus on recent genetic association studies and investigations utilizing genetically modified mouse models that identified SLC26A9 as a disease modifier and supported an important role of this alternative chloride channel in the pathophysiology of several organ manifestations in CF, as well as other chronic lung diseases such as asthma and non-CF bronchiectasis. Collectively, these findings and the overlapping endogenous expression with CFTR suggest SLC26A9 an attractive novel therapeutic target that may be exploited to restore epithelial chloride secretion in patients with CF irrespective of their CFTR genotype. In addition, pharmacological activation of SLC26A9 may help to augment the effect of CFTR modulator therapies in patients with CF carrying responsive mutations such as the most common disease-causing mutation F508del-CFTR. However, future research and development including the identification of compounds that activate SLC26A9-mediated chloride transport are needed to explore this alternative chloride channel as a therapeutic target in CF and potentially other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Anita Balázs
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research, Giessen, Germany
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research, Giessen, Germany
| |
Collapse
|
22
|
Liu X, Li T, Tuo B. Physiological and Pathophysiological Relevance of the Anion Transporter Slc26a9 in Multiple Organs. Front Physiol 2018; 9:1197. [PMID: 30233393 PMCID: PMC6127633 DOI: 10.3389/fphys.2018.01197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2018] [Accepted: 08/08/2018] [Indexed: 02/05/2023] Open
Abstract
Transepithelial Cl- and HCO3- transport is crucial for the function of all epithelia, and HCO3- is a biological buffer that maintains acid-base homeostasis. In most epithelia, a series of Cl-/HCO3- exchangers and Cl- channels that mediate Cl- absorption and HCO3- secretion have been detected in the luminal and basolateral membranes. Slc26a9 belongs to the solute carrier 26 (Slc26) family of anion transporters expressed in the epithelia of multiple organs. This review summarizes the expression pattern and functional diversity of Slc26a9 in different systems based on all investigations performed thus far. Furthermore, the physical and functional interactions between Slc26a9 and cystic fibrosis transmembrane conductance regulator (CFTR) are discussed due to their overlapping expression pattern in multiple organs. Finally, we focus on the relationship between slc26a9 mutations and disease onset. An understanding of the physiological and pathophysiological relevance of Slc26a9 in multiple organs offers new possibilities for disease therapy.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi, China.,Digestive Disease Institute of Guizhou Province, Zunyi, China
| |
Collapse
|
23
|
Sroufe IA, Gardner T, Bresnahan KA, Quarnberg SM, Wiedmeier PR. Insights into the pathophysiology of ulcerative colitis: interleukin-13 modulates STAT6 and p38 MAPK activity in the colon epithelial sodium channel. J Physiol 2018; 595:421-422. [PMID: 28083943 DOI: 10.1113/jp272492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ian A Sroufe
- Department of Animal and Veterinary Science, Utah State University, Logan, UT, 84322, USA
| | - ToniRae Gardner
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT, 84322, USA
| | - Katharine A Bresnahan
- Department of Animal and Veterinary Science, Utah State University, Logan, UT, 84322, USA
| | - Shelby M Quarnberg
- Department of Nutrition, Dietetics and Food Science, Utah State University, Logan, UT, 84322, USA
| | - Peter R Wiedmeier
- Department of Animal and Veterinary Science, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
24
|
Abstract
Allergic airway disease is known to cause significant morbidity due to impaired mucociliary clearance, however the mechanism that leads to the mucus dysfunction is not entirely understood. Interleukin 13 (IL-13), a key mediator of Type 2 (T2) inflammation, profoundly alters the ion transport properties of airway epithelium. However, these electrophysiological changes cannot explain the thick, tenacious airway mucus that characterizes the clinical phenotype. Here we report that IL-13 dramatically increases the airway surface liquid (ASL) viscosity in cultured primary human bronchial epithelial cells and thereby inhibits mucus clearance. These detrimental rheological changes require ATP12A, a non-gastric H+/K+-ATPase that secretes protons into the ASL. ATP12A knockdown or inhibition prevented the IL-13 dependent increase in ASL viscosity but did not alter the ASL pH. We propose that ATP12A promotes airway mucus dysfunction in individuals with T2 inflammatory airway diseases and that ATP12A may be a novel therapeutic target to improve mucus clearance.
Collapse
|
25
|
Joskova M, Sutovska M, Durdik P, Koniar D, Hargas L, Banovcin P, Hrianka M, Khazaei V, Pappova L, Franova S. The Role of Ion Channels to Regulate Airway Ciliary Beat Frequency During Allergic Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 921:27-35. [PMID: 27369295 DOI: 10.1007/5584_2016_247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
Overproduction of mucus is a hallmark of asthma. The aim of this study was to identify potentially effective therapies for removing excess mucus. The role of voltage-gated (Kir 6.1, KCa 1.1) and store-operated ion channels (SOC, CRAC) in respiratory cilia, relating to the tracheal ciliary beat frequency (CBF), was compared under the physiological and allergic airway conditions. Ex vivo experiments were designed to test the local effects of Kir 6.1, KCa 1.1 and CRAC ion channel modulators in a concentration-dependent manner on the CBF. Cilia, obtained with the brushing method, were monitored by a high-speed video camera and analyzed with ciliary analysis software. In natural conditions, a Kir 6.1 opener accelerated CBF, while CRAC blocker slowed it in a concentration-dependent manner. In allergic inflammation, the effect of Kir 6.1 opener was insignificant, with a tendency to decrease CBF. A cilio-inhibitory effect of a CRAC blocker, while gently reduced by allergic inflammation, remained significant. A KCa 1.1 opener turned out to significantly enhance the CBF under the allergic OVA-sensitized conditions. We conclude that optimally attuned concentration of KCa 1.1 openers or special types of bimodal SOC channel blockers, potentially given by inhalation, might benefit asthma.
