1
|
Zong K, Yuan P, Wang R, Luo Q, Yang Y, Zhang X, Song Q, Du H, Gao C, Song J, Zhan W, Zhang M, Wang Y, Lin Q, Yao H, Xie B, Han J. Characteristics of innate, humoral and cellular immunity in children with non-severe SARS-CoV-2 infection. J Infect 2024; 88:158-166. [PMID: 38101522 DOI: 10.1016/j.jinf.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The symptoms of children infected with SARS-CoV-2 are mainly asymptomatic, mild, moderate, and a few severe cases. To understand the immune response characteristics of children infected with SARS-COV-2 who do not develop severe cases, 82 children infected with the SARS-CoV-2 delta strain were recruited in this study. Our results showed that high levels of IgG, IgM, and neutralization antibodies appeared in children infected with SARS-CoV-2. SARS-CoV-2 induced upregulation of both pro-inflammatory factors including TNF-α and anti-inflammatory factors including IL-4 and IL-13 in the children, even IL-10. The expression of INF-α in infected children also showed a significant increase compared to healthy children. However, IL-6, one of the important inflammatory factors, did not show an increase in infected children. It is worth noting that a large number of chemokines reduced in the SARS-CoV-2-infected children. Subsequently, TCR Repertoire, TCRβ bias, and preferential usage were analyzed on data of TCR next-generation sequencing from 8 SARS-CoV-2-infected children and 8 healthy controls. We found a significant decrease in TCR clonal diversity and a significant increase in TCR clonal expansion in SARS-CoV-2-infected children compared to healthy children. The most frequent V and J genes in SARS-CoV-2 children were TRBV28 and TRBJ2-1. The most frequently VβJ gene pairing in SARS-CoV-2 infected children was TRBV20-1-TRBJ2-1. The strong antiviral antibody levels, low expression of key pro-inflammatory factors, significant elevation of anti-inflammatory factors, and downregulation of many chemokines jointly determine that SARS-CoV-2-infected children rarely develop severe cases. Overall, our findings shed a light on the immune response of non-severe children infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Kexin Zong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Ping Yuan
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control and Prevention); The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou, Fujian 350011, China
| | - Ruifang Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Qin Luo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Yanqing Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Xiaohong Zhang
- Fujian Provincial Key Laboratory of Zoonosis Research (Fujian Center for Disease Control and Prevention); The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou, Fujian 350011, China
| | - Qinqin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Haijun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Juan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Weihua Zhan
- Putian Center for Disease Control and Prevention, Putian, Fujian 351106, China
| | - Mengjie Zhang
- Putian Center for Disease Control and Prevention, Putian, Fujian 351106, China
| | - Yanhai Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China
| | - Qunying Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Rd, Beijing 100020, China.
| | - Baosong Xie
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital; Fujian Shengli Medical College, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd, Beijing 102206, China.
| |
Collapse
|
2
|
Nasyrov RA, Galichina VA, Timchenko VN, Krasnogorskaya OL, Chepelev AS, Fedotova EP, Sidorova NA, Agafonnikova AA, Anichkov NM. [Lung pathology in children with a long-term novel coronavirus infection COVID-19]. Arkh Patol 2024; 86:36-43. [PMID: 38319270 DOI: 10.17116/patol20248601136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
New coronavirus infection is registered less frequently in children than in adults. Among all patients with COVID-19, the share of children is 8.6%. Clinical practice shows that in children, COVID-19 can be severe and even fatal. Articles have been published reflecting the clinical manifestations of Long Covid in children, while data on pathomorphological examination of the lungs during long-term COVID-19 in children are not available in the literature. On the basis of the Department of Pathological Anatomy with a course of Forensic Medicine and the Pathological-Anatomical Department of the Clinic of St. Petersburg State Pediatric Medical University, an analysis of medical documentation was carried out, autopsy materials were selected from 3 observations of the death of children from COVID-19. The selection criterion was the duration of the disease. A histological examination using standard methods and IHC analysis using antibodies to the nucleocapsid of SARS-Cov-2, CD95, CD31 were carried out on the lung tissue of 3 children aged 2 months to 2 years who died from a new coronavirus infection. Microscopically, all three patients showed microvessels damage, their thrombosis, angiogenesis, as well as signs of diffuse alveolar damage The combination of expression of the SARS-CoV-2 nucleocapsid and the apoptosis marker on the vascular endothelium of the MCR is of interest. CONCLUSION The data obtained indicate infection with coronavirus and death of endothelial cells due to apoptosis. Endothelial damage in the microvessels of the lungs is the initiating factor in the development of capillary-alveolar block, tissue hypoxia, and disseminated intravascular coagulation syndrome, leading in some cases to respiratory/multiple organ failure and death.
