1
|
Andreev EA, Shavokshina VA, Nikitina VN, Pozdnyakova DD, Baranova IA, Chuchalin AG, Karyakin AA. Sensor platform for noninvasive evaluation of pulmonary oxidative status. Talanta 2025; 290:127792. [PMID: 40010118 DOI: 10.1016/j.talanta.2025.127792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
We report on sensor platform including both the advanced nanostructured Prussian Blue based hydrogen peroxide sensor and the cooling-free breath aerosol (BA) condenser. The latter provides an order of magnitude more concentrated BA samples as compared to breath condensate collected traditionally through cooling; the conclusion is based on both: specimen's conductivity, the generally accepted dilution marker, and the evaluated H2O2 levels (2.2-3.2 μM for healthy subjects). Reliable detection of submicromolar H2O2 content is possible with the sensor based on nanostructured Prussian Blue (0.45-0.70 nmol cm-2) stabilized with nickel hexacyanoferrate (1.0-1.3 nmol cm-2). A possibility to discover the noninvasively accessed marker for post-COVID-19 syndrome illustrates the horizons of the platform in clinical diagnostics.
Collapse
Affiliation(s)
- Egor A Andreev
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vera A Shavokshina
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Vita N Nikitina
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Darya D Pozdnyakova
- Pirogov Russian National Research Medical University, Hospital Therapy Department, 117513, Moscow, Russia
| | - Irina A Baranova
- Pirogov Russian National Research Medical University, Hospital Therapy Department, 117513, Moscow, Russia
| | - Alexander G Chuchalin
- Pirogov Russian National Research Medical University, Hospital Therapy Department, 117513, Moscow, Russia
| | - Arkady A Karyakin
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Kafili-Hajlari T, Naseri A, Ansarin A, Rasoulzadeh F. Technical approaches for breath aldehyde biomarker detection and disease diagnosis: A review. Anal Biochem 2025; 702:115841. [PMID: 40113023 DOI: 10.1016/j.ab.2025.115841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Exhaled breath analysis holds promise as a non-invasive approach for disease diagnosis. Aldehydes represent a class of volatile organic compounds with diagnostic potential as breath biomarkers for cancers and other conditions. However, aldehydes exist at low concentrations in breath and have stability challenges. This review summarizes recent studies on breath aldehyde analysis, focusing on sample collection methodology, analytical techniques implemented, and key findings regarding aldehyde alterations in disease. Breath collection methods examined include commercial bags, end-tidal sampling devices, condensates, and direct analysis. Analytical techniques evaluated gas chromatography, mass spectrometry, and microextraction approaches. Emerging microextraction and sensing technologies are advancing real-time, non-invasive aldehyde detection. Overall, breath aldehyde biomarkers offer immense potential for diagnosis and screening, but continued research is needed to address current limitations. This review provides insights to guide future efforts focused on exhaled aldehyde analysis and disease detection.
Collapse
Affiliation(s)
- Taha Kafili-Hajlari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabri, Iran.
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabri, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street Baku, AZ1096, Azerbaijan.
| | - Atefeh Ansarin
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzaneh Rasoulzadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang X, Wong LS, Tang Z, Xiong H, Sun J, Kong L, Tu M, Hu Y, Zhou Y, Zhu W, Hsia KJ, Wan H, Wang P. Ultrasensitive Love-SAW Biosensor Based on Self-Assembled DMSN@AuNPs with In Situ Amplification for Detecting Biomarker Procalcitonin in Exhaled Breath Condensate. ACS Sens 2025; 10:2994-3002. [PMID: 40192343 DOI: 10.1021/acssensors.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The COVID-19 pandemic has highlighted the importance of early screening and pathogen identification for the effective treatment of pneumonia. Exhaled breath condensate (EBC) provides a noninvasive and easily accessible method for early diagnosis of respiratory diseases, as it captures biomarkers from the airway lining fluid, offering a timely and reliable reflection of respiratory inflammation. Procalcitonin (PCT) is a biomarker widely used to assess infection type and severity, particularly for distinguishing between bacterial and nonbacterial pneumonia. However, detecting PCT especially in EBC is challenging due to its extremely low concentrations. In this work, we developed an ultrasensitive Love-type surface acoustic wave (Love-SAW) biosensor based on self-assembled gold nanoparticles on dendritic mesoporous silica nanoparticles (DMSN@AuNPs) with in situ amplification for PCT detection in EBC. Dendritic mesoporous silica nanoparticles (DMSNs), an emerging porous material with features of large surface area, high thermal stability, and ease of functionalization were employed to load a large amount of AuNPs that can spontaneously grow in situ to further enhance the sensing performance. An automatic detection system was also developed to integrate with the Love-SAW biosensor for multichannel detection of PCT in EBC for pneumonia screening. The DMSN@AuNPs based Love-SAW biosensor demonstrates remarkable performance with a detection range of 0.01-10 ng/mL and detection limit of 3.7 pg/mL, which is about 350 times higher than conventional AuNPs-based methods. These results validate the potential of DMSN@AuNPs based Love-SAW biosensors for ultrasensitive detection of low-concentration biomarkers, providing a promising platform for in vitro diagnostics.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Li Sin Wong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenyuan Tang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjie Hu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Yong Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Wenwu Zhu
- Evaluation Center of Medical Device of Zhejiang Province, Hangzhou, Zhejiang Province 310000, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
4
|
Verma G, Gupta A. Next-Generation Chemiresistive Wearable Breath Sensors for Non-Invasive Healthcare Monitoring: Advances in Composite and Hybrid Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411495. [PMID: 39967468 DOI: 10.1002/smll.202411495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Recently wearable breath sensors have received significant attention in personalized healthcare systems by offering new methods for remote, non-invasive, and continuous monitoring of various health indicators from breath samples without disrupting daily routines. The rising demand for rapid, personalized diagnostics has sparked concerns over electronic waste from short-lived silicon-based devices. To address this issue, the development of flexible and wearable sensors for breath sensing applications is a promising approach. Research highlights the development of different flexible, wearable sensors operating with different operating principles, such as chemiresistive sensors to detect specific target analytes due to their simple design, high sensitivity, selectivity, and reliability. Further, focusing on the non-invasive detection of biomarkers through exhaled breath, chemiresistive wearable sensors offer a comprehensive and environmentally friendly solution. This article presents a comprehensive discussion of the recent advancement in chemiresistive wearable breath sensors for the non-invasive detection of breath biomarkers. The article further emphasizes the intricate development and functioning of the sensor, including the selection criteria for both the flexible substrate and advanced functional materials, including their sensing mechanisms. The review then explores the potential applications of wearable gas sensing systems with specific disease detection, with modern challenges associated with non-invasive breath sensors.
Collapse
Affiliation(s)
- Gulshan Verma
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur, 342030, India
| |
Collapse
|
5
|
Hayashi MAL, Simon SM, Zou K, Van Wyk H, Zahid MH, Eisenberg JNS, Freeman MC. Shared sanitation facilities and risk of respiratory virus transmission in resource-poor settings: A COVID-19 modeling case study. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:638-652. [PMID: 39179379 PMCID: PMC11954722 DOI: 10.1111/risa.17633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/08/2024] [Accepted: 07/04/2024] [Indexed: 08/26/2024]
Abstract
Water supply and sanitation are essential household services frequently shared in resource-poor settings. Shared sanitation can increase the risk of enteric pathogen transmission due to suboptimal cleanliness of facilities used by large numbers of individuals. It also can potentially increase the risk of respiratory disease transmission. As sanitation is an essential need, shared sanitation facilities may act as important respiratory pathogen transmission venues even with strict control measures such as stay-at-home recommendations in place. This analysis explores how behavioral and infrastructural conditions surrounding shared sanitation may individually and interactively influence respiratory pathogen transmission. We developed an individual-based community transmission model using COVID-19 as a motivating example parameterized from empirical literature to explore how transmission in shared latrines interacts with transmission at the community level. We explored mitigation strategies, including infrastructural and behavioral interventions. Our review of empirical literature confirms that shared sanitation venues in resource-poor settings are relatively small with poor ventilation and high use patterns. In these contexts, shared sanitation facilities may act as strong drivers of respiratory disease transmission, especially in areas reliant on shared facilities. Decreasing dependence on shared latrines was most effective at attenuating sanitation-associated transmission. Improvements to latrine ventilation and handwashing behavior were also able to decrease transmission. The type and order of interventions are important in successfully attenuating disease risk, with infrastructural and engineering controls being most effective when administered first, followed by behavioral controls after successful attenuation of sufficient alternate transmission routes. Beyond COVID-19, our modeling framework can be extended to address water, sanitation, and hygiene measures targeted at a range of environmentally mediated infectious diseases.
Collapse
Affiliation(s)
- Michael A. L. Hayashi
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Sophia M. Simon
- Department of Environmental Science and PolicyUniversity of CaliforniaDavisCaliforniaUSA
| | - Kaiyue Zou
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Hannah Van Wyk
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Mondal Hasan Zahid
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew C. Freeman
- Gangarosa Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Heng W, Yin S, Chen Y, Gao W. Exhaled Breath Analysis: From Laboratory Test to Wearable Sensing. IEEE Rev Biomed Eng 2025; 18:50-73. [PMID: 39412981 PMCID: PMC11875904 DOI: 10.1109/rbme.2024.3481360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
Collapse
|
7
|
Touri L, Tarantini A, Suehs C, Nogué E, Marie-Desvergne C, Dubosson M, Dauba A, Ravanat JL, Chamel V, Klerlein M, Artous S, Locatelli D, Jacquinot S, Chanez P, Vachier I, Molinari N. Occupational exposure to aerosols in two French airports: multi-year lung function changes. Ann Work Expo Health 2025; 69:17-33. [PMID: 39585315 DOI: 10.1093/annweh/wxae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
As differential exposure to airport-generated aerosols may affect employee lung function, the main objective of this study was to longitudinally evaluate spirometry measures among Air France employees. In addition, an exploratory exposure assessment to airport aerosol was performed in a small cohort of workers using personal monitoring devices. Change in lung function over a ~6.6-yr period was documented for office workers (n = 68) and mechanics (n = 83) at Paris-Roissy airport, France and terminal (n = 29), or apron (n = 35) workers at Marseille airport, France. Overall, an excessive decline in lung function was found for 24.75% of airport workers; excessive decline occurred more often for terminal workers (44.83%) as compared to mechanics (14.47%; P = 0.0056), with a similar tendency for apron workers (35.29%) as compared to mechanics (P = 0.0785). Statistically significant differences/tendencies were detected among the yearly rates of change for %-predicted values of forced expiratory volume in 1 s, forced vital capacity, peak expiratory flow, and from 25% to 75% forced expiratory flow. For the latter variables, the terminal and/or apron workers at Marseille generally had significantly faster lung function decline as compared to office workers and/or mechanics in Paris, although the latter were exposed to a higher level of elemental carbon. No relation between lung function decline and exposure to airport tarmac environments was evidenced. Multivariate exploration of individual variables representing sex, smoking, atopy, respiratory disease, residential PM2.5 pollution, the peak size of particles in lung exhalates or exhaled carbon monoxide at the time of follow-up failed to explain the observed differences. In conclusion, this study documents the first evidence of excessive lung function decline among certain airport workers in France, although the identification of emission sources (environmental factors, aircraft exhaust, etc) remains challenging.