Collapse
Affiliation(s)
- M Joskova
- Department of Pharmacology, BioMed Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4C Mala Hora St, 036 01, Martin, Slovakia.
| | - M Sutovska
- Department of Pharmacology, BioMed Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4C Mala Hora St, 036 01, Martin, Slovakia
| | - P Durdik
- Department of Children and Adolescents, Jessenius Faculty of Medicine, Comenius University in Bratislava and Martin University Hospital, 2 Kollarova St, 036 01, Martin, Slovakia
| | - D Koniar
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina, 1 Univerzitna St, 010 26, Zilina, Slovakia
| | - L Hargas
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina, 1 Univerzitna St, 010 26, Zilina, Slovakia
| | - P Banovcin
- Department of Children and Adolescents, Jessenius Faculty of Medicine, Comenius University in Bratislava and Martin University Hospital, 2 Kollarova St, 036 01, Martin, Slovakia
| | - M Hrianka
- Department of Mechatronics and Electronics, Faculty of Electrical Engineering, University of Zilina, 1 Univerzitna St, 010 26, Zilina, Slovakia
| | - V Khazaei
- Department of Pharmacology, BioMed Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4C Mala Hora St, 036 01, Martin, Slovakia
| | - L Pappova
- Department of Pharmacology, BioMed Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4C Mala Hora St, 036 01, Martin, Slovakia
| | - S Franova
- Department of Pharmacology, BioMed Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4C Mala Hora St, 036 01, Martin, Slovakia
| |
Collapse
|
26
|
The therapeutic potential of CFTR modulators for COPD and other airway diseases. Curr Opin Pharmacol 2017; 34:132-139. [PMID: 29132121 DOI: 10.1016/j.coph.2017.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Airways diseases, especially chronic obstructive pulmonary disease (COPD) and asthma, are common causes of morbidity and mortality worldwide. There is an ongoing unmet need for novel and effective therapies. There is an established pathophysiological link and phenotypic similarity between the chronic bronchitis phenotype of COPD and cystic fibrosis (CF). New evidence suggests that CFTR dysfunction may play a role in other common airways diseases such as COPD, non-atopic asthma and non-CF bronchiectasis. Newly approved and investigational drugs that target both mutant and wild-type CFTR channels have provided a new treatment opportunity addressing the mucus defect in pulmonary diseases that share the same pathophysiology with CF.
Collapse
|
27
|
Zając M, Lewenstam A, Dolowy K. Multi-electrode system for measurement of transmembrane ion-fluxes through living epithelial cells. Bioelectrochemistry 2017. [PMID: 28633068 DOI: 10.1016/j.bioelechem.2017.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
Cystic Fibrosis (CF) is the most common fatal human genetic disease. It is caused by the defect in a single anion channel protein which affects ion and water transport across the epithelial tissue. A flat multi-electrode platform of diameter 12mm, allowing for measurement of four ions: sodium, potassium, hydrogen and chloride by exchangeable/replaceable ion-selective electrodes is described. The measurement is possible owing to the architecture of the platform which accommodates all the electrodes and inlets/outlets. The platform fits to the cup and operates in a small volume of the solution bathing the living epithelial cell layer (membrane) deposited on a porous support of the cup, which allows for effective monitoring of ion concentration changes. By applying two multi-electrode platforms, it is possible to measure the ion transmembrane fluxes. The inlet and outlet tubes in the platforms allow for on-fly change of the calibrants, ion-concentration changes and ion channel blockers. Using different ion-concentration gradients and blockers of ion-transporting molecules we show for the first time that sodium ions flow from the basolateral to apical face of the cell monolayer via a paracellular route and return also via a transcellular one, while chloride anions are transported back and forth exclusively via a transcellular route.
Collapse
Affiliation(s)
- Mirosław Zając
- Warsaw University of Life Sciences - SGGW, Department of Biophysics, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Andrzej Lewenstam
- Åbo Akademi University, Centre for Process Analytical Chemistry and Sensor Technology (ProSens), Johan Gadolin Process Chemistry Centre, Biskopsgatan 8, 20500 Åbo-Turku, Finland; AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Mickiewicza 30, 30-059 Krakow, Poland.
| | - Krzysztof Dolowy
- Warsaw University of Life Sciences - SGGW, Department of Biophysics, 159 Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
28
|
Kang JW, Lee YH, Kang MJ, Lee HJ, Oh R, Min HJ, Namkung W, Choi JY, Lee SN, Kim CH, Yoon JH, Cho HJ. Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2017; 313:L466-L476. [PMID: 28546154 DOI: 10.1152/ajplung.00103.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 11/22/2022] Open
Abstract
Histamine is an important mediator of allergic reactions, and mucus hypersecretion is a major allergic symptom. However, the direct effect of histamine on mucus secretion from airway mucosal epithelia has not been clearly demonstrated. TMEM16A is a Ca2+-activated chloride channel, and it is closely related to fluid secretion in airway mucosal epithelia. We investigated whether histamine directly induces fluid secretion from epithelial cells or submucosal glands (SMG) and mechanisms related, therewith, in allergic airway diseases. In pig airway tissues from the nose or trachea, histamine was a potent secretagogue that directly induced strong responses. However, gland secretion from human nasal tissue was not induced by histamine, even in allergic rhinitis patients. Histamine type 1 receptor (H1R) and histamine type 2 receptor (H2R) were not noted in SMG by in situ hybridization. Cultured primary human nasal epithelial (NHE) cells were used for the measurement of short-circuit current changes with the Ussing chamber. Histamine-induced slight responses of anion secretions under normal conditions. The response was enhanced by IL-4 stimulation through TMEM16A, which might be related to fluid hypersecretion in allergic rhinitis. Pretreatment with IL-4 augmented the histamine response that was suppressed by a TMEM16A inhibitor. TMEM16A expression was enhanced by 24-h treatment of IL-4 in human nasal epithelial cells. The expression of TMEM16A was significantly elevated in an allergic rhinitis group, compared with a control group. We elucidated histamine-induced fluid secretions in synergy with IL-4 through TMEM16A in the human airway epithelium. In addition, we observed species differences between pigs and humans in terms of gland secretion of histamine.