Collapse
Affiliation(s)
- R A Nasyrov
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - V A Galichina
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - V N Timchenko
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - O L Krasnogorskaya
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - A S Chepelev
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - E P Fedotova
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - N A Sidorova
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - A A Agafonnikova
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| | - N M Anichkov
- St. Petersburg State Pediatric Medical University, Saint Petersburg, Russia
| |
Collapse
|
3
|
Maranduca MA, Tanase DM, Cozma CT, Dima N, Clim A, Pinzariu AC, Serban DN, Serban IL. The Impact of Angiotensin-Converting Enzyme-2/Angiotensin 1-7 Axis in Establishing Severe COVID-19 Consequences. Pharmaceutics 2022; 14:pharmaceutics14091906. [PMID: 36145655 PMCID: PMC9505151 DOI: 10.3390/pharmaceutics14091906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 09/03/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has put a tremendous stress on the medical community over the last two years. Managing the infection proved a lot more difficult after several research communities started to recognize the long-term effects of this disease. The cellular receptor for the virus was identified as angiotensin-converting enzyme-2 (ACE2), a molecule responsible for a wide array of processes, broadly variable amongst different organs. Angiotensin (Ang) 1-7 is the product of Ang II, a decaying reaction catalysed by ACE2. The effects observed after altering the level of ACE2 are essentially related to the variation of Ang 1-7. The renin-angiotensin-aldosterone system (RAAS) is comprised of two main branches, with ACE2 representing a crucial component of the protective part of the complex. The ACE2/Ang (1-7) axis is well represented in the testis, heart, brain, kidney, and intestine. Infection with the novel SARS-CoV-2 virus determines downregulation of ACE2 and interrupts the equilibrium between ACE and ACE2 in these organs. In this review, we highlight the link between the local effects of RAAS and the consequences of COVID-19 infection as they arise from observational studies.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Tudor Cozma
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence:
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Vono M, Huttner A, Lemeille S, Martinez-Murillo P, Meyer B, Baggio S, Sharma S, Thiriard A, Marchant A, Godeke GJ, Reusken C, Alvarez C, Perez-Rodriguez F, Eckerle I, Kaiser L, Loevy N, Eberhardt CS, Blanchard-Rohner G, Siegrist CA, Didierlaurent AM. Robust innate responses to SARS-CoV-2 in children resolve faster than in adults without compromising adaptive immunity. Cell Rep 2021; 37:109773. [PMID: 34587479 PMCID: PMC8440231 DOI: 10.1016/j.celrep.2021.109773] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection in children is less severe than it is in adults. We perform a longitudinal analysis of the early innate responses in children and adults with mild infection within household clusters. Children display fewer symptoms than adults do, despite similar initial viral load, and mount a robust anti-viral immune signature typical of the SARS-CoV-2 infection and characterized by early interferon gene responses; increases in cytokines, such as CXCL10 and GM-CSF; and changes in blood cell numbers. When compared with adults, the antiviral response resolves faster (within a week of symptoms), monocytes and dendritic cells are more transiently activated, and genes associated with B cell activation appear earlier in children. Nonetheless, these differences do not have major effects on the quality of SARS-CoV-2-specific antibody responses. Our findings reveal that better early control of inflammation as observed in children may be key for rapidly controlling infection and limiting the disease course.