Collapse
Affiliation(s)
- Léa Touri
- Air France Occupational Health Department, 45 rue de Paris, 95747 Roissy Charles De Gaulle, France
| | - Adeline Tarantini
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Carey Suehs
- Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| | - Erika Nogué
- Clinical Research and Epidemiology Unit, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| | - Caroline Marie-Desvergne
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Muriel Dubosson
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Ambre Dauba
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Luc Ravanat
- University Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Véronique Chamel
- University Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), 17 avenue des Martyrs, 38000 Grenoble, France
| | - Michel Klerlein
- Air France Occupational Health Department, 45 rue de Paris, 95747 Roissy Charles De Gaulle, France
| | - Sébastien Artous
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Dominique Locatelli
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Jacquinot
- University Grenoble Alpes, CEA, Liten, DTNM, 17 avenue des Martyrs, 38000 Grenoble, France
| | - Pascal Chanez
- Department of Respiratory diseases, AP-HM CIC Nord, INSERM, INRAE, C2VN, Aix Marseille University, 7 rue Scudery, 130007 Marseille, France
| | - Isabelle Vachier
- Medicine Biology Mediterranee, Department of Respiratory Diseases and Addictology, Arnaud de Villeneuve Hospital, CHRU Montpellier, France
| | - Nicolas Molinari
- IDESP, INSERM, Premedical, INRIA, University of Montpellier, CHU Montpellier, 39 avenue Charles Flahaut, 34295 Montpellier, France
| |
Collapse
|
8
|
Xu R, Zhang Y, Wu T, Liu H, Peng J, Wang Z, Ba T, Zhang B, Li Z, Wei Y. Traffic-related air pollution (TRAP) exposure, lung function, airway inflammation and expiratory microbiota: A randomized crossover study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117545. [PMID: 39788033 DOI: 10.1016/j.ecoenv.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
Traffic-related air pollution (TRAP) has been linked with numerous respiratory diseases. Recently, lung microbiome is proposed to be characterized with development and progression of respiratory diseases. However, the underlying effects of TRAP exposure on lung microbiome are rarely explored. We conducted a randomized, crossover study among 35 healthy adults, who participated in 2-h exposure treatments in the road or park scenario alternately, to investigate the impact of short-term TRAP exposure on expiratory health. Particle matters (PMs), nitrogen dioxide (NO2), carbon monoxide (CO) and volatile organic compounds (VOCs), lung function, fractional exhaled nitric oxide (FeNO) and lung microbiota were measured. We applied linear mixed-effect models to explore the associations. TRAP including NO2 and CO in the road were about 1.5 times higher than that in the park except for PMs, and total VOCs also showed higher concentrations. We observed elevated difference in FeNO was associated with high TRAP exposure in the road session, but didn't find obvious changes in lung function. The abundance of Lentilactobacillus and Haepmophilus were distinct in the two groups, with significant correlations with changes to PEF and FeNO, respectively. Enrichment pathways related to transcription, amino acid and carbohydrate metabolism were altered following high TRAP exposure, suggesting TRAP contributed to the respiratory disease by changing metabolism of lung microbes. Our findings reveal VOCs in the road are another key air pollutant and provide novel mechanism for the respiratory effects of TRAP from the perspective of microbiome.
Collapse
Affiliation(s)
- Rongrong Xu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanping Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Science
| | - Tingting Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jianhao Peng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhanshan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Te Ba
- Department of Stomatology, Aviation General Hospital, Beijing, China
| | - Baorong Zhang
- Department of Stomatology, Aviation General Hospital, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yongjie Wei
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Tenero L, Piazza M, Sandri M, Ferrante G, Giacomello E, Ficial B, Zaffanello M, Biban P, Piacentini G. Early Diagnosis of Bronchopulmonary Dysplasia with E-Nose: A Pilot Study in Preterm Infants. SENSORS (BASEL, SWITZERLAND) 2024; 24:6282. [PMID: 39409322 PMCID: PMC11479126 DOI: 10.3390/s24196282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common respiratory disease in preterm and is still associated with increased mortality and morbidity. The great interest lies in identifying early biomarkers that can predict the development of BPD. This pilot study explores the potential of e-nose for the early identification of BPD risk in premature infants by analyzing volatile organic compounds (VOCs) in the exhaled breath condensate (EBC). Fourteen mechanically ventilated very preterm infants were included in this study. The clinical parameters and EBC were collected within the first 24 h of life. The discriminative ability of breath prints between preterms who did and did not develop BPD was investigated using pattern recognition, a machine learning algorithm, and standard statistical methods. We found that e-nose probes can significantly predict the outcome of "no-BPD" vs. "BPD". Specifically, a subset of probes (S18, S24, S14, and S6) were found to be significantly predictive, with an AUC of 0.87, 0.89, 0.82, 0.8, and p = 0.019, 0.009, 0.043, 0.047, respectively. The e-nose is an easy-to-use, handheld, non-invasive electronic device that quickly samples breath. Our preliminary study has shown that it has the potential for early prediction of BPD in preterms.
Collapse
Affiliation(s)
- Laura Tenero
- Pediatric Section, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Michele Piazza
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| | - Marco Sandri
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| | - Giuliana Ferrante
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| | - Elisabetta Giacomello
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| | - Benjamim Ficial
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy; (B.F.); (P.B.)
| | - Marco Zaffanello
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| | - Paolo Biban
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy; (B.F.); (P.B.)
| | - Giorgio Piacentini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37129 Verona, Italy; (M.P.); (G.F.); (E.G.); (G.P.)
| |
Collapse
|
10
|
Pattnaik B, Pb S, Bhatraju N, Mittal S, Arava S, Jain D, Nayak B, Tiwari P, Hadda V, Mohan A, Agrawal A, Guleria R, Madan K. Utility of microRNA analysis in exhaled breath condensate of sarcoidosis and mediastinal tuberculosis patients: a pilot study. ERJ Open Res 2024; 10:00078-2024. [PMID: 39351385 PMCID: PMC11440382 DOI: 10.1183/23120541.00078-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 10/04/2024] Open
Abstract
Background Sarcoidosis and tuberculosis (TB) are the two most common causes of granulomatous mediastinal lymphadenopathy. These often exhibit overlapping clinical and radiological characteristics, rendering accurate diagnosis difficult. MicroRNA (miRNA) analysis is increasingly utilised as a potential biomarker for various diseases. Exhaled breath condensate (EBC) is a noninvasive technique for biomarker evaluation in different respiratory conditions. We attempted to identify differentially expressed miRNAs in the EBC of sarcoidosis and mediastinal TB patients. Methods EBC was obtained from subjects with a definitive diagnosis of sarcoidosis and mediastinal TB. EBC was also obtained from age- and sex-matched control subjects. From EBC, miRNA isolation, cDNA preparation and qPCR array were performed. Differentially expressed miRNAs were shortlisted. Further validation was conducted in the EBC of a new subset. Results Subjects with a definitive diagnosis of sarcoidosis (50) and TB (50), and control subjects (50) were included. qPCR array from EBC (20 subjects from each group) shortlisted eight differentially expressed miRNAs (miR-126, miR-132, miR-139-3p, miR-139-5p, miR-181c, miR-454, miR-512-3p and miR-362-5p). In the validation set (EBC of 30 subjects from each group), miR-126 and miR-132 were differentially expressed significantly. The miR-126 and miR-132 expression ratio could differentiate sarcoidosis from mediastinal TB with an AUC of 0.618 (82% specificity and 41% sensitivity). Conclusion While EBC miRNA expression is significantly and differently altered in sarcoidosis and mediastinal TB, a simple ratiometric approach failed to provide clinically useful signatures for differentiating between the two in patients with mediastinal lymphadenopathy.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sryma Pb
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Naveen Bhatraju
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | - Deepali Jain
- Department of Pathology, AIIMS, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology and Human Nutrition Unit, AIIMS, New Delhi, India
| | - Pavan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
11
|
Ma J, Majmudar A, Tian B. Bridging the Gap-Thermofluidic Designs for Precision Bioelectronics. Adv Healthc Mater 2024; 13:e2302431. [PMID: 37975642 DOI: 10.1002/adhm.202302431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Bioelectronics, the merging of biology and electronics, can monitor and modulate biological behaviors across length and time scales with unprecedented capability. Current bioelectronics research largely focuses on devices' mechanical properties and electronic designs. However, the thermofluidic control is often overlooked, which is noteworthy given the discipline's importance in almost all bioelectronics processes. It is believed that integrating thermofluidic designs into bioelectronics is essential to align device precision with the complexity of biofluids and biological structures. This perspective serves as a mini roadmap for researchers in both fields to introduce key principles, applications, and challenges in both bioelectronics and thermofluids domains. Important interdisciplinary opportunities for the development of future healthcare devices and precise bioelectronics will also be discussed.
Collapse
Affiliation(s)
- Jingcheng Ma
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
| | - Aman Majmudar
- The College, University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Heng W, Yin S, Min J, Wang C, Han H, Shirzaei Sani E, Li J, Song Y, Rossiter HB, Gao W. A smart mask for exhaled breath condensate harvesting and analysis. Science 2024; 385:954-961. [PMID: 39208112 DOI: 10.1126/science.adn6471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Recent respiratory outbreaks have garnered substantial attention, yet most respiratory monitoring remains confined to physical signals. Exhaled breath condensate (EBC) harbors rich molecular information that could unveil diverse insights into an individual's health. Unfortunately, challenges related to sample collection and the lack of on-site analytical tools impede the widespread adoption of EBC analysis. Here, we introduce EBCare, a mask-based device for real-time in situ monitoring of EBC biomarkers. Using a tandem cooling strategy, automated microfluidics, highly selective electrochemical biosensors, and a wireless reading circuit, EBCare enables continuous multimodal monitoring of EBC analytes across real-life indoor and outdoor activities. We validated EBCare's usability in assessing metabolic conditions and respiratory airway inflammation in healthy participants, patients with chronic obstructive pulmonary disease or asthma, and patients after COVID-19 infection.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Institute for Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
13
|
Soccio P, Quarato CMI, Tondo P, Lacedonia D, Hoxhallari A, Foschino Barbaro MP, Scioscia G. Breath and Sputum Analyses in Asthmatic Patients: An Overview. Cells 2024; 13:1355. [PMID: 39195245 PMCID: PMC11353195 DOI: 10.3390/cells13161355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in asthma management include non-invasive methodologies such as sputum analysis, exhaled breath condensate (EBC), and fractional exhaled nitric oxide (FeNO). These techniques offer a means to assess airway inflammation, a critical feature of asthma, without invasive procedures. Sputum analysis provides detailed insights into airway inflammation patterns and cellular composition, guiding personalized treatment strategies. EBC collection, reflecting bronchoalveolar lining fluid composition, provides a non-invasive window into airway physiology. FeNO emerges as a pivotal biomarker, offering insights into eosinophilic airway inflammation and aiding in asthma diagnosis, treatment monitoring, and the prediction of exacerbation risks. Despite inherent limitations, each method offers valuable tools for a more comprehensive assessment of asthma. Combining these techniques with traditional methods like spirometry may lead to more personalized treatment plans and improved patient outcomes. Future research is crucial to refine protocols, validate biomarkers, and establish comprehensive guidelines in order to enhance asthma management with tailored therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
- Piera Soccio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
| | | | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Anela Hoxhallari
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Maria Pia Foschino Barbaro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (P.T.); (D.L.); (A.H.); (M.P.F.B.); (G.S.)