Collapse
Affiliation(s)
- Ju Wan Kang
- Department of Otorhinolaryngology, Jeju National University College of Medicine, Jeju, Korea; and.,Department of Medicine, Yonsei University Graduate School, Seoul, Korea
| | - Yong Hyuk Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Min Jeong Kang
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jae Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Ryung Oh
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jin Min
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Nam Lee
- Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea.,Research Center for Human Natural Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea; .,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Russo A, Ranieri M, Di Mise A, Dossena S, Pellegrino T, Furia E, Nofziger C, Debellis L, Paulmichl M, Valenti G, Tamma G. Interleukin-13 increases pendrin abundance to the cell surface in bronchial NCI-H292 cells via Rho/actin signaling. Pflugers Arch 2017; 469:1163-1176. [PMID: 28378089 DOI: 10.1007/s00424-017-1970-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 11/28/2022]
Abstract
Interleukin-13 (IL13) is a major player in the development of airway hyperresponsiveness in several respiratory disorders. Emerging data suggest that an increased expression of pendrin in airway epithelia is associated with elevated airway hyperreactivity in asthma. Here, we investigate the effect of IL13 on pendrin localization and function using bronchiolar NCI-H292 cells. The data obtained revealed that IL13 increases the cell surface expression of pendrin. This effect was paralleled by a significant increase in the intracellular pH, possibly via indirect stimulation of NHE. IL13 effect on pendrin localization and intracellular pH was reversed by theophylline, a bronchodilator compound used to treat asthma. IL13 upregulated RhoA activity, a crucial protein controlling actin dynamics, via G-alpha-13. Specifically, IL13 stabilized actin cytoskeleton and promoted co-localization and a direct molecular interaction between pendrin and F-actin in the plasma membrane region. These effects were reversed following exposure of cells to theophylline. Selective inhibition of Rho kinase, a downstream effector of Rho, reduced the IL13-dependent cell surface expression of pendrin. Together, these data indicate that IL13 increases pendrin abundance to the cell surface via Rho/actin signaling, an effect reversed by theophylline.
Collapse
Affiliation(s)
- Annamaria Russo
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| | - Annarita Di Mise
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Tommaso Pellegrino
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Emilia Furia
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Lucantonio Debellis
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Giovanna Valenti
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy.,Istituto Nazionsale di Biostrutture e Biosistemi (I.N.B.B.), Rome, Italy.,Centre of Excellence Genomic and Proteomics GEBCA, University of Bari, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125, Bari, Italy. .,Istituto Nazionsale di Biostrutture e Biosistemi (I.N.B.B.), Rome, Italy.
| |
Collapse
|
30
|
Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases. Cell Tissue Res 2017; 367:537-550. [PMID: 28108847 DOI: 10.1007/s00441-016-2562-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na+ channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in βENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.
Collapse
|
31
|
Fritzsching B, Hagner M, Dai L, Christochowitz S, Agrawal R, van Bodegom C, Schmidt S, Schatterny J, Hirtz S, Brown R, Goritzka M, Duerr J, Zhou-Suckow Z, Mall MA. Impaired mucus clearance exacerbates allergen-induced type 2 airway inflammation in juvenile mice. J Allergy Clin Immunol 2016; 140:190-203.e5. [PMID: 27865862 DOI: 10.1016/j.jaci.2016.09.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2016] [Revised: 08/22/2016] [Accepted: 09/05/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Type 2 airway inflammation plays a central role in the pathogenesis of allergen-induced asthma, but the underlying mechanisms remain poorly understood. Recently, we demonstrated that reduced mucociliary clearance, a characteristic feature of asthma, produces spontaneous type 2 airway inflammation in juvenile β-epithelial Na+ channel (Scnn1b)-transgenic (Tg) mice. OBJECTIVE We sought to determine the role of impaired mucus clearance in the pathogenesis of allergen-induced type 2 airway inflammation and identify cellular sources of the signature cytokine IL-13. METHODS We challenged juvenile Scnn1b-Tg and wild-type mice with Aspergillus fumigatus and house dust mite allergen and compared the effects on airway eosinophilia, type 2 cytokine levels, goblet cell metaplasia, and airway hyperresponsiveness. Furthermore, we determined cellular sources of IL-13 and effects of genetic deletion of the key type 2 signal-transducing molecule signal transducer and activator of transcription 6 (STAT6) and evaluated the effects of therapeutic improvement of mucus clearance. RESULTS Reduced mucociliary allergen clearance exacerbated Stat6-dependent secretion of type 2 cytokines, airway eosinophilia, and airway hyperresponsiveness in juvenile Scnn1b-Tg mice. IL-13 levels were increased in airway epithelial cells, macrophages, type 2 innate lymphoid cells, and TH2 cells along with increased Il33 expression in the airway epithelium of Scnn1b-Tg mice. Treatment with the epithelial Na+ channel blocker amiloride, improving airway surface hydration and mucus clearance, reduced allergen-induced inflammation in Scnn1b-Tg mice. CONCLUSION Our data support that impaired clearance of inhaled allergens triggering IL-13 production by multiple cell types in the airways plays an important role in the pathogenesis of type 2 airway inflammation and suggests therapeutic improvement of mucociliary clearance as a novel treatment strategy for children with allergen-induced asthma.