Collapse
Affiliation(s)
- Maria Vono
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; University of Geneva Medical School, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland; Center for Clinical Research, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paola Martinez-Murillo
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benjamin Meyer
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephanie Baggio
- Division of Prison Health, Geneva University Hospitals, Geneva, Switzerland; Office of Corrections, Department of Justice and Home Affairs of the Canton of Zurich, Zurich, Switzerland
| | - Shilpee Sharma
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Anais Thiriard
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Gert-Jan Godeke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Chantal Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Francisco Perez-Rodriguez
- University of Geneva Medical School, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isabella Eckerle
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland; Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Natasha Loevy
- Pediatric Platform for Clinical Research, Department of Woman, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christiane S Eberhardt
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Geraldine Blanchard-Rohner
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Unit of Immunology and Vaccinology, Division of General Pediatrics, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; University of Geneva Medical School, Geneva, Switzerland
| | - Arnaud M Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
5
|
Zani-Ruttenstock E, Antounians L, Khalaj K, Figueira RL, Zani A. The Role of Exosomes in the Treatment, Prevention, Diagnosis, and Pathogenesis of COVID-19. Eur J Pediatr Surg 2021; 31:326-334. [PMID: 34161984 DOI: 10.1055/s-0041-1731294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), continues to be a major health concern. In search for novel treatment strategies against COVID-19, exosomes have attracted the attention of scientists and pharmaceutical companies worldwide. Exosomes are small extracellular vesicles, secreted by all types of cells, and considered as key mediators of intercellular communication and stem-cell paracrine signaling. Herein, we reviewed the most recent literature about the role of exosomes as potential agents for treatment, prevention, diagnosis, and pathogenesis of COVID-19. Several studies and ongoing clinical trials have been investigating the anti-inflammatory, immunomodulatory, and reparative effects of exosomes derived from mesenchymal stem/stromal cells for COVID-19-related acute lung injury. Other studies reported that exosomes play a key role in convalescent plasma therapy for COVID-19, and that they could be of use for the treatment of COVID-19 Kawasaki's-like multisystem inflammatory syndrome and as drug delivery nanocarriers for antiviral therapy. Harnessing some advantageous aspects of exosome biology, such as their endogenous origin, capability of crossing biological barriers, high stability in circulation, and low toxicity and immunogenicity, several companies have been testing exosome-based vaccines against SARS-CoV-2. As they carry cargos that mimic the status of parent cells, exosomes can be isolated from a variety of sources, including plasma, and employed as biomarkers of COVID-19. Lastly, there is growing evidence supporting the role of exosomes in COVID-19 infection, spread, reactivation, and reinfection. The lessons learned using exosomes for COVID-19 will help determine their efficacy and applicability in other clinical conditions.
Collapse
Affiliation(s)
- Elke Zani-Ruttenstock
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lina Antounians
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kasra Khalaj
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebeca L Figueira
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Dioguardi M, Cazzolla AP, Arena C, Sovereto D, Caloro GA, Dioguardi A, Crincoli V, Laino L, Troiano G, Lo Muzio L. Innate Immunity in Children and the Role of ACE2 Expression in SARS-CoV-2 Infection. Pediatr Rep 2021; 13:363-382. [PMID: 34287338 PMCID: PMC8293341 DOI: 10.3390/pediatric13030045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 (Coronavirus Disease 2019) is an emerging viral disease caused by the coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to severe respiratory infections in humans. The first reports came in December 2019 from the city of Wuhan in the province of Hubei in China. It was immediately clear that children developed a milder disease than adults. The reasons for the milder course of the disease were attributed to several factors: innate immunity, difference in ACE2 (angiotensin-converting enzyme II) receptor expression, and previous infections with other common coronaviruses (CovH). This literature review aims to summarize aspects of innate immunity by focusing on the role of ACE2 expression and viral infections in children in modulating the antibody response to SARS-CoV-2 infection. This review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles deemed potentially eligible were considered, including those dealing with COVID-19 in children and providing more up-to-date and significant data in terms of epidemiology, prognosis, course, and symptoms, focusing on the etiopathogenesis of SARS-CoV-2 disease in children. The bibliographic search was conducted using the search engines PubMed and Scopus. The following search terms were entered in PubMed and Scopus: COVID-19 AND ACE2 AND Children; COVID-19 AND Immunity innate AND children. The search identified 857 records, and 18 studies were applicable based on inclusion and exclusion criteria that addressed the issues of COVID-19 concerning the role of ACE2 expression in children. The scientific literature agrees that children develop milder COVID-19 disease than adults. Milder symptomatology could be attributed to innate immunity or previous CovH virus infections, while it is not yet fully understood how the differential expression of ACE2 in children could contribute to milder disease.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| | - Claudia Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy;
| | - Antonio Dioguardi
- U.S.C.A. “Unità Speciali di Continuità Assistenziale” Troia 2, ASL “Azienda Sanitaria Locale” Foggia Contrada Fontanelle, 71029 Troia, Italy;
| | - Vito Crincoli
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Division of Complex Operating Unit of Dentistry, “Aldo Moro” University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (A.P.C.); (C.A.); (D.S.); (G.T.); (L.L.M.)