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
14
|
Javed U, Podury S, Kwon S, Liu M, Kim DH, Fallahzadeh A, Li Y, Khan AR, Francois F, Schwartz T, Zeig-Owens R, Grunig G, Veerappan A, Zhou J, Crowley G, Prezant DJ, Nolan A. Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN) in World Trade Center exposed firefighters: a case-control observational study protocol. BMC Gastroenterol 2024; 24:255. [PMID: 39123126 PMCID: PMC11312152 DOI: 10.1186/s12876-024-03294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/12/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed first responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal reflux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of reflux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION Name of Primary Registry: "Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BADBURN)". Trial Identifying Number: NCT05216133 . Date of Registration: January 31, 2022.
Collapse
Affiliation(s)
- Urooj Javed
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sanjiti Podury
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Mengling Liu
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Daniel H Kim
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Aida Fallahzadeh
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - Yiwei Li
- Department of Population Health, Division of Biostatistics, NYUGSoM, New York, NY, USA
| | - Abraham R Khan
- Center for Esophageal Health, NYUGSoM, New York, NY, 10016, USA
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Fritz Francois
- Department of Medicine, Division of Gastroenterology, NYUGSoM, New York, NY, 10016, USA
| | - Theresa Schwartz
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Rachel Zeig-Owens
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Gabriele Grunig
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Arul Veerappan
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA
| | - Joanna Zhou
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA
| | - David J Prezant
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine (NYUGSoM), New Bellevue, 16 North Room 20 (Lab), 462 1st Avenue, New York, NY, 10016, USA.
- Fire Department of New York, Bureau of Health Services, Brooklyn, NY, 1120, USA.
- Department of Medicine, Division of Environmental Medicine, NYUGSoM, New York, NY, 10010, USA.
| |
Collapse
|
15
|
Bartold K, Iskierko Z, Sharma PS, Lin HY, Kutner W. Idiopathic pulmonary fibrosis (IPF): Diagnostic routes using novel biomarkers. Biomed J 2024; 47:100729. [PMID: 38657859 PMCID: PMC11340561 DOI: 10.1016/j.bj.2024.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) diagnosis is still the diagnosis of exclusion. Differentiating from other forms of interstitial lung diseases (ILDs) is essential, given the various therapeutic approaches. The IPF course is now unpredictable for individual patients, although some genetic factors and several biomarkers have already been associated with various IPF prognoses. Since its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. The present review critically examines the recent literature on molecular biomarkers potentially useful in IPF diagnostics. The examined biomarkers are grouped into breath and sputum biomarkers, serologically assessed extracellular matrix neoepitope markers, and oxidative stress biomarkers in lung tissue. Fibroblasts and complete blood count have also gained recent interest in that respect. Although several biomarker candidates have been profiled, there has yet to be a single biomarker that proved specific to the IPF disease. Nevertheless, various IPF biomarkers have been used in preclinical and clinical trials to verify their predictive and monitoring potential.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Berry JL, Brooks-Russell A, Beuning CN, Limbacher SA, Lovestead TM, Jeerage KM. Cannabinoids detected in exhaled breath condensate after cannabis use. J Breath Res 2024; 18:041002. [PMID: 39008974 PMCID: PMC11264354 DOI: 10.1088/1752-7163/ad6347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Cannabinoids can be detected in breath after cannabis use, but different breath matrices need to be explored as studies to date with filter-based devices that collect breath aerosols have not demonstrated that breath-based measurements can reliably identify recent cannabis use. Exhaled breath condensate (EBC) is an unexplored aqueous breath matrix that contains condensed volatile compounds and water vapor in addition to aerosols. EBC was collected from participants both before and at two time points (0.7 ± 0.2 h and 1.7 ± 0.3 h) after observed cannabis use. Eleven different cannabinoids were monitored with liquid chromatography tandem mass spectrometry. Five different cannabinoids, including Δ9-tetrahydrocannabinol (THC), were detected in EBC collected from cannabis users. THC was detected in some EBC samples before cannabis use, despite the requested abstinence period. THC was detected in all EBC samples collected at 0.7 h post use and decreased for all participants at 1.7 h. Non-THC cannabinoids were only detected after cannabis use. THC concentrations in EBC samples collected at 0.7 h showed no trend with sample metrics like mass or number of breaths. EBC sampling devices deserve further investigation with respect to modes of cannabis use (e.g, edibles), post use time points, and optimization of cannabinoid recovery.
Collapse
Affiliation(s)
- Jennifer L Berry
- Applied Chemical and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, United States of America
| | - Ashley Brooks-Russell
- Colorado School of Public Health, University of Colorado Anschutz Medical, 13001 E. 17th Place, Aurora, CO, United States of America
| | - Cheryle N Beuning
- Applied Chemical and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, United States of America
| | - Sarah A Limbacher
- Colorado School of Public Health, University of Colorado Anschutz Medical, 13001 E. 17th Place, Aurora, CO, United States of America
| | - Tara M Lovestead
- Applied Chemical and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, United States of America
| | - Kavita M Jeerage
- Applied Chemical and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO, United States of America
| |
Collapse
|
17
|
Bano A, Yadav P, Sharma M, Verma D, Vats R, Chaudhry D, Kumar P, Bhardwaj R. Extraction and characterization of exosomes from the exhaled breath condensate and sputum of lung cancer patients and vulnerable tobacco consumers-potential noninvasive diagnostic biomarker source. J Breath Res 2024; 18:046003. [PMID: 38988301 DOI: 10.1088/1752-7163/ad5eae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Megha Sharma
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Deepika Verma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Dhruva Chaudhry
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Pawan Kumar
- Department of Pulmonary & Critical Care Medicine, Pt. B. D. Sharma PGIMS, Rohtak, Haryana 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
18
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
19
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
20
|
Squillacioti G, Charreau T, Wild P, Bellisario V, Ghelli F, Bono R, Bergamaschi E, Garzaro G, Guseva Canu I. Worse pulmonary function in association with cumulative exposure to nanomaterials. Hints of a mediation effect via pulmonary inflammation. Part Fibre Toxicol 2024; 21:28. [PMID: 38943182 PMCID: PMC11212158 DOI: 10.1186/s12989-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Today, nanomaterials are broadly used in a wide range of industrial applications. Such large utilization and the limited knowledge on to the possible health effects have raised concerns about potential consequences on human health and safety, beyond the environmental burden. Given that inhalation is the main exposure route, workers exposed to nanomaterials might be at risk of occurrence of respiratory morbidity and/or reduced pulmonary function. However, epidemiological evidence regarding the association between cumulative exposure to nanomaterials and respiratory health is still scarce. This study focused on the association between cumulative exposure to nanomaterials and pulmonary function among 136 workers enrolled in the framework of the European multicentric NanoExplore project. RESULTS Our findings suggest that, independently of lifelong tobacco smoking, ethnicity, age, sex, body mass index and physical activity habits, 10-year cumulative exposure to nanomaterials is associated to worse FEV1 and FEF25 - 75%, which might be consistent with the involvement of both large and small airway components and early signs of airflow obstruction. We further explored the hypothesis of a mediating effect via airway inflammation, assessed by interleukin (IL-)10, IL-1β and Tumor Necrosis Factor alpha (TNF-α), all quantified in the Exhaled Breath Condensate of workers. The mediation analysis results suggest that IL-10, TNF-α and their ratio (i.e., anti-pro inflammatory ratio) may fully mediate the negative association between cumulative exposure to nanomaterials and the FEV1/FVC ratio. This pattern was not observed for other pulmonary function parameters. CONCLUSIONS Safeguarding the respiratory health of workers exposed to nanomaterials should be of primary importance. The observed association between cumulative exposure to nanomaterials and worse pulmonary function parameters underscores the importance of implementing adequate protective measures in the nanocomposite sector. The mitigation of harmful exposures may ensure that workers can continue to contribute productively to their workplaces while preserving their respiratory health over time.
Collapse
Affiliation(s)
- Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Thomas Charreau
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland
| | - Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
- Città della Salute e della Scienza di Torino, University Hospital, Via Zuretti 29, 10126, Turin, Italy
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, Via Santena 5 bis, 10126, Torino, Italy
- Città della Salute e della Scienza di Torino, University Hospital, Via Zuretti 29, 10126, Turin, Italy
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, Epalinges, Lausanne, 1066, Switzerland.
| |
Collapse
|
21
|
Kotoulas SC, Domvri K, Tsantos A, Papagiouvanni I, Michailidou A, Spyratos DG, Porpodis K, Grigoriou I, Papakosta D, Pataka A. Is there a correlation between the changes in airway inflammation and the changes in respiratory mechanics after vaping in patients with asthma? World J Methodol 2024; 14:89284. [PMID: 38983659 PMCID: PMC11229872 DOI: 10.5662/wjm.v14.i2.89284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Electronic cigarettes (ECs) have been promoted as alternatives to traditional cigarettes. AIM To investigate ECs' effects on respiratory system, especially in patients with respiratory diseases. METHODS We randomly selected 25 smokers with stable moderate asthma and matched them with 25 healthy smokers. All were subjucted to pulmonary function tests (PFTs), impulse oscillometry (IOS), fraction exhaled Nitric Oxide (FeNO), exhaled breathe condensate (EBC) and biomarker measurements before and after vaping one nicotine-containing EC. RESULTS The increase in FeNO 30 minutes after EC, reflecting airway inflammation, significantly correlated with increase of residual volume (RV), total lung capacity, respiratory impedance at 5 Hz (Z5Hz) and respiratory resistance at 5 and 20 Hz (R5Hz and R20Hz). No significant correlations were found between EBC biomarkers' changes and respiratory mechanics. CONCLUSION This is the first study demonstrating that the changes in airway inflammation caused by EC have direct effects in respiratory mechanics of asthmatic patients.