Collapse
Affiliation(s)
- Benedikt Fritzsching
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Matthias Hagner
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Lu Dai
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Sandra Christochowitz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Charlotte van Bodegom
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simone Schmidt
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Ryan Brown
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Michelle Goritzka
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Julia Duerr
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Abstract
Objective: To focus on the asthmatic pathogenesis and clinical manifestations related to epithelial sodium channel (ENaC)/chlorine ion channel. Data Sources: The data analyzed in this review were the English articles from 1980 to 2015 from journal databases, primarily PubMed and Google Scholar. The terms used in the literature search were: (1) ENaCs; cystic fibrosis (CF) transmembrane conductance regulator (CFTR); asthma/asthmatic, (2) ENaC/sodium salt; CF; asthma/asthmatic, (3) CFTR/chlorine ion channels; asthma/asthmatic, (4) ENaC/sodium channel/scnn1a/scnn1b/scnn1g/scnn1d/amiloride-sensitive/amiloride-inhibtable sodium channels/sodium salt; asthma/asthmatic, lung/pulmonary/respiratory/tracheal/alveolar, and (5) CFTR; CF; asthma/asthmatic (ti). Study Selection: These studies included randomized controlled trials or studies covering asthma pathogenesis and clinical manifestations related to ENaC/chlorine ion channels within the last 25 years (from 1990 to 2015). The data involving chronic obstructive pulmonary disease and CF obtained from individual studies were also reviewed by the authors. Results: Airway surface liquid dehydration can cause airway inflammation and obstruction. ENaC and CFTR are closely related to the airway mucociliary clearance. Ion transporters may play a critical role in pathogenesis of asthmatic exacerbations. Conclusions: Ion channels have been the center of many studies aiming to understand asthmatic pathophysiological mechanisms or to identify therapeutic targets for better control of the disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing 100020, China; Department of Cellular and Molecular Biology, Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler Texas 75708, USA,
| | | |
Collapse
|
33
|
Salomon JJ, Spahn S, Wang X, Füllekrug J, Bertrand CA, Mall MA. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol 2016; 310:L593-602. [PMID: 26801567 DOI: 10.1152/ajplung.00321.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2015] [Accepted: 01/16/2016] [Indexed: 01/01/2023] Open
Abstract
Recent studies identified the SLC26A9 Cl(-) channel as a modifier and potential therapeutic target in cystic fibrosis (CF). However, understanding of the regulation of SLC26A9 in epithelia remains limited and cellular models with stable expression for biochemical and functional studies are missing. We, therefore, generated Fisher rat thyroid (FRT) epithelial cells with stable expression of HA-tagged SLC26A9 via retroviral transfection and characterized SLC26A9 expression and function using Western blotting, immunolocalization, whole cell patch-clamp, and transepithelial bioelectric studies in Ussing chambers. We demonstrate stable expression of SLC26A9 in transfected FRT (SLC26A9-FRT) cells on the mRNA and protein level. Immunolocalization and Western blotting detected SLC26A9 in different intracellular compartments and to a lesser extent at the cell surface. Whole cell patch-clamp recordings demonstrated significantly increased constitutive Cl(-) currents in SLC26A9-FRT compared with control-transduced FRT (Control-FRT) cells (P < 0.01). Similar, transepithelial measurements showed that the basal short circuit current was significantly increased in SLC26A9-FRT vs. Control-FRT cell monolayers (P < 0.01). SLC26A9-mediated Cl(-) currents were increased by cAMP-dependent stimulation (IBMX and forskolin) and inhibited by GlyH-101, niflumic acid, DIDS, and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), as well as RNAi knockdown of WNK1 implicated in epithelial osmoregulation. Our results support that these novel epithelial cells with stable expression of SLC26A9 will be a useful model for studies of pharmacological regulation including the identification of activators of SLC26A9 Cl(-) channels that may compensate deficient cystic fibrosis transmembrane regulator (CFTR)-mediated Cl(-) secretion and serve as an alternative therapeutic target in patients with CF and potentially other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Johanna J Salomon
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Stephan Spahn
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Xiaohui Wang
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory, Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Carol A Bertrand
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany;
| |
Collapse
|
34
|
Raju SV, Solomon GM, Dransfield MT, Rowe SM. Acquired Cystic Fibrosis Transmembrane Conductance Regulator Dysfunction in Chronic Bronchitis and Other Diseases of Mucus Clearance. Clin Chest Med 2015; 37:147-58. [PMID: 26857776 DOI: 10.1016/j.ccm.2015.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major public health problem. No therapies alter the natural history of the disease. Chronic bronchitis is perhaps the most clinically troublesome phenotype. Emerging data strongly suggest that cigarette smoke and its components can lead to acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction. Findings in vitro, in animal models, and in smokers with and without COPD also show acquired CFTR dysfunction, which is associated with chronic bronchitis. This abnormality is also present in extrapulmonary organs, suggesting that CFTR dysfunction may contribute to smoking-related systemic diseases.