| |
Collapse
|
7
|
A literature review of 2019 novel coronavirus (SARS-CoV2) infection in neonates and children. Pediatr Res 2021; 89:1101-1108. [PMID: 32679582 DOI: 10.1038/s41390-020-1065-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
At the time of writing, there are already millions of documented infections worldwide by the novel coronavirus 2019 (2019-nCoV or severe acute respiratory syndrome coronavirus 2 (SARS-CoV2)), with hundreds of thousands of deaths. The great majority of fatal events have been recorded in adults older than 70 years; of them, a large proportion had comorbidities. Since data regarding the epidemiologic and clinical characteristics in neonates and children developing coronavirus disease 2019 (COVID-19) are scarce and originate mainly from one country (China), we reviewed all the current literature from 1 December 2019 to 7 May 2020 to provide useful information about SARS-CoV2 viral biology, epidemiology, diagnosis, clinical features, treatment, prevention, and hospital organization for clinicians dealing with this selected population. IMPACT: Children usually develop a mild form of COVID-19, rarely requiring high-intensity medical treatment in pediatric intensive care unit. Vertical transmission is unlikely, but not completely excluded. Children with confirmed or suspected COVID-19 must be isolated and healthcare workers should wear appropriate protective equipment. Some clinical features (higher incidence of fever, vomiting and diarrhea, and a longer incubation period) are more common in children than in adults, as well as some radiologic aspects (more patchy shadow opacities on CT scan images than ground-glass opacities). Supportive and symptomatic treatments (oxygen therapy and antibiotics for preventing/treating bacterial coinfections) are recommended in these patients.
Collapse
|
8
|
Yin X, Li Q, Hou S, Zhong Q, Fan Z, Huang Q, Kukkar V, Kang Z, Huang Z, Wang L. Demographic, signs and symptoms, imaging characteristics of 2126 patients with COVID-19 pneumonia in the whole quarantine of Wuhan, China. Clin Imaging 2021; 77:169-174. [PMID: 33691264 PMCID: PMC7901270 DOI: 10.1016/j.clinimag.2021.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The accurate knowledge of demographic, signs and symptoms, imaging characteristics of coronavirus disease 2019 (COVID-19) is essential for the accurate management of these patients. However, the claims between the previous papers are not always consistent and may even contradict each other, for example, some claims the virus infects more men than women in Wuhan. In this large-scale cohort study, we aimed to update the demographic, signs and symptoms, imaging characteristics of patients with COVID-19 in the whole quarantine of Wuhan, China. METHODS A cohort of 2126 patients with a diagnosis of COVID-19 pneumonia (confirmed by real-time reverse transcriptase-polymerase chain reaction, RT-PCR) who were admitted to one hospital in Wuhan were retrospectively enrolled. Data were collected between January 13, 2020, and April 8, 2020, the end of Wuhan quarantine. Demographic, signs and symptoms, imaging characteristics were analyzed. CT imaging characteristics associated with respiratory failure or death were identified. RESULTS Of the 2126 patients with COVID-19, 1051 (49.44%) were men and 1075 (50.56%) were women, 1933 (90.92%) have fever and 1328 (62.46%) have dry cough. The mean age was 57.43 years of age (range 1-95). The CT imaging findings were bilateral pneumonia (1883[88.57%]), unilateral pneumonia (243[11.43%]), ground-glass opacity (GGO) or consolidation (1175[55.27%]), pleural effusion (69[3.25%]). Patients with respiratory failure or death were more likely to have pleural effusion on CT than patients without respiratory failure or death (p < 0.05). CONCLUSION Men and women have been infected by SARS-CoV-2 in roughly equal numbers. Fever and cough are the most prevalent symptoms at disease onset in patients. Other prevalent symptoms include fatigue, and sputum production. COVID-19 patients with bilateral pneumonia and pleural effusion are more likely to develop respiratory failure or death.