Collapse
Affiliation(s)
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alexandros Tsantos
- 2nd Department of Internal Medicine, General Hospital of Thessaloniki ‘’Ippokration’’, Thessaloniki 54642, Greece
| | - Ioanna Papagiouvanni
- Fourth Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Thessaloniki, Greece
| | - Anastasia Michailidou
- 2nd Propaedeutic Department of Internal Medicine, General Hospital of Thessaloniki “Ippokration”, Thessaloniki 54642, Greece
| | - Dionisios G Spyratos
- Department of Pulmonary, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Konstantinos Porpodis
- Department of Pulmonary, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Ioanna Grigoriou
- Respiratory Failure Clinic, Papanikolaou General Hospital, Thessloniki 57001, Greece
| | - Despina Papakosta
- Department of Pulmonary, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| | - Athanasia Pataka
- Department of Respiratory Medicine, Aristotle Univ Thessaloniki, Sch Med, G Papanikolaou Hosp, Resp Failure Unit, Aristotle University of Thessaloniki, Thessaloniki 57001, Greece
| |
Collapse
|
22
|
Nessen E, Toussaint B, Israëls J, Brinkman P, Maitland-van der Zee AH, Haarman E. The Non-Invasive Detection of Pulmonary Exacerbations in Disorders of Mucociliary Clearance with Breath Analysis: A Systematic Review. J Clin Med 2024; 13:3372. [PMID: 38929901 PMCID: PMC11203742 DOI: 10.3390/jcm13123372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Disorders of mucociliary clearance, such as cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and bronchiectasis of unknown origin, are characterised by periods with increased respiratory symptoms, referred to as pulmonary exacerbations. These exacerbations are hard to predict and associated with lung function decline and the loss of quality of life. To optimise treatment and preserve lung function, there is a need for non-invasive and reliable methods of detection. Breath analysis might be such a method. Methods: We systematically reviewed the existing literature on breath analysis to detect pulmonary exacerbations in mucociliary clearance disorders. Extracted data included the study design, technique of measurement, definition of an exacerbation, identified compounds and diagnostic accuracy. Results: Out of 244 identified articles, 18 were included in the review. All studies included patients with CF and two also with PCD. Age and the definition of exacerbation differed between the studies. There were five that measured volatile organic compounds (VOCs) in exhaled breath using gas chromatography with mass spectrometry, two using an electronic nose and eleven measured organic compounds in exhaled breath condensate. Most studies showed a significant correlation between pulmonary exacerbations and one or multiple compounds, mainly hydrocarbons and cytokines, but the validation of these results in other studies was lacking. Conclusions: The detection of pulmonary exacerbations by the analysis of compounds in exhaled breath seems possible but is not near clinical application due to major differences in results, study design and the definition of an exacerbation. There is a need for larger studies, with a longitudinal design, international accepted definition of an exacerbation and validation of the results in independent cohorts.
Collapse
Affiliation(s)
- Emma Nessen
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | - Belle Toussaint
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | - Joël Israëls
- Department of Paediatric Pulmonology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands; (E.N.); (B.T.)
| | | | - Eric Haarman
- Department of Paediatric Pulmonology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
23
|
Freund R, Sauvain JJ, Suarez G, Wild P, Charreau T, Pralong JA, Debatisse A, Jouannique V, Sakthithasan K, Guseva Canu I. Association between long-term occupational exposure to PM 10 and allergic diseases in subway workers. Clin Exp Allergy 2024; 54:432-434. [PMID: 38470356 DOI: 10.1111/cea.14472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Romain Freund
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Jean-Jacques Sauvain
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Thomas Charreau
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Jacques A Pralong
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SwissMedPro Health Services, Geneva, Switzerland
- Hôpital de la Tour, Geneva, Switzerland
| | | | | | | | - Irina Guseva Canu
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
24
|
Javed U, Podury S, Kwon S, Liu M, Kim D, Fallah Zadeh A, Li Y, Khan A, Francois F, Schwartz T, Zeig-Owens R, Grunig G, Veerappan A, Zhou J, Crowley G, Prezant D, Nolan A. Biomarkers of Airway Disease, Barrett's and Underdiagnosed Reflux Noninvasively (BAD-BURN): a Case-Control Observational Study Protocol. RESEARCH SQUARE 2024:rs.3.rs-4355584. [PMID: 38798396 PMCID: PMC11118699 DOI: 10.21203/rs.3.rs-4355584/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Particulate matter exposure (PM) is a cause of aerodigestive disease globally. The destruction of the World Trade Center (WTC) exposed fifirst responders and inhabitants of New York City to WTC-PM and caused obstructive airways disease (OAD), gastroesophageal Refux disease (GERD) and Barrett's Esophagus (BE). GERD not only diminishes health-related quality of life but also gives rise to complications that extend beyond the scope of BE. GERD can incite or exacerbate allergies, sinusitis, bronchitis, and asthma. Disease features of the aerodigestive axis can overlap, often necessitating more invasive diagnostic testing and treatment modalities. This presents a need to develop novel non-invasive biomarkers of GERD, BE, airway hyperreactivity (AHR), treatment efficacy, and severity of symptoms. METHODS Our observational case-cohort study will leverage the longitudinally phenotyped Fire Department of New York (FDNY)-WTC exposed cohort to identify Biomarkers of Airway Disease, Barrett's and Underdiagnosed Refux Noninvasively (BAD-BURN). Our study population consists of n = 4,192 individuals from which we have randomly selected a sub-cohort control group (n = 837). We will then recruit subgroups of i. AHR only ii. GERD only iii. BE iv. GERD/BE and AHR overlap or v. No GERD or AHR, from the sub-cohort control group. We will then phenotype and examine non-invasive biomarkers of these subgroups to identify under-diagnosis and/or treatment efficacy. The findings may further contribute to the development of future biologically plausible therapies, ultimately enhance patient care and quality of life. DISCUSSION Although many studies have suggested interdependence between airway and digestive diseases, the causative factors and specific mechanisms remain unclear. The detection of the disease is further complicated by the invasiveness of conventional GERD diagnosis procedures and the limited availability of disease-specific biomarkers. The management of Refux is important, as it directly increases risk of cancer and negatively impacts quality of life. Therefore, it is vital to develop novel noninvasive disease markers that can effectively phenotype, facilitate early diagnosis of premalignant disease and identify potential therapeutic targets to improve patient care. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05216133; January 18, 2022.
Collapse
Affiliation(s)
- Urooj Javed
- New York University Grossman School of Medicine (NYUGSoM)
| | - Sanjiti Podury
- New York University Grossman School of Medicine (NYUGSoM)
| | - Sophia Kwon
- New York University Grossman School of Medicine (NYUGSoM)
| | - Mengling Liu
- New York University Grossman School of Medicine (NYUGSoM)
| | - Daniel Kim
- New York University Grossman School of Medicine (NYUGSoM)
| | | | - Yiwei Li
- New York University Grossman School of Medicine (NYUGSoM)
| | - Abraham Khan
- New York University Grossman School of Medicine (NYUGSoM)
| | - Fritz Francois
- New York University Grossman School of Medicine (NYUGSoM)
| | | | | | | | - Arul Veerappan
- New York University Grossman School of Medicine (NYUGSoM)
| | - Joanna Zhou
- New York University Grossman School of Medicine (NYUGSoM)
| | - George Crowley
- New York University Grossman School of Medicine (NYUGSoM)
| | - David Prezant
- New York University Grossman School of Medicine (NYUGSoM)
| | - Anna Nolan
- New York University Grossman School of Medicine (NYUGSoM)
| |
Collapse
|
25
|
Roe T, Silveira S, Luo Z, Osborne EL, Senthil Murugan G, Grocott MPW, Postle AD, Dushianthan A. Particles in Exhaled Air (PExA): Clinical Uses and Future Implications. Diagnostics (Basel) 2024; 14:972. [PMID: 38786270 PMCID: PMC11119244 DOI: 10.3390/diagnostics14100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Access to distal airway samples to assess respiratory diseases is not straightforward and requires invasive procedures such as bronchoscopy and bronchoalveolar lavage. The particles in exhaled air (PExA) device provides a non-invasive means of assessing small airways; it captures distal airway particles (PEx) sized around 0.5-7 μm and contains particles of respiratory tract lining fluid (RTLF) that originate during airway closure and opening. The PExA device can count particles and measure particle mass according to their size. The PEx particles can be analysed for metabolites on various analytical platforms to quantitatively measure targeted and untargeted lung specific markers of inflammation. As such, the measurement of distal airway components may help to evaluate acute and chronic inflammatory conditions such as asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, and more recently, acute viral infections such as COVID-19. PExA may provide an alternative to traditional methods of airway sampling, such as induced sputum, tracheal aspirate, or bronchoalveolar lavage. The measurement of specific biomarkers of airway inflammation obtained directly from the RTLF by PExA enables a more accurate and comprehensive understanding of pathophysiological changes at the molecular level in patients with acute and chronic lung diseases.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Siona Silveira
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Zixing Luo
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Eleanor L Osborne
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D Postle
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
26
|
Gu SY, Lu HW, Bai JW, Yang JW, Mao B, Yu L, Xu JF. The role of volatile organic compounds for assessing characteristics and severity of non-cystic fibrosis bronchiectasis: an observational study. Front Med (Lausanne) 2024; 11:1345165. [PMID: 38633315 PMCID: PMC11022847 DOI: 10.3389/fmed.2024.1345165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Background Hypoxic conditions and Pseudomonas aeruginosa (P. aeruginosa) infection are significant factors influencing the prognosis and treatment of patients with bronchiectasis. This study aimed to explore the potential for breath analysis to detect hypoxic conditions and P. aeruginosa infection in bronchiectasis patients by analyzing of volatile organic compounds (VOCs) in exhaled breath condensate (EBC). Methods EBC samples were collected from stable bronchiectasis patients and analyzed using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GCMS). The association of VOCs with bronchiectasis patients' phenotypes including hypoxic conditions and P. aeruginosa isolation was analyzed, which may relate to the severity of bronchiectasis disease. Results Levels of 10-heptadecenoic acid, heptadecanoic acid, longifolene, and decanol in the hypoxia group were higher compared to the normoxia group. Additionally, the levels of 13-octadecenoic acid, octadecenoic acid, phenol, pentadecanoic acid, and myristic acid were increased in P. aeruginosa (+) group compared to the P. aeruginosa (-) group. Subgroup analysis based on the bronchiectasis severity index (BSI)reveled that the levels of 10-heptadecenoic acid, heptadecanoic acid, decanol, 13-octadecenoic acid, myristic acid, and pentadecanoic acid were higher in the severe group compared to the moderate group. Multivariate linear regression showed that 10-heptadecenoic acid and age were independent prognostic factors for bronchiectasis patients with hypoxia. Furthermore, octadecenoic acid, phenol and gender were identified as independent prognostic factors for bronchiectasis patients with P. aeruginosa isolation. Conclusion The study provides evidence that specific VOCs in EBC are correlated with the severity of bronchiectasis, and 10-heptadecenoic acid is shown to be a predictive marker for hypoxia condition in bronchiectasis patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Mitchell MI, Ben‐Dov IZ, Ye K, Liu C, Shi M, Sadoughi A, Shah C, Siddiqui T, Okorozo A, Gutierrez M, Unawane R, Biamonte L, Parikh K, Spivack S, Loudig O. Exhaled breath condensate contains extracellular vesicles (EVs) that carry miRNA cargos of lung tissue origin that can be selectively purified and analyzed. J Extracell Vesicles 2024; 13:e12440. [PMID: 38659349 PMCID: PMC11043690 DOI: 10.1002/jev2.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