Collapse
Affiliation(s)
- S Vamsee Raju
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George M Solomon
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Dransfield
- Department of Medicine, The UAB Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Department of Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
35
|
Dames P, Bergann T, Fromm A, Bücker R, Barmeyer C, Krug SM, Fromm M, Schulzke JD. Interleukin-13 affects the epithelial sodium channel in the intestine by coordinated modulation of STAT6 and p38 MAPK activity. J Physiol 2015; 593:5269-82. [PMID: 26365358 DOI: 10.1113/jp271156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Interleukin-13 (IL-13) causes intestinal epithelial barrier dysfunction, and is implicated in the pathogenesis of Th2-driven intestinal inflammation (e.g. ulcerative colitis). However, it is unclear whether the epithelial sodium channel (ENaC) - the main limiting factor for sodium absorption in the distal colon - is also influenced by IL-13 and if so, by what mechanism(s). We demonstrate in an intestinal cell model as well as in mouse distal colon that IL-13 causes reduced ENaC activity. We show that IL-13 impairs ENaC-dependent sodium transport by activating the JAK1/2-STAT6 signalling pathway. These results improve our understanding of the mechanisms through which IL-13 functions as a key effector cytokine in ulcerative colitis, thereby contributing to the distinct pathology of this disease. ABSTRACT Interleukin-13 (IL-13) has been strongly implicated in the pathogenesis of ulcerative colitis, possibly by disrupting epithelial integrity. In the distal colon, the epithelial sodium channel (ENaC) is an important factor in the regulation of sodium absorption, and therefore plays a critical role in minimizing intestinal sodium and water losses. In the present study, we investigated whether IL-13 also acts as a potent modulator of epithelial sodium transport via ENaC, and the signalling components involved. The effect of IL-13 on ENaC was examined in HT-29/B6-GR/MR human colon cells, as well as in mouse distal colon, by measuring amiloride-sensitive short-circuit current (ISC ) in Ussing chambers. The expression levels of ENaC subunits and the cellular components that contribute to ENaC activity were analysed by qRT-PCR and promoter gene assay. We show that IL-13, in both the cell model and in native intestinal tissue, impaired epithelial sodium absorption via ENaC (JNa ) as a result of decreased transcription levels of β- and γ-ENaC subunits and SGK1, a post-translational regulator of ENaC activity, due to impaired promoter activity. The reduction in JNa was prevented by inhibition of JAK1/2-STAT6 signalling. This inhibition also affected the IL-13-induced decrease in p38 MAPK phosphorylation. The contribution of STAT6 to IL-13-mediated ENaC inactivation was confirmed in a STAT6(-/-) mouse model. In conclusion, these results indicate that IL-13, the levels of which are elevated in ulcerative colitis, contributes to impaired ENaC activity via modulation of the STAT6/p38 MAPK pathways.
Collapse
Affiliation(s)
- Petra Dames
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Theresa Bergann
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Christian Barmeyer
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
36
|
Oglesby IK, Vencken SF, Agrawal R, Gaughan K, Molloy K, Higgins G, McNally P, McElvaney NG, Mall MA, Greene CM. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production. Eur Respir J 2015; 46:1350-60. [PMID: 26160865 DOI: 10.1183/09031936.00163414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2014] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- Irene K Oglesby
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Sebastian F Vencken
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland Both authors contributed equally
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Kevin Gaughan
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Kevin Molloy
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Gerard Higgins
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Paul McNally
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg, Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
37
|
Upregulation of TMEM16A Protein in Bronchial Epithelial Cells by Bacterial Pyocyanin. PLoS One 2015; 10:e0131775. [PMID: 26121472 PMCID: PMC4486680 DOI: 10.1371/journal.pone.0131775] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2014] [Accepted: 06/06/2015] [Indexed: 01/22/2023] Open
Abstract
Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P. aeruginosa culture supernatant caused a significant increase in TMEM16A function. The Ca2+-dependent Cl- secretion, triggered by stimulation with UTP, was particularly enhanced by pyocyanin in cells from CF patients. Increased expression of TMEM16A protein and of MUC5AC mucin by bacterial components was demonstrated by immunofluorescence in CF and non-CF cells. We also investigated TMEM16A expression in human bronchi by immunocytochemistry. We found increased TMEM16A staining in the airways of CF patients. The strongest signal was observed in CF submucosal glands. Our results suggest that TMEM16A expression/function is upregulated in CF lung disease, possibly as a response towards the presence of bacteria in the airways.
Collapse
|
38
|
Mall MA, Galietta LJV. Targeting ion channels in cystic fibrosis. J Cyst Fibros 2015; 14:561-70. [PMID: 26115565 DOI: 10.1016/j.jcf.2015.06.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany; Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
39
|
The Contribution of the Airway Epithelial Cell to Host Defense. Mediators Inflamm 2015; 2015:463016. [PMID: 26185361 PMCID: PMC4491388 DOI: 10.1155/2015/463016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022] Open
Abstract
In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.
Collapse
|
40
|
Lin J, Jiang Y, Li L, Liu Y, Tang H, Jiang D. TMEM16A mediates the hypersecretion of mucus induced by Interleukin-13. Exp Cell Res 2015; 334:260-9. [PMID: 25770012 DOI: 10.1016/j.yexcr.2015.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
Abstract
Previous studies showed that the Ca(2+)-activated Cl(-) channel (CaCC) was involved in the pathogenesis of mucus hypersecretion induced by Interleukin-13 (IL-13). However, the mechanisms underlying the process were unknown. Recently, transmembrane protein 16A (TMEM16A) was identified as the channel underlying the CaCC current. The aim of the current study was to investigate whether the TMEM16A channel is part of the mechanism underlying IL-13-induced mucus hypersecretion. We observed that both TMEM16A mRNA and protein expression were significantly up-regulated after treatment with IL-13 in human bronchial epithelial 16 (HBE 16) cells, which correlated with an increase in mucus production. Additionally, mucus hypersecretion in rat airways was induced by intratracheal instillation of IL-13 and similar increases were observed in the expression of TMEM16A mRNA and protein in the bronchial epithelium. Niflumic acid (NA), a selective antagonist of CaCC, markedly blocked IL-13-induced mucin (MUC) 5AC mRNA and protein production in vivo and in vitro. Further investigation with HBE16 cells revealed that TMEM16A overexpression clearly promoted mucus production, IκBα phosphorylation, and p65 accumulation in the nucleus. The loss of TMEM16A resulted in inhibition of mucus production, and the TMEM16A-mediated production of MUC5AC was significantly blocked by a nuclear factor-kappa B (NF-κB) inhibitor. Therefore, the TMEM16A channel acts upstream of NF-κB in the regulation of mucus production. This is the first demonstration that the TMEM16A-NF-κB pathway is positively involved in IL-13-induced mucus production, which provides novel insight into the molecular mechanism of mucin overproduction.