Collapse
Affiliation(s)
- Xi Yin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China
| | - Qiubai Li
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
| | - Shengchao Hou
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qiang Zhong
- Department of Clinical Medicine, ICU, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China
| | - Zhongjie Fan
- Department of Respiratory Medicine, Wuhan Red Cross Hospital, Wuhan 430015, China
| | - Qiuhan Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China
| | | | - Zhen Kang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China
| | - Zhaojun Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jie-Fang-Da-Dao 1095, Wuhan 430030, China.
| |
Collapse
|
9
|
Tajbakhsh A, Jaberi KR, Hayat SMG, Sharifi M, Johnston TP, Guest PC, Jafari M, Sahebkar A. Age-Specific Differences in the Severity of COVID-19 Between Children and Adults: Reality and Reasons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1327:63-78. [PMID: 34279829 DOI: 10.1007/978-3-030-71697-4_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, children experience mild symptoms compared to adults. However, the precise explanations for this disparity are not clear. Thus, we attempted to identify rational explanations about age-related differences as reported in different studies. Given the incomplete data on SARS-CoV-2, some information has been gathered from other studies of earlier coronavirus or influenza outbreaks. Age-related differences in disease severity are important with regard to diagnosis, prognosis, and treatment of SARS-CoV-2 infections. In addition, these differences impact social distancing needs, since pediatric patients with mild or asymptomatic are likely to play a significant role in disease transmission.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mohammad Jafari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
10
|
Cenciarelli S, Calbi V, Barzaghi F, Bernardo ME, Oltolini C, Migliavacca M, Gallo V, Tucci F, Fraschetta F, Albertazzi E, Fratini ES, Consiglieri G, Giannelli S, Dionisio F, Sartirana C, Racca S, Camesasca C, Peretto G, Daverio R, Esposito A, De Cobelli F, Silvani P, Rabusin M, Cara A, Trabattoni D, Dispinseri S, Scarlatti G, Piemonti L, Lampasona V, Cicalese MP, Aiuti A, Ferrua F. Mild SARS-CoV-2 Infection After Gene Therapy in a Child With Wiskott-Aldrich Syndrome: A Case Report. Front Immunol 2020; 11:603428. [PMID: 33329599 PMCID: PMC7732473 DOI: 10.3389/fimmu.2020.603428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we present the case of SARS-CoV-2 infection in a 1.5-year-old boy affected by severe Wiskott-Aldrich Syndrome with previous history of autoinflammatory disease, occurring 5 months after treatment with gene therapy. Before SARS-CoV-2 infection, the patient had obtained engraftment of gene corrected cells, resulting in WASP expression restoration and early immune reconstitution. The patient produced specific immunoglobulins to SARS-CoV-2 at high titer with neutralizing capacity and experienced a mild course of infection, with limited inflammatory complications, despite pre-gene therapy clinical phenotype.
Collapse
Affiliation(s)
- Sabina Cenciarelli
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valeria Calbi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Oltolini
- Clinic of Infectious Diseases, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vera Gallo
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Albertazzi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Sophia Fratini
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Sartirana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Racca
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Camesasca
- Pediatric Cardiology, Cardio-thoraco-vascular Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Peretto
- Vita-Salute San Raffaele University, Milan, Italy
- Myocarditis Unit, Department of Cardiac Electrophysiology and Clinical Arrhythmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rita Daverio
- Department of Clinical Biochemistry, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Institute, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Institute, Milan, Italy
| | - Paolo Silvani
- Department of Anesthesia and Critical Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Rabusin
- Department of Pediatrics, HematoOncology Unit, Institute of Maternal and Child Health Burlo Garofolo, Trieste, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Piemonti
- Beta Cell Biology Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ferrua
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|