Lung diseases, including lung cancer, are rising causes of global mortality. Despite novel imaging technologies and the development of biomarker assays, the detection of lung cancer remains a significant challenge. However, the lung communicates directly with the external environment and releases aerosolized droplets during normal tidal respiration, which can be collected, stored and analzsed as exhaled breath condensate (EBC). A few studies have suggested that EBC contains extracellular vesicles (EVs) whose microRNA (miRNA) cargos may be useful for evaluating different lung conditions, but the cellular origin of these EVs remains unknown. In this study, we used nanoparticle tracking, transmission electron microscopy, Western blot analyses and super resolution nanoimaging (ONi) to detect and validate the identity of exhaled EVs (exh-EVs). Using our customizable antibody-purification assay, EV-CATCHER, we initially determined that exh-EVs can be selectively enriched from EBC using antibodies against three tetraspanins (CD9, CD63 and CD81). Using ONi we also revealed that some exh-EVs harbour lung-specific proteins expressed in bronchiolar Clara cells (Clara Cell Secretory Protein [CCSP]) and Alveolar Type II cells (Surfactant protein C [SFTPC]). When conducting miRNA next generation sequencing (NGS) of airway samples collected at five different anatomic levels (i.e., mouth rinse, mouth wash, bronchial brush, bronchoalveolar lavage [BAL] and EBC) from 18 subjects, we determined that miRNA profiles of exh-EVs clustered closely to those of BAL EVs but not to those of other airway samples. When comparing the miRNA profiles of EVs purified from matched BAL and EBC samples with our three tetraspanins EV-CATCHER assay, we captured significant miRNA expression differences associated with smoking, asthma and lung tumor status of our subjects, which were also reproducibly detected in EVs selectively purified with our anti-CCSP/SFTPC EV-CATCHER assay from the same samples, but that confirmed their lung tissue origin. Our findings underscore that enriching exh-EV subpopulations from EBC allows non-invasive sampling of EVs produced by lung tissues.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical Transcriptomics, Internal Medicine BHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Kenny Ye
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Christina Liu
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| | - Miao Shi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Ali Sadoughi
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Chirag Shah
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Taha Siddiqui
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Aham Okorozo
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Martin Gutierrez
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Rashmi Unawane
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Lisa Biamonte
- Department of Thoracic OncologyHackensack University Medical Center, Hackensack Meridian HealthHackensackNew JerseyUSA
| | - Kaushal Parikh
- Department of Thoracic OncologyThe Mayo ClinicRochesterMinnesotaUSA
| | - Simon Spivack
- The Albert Einstein College of MedicineMontefiore Medical CenterBronxNew JerseyUSA
| | - Olivier Loudig
- Center for Discovery and InnovationHackensack Meridian HealthNutleyNew JerseyUSA
| |
Collapse
|
28
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
29
|
Tirelli C, Mira S, Belmonte LA, De Filippi F, De Grassi M, Italia M, Maggioni S, Guido G, Mondoni M, Canonica GW, Centanni S. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024; 13:475. [PMID: 38534319 PMCID: PMC10969696 DOI: 10.3390/cells13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Luca Alessandro Belmonte
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Federica De Filippi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Mauro De Grassi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Marta Italia
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Maggioni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gabriele Guido
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
30
|
Malik M, Demetrowitsch T, Schwarz K, Kunze T. New perspectives on 'Breathomics': metabolomic profiling of non-volatile organic compounds in exhaled breath using DI-FT-ICR-MS. Commun Biol 2024; 7:258. [PMID: 38431745 PMCID: PMC10908792 DOI: 10.1038/s42003-024-05943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.
Collapse
Affiliation(s)
- Madiha Malik
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| | - Tobias Demetrowitsch
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Food Technology, Kiel University, Kiel, Germany
- Kiel Network of Analytical Spectroscopy and Mass Spectrometry, Kiel University, Kiel, Germany
| | - Thomas Kunze
- Department of Clinical Pharmacy, Institute of Pharmacy, Kiel University, Kiel, Germany.
| |
Collapse
|
31
|
Rai D, Pattnaik B, Bangaru S, Tak J, Kumari J, Verma U, Vadala R, Yadav G, Dhaliwal RS, Kumar S, Kumar R, Jain D, Luthra K, Chosdol K, Palanichamy JK, Khan MA, Surendranath A, Mittal S, Tiwari P, Hadda V, Madan K, Agrawal A, Guleria R, Mohan A. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: a concise review. Breathe (Sheff) 2023; 19:230125. [PMID: 38351949 PMCID: PMC10862127 DOI: 10.1183/20734735.0125-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is one of the common cancers globally with high mortality and poor prognosis. Most cases of lung cancer are diagnosed at an advanced stage due to limited diagnostic resources. Screening modalities, such as sputum cytology and annual chest radiographs, have not proved sensitive enough to impact mortality. In recent years, annual low-dose computed tomography has emerged as a potential screening tool for early lung cancer detection, but it may not be a feasible option for developing countries. In this context, exhaled breath condensate (EBC) analysis has been evaluated recently as a noninvasive tool for lung cancer diagnosis. The breath biomarkers also have the advantage of differentiating various types and stages of lung cancer. Recent studies have focused more on microRNAs (miRNAs) as they play a key role in tumourigenesis by regulating the cell cycle, metastasis and angiogenesis. In this review, we have consolidated the current published literature suggesting the utility of miRNAs in EBC for the detection of lung cancer.
Collapse
Affiliation(s)
- Divyanjali Rai
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Pattnaik
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Bangaru
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jaya Tak
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Kumari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Umashankar Verma
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Vadala
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Yadav
- Indian Council of Medical Research, New Delhi, India
| | | | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Addagalla Surendranath
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Tiwari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Hadda
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Randeep Guleria
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Javan M, Seyfinejad B, Rahimpour E, Jouyban-Gharamaleki V, Kaviani R, Shayanfar A, Varshochi M, Khoubnasabjafari M, Jouyban A. Online preconcentration and chiral separation of ofloxacin in exhaled breath condensate by capillary electrophoresis. J Pharm Biomed Anal 2023; 235:115641. [PMID: 37647795 DOI: 10.1016/j.jpba.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Breath analysis is an effective method of monitoring systemic or respiratory ailments. A simple chiral capillary electrophoresis method coupled with an online field-amplified sample injection stacking method is presented for ultratrace quantification of the enantiomers of ofloxacin in exhaled breath condensate (EBC). The study is focused on the use of EBC as an easily available biological sample to monitor ofloxacin's enantiomers levels with good patient compliance. The proposed method was validated in accordance with FDA guidelines over the concentration range of 0.004-1.0 µg mL-1 of racemic ofloxacin. Inter- and intra-day precision and accuracy were within the acceptable limit (below 8.50 %). The method was specific for routine analysis of ofloxacin's enantiomers. A small volume of EBC samples from seven patients under ofloxacin therapy was analyzed using the proposed method in which the concentrations of "R" and "S" enantiomers were between 0.0026 and 0.056 µg mL-1.
Collapse
Affiliation(s)
- Mahsa Javan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raha Kaviani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Mersin 10, PO BOX: 99138, Nicosia, North Cyprus, Turkey.
| |
Collapse
|
33
|
Rubio K, Müller JM, Mehta A, Watermann I, Olchers T, Koch I, Wessels S, Schneider MA, Araujo-Ramos T, Singh I, Kugler C, Stoleriu MG, Kriegsmann M, Eichhorn M, Muley T, Merkel OM, Braun T, Ammerpohl O, Reck M, Tresch A, Barreto G. Preliminary results from the EMoLung clinical study showing early lung cancer detection by the LC score. Discov Oncol 2023; 14:181. [PMID: 37787775 PMCID: PMC10547665 DOI: 10.1007/s12672-023-00799-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Mexico
| | - Jason M Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Aditi Mehta
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Iris Watermann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Till Olchers
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Ina Koch
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Sabine Wessels
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Marc A Schneider
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Tania Araujo-Ramos
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Indrabahadur Singh
- German Cancer Research Center (DKFZ) Heidelberg, Division Chronic Inflammation and Cancer, Emmy Noether Research Group Epigenetic Machineries and Cancer, 69120, Heidelberg, Germany
| | - Christian Kugler
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Mircea Gabriel Stoleriu
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
- Asklepios Biobank für Lungenerkrankungen, Asklepios Klinik Gauting GmbH, 82131, Gauting, Germany
| | - Mark Kriegsmann
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Eichhorn
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
- Department of Thoracic Surgery, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Muley
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), 69120, Heidelberg, Germany
| | - Olivia M Merkel
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University (LMU) Munich, 81377, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Thomas Braun
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ole Ammerpohl
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- Institute of Human Genetics, University Medical Center Ulm, 89081, Ulm, Germany
| | - Martin Reck
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany
- LungenClinic Grosshansdorf (GHD), Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927, Großhansdorf, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany.
- Center for Data and Simulation Science, University of Cologne, Cologne, Germany.
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365, 54000, Nancy, France.
- Lung Cancer Epigenetic, Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
- German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Gießen, Germany.
| |
Collapse
|
34
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
35
|
Bhide A, Eldeeb MA, Pali M, Muthukumar S, Prasad S. MEASURE: Multiplex Exhaled Breath Condensate - Scanning Using Rapid Electro-Analytics. ACS Sens 2023; 8:3408-3416. [PMID: 37643348 DOI: 10.1021/acssensors.3c00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Exhaled breath condensate is an emerging source of inflammatory biomarkers suitable for the noninvasive detection of respiratory disorders. Current gold standard methods are highly invasive and pose challenges in sample collection during airway inflammation monitoring. Cytokine biomarkers are detectable in EBC at increased or decreased concentrations. IL-6, IL-1β, IL-8, and hs-CRP are characteristic biomarkers identified in respiratory disorders. We have demonstrated the promising outcomes of a 16-plexed electrochemical platform - READ 2.0 for the multiplexed detection of characteristic biomarkers in EBC. The sensor demonstrates dynamic ranges of 1-243 pg/mL with a lower detection limit of 1 pg/mL for IL-6 and IL-1β, while the detection range and limit of detection for IL-8 and hs-CRP is 1-150 pg/mL and 3 pg/mL, respectively. The detection accuracies for the biomarkers are in the range of ∼85 ± 15% to ∼100 ± 10%. The sensor shows a nonspecific response to similar cross-reacting biomarkers. Analytical validation of the sensor with ELISA as the standard reference generated a correlation of R2 > 0.96 and mean biases of 10.9, 3.5, 17.4, and 3.9 pg/mL between the two methods for IL-6, IL-1β, IL-8, and hs-CRP, respectively. The precision of the sensor in detecting low biomarker concentrations yields a %CV of <7%. The variation in the sensor's response on repeat EBC sample measurements and within a 6 h duration is less than 10%. The READ 2.0 platform shows a promise that EBC-based biomarker detection can prove to be vital in predicting the severity and survival rates of respiratory disorders and serve as a reference point for monitoring EBC-based biomarkers.