Collapse
Affiliation(s)
- Jiachen Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Youfan Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Li Li
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yanan Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hui Tang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Depeng Jiang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
41
|
Oglesby IK, Agrawal R, Mall MA, McElvaney NG, Greene CM. miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Mol Cell Pediatr 2015; 2:1. [PMID: 26542291 PMCID: PMC5407678 DOI: 10.1186/s40348-014-0012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA (miRNA) and messenger RNA (mRNA) expression differs in
cystic fibrosis (CF) versus non-CF bronchial epithelium. Here, the role of miRNA
in basal regulation of the transcription factor ATF6 was investigated in bronchial
epithelial cells in vitro and in vivo. Methods Using in silico analysis, miRNAs
predicted to target the 3′untranslated region (3′UTR) of the human ATF6 mRNA were
identified. Results Three of these miRNAs, miR-145, miR-221 and miR-494, were upregulated in
F508del-CFTR homozygous CFBE41o- versus non-CF 16HBE14o- bronchial epithelial
cells and also in F508del-CFTR homozygous or heterozygous CF (n = 8) versus non-CF (n = 9) bronchial brushings. ATF6 was experimentally validated as a
molecular target of these miRNAs through the use of a luciferase reporter vector
containing the full-length 3′UTR of ATF6. Expression of ATF6 was observed to be
decreased in CF both in vivo and in vitro. miR-221 was also predicted to regulate murine
ATF6, and its expression was significantly increased in native airway tissues of
6-week-old βENaC-overexpressing transgenic mice with CF-like lung disease versus
wild-type littermates. Conclusions These results implicate miR-145, miR-221 and miR-494 in the
regulation of ATF6 in CF bronchial epithelium, with miR-221 demonstrating
structural and functional conservation between humans and mice. The altered miRNA
expression evident in CF bronchial epithelial cells can affect expression of
transcriptional regulators such as ATF6.
Collapse
Affiliation(s)
- Irene K Oglesby
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, 69120, Heidelberg, Germany. .,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| |
Collapse
|
42
|
Gehrig S, Duerr J, Weitnauer M, Wagner CJ, Graeber SY, Schatterny J, Hirtz S, Belaaouaj A, Dalpke AH, Schultz C, Mall MA. Lack of neutrophil elastase reduces inflammation, mucus hypersecretion, and emphysema, but not mucus obstruction, in mice with cystic fibrosis-like lung disease. Am J Respir Crit Care Med 2014; 189:1082-92. [PMID: 24678594 DOI: 10.1164/rccm.201311-1932oc] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recent evidence from clinical studies suggests that neutrophil elastase (NE) released in neutrophilic airway inflammation is a key risk factor for the onset and progression of lung disease in young children with cystic fibrosis (CF). However, the role of NE in the complex in vivo pathogenesis of CF lung disease remains poorly understood. OBJECTIVES To elucidate the role of NE in the development of key features of CF lung disease including airway inflammation, mucus hypersecretion, goblet cell metaplasia, bacterial infection, and structural lung damage in vivo. METHODS We used the Scnn1b-Tg mouse as a model of CF lung disease and determined effects of genetic deletion of NE (NE(-/-)) on the pulmonary phenotype. Furthermore, we used novel Foerster resonance energy transfer (FRET)-based NE reporter assays to assess NE activity in bronchoalveolar lavage from Scnn1b-Tg mice and sputum from patients with CF. MEASUREMENTS AND MAIN RESULTS Lack of NE significantly reduced airway neutrophilia, elevated mucin expression, goblet cell metaplasia, and distal airspace enlargement, but had no effect on airway mucus plugging, bacterial infection, or pulmonary mortality in Scnn1b-Tg mice. By using FRET reporters, we show that NE activity was elevated on the surface of airway neutrophils from Scnn1b-Tg mice and patients with CF. CONCLUSIONS Our results suggest that NE plays an important role in the in vivo pathogenesis and may serve as a therapeutic target for inflammation, mucus hypersecretion, and structural lung damage and indicate that additional rehydration strategies may be required for effective treatment of airway mucus obstruction in CF.
Collapse
|
43
|
Liu X, Li T, Riederer B, Lenzen H, Ludolph L, Yeruva S, Tuo B, Soleimani M, Seidler U. Loss of Slc26a9 anion transporter alters intestinal electrolyte and HCO3(-) transport and reduces survival in CFTR-deficient mice. Pflugers Arch 2014; 467:1261-75. [PMID: 24965066 PMCID: PMC4434866 DOI: 10.1007/s00424-014-1543-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022]
Abstract
Slc26a9 is an anion transporter that is strongly expressed in the stomach and lung. Slc26a9 variants were recently found associated with a higher incidence of meconium ileus in cystic fibrosis (CF) infants, raising the question whether Slc26a9 is expressed in the intestine and what its functional role is. Slc26a9 messenger RNA (mRNA) was found highly expressed in the mucosae of the murine and human upper gastrointestinal tract, with an abrupt decrease in expression levels beyond the duodenum. Absence of SLC26a9 expression strongly increased the intestinally related mortality in cystic fibrosis transmembrane conductance regulator (CFTR)-deficient mice. Proximal duodenal JHCO3(-) and fluid secretion were reduced in the absence of Slc26a9 expression. In the proximal duodenum of young Slc26a9 KO mice, the glands and villi/crypts were elongated and proliferation was enhanced. This difference was lost with ageing, as were the alterations in fluid movement, whereas the reduction in JHCO3(-) remained. Laser dissection followed by qPCR suggested Slc26a9 expression to be crypt-predominant in the duodenum. In summary, deletion of Slc26a9 caused bicarbonate secretory and fluid absorptive changes in the proximal duodenal mucosa and increased the postweaning death rates in CFTR-deficient mice. Functional alterations in the duodenum were most prominent at young ages. We assume that the association of meconium ileus and Slc26a9 variants may be related to maldigestion and impaired downstream signaling caused by loss of upper GI tract digestive functions, aggravating the situation of lack of secretion and sticky mucus at the site of obstruction in CF intestine.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Cystic fibrosis (CF) remains the most common fatal hereditary lung disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene 25 years ago set the stage for: 1) unravelling the molecular and cellular basis of CF lung disease; 2) the generation of animal models to study in vivo pathogenesis; and 3) the development of mutation-specific therapies that are now becoming available for a subgroup of patients with CF. This article highlights major advances in our understanding of how CFTR dysfunction causes chronic mucus obstruction, neutrophilic inflammation and bacterial infection in CF airways. Furthermore, we focus on recent breakthroughs and remaining challenges of novel therapies targeting the basic CF defect, and discuss the next steps to be taken to make disease-modifying therapies available to a larger group of patients with CF, including those carrying the most common mutation ΔF508-CFTR. Finally, we will summarise emerging evidence indicating that acquired CFTR dysfunction may be implicated in the pathogenesis of chronic obstructive pulmonary disease, suggesting that lessons learned from CF may be applicable to common airway diseases associated with mucus plugging.
Collapse
Affiliation(s)
- Marcus A Mall
- Dept of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany Division of Paediatric Pulmonology and Allergy and Cystic Fibrosis Center, Dept of Paediatrics, University of Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Dominik Hartl
- Paediatric Infectiology and Immunology, Dept of Pediatrics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Graeber SY, Zhou-Suckow Z, Schatterny J, Hirtz S, Boucher RC, Mall MA. Hypertonic saline is effective in the prevention and treatment of mucus obstruction, but not airway inflammation, in mice with chronic obstructive lung disease. Am J Respir Cell Mol Biol 2013; 49:410-7. [PMID: 23590312 DOI: 10.1165/rcmb.2013-0050oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Recent evidence suggests that inadequate hydration of airway surfaces is a common mechanism in the pathogenesis of airway mucus obstruction. Inhaled hypertonic saline (HS) induces osmotic water flux, improving hydration of airway surfaces. However, trials in patients with obstructive lung diseases are limited. The aim of this study was to investigate effects of HS on mucus obstruction and airway inflammation in the prevention and treatment of obstructive lung disease in vivo. We, therefore, used the β-epithelial Na(+) channel (βENaC)-overexpressing mouse as a model of chronic obstructive lung disease and determined effects of preventive and late therapy with 3% HS and 7% HS on pulmonary mortality, airway mucus obstruction, and inflammation. We found that preventive treatment with 3% HS and 7% HS improved growth, reduced mortality, and reduced mucus obstruction in neonatal βENaC-overexpressing mice. In adult βENaC-overexpressing mice with chronic lung disease, mucus obstruction was significantly reduced by 7% HS, but not by 3% HS. Treatment with HS triggered airway inflammation with elevated keratinocyte chemoattractant levels and neutrophils in airways from wild-type mice, but reduced keratinocyte chemoattractant in chronic neutrophilic inflammation in adult βENaC-overexpressing mice. Our data demonstrate that airway surface rehydration with HS provides an effective preventive and late therapy of mucus obstruction with no consistent effects on inflammation in chronic lung disease. These results suggest that, through mucokinetic effects, HS may be beneficial for patients with a spectrum of obstructive lung diseases, and that additional strategies are required for effective treatment of associated airway inflammation.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Translational Pulmonology, Translational Lung Research Center, University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infect Immun 2012; 80:4485-94. [PMID: 23045480 DOI: 10.1128/iai.06224-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin D is an important regulator of the expression of antimicrobial peptides, and vitamin D deficiency is associated with respiratory infections. Regulating expression of antimicrobial peptides, such as the human cathelicidin antimicrobial peptide 18 (hCAP18)/LL-37, by vitamin D in bronchial epithelial cells requires local conversion of 25(OH)-vitamin D(3) (25D(3)) into its bioactive metabolite, 1,25(OH)(2)-vitamin D(3) (1,25D(3)), by CYP27B1. Low circulating vitamin D levels in childhood asthma are associated with more-severe exacerbations, which are often associated with infections. Atopic asthma is accompanied by Th2-driven inflammation mediated by cytokines such as interleukin 4 (IL-4) and IL-13, and the effect of these cytokines on vitamin D metabolism and hCAP18/LL-37 expression is unknown. Therefore, we investigated this with well-differentiated bronchial epithelial cells. To this end, cells were treated with IL-13 with and without 25D(3), and expression of hCAP18/LL-37, CYP27B1, the 1,25D(3)-inactivating enzyme CYP24A1, and vitamin D receptor was assessed by quantitative PCR. We show that IL-13 enhances the ability of 25D(3) to increase expression of hCAP18/LL-37 and CYP24A1. In addition, exposure to IL-13 resulted in increased CYP27B1 expression, whereas vitamin D receptor (VDR) expression was not significantly affected. The enhancing effect of IL-13 on 25D(3)-mediated expression of hCAP18/LL-37 was further confirmed using SDS-PAGE Western blotting and immunofluorescence staining. In conclusion, we demonstrate that IL-13 induces vitamin D-dependent hCAP18/LL-37 expression, most likely by increasing CYP27B1. These data suggest that Th2 cytokines regulate the vitamin D metabolic pathway in bronchial epithelial cells.