Collapse
Affiliation(s)
- Ashlesha Bhide
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammed A Eldeeb
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Madhavi Pali
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- EnLiSense LLC, 1813 Audubon Pond Way, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
36
|
Jouyban-Gharamaleki V, Jin H, Jouyban A, Soleymani J. The influence of advanced materials on the analytical performance of semiconductor-based gas sensors. Phys Chem Chem Phys 2023; 25:23358-23369. [PMID: 37615695 DOI: 10.1039/d3cp01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Chemiresistive gas sensors are metal oxide-based sensors that have received significant attention in different fields. Ambient gas sensors are especially important in the fabrication of wearable probes for the real-time detection of biomarkers in human body samples. Usually, room temperature sensors are affordable due to their low power consumption, resulting in simple instrumentation and maintenance. To fabricate versatile gas sensors, i.e. sensitive, selective, ambient temperature operating gas sensors, and improve the sensing performance of the traditionally used sensor, new materials play an important role. In other words, new advanced materials are essential for designing and fabricating new gas sensors. Hence, in this review, the application and impact of new advanced materials in the fabrication of reliable gas sensors are discussed in detail. Special emphasis is given to the effect of new materials in the fabrication of room-temperature operating systems. Finally, future research outlook and possible challenges that may be encountered by reliable gas sensors are also explained.
Collapse
Affiliation(s)
- Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azerbaijan (KIPA) Science-Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Han Jin
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Galiniak S, Rohovyk N, Rachel M. Biomarkers of nitrosative stress in exhaled breath condensate and serum among patients with cystic fibrosis. Adv Med Sci 2023; 68:202-207. [PMID: 37263097 DOI: 10.1016/j.advms.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE The measurement of biomarkers in exhaled breath condensate (EBC) offers a non-invasive way to assess airway disease and can be easily done in a clinical setting among patients with cystic fibrosis (CF). The role of oxidative and nitrosative stress in the complex pathophysiology of CF is widely accepted and biomarkers of oxidative and nitrosative stress can be measured in the serum and EBC. To our knowledge, this is the first study to assess markers of nitrosative stress in EBC and serum, collected simultaneously from the CF patients. PATIENTS AND METHODS Paired EBC and serum samples were collected from 36 stable patients with CF and 14 healthy controls. Markers of nitrosative stress ‒ 3-nitrotyrosine and nitrate/nitrite were measured in the EBC and serum using an enzyme-linked immunosorbent assay. RESULTS We found no differences in 3-nitrotyrosine and nitrate/nitrite in the EBC of patients with CF as compared to healthy controls (125.37 ± 3.29 vs. 126.24 ± 2.21 nmol/L, p = 0.218; 12.66 ± 7.23 vs. 8.79 ± 4.83 μmol/L, p = 0.133, respectively). Furthermore, 3-nitrotyrosine and nitrate/nitrite were significantly higher in the serum of patients with CF as compared to the healthy controls (0.13 ± 0.02 vs. 0.11 ± 0.01 nmol/mg protein, p = 0.003; 70.78 ± 22.55 vs. 53.08 ± 8.5 μmol/L, p = 0.009, respectively). No correlations were found between the markers determined in the EBC and serum. CONCLUSIONS The results of the EBC nitrosative stress biomarkers should be interpreted with caution, especially in patients with stable disease, as the EBC values may be independent on levels of circulating markers that are elevated in the serum of patients with stable CF.
Collapse
Affiliation(s)
- Sabina Galiniak
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland.
| | | | - Marta Rachel
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland; Department of Allergology and Cystic Fibrosis, State Hospital 2 in Rzeszow, Rzeszów, Poland
| |
Collapse
|
38
|
Cordiano R, Di Gioacchino M, Mangifesta R, Panzera C, Gangemi S, Minciullo PL. Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules 2023; 28:5979. [PMID: 37630231 PMCID: PMC10457993 DOI: 10.3390/molecules28165979] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Malondialdehyde (MDA) is a compound that is derived from the peroxidation of polyunsaturated fatty acids. It has been used as a biomarker to measure oxidative stress in various biological samples in patients who are affected by a wide range of diseases. The aim of our work is to provide an updated overview of the role of MDA as a marker of oxidative stress in allergy-related diseases. We considered studies involving both paediatric and adult patients affected by rhinitis, asthma, urticaria and atopic dermatitis. The measurement of MDA was performed on different types of samples. The reported data highlight the role of serum MDA in inflammatory airway diseases. According to the literature review, the oxidative stress status in asthmatic patients, assessed via MDA determination, appears to worsen in the presence of other allergic airway diseases and in relation to the disease severity. This suggests that MDA can be a suitable marker for monitoring the disease status. However, there are several limitations in the considered studies due to the different samples used and the lack of phenotyping and description of the clinical period of patients examined. In cutaneous allergic diseases, the role of MDA is controversial because of the smallness of the studies and the heterogeneity of the samples and patients.
Collapse
Affiliation(s)
- Raffaele Cordiano
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.C.); (C.P.); (S.G.); (P.L.M.)
| | - Mario Di Gioacchino
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy;
- YDA—Institute of Clinical Immunotherapy and Advanced Biological Treatments, 65121 Pescara, Italy
| | - Rocco Mangifesta
- Center of Advanced Science and Technology (CAST), G. D’Annunzio University, 66100 Chieti, Italy;
| | - Claudia Panzera
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.C.); (C.P.); (S.G.); (P.L.M.)
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.C.); (C.P.); (S.G.); (P.L.M.)
| | - Paola Lucia Minciullo
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (R.C.); (C.P.); (S.G.); (P.L.M.)
| |
Collapse
|
39
|
Course CW, Lewis PA, Kotecha SJ, Cousins M, Hart K, Watkins WJ, Heesom KJ, Kotecha S. Modulation of pulmonary desmosomes by inhaler therapy in preterm-born children with bronchopulmonary dysplasia. Sci Rep 2023; 13:7330. [PMID: 37147394 PMCID: PMC10163267 DOI: 10.1038/s41598-023-34233-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Despite evidence demonstrating persistent lung function deficits in preterm-born children, especially in those who had bronchopulmonary dysplasia (BPD) in infancy, the underlying biological mechanisms explaining these lung function deficits remain poorly understood. We characterised the exhaled breath condensate (EBC) proteome in preterm-born children, with and without BPD; and before and after inhaler treatment. EBC from children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) study, were analysed by Nano-LC Mass Spectrometry with Tandem Mass Tag labelling. Children with percent predicted forced expiratory volume in 1 second ≤ 85% were enrolled to a 12-week blinded randomised trial of inhaled corticosteroids alone (ICS) or with long-acting β2-agonist (ICS/LABA) or placebo. EBC was analysed from 218 children at baseline, and 46 children received randomised inhaled therapy. 210 proteins were detected in total. For the 19 proteins present in every sample, the desmosome proteins: desmoglein-1, desmocollin-1 and plakoglobin were significantly decreased, and cytokeratin-6A was increased in preterm-born children with BPD when compared to preterm- and term-born controls. ICS/LABA treatment significantly increased abundance of desmoglein-1, desmocollin-1 and plakoglobin in the BPD group with low lung function, and significantly increased plakoglobin in those without BPD. No differences were noted after ICS treatment. Exploratory analyses of proteins not detected in all samples suggested decreased abundance of several antiproteases. This study provides proteomic evidence of ongoing pulmonary structural changes with decreased desmosomes in school-aged preterm-born children with BPD and low lung function, which was reversed with combined inhaled corticosteroids and long-acting β2-agonists therapy.
Collapse
Affiliation(s)
- Christopher W Course
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Philip A Lewis
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Michael Cousins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - Kylie Hart
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, UK
| | - W John Watkins
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
40
|
Zhu X, Zhang Q, Du X, Jiang Y, Niu Y, Wei Y, Zhang Y, Chillrud SN, Liang D, Li H, Chen R, Kan H, Cai J. Respiratory Effects of Traffic-Related Air Pollution: A Randomized, Crossover Analysis of Lung Function, Airway Metabolome, and Biomarkers of Airway Injury. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57002. [PMID: 37141245 PMCID: PMC10159268 DOI: 10.1289/ehp11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution (TRAP) has been associated with increased risks of respiratory diseases, but the biological mechanisms are not yet fully elucidated. OBJECTIVES Our aim was to evaluate the respiratory responses and explore potential biological mechanisms of TRAP exposure in a randomized crossover trial. METHODS We conducted a randomized crossover trial in 56 healthy adults. Each participant was exposed to high- and low-TRAP exposure sessions by walking in a park and down a road with high traffic volume for 4 h in random order. Respiratory symptoms and lung function, including forced expiratory volume in the first second (FEV 1 ), forced vital capacity (FVC), the ratio of FEV 1 to FVC, and maximal mid-expiratory flow (MMEF), were measured before and after each exposure session. Markers of 8-isoprostane, tumor necrosis factor- α (TNF- α ), and ezrin in exhaled breath condensate (EBC), and surfactant proteins D (SP-D) in serum were also measured. We used linear mixed-effects models to estimate the associations, adjusted for age, sex, body mass index, meteorological condition, and batch (only for biomarkers). Liquid chromatography-mass spectrometry was used to profile the EBC metabolome. Untargeted metabolome-wide association study (MWAS) analysis and pathway enrichment analysis using mummichog were performed to identify critical metabolomic features and pathways associated with TRAP exposure. RESULTS Participants had two to three times higher exposure to traffic-related air pollutants except for fine particulate matter while walking along the road compared with in the park. Compared with the low-TRAP exposure at the park, high-TRAP exposure at the road was associated with a higher score of respiratory symptoms [2.615 (95% CI: 0.605, 4.626), p = 1.2 × 10 - 2 ] and relatively lower lung function indicators [- 0.075 L (95% CI: - 0.138 , - 0.012 ), p = 2.1 × 10 - 2 ] for FEV 1 and - 0.190 L / s (95% CI: - 0.351 , - 0.029 ; p = 2.4 × 10 - 2 ) for MMEF]. Exposure to TRAP was significantly associated with changes in some, but not all, biomarkers, particularly with a 0.494 -ng / mL (95% CI: 0.297, 0.691; p = 9.5 × 10 - 6 ) increase for serum SP-D and a 0.123 -ng / mL (95% CI: - 0.208 , - 0.037 ; p = 7.2 × 10 - 3 ) decrease for EBC ezrin. Untargeted MWAS analysis revealed that elevated TRAP exposure was significantly associated with perturbations in 23 and 32 metabolic pathways under positive- and negative-ion modes, respectively. These pathways were most related to inflammatory response, oxidative stress, and energy use metabolism. CONCLUSIONS This study suggests that TRAP exposure might lead to lung function impairment and respiratory symptoms. Possible underlying mechanisms include lung epithelial injury, inflammation, oxidative stress, and energy metabolism disorders. https://doi.org/10.1289/EHP11139.