Collapse
|
47
|
Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BLM, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 2012; 109:16354-9. [PMID: 22988107 PMCID: PMC3479591 DOI: 10.1073/pnas.1214596109] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.
Collapse
Affiliation(s)
- Fen Huang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Hongkang Zhang
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Meng Wu
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Huanghe Yang
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Makoto Kudo
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, Kanazawa, Yokohama 236-0004, Japan
| | - Christian J. Peters
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Owen D. Solberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | | | - Xiaozhu Huang
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94158
| | - John V. Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94143
| | - Paul J. Wolters
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| | - Brigid L. M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | | | - Min Li
- Department of Neuroscience, High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Lily Yeh Jan
- Howard Hughes Medical Institute and
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Jason R. Rock
- Departments of Anatomy
- Medicine, School of Medicine, University of California, San Francisco, CA 94143; and
| |
Collapse
|
48
|
Anagnostopoulou P, Riederer B, Duerr J, Michel S, Binia A, Agrawal R, Liu X, Kalitzki K, Xiao F, Chen M, Schatterny J, Hartmann D, Thum T, Kabesch M, Soleimani M, Seidler U, Mall MA. SLC26A9-mediated chloride secretion prevents mucus obstruction in airway inflammation. J Clin Invest 2012; 122:3629-34. [PMID: 22945630 DOI: 10.1172/jci60429] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2011] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Asthma is a chronic condition with unknown pathogenesis, and recent evidence suggests that enhanced airway epithelial chloride (Cl-) secretion plays a role in the disease. However, the molecular mechanism underlying Cl- secretion and its relevance in asthma pathophysiology remain unknown. To determine the role of the solute carrier family 26, member 9 (SLC26A9) Cl- channel in asthma, we induced Th2-mediated inflammation via IL-13 treatment in wild-type and Slc26a9-deficient mice and compared the effects on airway ion transport, morphology, and mucus content. We found that IL-13 treatment increased Cl- secretion in the airways of wild-type but not Slc26a9-deficient mice. While IL-13-induced mucus overproduction was similar in both strains, treated Slc26a9-deficient mice exhibited airway mucus obstruction, which did not occur in wild-type controls. In a study involving healthy children and asthmatics, a polymorphism in the 3' UTR of SLC26A9 that reduced protein expression in vitro was associated with asthma. Our data demonstrate that the SLC26A9 Cl- channel is activated in airway inflammation and suggest that SLC26A9-mediated Cl- secretion is essential for preventing airway obstruction in allergic airway disease. These results indicate that SLC26A9 may serve as a therapeutic target for airway diseases associated with mucus plugging.
Collapse
Affiliation(s)
- Pinelopi Anagnostopoulou
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Johannesson B, Hirtz S, Schatterny J, Schultz C, Mall MA. CFTR regulates early pathogenesis of chronic obstructive lung disease in βENaC-overexpressing mice. PLoS One 2012; 7:e44059. [PMID: 22937152 PMCID: PMC3427321 DOI: 10.1371/journal.pone.0044059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in βENaC-overexpressing (βENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background. Methods To test this hypothesis, we backcrossed βENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed βENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease. Results We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl− secretion, which was associated with decreased mucus plugging and mortality in neonatal βENaC-Tg C57BL/6 compared to βENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in βENaC-Tg mice. Conclusions We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in βENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Bjarki Johannesson
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephanie Hirtz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
| | - Carsten Schultz
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research, University of Heidelberg, Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
50
|
Mundhenk L, Johannesson B, Anagnostopoulou P, Braun J, Bothe MK, Schultz C, Mall MA, Gruber AD. mCLCA3 does not contribute to calcium-activated chloride conductance in murine airways. Am J Respir Cell Mol Biol 2012; 47:87-93. [PMID: 22362387 DOI: 10.1165/rcmb.2010-0508oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) contribute to airway Cl(-) and fluid secretion, and were implicated in the modulation of disease severity and as a therapeutic target in cystic fibrosis (CF). Previous in vitro studies suggested that members of the CLCA gene family, including the murine mCLCA3, contribute to CaCCs. However, the role of mCLCA3 in ion transport in native airway epithelia has not been studied, to the best of our knowledge. In this study, we used mCLCA3-deficient mice and determined bioelectric properties in freshly excised tracheal tissue, airway morphology, and gene expression studies, to determine the role of mCLCA3 in airway ion transport and airway structure. Bioelectric measurements did not detect any differences in basal short-circuit current, amiloride-sensitive Na(+) absorption, cyclic adenosine monophosphate-dependent Cl(-) secretion, and activation of Ca(2+)-activated (uridine-5'-triphosphate-mediated) Cl(-) secretion in mCLCA3-deficient mice compared with wild-type mice. Moreover, no histological changes were observed in the respiratory tract or any other tissues of mCLCA3-deficient mice when compared with wild-type control mice. The intratracheal instillation of IL-13 produced an approximately 30-fold up-regulation of mCLCA3 transcripts without inducing CaCC activity in wild-type airways, and induced goblet-cell hyperplasia and mucin gene expression to similar levels in both genotypes. Further, multiple specific reverse-transcriptase quantitative PCR assays for other CaCC candidates, including mCLCA1, mCLCA2, mCLCA4, mCLCA5, mCLCA6, mCLCA7, mBEST1, mBEST2, mCLC4, mTTYH3, and mTMEM16A, failed to identify the differential expression of genes in the respiratory tract that may compensate for a lack of mCLCA3 function. Together, these findings argue against a role of mCLCA3 in CaCC-mediated Cl(-) secretion in murine respiratory epithelia.
Collapse
Affiliation(s)
- Lars Mundhenk
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|