Collapse
Affiliation(s)
- Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Steven N. Chillrud
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- National Center for Children’s Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Shi M, Han W, Loudig O, Shah CD, Dobkin JB, Keller S, Sadoughi A, Zhu C, Siegel RE, Fernandez MK, DeLaRosa L, Patel D, Desai A, Siddiqui T, Gombar S, Suh Y, Wang T, Hosgood HD, Pradhan K, Ye K, Spivack SD. Initial development and testing of an exhaled microRNA detection strategy for lung cancer case-control discrimination. Sci Rep 2023; 13:6620. [PMID: 37095155 PMCID: PMC10126132 DOI: 10.1038/s41598-023-33698-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
For detecting field carcinogenesis non-invasively, early technical development and case-control testing of exhaled breath condensate microRNAs was performed. In design, human lung tissue microRNA-seq discovery was reconciled with TCGA and published tumor-discriminant microRNAs, yielding a panel of 24 upregulated microRNAs. The airway origin of exhaled microRNAs was topographically "fingerprinted", using paired EBC, upper and lower airway donor sample sets. A clinic-based case-control study (166 NSCLC cases, 185 controls) was interrogated with the microRNA panel by qualitative RT-PCR. Data were analyzed by logistic regression (LR), and by random-forest (RF) models. Feasibility testing of exhaled microRNA detection, including optimized whole EBC extraction, and RT and qualitative PCR method evaluation, was performed. For sensitivity in this low template setting, intercalating dye-based URT-PCR was superior to fluorescent probe-based PCR (TaqMan). In application, adjusted logistic regression models identified exhaled miR-21, 33b, 212 as overall case-control discriminant. RF analysis of combined clinical + microRNA models showed modest added discrimination capacity (1.1-2.5%) beyond clinical models alone: all subjects 1.1% (p = 8.7e-04)); former smokers 2.5% (p = 3.6e-05); early stage 1.2% (p = 9.0e-03), yielding combined ROC AUC ranging from 0.74 to 0.83. We conclude that exhaled microRNAs are qualitatively measureable, reflect in part lower airway signatures; and when further refined/quantitated, can potentially help to improve lung cancer risk assessment.
Collapse
Affiliation(s)
- Miao Shi
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Weiguo Han
- Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | | - Chirag D Shah
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jay B Dobkin
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Ali Sadoughi
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Changcheng Zhu
- Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert E Siegel
- Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, James J. Peters Veterans Affairs Medical Center, New York, USA
| | | | - Lizett DeLaRosa
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | - Taha Siddiqui
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saurabh Gombar
- Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousin Suh
- Reproductive Sciences (in Obstetrics and Gynecology), Columbia University, New York, USA
- Genetics and Development, Columbia University, New York, USA
| | - Tao Wang
- Biostatistics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - H Dean Hosgood
- Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradhan
- Biostatistics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Biostatistics, Albert Einstein College of Medicine, Bronx, NY, USA
- Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon D Spivack
- Pulmonary Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
42
|
Cherchi R, Cusano R, Orrù S, Ferrari PA, Massidda M, Fotia G, De Matteis S, Cocco P. Next Generation Sequencing for miRNA Detection on the Exhaled Breath Condensate: A Pilot Study. Epigenet Insights 2023; 16:25168657231160985. [PMID: 37025420 PMCID: PMC10070752 DOI: 10.1177/25168657231160985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Exhaled breath condensate (EBC) sampling has been suggested as a less-invasive and cost-effective method to detect biological macromolecules, including miRNA. To explore the feasibility of its use as a biomarker of early effects of asbestos exposure, we conducted a preliminary test on male volunteers by comparing the miRNA profile in the EBC and the plasma using 2 different sequencing platforms. Methods: Six male volunteers, all retired and unexposed to dust or fumes, participated in the test. RNA was extracted from 200 μL EBC samples and same-size plasma samples. Sample aliquots were processed in 2 laboratories using 2 different sequencing platforms: a MiSeq Illumina® platform and a more performing HiSeq Illumina® platform. Results: The HiSeq3000® sequencing platform identified twice as many unique molecular indexes (UMI)-validated miRNA as the MiSeq® platform. The Spearman’s correlation coefficient between EBC counts and plasma counts was significant in 5/6 subjects with either platform (MiSeq® = 0.128-0.508, P = .026-<.001; HiSeq® = 0.156-0.412, P = .001-<.001). The intraclass correlation coefficient confirmed the consistency of the miRNA profile over the 6 participants with both biospecimens. Exploring the agreement between the EBC and plasma samples with Bland-Altman plots showed that using the HiSeq3000® platform substantially improved the EBC miRNA detection rate. Conclusion: Our preliminary study confirms that, when using the HiSeq® sequencing platform, EBC sampling is a suitable, non-invasive method to detect the miRNA profile in healthy subjects.
Collapse
Affiliation(s)
- Roberto Cherchi
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | - Roberto Cusano
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sandro Orrù
- Operative Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
- Orrù S, Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Via Is Guadazzonis 3, Cagliari 09126, Italy.
| | - Paolo A Ferrari
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | | | - Giorgio Fotia
- CRS4-NGS Core, POLARIS Research Park, Pula—Cagliari, Italy
| | - Sara De Matteis
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato—Cagliari, Italy
| | - Pierluigi Cocco
- Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, UK
| |
Collapse
|
43
|
Tan DJ, Lodge CJ, Walters EH, Lowe AJ, Bui DS, Bowatte G, Kandane‐Rathnayake R, Aldakheel FM, Erbas B, Hamilton GS, Thomas PS, Hew M, Tang MLK, Abramson MJ, Perret JL, Dharmage SC. Biomarkers of asthma relapse and lung function decline in adults with spontaneous asthma remission: A population-based cohort study. Allergy 2023; 78:957-967. [PMID: 36301194 PMCID: PMC10953440 DOI: 10.1111/all.15566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The extent to which biomarkers of asthma activity persist in spontaneous asthma remission and whether such markers are associated with future respiratory outcomes remained unclear. We investigated the association between sub-clinical inflammation in adults with spontaneous asthma remission and future asthma relapse and lung function decline. METHODS The Tasmanian Longitudinal Health Study is a population-based cohort (n = 8583). Biomarkers of systemic inflammation were measured on participants at age 45, and latent profile analysis was used to identify cytokine profiles. Bronchial hyperresponsiveness (BHR) and nitric oxide products in exhaled breath condensate (EBC NOx) were measured at age 50. Participants with spontaneous asthma remission at ages 45 (n = 466) and 50 (n = 318) were re-evaluated at age 53, and associations between baseline inflammatory biomarkers and subsequent asthma relapse and lung function decline were assessed. RESULTS We identified three cytokine profiles in adults with spontaneous asthma remission: average (34%), Th2-high (42%) and Th2-low (24%). Compared to the average profile, a Th2-high profile was associated with accelerated decline in post-BD FEV1 /FVC (MD -0.18% predicted per-year; 95% CI -0.33, -0.02), while a Th2-low profile was associated with accelerated decline in both post-BD FEV1 (-0.41%; -0.75, -0.06) and post-BD FVC (-0.31%; -0.62, 0.01). BHR and high TNF-α during spontaneous remission were associated with an increased risk of asthma relapse. In contrast, we found no evidence of association between EBC NOx and either asthma relapse or lung function decline. CONCLUSION BHR and serum inflammatory cytokines have prognostic value in adults with spontaneous asthma remission. At-risk individuals with BHR, Th2-high or Th2-low cytokine profiles may benefit from closer monitoring and on-going follow-up.
Collapse
Affiliation(s)
- Daniel J. Tan
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
| | - Caroline J. Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
| | - Eugene Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
- School of Medicine, University of TasmaniaHobartTasmaniaAustralia
| | - Adrian J. Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
| | - Dinh S. Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
- Department of Basic Sciences, Faculty of Allied Health SciencesUniversity of PeradeniyaPeradeniyaSri Lanka
| | | | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Bircan Erbas
- School of Psychology and Public HealthLa Trobe UniversityMelbourneVictoriaAustralia
- Violet Vines Marshman Centre for Rural Health ResearchLa Trobe UniversityBendigoVictoriaAustralia
| | - Garun S. Hamilton
- School of Clinical SciencesMonash UniversityMelbourneVictoriaAustralia
- Monash Lung, Sleep, Allergy and ImmunologyMonash HealthMelbourneVictoriaAustralia
| | - Paul S. Thomas
- Prince of Wales' Clinical School, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark Hew
- School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
- The Alfred HospitalMelbourneVictoriaAustralia
| | - Mimi L. K. Tang
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michael J. Abramson
- School of Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Jennifer L. Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
- Institute for Breathing and SleepMelbourneVictoriaAustralia
| | - Shyamali C. Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and BiostatisticsSchool of Population and Global Health, University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
44
|
Oswin HP, Haddrell AE, Hughes C, Otero-Fernandez M, Thomas RJ, Reid JP. Oxidative Stress Contributes to Bacterial Airborne Loss of Viability. Microbiol Spectr 2023; 11:e0334722. [PMID: 36912675 PMCID: PMC10101003 DOI: 10.1128/spectrum.03347-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/18/2023] [Indexed: 03/14/2023] Open
Abstract
While the airborne decay of bacterial viability has been observed for decades, an understanding of the mechanisms driving the decay has remained elusive. The airborne transport of bacteria is often a key step in their life cycle and as such, characterizing the mechanisms driving the airborne decay of bacteria is an essential step toward a more complete understanding of microbial ecology. Using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS), it was possible to systematically evaluate the impact of different physicochemical and environmental parameters on the survival of Escherichia coli in airborne droplets of Luria Bertani broth. Rather than osmotic stress driving the viability loss, as was initially considered, oxidative stress was found to play a key role. As the droplets evaporate and equilibrate with the surrounding environment, the surface-to-volume ratio increases, which in turn increased the formation of reactive oxygen species in the droplet. These reactive oxygen species appear to play a key role in driving the airborne loss of viability of E. coli. IMPORTANCE The airborne transport of bacteria has a wide range of impacts, from disease transmission to cloud formation. By understanding the factors that influence the airborne stability of bacteria, we can better understand these processes. However, while we have known for several decades that airborne bacteria undergo a gradual loss of viability, we have not previously identified the mechanisms driving this process. In this work, we discovered that oxygen surrounding an airborne droplet facilitates the formation of reactive oxygen species within the droplet, which then gradually damage and kill bacteria within the droplet. This discovery indicates that adaptations to help bacteria deal with oxidative stress may also aid their airborne survival and be essential adaptations for bacterial airborne pathogens. Understanding the adaptations bacteria need to survive in airborne droplets could eventually lead to the development of novel antimicrobials designed to inhibit their airborne survival, helping to prevent the transmission of disease.
Collapse
Affiliation(s)
- Henry P. Oswin
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, United Kingdom
| | - Allen E. Haddrell
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, United Kingdom
| | - Cordelia Hughes
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, United Kingdom
| | - Mara Otero-Fernandez
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, United Kingdom
| | - Richard J. Thomas
- Defence Science Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| | - Jonathan P. Reid
- School of Chemistry, Cantock’s Close, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
45
|
Awchi M, Sinues P, Datta AN, García-Gómez D, Singh KD. UHPLC-MS/MS-Based Identity Confirmation of Amino Acids Involved in Response to and Side Effects from Antiseizure Medications. J Proteome Res 2023; 22:990-995. [PMID: 36812155 PMCID: PMC9990125 DOI: 10.1021/acs.jproteome.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 02/24/2023]
Abstract
Real-time breath analysis using secondary electrospray ionization coupled with high-resolution mass spectrometry is a fast and noninvasive method to access the metabolic state of a person. However, it lacks the ability to unequivocally assign mass spectral features to compounds due to the absence of chromatographic separation. This can be overcomed by using exhaled breath condensate and conventional liquid chromatography-mass spectrometry (LC-MS) systems. In this study, to the best of our knowledge, we confirm for the first time the presence of six amino acids (GABA, Oxo-Pro, Asp, Gln, Glu, and Tyr) previously reported to be involved in response to and side effects from antiseizure medications in exhaled breath condensate and by extension in exhaled human breath. Raw data are publicly available at MetaboLights with the accession number MTBLS6760.
Collapse
Affiliation(s)
- Mo Awchi
- University
Children’s Hospital Basel, University
of Basel, Spitalstrasse 33, 4056 Basel, Switzerland
- Department
of Biomedical Engineering, University of
Basel, Gewerbestrasse
14, 4123 Allschwil, Switzerland
| | - Pablo Sinues
- University
Children’s Hospital Basel, University
of Basel, Spitalstrasse 33, 4056 Basel, Switzerland
- Department
of Biomedical Engineering, University of
Basel, Gewerbestrasse
14, 4123 Allschwil, Switzerland
| | - Alexandre N. Datta
- University
Children’s Hospital Basel, University
of Basel, Spitalstrasse 33, 4056 Basel, Switzerland
| | - Diego García-Gómez
- Department
of Analytical Chemistry, University of Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain
| | - Kapil Dev Singh
- University
Children’s Hospital Basel, University
of Basel, Spitalstrasse 33, 4056 Basel, Switzerland
- Department
of Biomedical Engineering, University of
Basel, Gewerbestrasse
14, 4123 Allschwil, Switzerland
| |
Collapse
|
46
|
Garwolińska D, Kot-Wasik A, Hewelt-Belka W. Pre-analytical aspects in metabolomics of human biofluids - sample collection, handling, transport, and storage. Mol Omics 2023; 19:95-104. [PMID: 36524542 DOI: 10.1039/d2mo00212d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolomics is the field of omics research that offers valuable insights into the complex composition of biological samples. It has found wide application in clinical diagnostics, disease investigation, therapy prediction, monitoring of treatment efficiency, drug discovery, or in-depth analysis of sample composition. A suitable study design constitutes the fundamental requirements to ensure robust and reliable results from the study data. The study design process should include a careful selection of conditions for each experimental step, from sample collection to data analysis. The pre-analytical variability that can introduce bias to the subsequent analytical process, decrease the outcome reliability, and confuse the final results of the metabolomics research, should also be considered. Herein, we provide key information regarding the pre-analytical variables affecting the metabolomics studies of biological fluids that are the most desirable type of biological samples. Our work offers a practical review that can serve and guide metabolomics pre-analytical design. It indicates pre-analytical factors, which can introduce artificial data variation and should be identified and understood during experimental design (through literature overview or analytical experiments).
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
47
|
Leese E, Jones K, Bocca B, Bousoumah R, Castaño A, Galea KS, Iavicoli I, López ME, Leso V, Ndaw S, Porras SP, Ruggieri F, Scheepers PT, Santonen T, Cattaneo A, Cavallo DM, De Palma G, Forte G, Lehtinen R, Lovreglio P, Melczer M, Senofonte M, Spankie S, van Dael M. HBM4EU chromates study - the measurement of hexavalent and trivalent chromium in exhaled breath condensate samples from occupationally exposed workers across Europe. Toxicol Lett 2023; 375:59-68. [PMID: 36535516 PMCID: PMC9887428 DOI: 10.1016/j.toxlet.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The aim of this study was to investigate the practicability of exhaled breath condensate (EBC) as a biological matrix to detect and measure hexavalent chromium (Cr(VI)) and trivalent chromium (Cr(III)) in workers occupationally exposed to Cr(VI). EBC samples were collected from workers in France, Finland, Italy, The Netherlands and the United Kingdom from three different target activities: chrome platers, stainless steel welders and surface treatment workers. Pre and post working week EBC samples were collected from 177 exposed workers and 98 unexposed workers (control group). Hyphenated chromatography systems with inductively coupled plasma - mass spectrometry (ICP-MS) were for the analysis. The results showed that the occupationally exposed workers had significantly higher levels of Cr(VI) and Cr(III) than the control group. Chrome platers exhibited the highest Cr(VI) levels in their EBC samples, with a significant increase from their pre to post samples for both Cr(VI) and Cr(III). A significant difference was also found between pre and post EBC samples for Cr(III) in welders. This study has shown that EBC has the potential to be a valid, non-invasive biological matrix to assess occupational exposure to Cr(VI) and Cr(III) for biological monitoring assessment, with the ability to detect low level inhalation exposures.
Collapse
Affiliation(s)
- Elizabeth Leese
- Health & Safety Executive, Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK.
| | - Kate Jones
- Health & Safety Executive, Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | | | | | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Ivo Iavicoli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Marta Esteban López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Veruscka Leso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Sophie Ndaw
- French National Research & Safety Institute, France
| | - Simo P. Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Paul T.J Scheepers
- Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the Netherlands
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - HBM4EU chromates study teamAnzionRobiCattaneoAndreajCavalloDomenico MariajDe PalmaGiuseppekForteGiovannilLehtinenRistomLovreglioPieronMelczerMathieuoSenofonteMartalSpankieSallypvan DaelMauriceiRadboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, the NetherlandsDepartment of Science and High Technology, University of Insubria, Como, ItalyDepartment of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, ItalyIstituto Superiore di Sanità, Rome, ItalyFinnish Institute of Occupational Health, Helsinki, FinlandInterdisciplinary Department of Medicine, University of Bari, Bari, ItalyFrench National Research & Safety Institute, FranceInstitute of Occupational Medicine (IOM), Edinburgh, EH14 4AP, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stachowiak Z, Wojsyk-Banaszak I, Jończyk-Potoczna K, Narożna B, Langwiński W, Szczepankiewicz A. Extracellular vesicles-derived miRNAs as mediators of pulmonary exacerbation in pediatric cystic fibrosis. J Breath Res 2023; 17. [PMID: 36720158 DOI: 10.1088/1752-7163/acb792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Children with cystic fibrosis (CF) suffer from chronic inflammation and recurrent pulmonary exacerbations (PEs). We aimed to test whether a specific miRNA could be associated with the occurrence of PE. We sequenced extracellular vesicle (EV)-derived miRNA in sputum (n= 20), exhaled breath condensate (EBC) (n= 11), and serum (n= 8) samples from pediatric patients during PE and the stable stage of CF. Four miRNAs: let-7c, miR-16, miR-25-3p and miR-146a, have been selected for validation in a larger group with reverse transcription quantitative real-time PCR (RT-qPCR) in sputum and serum, or droplet digital PCR (ddPCR) in EBC. Next-generation sequencing (NGS) differential expression analysis was done in Base Space, and the correlation between miRNAs expression and clinical data was calculated with Statistica. Functional annotation of selected miRNAs and their potential target genes was performed with miRDip and DAVID software. There were no differences in miRNA expression between stable and exacerbation in sputum and in serum. Validation of four selected miRNAs showed significant downregulation of miR-146a in serum. A panel of all four miRNAs (peripherally) was the best predictive model of exacerbation (p< 0.001, AUC = 0.96). Expression of airway miR-25-3p improved the diagnostic value of FEV1% pred and FVC% pred, while peripheral miR-146a improved the predictive model of C-reactive protein and neutrophilia.In silicoanalysis revealed a potential role for selected miRNAs in regulating processes associated with inflammation and tissue remodeling. We demonstrated that EVs contained in peripheral blood as well as local biomaterials can act as carriers for miRNAs with the diagnostic potential of predicting exacerbation in pediatric CF.
Collapse
Affiliation(s)
- Zuzanna Stachowiak
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Irena Wojsyk-Banaszak
- Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | | | - Beata Narożna
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Wojciech Langwiński
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznań, 60-572, Poland
| |
Collapse
|
49
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
50
|
Diet Quality and Exhaled Breath Condensate Markers in a Sample of School-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020263. [PMID: 36832392 PMCID: PMC9954902 DOI: 10.3390/children10020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Exhaled breath condensate (EBC) analysis is a recently developed, non-invasive method used to identify and quantify biomarkers, mainly those coming from the lower respiratory tract. It seems that diet can influence the airway's inflammation and change the exhaled breath composition. This study aimed to assess the association between diet quality intake and markers in EBC among school-aged children. A cross-sectional analysis included 150 children (48.3% females, aged 7-12 years, mean age: 8.7 ± 0.8 years) from 20 schools across Porto, Portugal. We assessed diet quality through the Healthy Eating Index (HEI)-2015, which was estimated based on a single 24 h food recall questionnaire. EBC samples were collected, and we assessed their ionic content (Na+, K+) and conductivity. The association between diet quality and Na+, K+, Na+/K+ ratio and conductivity was estimated using logistic regression models adjusted for potential confounders. After adjustment, a higher quality diet score increases the odds of higher conductivity values of the EBC (aOR = 1.04, 95%CI 1.00; 1.08). Our findings suggest that a higher diet quality in school-aged children is associated with higher conductivity levels of the EBC.
Collapse
|